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1. Introduction

Mathematically, a knot is simply a continuous embedding of a circle into three-dimensional space, where we do not dis-
tinguish between one such closed knotted curve and its deformations through space avoiding any kind of self-intersections
or cutting and gluing. Such admissible deformations, avoiding also the ‘‘pull-tight phenomenon’’ illustrated in Fig. 11, are
called ambient isotopies and belong to the basic tool set of knot theory. Knots occur in diverse branches of modern physics
or biology. Numerous microscopic and macroscopic examples of this particular connection between Mathematics and the
Sciences come tomind, from the interplay between knot theory and statistical or quantum physics, described e.g. in Louis H.
Kauffman’s essay [1], and microscopic defect lines in chiral nematic liquid-crystal colloids forming various knots and links,1
to knotted field lines in hydrodynamics and optics, and to polymer chains and knotted structures in DNA. A close interac-
tion between ingenious experiments and hard theory, drawing heavily from several branches of mathematics, including the
calculus of variations, nonlinear and geometric analysis, and topology, is present in most of that research.

On themathematical side, modern knot theory produces numerous sophisticated knot invariants, which can be viewed as
mappings from the complicated space of all knots to some simpler space, for example to the real numbers or to polynomials
or groups. The term invariant means that if two knotted curves are in the same knot class, i.e., if they are ambient isotopic,
then their values of a knot invariant are also the same. At present, none of the known invariants permits to determine
algorithmically the knot type of every given knot, or to decide whether two seemingly different embeddings of a circle do
indeed represent the same knot.

All this leads to a quest for knot recognition methods and to the desire to deform a given knot to a fairly simple, optimal
or model shape. One of the possible approaches is to simulate the physical movement of knots under the influence of
some sort of self-repelling potential. One of the most famous tools used for serious experiments with pictures of different
knot conformations is Robert Scharein’s KnotPlot program.2 The mathematical concept behind such intuitively appealing
simulations of ambient isotopies is that of a knot energy, proposed by Shinji Fukuhara [3], and later made more precise and
investigated in depth by various authors, see e.g. [4–7]. Ourmain aimwill be to describemathematically the properties of one
such energy representing awhole family of geometrically defined self-avoidance energies, that is particularly interesting (at
least for us) because of its links both to modelling physical and biological objects and to deep advances in abstract harmonic
analysis, geometric measure theory and related branches of mathematics.

For the purposes of this introduction, the reader is invited to think of a knot energy as a functional defined on the space of
all knotted curves in R3 that assigns some real number to each conformation of every knot, in such a way that several natural
conditions are satisfied. First, distinct knot types should be separated by infinitely high energywalls. Then the gradient flow,
following the path of steepest descent in the energy landscape, will be confined to a single knot type. Secondly, it would
be desirable to know that a bound on the energy value restricts both the set of available knot types and the geometry of
their particular representatives: those that are particularly (or unnecessarily) complicated should correspond to high energy
values. Thirdly, ideally, the energy should distinguish different knot types, e.g. through distinct minimal energy values on
different knot types.

Numerical modelling of curves that avoid self-interpenetration leads to several challenges. For example, the fact that a
curve has no self-intersections cannot be deduced just from qualitative local properties of its parametrization, such as local
curvature, no matter how much is known about them. In addition, the general problem that a numerical gradient flow gets
trapped in a local minimum or even in some stable but non-minimal critical point, seems to gain even more relevance in
the presence of these nonlocal (and highly nonlinear) interactions between different strands of a curve. Kauffman [8] points
out some of the caveats present behind numerical experiments with knots.

Oscar Gonzalez and JohnH.Maddocks [9], in search for ideal shapes of knotswithin the context of DNAknotting, proposed
the concept of a global radius of curvature which can be used to give a characterization of thickness.3 To define the global

1 This has actually been achieved experimentally, by using laser tweezers as a micromanipulation tool to produce all knot and link types of up to six
crossings, cf. Tkalec et al. [2].
2 As the authors – both of them mathematicians by education, employment and experience – have learned during illuminating contacts with members

of the physics’ community at the Kavli Institute of Theoretical Physics in summer 2012, KnotPlot is widely used by physicists, to manipulate knotted curves
in order to recognize their knot types, and simply to produce illustrations.
3 The term ‘‘thickness’’, or ropelength as the quotient of length and thickness, comes from the following plain language statement of a variational problem:

suppose you have a fixed length of string or rope and want to tie a given knot; how thick can this rope be so that your task is still possible?
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Fig. 1. Two adjacent almost parallel strands of the curve cause 1/R to be high at many locations while the classic local curvature remains moderate.

radius of curvature, one considers all triples of distinct points x, y, z on a curve γ in R3, and for each of them computes the
circumradius R(x, y, z), i.e. the radius of the unique circle passing through x, y, z (— this circle degenerating to an infinite
straight line if the three points are collinear). Keeping one of the points fixed and varying the remaining two along the curve,
one computes the global radius of curvature as

ϱG[γ ](x) := inf
y,z∈γ

z≠x≠y≠z

R(x, y, z). (1)

The inverse, 1/ϱG[γ ](x), is referred to as the global curvature of γ at x. The thickness △[γ ] of γ is defined as the infimum
of ϱG[γ ](x) over all points x on the curve. It is clear that ϱG takes into account both the local curvature of γ and its global
properties: it is easy to see that if two nearly straight strands of γ run close to each other, more or less parallelly, then global
curvature must be large for many of the points x ∈ γ while the classic local curvature is small at those points; see Fig. 1. If,
on the other hand, y and z tend to x along the curve γ , then 1/R(x, y, z) tends to the local curvature of γ at x as long as γ is
sufficiently smooth.

In Section 2, we describe inmore detail the relations between thickness and classical curvature, and the contrast between
thickness and self-repulsion. Let us just say here that the intuitive suggestion in the final section of [9] that ‘circumradius and
global radius curvature . . . lead to families of integral knot energies that do not require explicit regularization ormollification’
has been one of the starting points for a research program thatwehave followedover nearly a decade, reaching amuchbetter
understanding of these energies. One of them, the integral Menger curvature

Mp(γ ) :=


γ


γ


γ

dH 1(x) dH 1(y) dH 1(z)
R(x, y, z)p

, (2)

where dH 1 denotes the integration with respect to the one-dimensional Hausdorff measure, i.e. the arclength, will serve as
a role model in the present paper: we shall explain several properties of related knot energies, and the geometric reasons
behind those properties, using the example of Mp.

To give the reader a glimpse of the smoothing properties of Mp, let us invoke the following analogy. Imagine a closed,
possibly nonsmooth and possibly self-intersecting curve of length 1 in a dark room; you cannot see the curve but a scanning
device canmeasure the radii R(x, y, z) for lots of randomly selected triples of points and supply youwith the statistics of the
inverses 1/R. Then, using a Monte Carlo procedure, you might be able to compute a reasonable approximation of Mp(γ ) for
various exponents p. Miraculously, if that integral converges for p > 3, then you do know the following. First, the curvemust
be free of self-intersections; it also has no corners or cusps: the tangent vector is defined everywhere and is continuous.4
Secondly, the value of the Mp-energy explicitly defines the length scale r0 belowwhich the curve is nearly straight and does
not bend too much, just like a rather stiff necklace with a certain number of (conical) beads of fixed size. The knotting – if
any – must happen beyond that scale; no little knots on γ can be seen if you scan the balls of radius r0 or smaller. All this
is linked to the control of geometry of the curve which is strong enough to restrict the number of possible knot types the
curve might form. You could obtain a crude yet explicit estimate of that number. You could also estimate the number of
sticks needed to build a polygonal model of the knot the curve forms, and give an explicit bound for the average crossing
number of γ , i.e. for the average number of crossings that are seen in a projection of γ onto a plane. The limit as p → ∞ of
Mp(γ )1/p gives 1/△[γ ], the inverse of thickness, or the ropelength of the curve.

It is still an open problem to prove rigorously that the gradient flow of Mp does exist. However, recent extensive nu-
merical simulations of that flow by Tobias Hermes [11] indicate that unknotted curves – including some not entirely trivial

4 In particular, finite integral Menger curvature Mp , p > 3, of a loop γ implies that this loop cannot be topologicallywild (which, a priori, could happen if
γ were just rectifiable and simple) and must be tame, cf. Freedman et al. [10, Section 4] where a similar phenomenon is described for another knot energy,
theMöbius energy EMöb , which we discuss briefly in Section 3.3.3.
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unknots – untangle and flow to round circles (see figures in Section 5). A far reaching dream is that a profound analytic
understanding of the gradient flow for Mp would help to explore in detail its presumably very complex energy landscape
over knot space. In addition, sending p to infinity this might help to define and investigate analytically a gradient flow for
the nonsmooth limit energy ropelength, for which Jason Cantarella’s and Eric Rawdon’s algorithm ridgerunner provides
fascinating numerical results [12].

The paper is organized as follows. In Section 2, we explain the regularizing and self-avoidance effects of Mp, and the
geometry behind those effects. In Section 3, we show that those properties of Mp can immediately be translated to simple
features of the knot energy landscape: banning the pull-tight phenomenon, existence of energy minimizers in each knot
class, bounds on the number of knot classes under each energy level etc. We also compare the properties of integral Menger
curvature to those of several other knot energies, including a repulsive potential introduced by Jun O’Hara [13], also known
asMöbius energy, which can be viewed as a regularization of self-repulsion via electrostatic forces. In Section 4we investigate
in more detail how Menger curvature controls the geometry of a knot: we obtain the stick number estimates and explain
why two curves of bounded Mp-energy that are sufficiently close to each other in space simply as point sets, i.e. close w.r.t.
the so-called Hausdorff distance, do represent the same knot. (Do bear in mind that the closedness itself is by no means
sufficient here: one of the curves might wind around the other one, forming lots of extra little knots). Finally, in Section 5
we discuss some of the open problems, in particular the regularity and shape of minimizers, and the existence of the flow,
andmention several generalizations of such geometric curvature energies to surfaces and higher dimensional submanifolds.

At the end of this introduction, to avoid the misleading impression that integral Menger curvature is related first and
foremost to knots and simulations of the physical models and their ambient isotopies, let us digress and mention a deep,
purely mathematical link between Menger curvature and complex analysis. In the late XIXth century Paul Painlevé has
been studying the problem of removable singularities of bounded analytic functions: suppose you have a compact set K in the
complex plane C; under which circumstances can all bounded analytic functions f :C \ K → C be extended to analytic
functions defined on all of C? In other words and in light of the classic Liouville theorem, what are the necessary and
sufficient conditions on K implying that all bounded analytic functions f :C \ K → C are constant? Such sets have been
termed removable for bounded analytic functions. Every student learns in a basic course on analytic functions that isolated
point singularities are removable. It is a bit more complicated, but still on the level of exercises for a graduate course in
complex analysis, to see that (a) each compact set K with H 1(K) = 0 is removable, (b) no continuous arc of non-zero length
is removable. In the 1960’s Anatoli G. Vitushkin conjectured that a compact set K with 0 < H 1(K) < ∞ is removable if
and only if it is purely unrectifiable, i.e. if its projections to almost every straight line have zero length. (Examples of such sets
include certain analogues of the Cantor set in the plane.)

After more than three decades, Vitushkin’s conjecture has been proved due to mutual efforts and discoveries of several
mathematicians, including Mark S. Melnikov, Xavier Tolsa, Joan Verdera, Pertti Mattila, Guy David and others. The story is
now well-documented in research papers and surveys, see e.g. [14,15] or [16]. The gist is that to define analytic functions
by means of their boundary values one uses the Cauchy integral formula for a curve (or a set) K ; this leads to a question for
what sets K this formula defines a linear operator with good properties, like boundedness on L2 etc. Two of the key steps in
the solution of Vitushkin’s conjecture were the discovery by Melnikov and Verdera that the L2-norm of the Cauchy integral
along a curve γ is intimately related to the integral Menger curvature M2(γ ) of that curve, and the contribution by Jean-
Christophe Léger who proved that finiteness of the integral Menger curvature M2(E) of a one-dimensional Borel set E ⊂ C,
i.e. the condition

M2(E) =


E×E×E

1
R2(x, y, z)

dH 1(x) dH 1(y) dH 1(z) < ∞,

implies that E is rectifiable. This means that E is contained – up to a negligible subset of one-dimensional measure zero – in
a union of countably many C1-curves.

If the reader is a physicist, then he or she should bear in mind that to a randomly selected mathematician the name
‘Menger curvature’ might only ring the (complex analytic) bells hinted at in the previous paragraph. However, as many
other mathematical tools, integral Menger curvature serves more than just one purpose.

2. Self-avoidance and regularizing effects

Since we are interested in different conformations of knots, i.e., specific curves in R3, and the plain term ‘curve’ is
ambiguous even inside mathematics, let us make it more precise for our purposes. Everywhere below, we consider the
class C of all closed and rectifiable curves γ ⊂ R3 whose length, i.e., one-dimensional Hausdorff measure H 1(γ ), is equal
to 1. Moreover, for technical reasons we assume that all curves in C contain a fixed point, say the origin in R3, and that all
loops in C are parametrized by arclength defined on the interval [0, 1], that is, γ : [0, 1] → R3 is Lipschitz continuous with
|γ ′

| = 1 almost everywhere5 and γ (0) = γ (1). The curves in C will sometimes be referred to as (unit) loops. If γ is injective
on [0, 1), then we say that γ is simple.

5 By Rademacher’s theorem, the tangent γ ′(t) is defined for almost every parameter t ∈ [0, 1], since γ is Lipschitz.
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(a) Local curvature κ(z) obtained
as the inverse of the local radius
of curvature r(z) of the
osculating circle of γ at z.

(b) Menger curvature 1/R(x, y, z)
depends on the triple of points on
γ .

Fig. 2. Local curvature κ(z) vs. Menger curvature of x, y, z.

In other words, the classC contains – up to scaling, whichmight be necessary to fix the length – about every planar curve
that one can physically draw, and about every curve in R3 that one can imagine. Corners, cusps and self-intersections are a
priori allowed.

We shall often use the name γ both for the parametrization itself and for the image γ ([0, 1]) ⊂ R3, hoping that this does
not create too much ambiguity, and using a clear, explicit distinction between the two whenever necessary.

2.1. Between thickness and classical curvature

The notion of classic local curvature at a point z = γ (s) for a curve γ ∈ C requires more smoothness: if γ happens
to be twice continuously differentiable (in mathematical terms we write γ ∈ C2), then the local curvature at z is given by
κ(z) := |γ ′′(s)|. A more geometric way of determining local curvature at the point z ∈ γ is to search for the best local
approximation of the curve γ near z by circles. The so-called osculating circlewill do the job: it is tangent to γ at z, approxi-
mates γ nicely up to second order locally near z, and its radius r(z), the local radius of curvature at z, equals the inverse local
curvature; see Fig. 2(a).

In contrast to this local function, that depends on single curve points only, Karl Menger [17] considered the circumradius
R(x, y, z) of three curve points x, y, z ∈ γ with the knowledge that the coalescent limit of R(x, y, z) as x and y tend to
z coincides with the local radius of curvature r(z) if γ is sufficiently smooth. Besides that, Menger was aware of the fact
that there is an elementary formula for the circumradius solely in terms of the mutual distances of the points x, y, and z.
By means of multipoint functions such as the circumradius Menger indeed intended to develop a purely metric geometry
in contrast to classic differential geometry.6 Motivated by computational issues in the modelling of DNA, Gonzalez and
Maddocks reconsidered in [9] the circumradius function, but with a focus on capturing global features of the curve by
searching for the minimal circumradius that one can find upon varying the two points y, z along γ , to obtain the global
radius of curvature ϱG[γ ](x) at x (see (1)), or even thickness

△[γ ] = inf
x≠y≠z≠x

R(x, y, z) (3)

by varying all three points along the curve. Let us add to Menger’s two insights at this point a third simple observation: in
contrast to local curvature neither the circumradius, nor the global radius of curvature or thickness require any smoothness
of the curve. Each of them is well-defined on the class C of unit loops. From the perspective of the calculus of variations this
is crucial: very often one is forced to enlarge classic function spaces to more general spaces, for instance to so-called Sobolev
spaces where derivatives exist only in a weak integral sense, in order to actually find minimizers of given energies. Only
afterwards one can try to prove higher regularity of the minimizer. Likewise for optimization problems involving geometric

6 Metric geometry in the sense of Menger is not part of the present survey, for further reading in that direction see, e.g. the treatise of Leonard M.
Blumenthal and Menger [18], in particular Chapter 10.
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Fig. 3. Thick curves are C1,1-manifolds. (a) A cross section of all balls of radius θ containing x and y on their boundaries. Any curve point z in the lightly
shaded region would lead to a circumradius R(x, y, z) < θ. (b) The limiting position of the balls in (a) as y approaches x along γ . (c) A horn torus whose
cross section is shown in (b); the curve does not penetrate its interior. (d) The tubular neighbourhood of γ is formed by disjoint discs of radius θ , centred
on γ .

objects: the larger the class of objects, themore likely it is that themathematical search for minimizing configurations turns
out successful.

In view of all these facts one is tempted to say that the circumradius, and minimization over selections of its arguments,
might lead to geometrically defined energies that capture both local properties (like local curvature) and global behaviour
of curves. This interplay between local and global control is reflected in the following theorem [19,20], which has served as
the basis for analytic investigations on ideal configurations of knots and links.

Theorem 2.1 (Thick Curves are C1,1-Manifolds).Unit loops γ ∈ C with a positive thickness△[γ ] are embedded and continuously
differentiable with a Lipschitz continuous tangent vector. Moreover, the curvature of γ is defined and bounded almost everywhere
by 1/△[γ ].

So, in mathematical terms, one finds that thick curves are, in fact, one-dimensional C1,1-submanifolds of Euclidean 3-space,
where the notation C1,1 reflects the regularity of the tangent vector γ ′: it exists everywhere and is Lipschitz continuouswith
the estimate

|γ ′(s) − γ ′(t)| ≤
1

△[γ ]
|s − t| for all s, t ∈ [0, 1], (4)

where here, and in the following, |s − t| denotes the intrinsic distance of the points γ (s) and γ (t) along the curve, that is,
the length of the shortest subarc of γ connecting γ (s) and γ (t). Since Lipschitz continuous functions are – according to a
classic theorem by Hans A. Rademacher – differentiable almost everywhere, one finds that local curvature κ(s) = |γ ′′(s)| is
defined and bounded by ropelength 1/△[γ ] for almost every parameter s ∈ [0, 1]. In other words, the energy ropelength
controls local curvature and guarantees an embedding.

The geometric essence of the proof of this theorem is the following, which will at the end also justify the use of the word
‘‘thickness’’ for △[γ ]. Assume that θ := △[γ ] is positive and, for simplicity, that γ ⊂ R3 is embedded,7 and consider two
distinct points x = γ (s) and y = γ (t) of differentiability sufficiently close to each other. (By Rademacher’s theorem one has
many choices for these points, since almost every curve point is a point where the tangent vector exists, since γ is Lipschitz
continuous.) Then we look at all three-dimensional open balls of radius θ that contain x and y in their respective boundary
sphere. It turns out that γ intersects the union of all these balls only in their intersection, which forms a lens-shaped region;
see Fig. 3(a). Indeed, any point z ∈ γ contained in that union but not in the lens would lead to a triple x, y, z ∈ γ with
circumradius R(x, y, z) < θ contradicting the very definition of thickness (see (3)). Having trapped the curve γ locally
in such lens-shaped regions immediately confines the tangents at x and y to the smallest double-cone with axis through
x − y and containing the lens, which leads to inequality (4). This uniform estimate can be readily extended to all pairs of
parameters, since the parameters of differentiability form a dense set in [0, 1].

In addition, if y tends to x along the curve, then this union of balls tends to a degenerate torus, an open horn torus tangent
to γ at x, which contains by the previous argument no curve point; see Fig. 3(b). So, the curve is equipped with a collar of
such horn tori, see Fig. 3(c), which implies the existence of a tubular neighbourhood in which the next-point projection onto
the curve is uniquely defined. In other words, this tubular neighbourhood consists of the disjoint union of open planar discs
of uniform radius θ , each of which is centred at and normal to the curve; see Fig. 3(d). This surrounding tube serves as an
exact excluded volume constraint, and this is a consequence of finite ropelength 1/△[γ ].

There are numerous variational applications of Theorem 2.1, the most prominent of which is the existence of ideal knots
and links, i.e., minimizers of ropelength within given knot or link classes [19–21]; see Fig. 4.

7 If one rewrites the definition of thickness △[γ ] in terms of an appropriate maximization over arclength parameters, one immediately observes that
the arclength parametrization is injective for positive thickness; see [20, Definition 1 & Lemma 1].
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Fig. 4. (a) At present only numerical approximations of the ideal trefoil are known [22,23,12]. (b) Under natural symmetry assumptions the ideal
Borromean rings are one of the most complex analytically known ideal shapes [24] (cf. [25]). (c) The depicted ideal link consists of six components and is
a member of a whole family. For instance, the configuration stays ideal when rotating the loop on the left out of the drawing plane [19].
Source: Reprinted with permission from [25].

Fig. 5. Longest ropes for various prescribed thickness parameters. All curves are visualized as tubes of a fixed radius, which coincides with the actual
prescribed thickness value only for the last curve in (c).

Alternatively, one can deal with elastic rods of prescribed thicknessminimizing nonlinear elastic energies such as in [20].
Or one can investigate various packing problems for long and slender objects with a prescribed minimal thickness. As a
particularly beautiful albeit mathematically idealized example, let us mention the search for the longest rope on the unit
sphere, which boils down to the maximization of length among all (closed or open) curves on the unit sphere that have a
prescribed minimal thickness. For an infinite number of given thickness values one can explicitly construct the solutions
and prove their uniqueness up to rigid rotations [26,27]; see Fig. 5 and the animation for the construction in [28].

The draw back of thickness as a steric constraint and of its energy counterpart ropelength is that, as a functional acting
on the space of curves, it is nonsmooth because of the pointwise maximizations involved. This has serious consequences
for regularity considerations: it is highly nontrivial to apply appropriate tools from nonsmooth analysis to derive necessary
conditions for minimality or criticality, e.g. Euler–Lagrange equations; see the investigations of ropelength criticality in
[29,25,30,31], or for nonlinearly elastic rods in [32].

Consequently, one is naturally lead to the question if one can relax this energy functional by replacing one or severalmax-
imizations by an averaging process to increase smoothness of the functional. On the other hand, upon taking average values
or integrating instead of taking pointwise maxima of 1/R(x, y, z) onemight loose a lot of control over the regularity and the
shape of curves. How much geometric information one actually has to give up in this relaxation and how much control is
still present is the topic of the next sections.

2.2. Shape control. Examples

Contrary to thickness, integral Menger curvature (2) does not directly control the parametrization of a curve γ : [0, 1] →

R3; it does control the shape of the image of γ . Here is a trivial example. A doubly covered circle γ0 of length 1
2 would

have finite Mp-energy for all p, since the circumradius R is simply constant for all triples of pairwise distinct points on γ .
Nevertheless, this information alone is not enough to conclude that the image of γ0 has nomultiply covered arcs. This is one
of the reasons behind the definition of C: the requirement that H 1(γ ) = 1 be equal to the length of the parameter domain
does exclude multiple covering of whole arcs. It is not really restrictive, as we shall explain shortly.
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It is clear that for p = 3 integral Menger curvature M3 is scale invariant. If one scales a given curve by a factor λ > 0,
then the length, i.e., the measure in each of the three integrals in (2), scales also by λ whereas the integrand 1/Rp scales by
λ−p, i.e. the triple integral (2) remains unchanged for p = 3.

How do corners or cusps influence the value of integral Menger curvature? As a first step, one tries to compute the
Mp-energy for a polygonal line. Assume first we deal with the scale invariant p = 3. Take a polygon which consists just of
two different segments with one common endpoint, say γ1 = [0, x] ∪ [0, y] for two points x, y ∈ R3 that are not on the
same straight line through the origin, so that γ1 has a true corner at 0. Subdividing each of the segments into smaller disjoint
pieces, scaled down geometrically, and then expanding the triple integral Mp into a series and dropping some of the terms
(the non-diagonal ones), we see that

Mp(γ1) ≥ Mp([x/2, x] ∪ [y/2, y]) + · · · + Mp([x/2n+1, x/2n
] ∪ [y/2n+1, y/2n

]) + · · · . (5)

However, for p = 3 all the terms of the series on the right-hand side are equal due to scale invariance of M3, and they are
non-zero, so that M3(γ1) is infinite. The same reasoning works for every polygonal line γ with at least one true corner, since
onemay simply neglect all parts of γ but the two segments forming the corner, say γ1 ⊂ γ , and estimate M3(γ ) ≥ M3(γ1),
which diverges as seen above. For p > 3 this blow-up of energy is even more drastic: the terms of the series in (5) grow to
infinity. For p < 3 this argument fails; Sebastian Scholtes [33] shows all polygons have finite Mp-energy if and only if p < 3.

A more technical variant of the above reasoning would show that Mp(γ ) is infinite for each curve γ : [0, 1] → R3 which
is piecewise smooth, except at corners where the tangent vector has different one-sided limits. One would also guess that a
cusp – a point where two arcs of a piecewise smooth curve γ meet tangentially – should also lead to the blow-up of integral
Menger curvature, even more drastically than a corner, since the integrand blows up even faster in the neighbourhood of a
cusp. Thus, one would expect that curves with Mp finite for some p ≥ 3 have no self-intersections (each self-intersection
would produce a corner or a cusp). This is indeed the case, as the following topological result proven in [34] shows.

Theorem 2.2. All unit loops γ ∈ C with Mp(γ ) < ∞ for some p ≥ 3 are homeomorphic to a circle.

We shall explain themechanism of the proof of Theorem2.2 in the next subsection, but let us point out here that arbitrary
closed curves in arclength parametrization with finite Mp-energy but not necessarily in the class C do not quite have to
behave like that. Indeed, integral Menger curvature does not penalize any parametrization that multiply traces out certain
parts of the curve— as long as the image looks nice. The effect of finite energy then is that this image is either homeomorphic
to a circle or to a closed segment, which obviously is amanifoldwith nonempty boundary. To see that the lattermight indeed
happen, recall from the beginning of this subsection the doubly-covered semicircle, a smooth one-dimensional submanifold
homeomorphic to a closed segment.

2.3. Regularization and the geometry behind it

For p > 3, finiteness of Mp(γ ) implies much more about the regularity of γ ′, and the reader should compare this result
to Theorem 2.1 where integral Menger curvature is replaced by ropelength 1/△[γ ].

Theorem 2.3. If p > 3 and γ ∈ C satisfies Mp(γ ) ≤ E < ∞, then γ ′ is defined everywhere and satisfies the uniform estimate

|γ ′(t) − γ ′(s)| ≤ C(p)
 t

s

 t

s

 t

s

1
Rp

1/p

|t − s|1−
3
p , s < t, (6)

whenever t and s are close enough, i.e. |t − s| < δ(p)E−1/(p−3). The two constants δ(p) and C(p) depend only on p.

Moreover, this is as good as it gets: for each Hölder exponent α > 1 −
3
p there is a simple curve with Mp(γ ) < ∞ for

which γ ′ fails to satisfy the Hölder estimate |γ ′(s) − γ ′(t)| . |t − s|α . Specific examples of such curves are given in
Marta Szumańska’s Ph.D. Thesis [35]; see also [36]. We know in fact that such behaviour is typical, since more recent work
of Simon Blatt and Sławomir Kolasiński [37,38] characterizes finite energy curves as exactly those embedded curves that
belong to certain fractional Sobolev spaces, which embed into the classic function space C1,1−(3/p) but not into any better
C1,α . For those readers who are more familiar with the standard (nonfractional) Sobolev spaces, we mention an analogy8:
one can interpret the integrand 1/R as a very weak form of discrete curvature, so that one may compare (Mp(γ ))1/p to
the Lp-norm of second derivatives of (a sufficiently smooth curve) γ on a three-dimensional domain because of the three
one-dimensional integrations in Mp. If this Lp-norm is finite for some p > 3 then the classic Morrey–Sobolev embedding
theorem [39, Theorem 5.4] implies that γ is indeed of class C1,1−(3/p). So, with this close analogy to function spaces in mind,
one may view Theorem 2.3 as a geometric variant of the Morrey–Sobolev embedding theorem. However, a word of warning
is appropriate: In contrast to ropelength, integral Menger curvature Mp does not control the classical curvature of γ . It can
happen that Mp of γ is finite for some p > 3 yet the classical curvature of γ is nowhere defined.

8 This is how Theorem 2.3 was discovered, in fact.
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Let us also mention another way to interpret inequality (6). The term |t − s|−3/p corresponds to averaging of the integral;
thus, (6) can be rewritten as

|γ ′(t) − γ ′(s)| ≤ C(p)


1

meas

[s, t]3

 
[s,t]3

1
Rp

1/p

|t − s|. (7)

In other words, if Mp(γ ) is finite for some p > 3, then – in the arclength parametrization – the oscillation of the unit tangent
vector γ ′ is controlled by the increments of length, up to a factor which depends only on the average value of the integral
Menger curvature of that piece of the curve which is relevant, since the integration in (7) is performed only along the cube
[s, t]3 in the domain of all triples of parameters corresponding to the arc from γ (s) to γ (t). So, the proof of Theorem 2.3
is somewhat semi-local: we take into account the fact that R is a multipoint function, which secures embeddedness of the
curve, but for the energy estimates leading to (7) we use only the energy contribution of a fairly small portion of the curve.
We will see later in Section 4 that one can use larger parts of the curve to control specific knot invariants by means of finite
integral Menger curvature.

Even if the statement of Theorem 2.3 is purely analytic, the proof and the ideas behind it are again geometric as was
the case, albeit in a much simpler way, for the proof of Theorem 2.1. Let us explain some of the ideas now: during this
explanation we shall encounter several consequences of finite energy that pave the way towards more sophisticated knot-
theoretic properties of integral Menger curvature presented in Sections 3 and 4.

2.3.1. Beta numbers and their decay
The first step of the proof of Theorem 2.3 is to see that a curve of finite energy is (locally) confined in relatively thin and

narrow tubes (for p > 3 these tubes become thinner and thinner when scaling down). From deep mathematical work of
Peter Jones [40] (see also the far reaching extensions in themonograph of Guy David and Stephen Semmes [41]) in harmonic
analysis we import the technical notion of beta numbers defined as

βγ (x, d) := inf


sup
y∈γ∩B(x,d)

dist(y,G)

d
:G is a straight line through x


for x ∈ γ and d > 0. (8)

In plain words, βγ (x, d) measures how thin the thinnest cylinder is that contains the portion of γ in a given ball B(x, d) of
radius d centred at x ∈ γ . Dividing by dmakes it dimension free: we just want to knowwhat is the ratio of the radius to the
height of that cylinder.

It turns out that control of the energy value Mp(γ ) balances the scale below which the beta numbers, i.e., the widths of
these cylinders, are well-controlled.

Lemma 2.4. Fix p ≥ 3. Let Mp(γ ) be finite. There exists a constant c0 = c0(p) > 0 such that if ϵ < 0.001 and d < diamγ
satisfies the balance condition

ϵ6+pd3−p
≥ c0(p)Mp(γ ), (9)

then

βγ (x, d) ≤ ϵ for each x ∈ γ .

Applying this lemma for ϵ and d such that the balance condition holds with an equality sign, we obtain

β(x, d) ≤ ϵ =


c0(p)Mp(γ )dp−3

 1
6+p

. dκ with κ = (p − 3)/(p + 6).

One proves Lemma 2.4 by contradiction, checking that if the narrowest tube containing γ in a given ball were too thick,
than the Mp-energy of γ would be too large. Indeed, if we had β(x, d) > ϵ for some d < diam γ , then – see Fig. 6(a) and (c)
– we would find three points x, y, z ∈ γ ∩ B(x, d) forming a triangle with base d and height larger than ϵd. For these three
points, by elementary geometry,

1
R(x, y, z)

=
2 · height

|x − z| · |y − z|
&

ϵd
d2

=
ϵ

d
. (10)

It is clear that the same estimate holds up to an absolute constantwhenwe replace x, y, z by their sufficiently close respective
neighbours, staying in the balls of radius ϵ2d ≪ ϵd ≪ d centred around x, y, z. Thus, estimating the total energy Mp(γ )

by the portion coming from three little arcs near x, y and z – obviously, each of them of length at least ϵ2d – we obtain (see
Fig. 6(c))

Mp(γ ) >


three little arcs

1
Rp

& (ϵ2d)3 ·

ϵ

d

p
= ϵ6+pd3−p, (11)

a contradiction to the balance condition.
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(a) If ϵ < βγ (x, d), then (any) tube of length
2d and radius ϵd is too narrow to contain
γ ∩ B(x, d).

(b) For ϵ sufficiently small the angle at which the base of the tube in (a) is
seen from the centre of the tube is (roughly) ϵ, as tanφ = ϵd/d = ϵ.

(c) Slight perturbations of the vertices do not change 1/R too
much, so all triangles based on three arbitrary points within
small balls of radius ϵ2d about x, y, and z, contribute similarly
to the energy.

Fig. 6. Beta numbers and the proof of Lemma 2.4.

Remark. In the scale invariant case p = 3 we have p + 6 = 9, p − 3 = 0. Lemma 2.4 yields then the following:

sup
x∈γ

βγ (x, d) . ω(d), d ≤ diam γ , (12)

where

ω(d) := sup


A1


A2


A3

1
R3

1/9

, (13)

the supremum being taken over all triples of subsets A1, A2, A3 ⊂ γ with H 1(Ai) < d. In particular,

sup
x∈γ

βγ (x, d) → 0 as d → 0.

This is enough to prove Theorem 2.2, via an iterative analysis of beta numbers at small scales, see [42, Thm. 1.4] for details.

2.3.2. Scaling down: tilting tubes and double cones
As explained above, the condition Mp(γ ) < ∞ for p > 3 yields

βγ (x, d) . dκ for x ∈ γ and κ =
p − 3
p + 6

∈ (0, 1). (14)

Thus, if d goes to 0 geometrically, then βγ (x, d) does the same. This observation allows to iterate Lemma 2.4 and learn more
about the geometry of curves with finite energy. This is the second step of proof of Theorem 2.3.

Let us fix a point x ∈ γ and a number d < diam γ /2. There is another point y = y0 of γ on the surface of the sphere
∂B(x, d). Now, follow the curve from y0 towards x and define yn, n = 1, 2, . . . , as the points where γ hits the sphere
∂B(x, d/2n) for the first time. Write Tn to denote the narrowest tube which contains γ ∩ B(x, d/2n−1) and has the line
through x and yn as its axis of rotation. Then, by (14), Tn has the ratio of its radius to height atmost proportional to (d/2n−1)κ .
Inequality (14) specifies howmuch the tubes T1, T2, . . . can tilt as the curve approaches x. Since the axis of Tn+1 is determined
by the point yn ∈ Tn, and for small angles φ we have φ ≈ tanφ, the maximum total tilt angle is controlled, up to a constant
depending only on p and the energy of γ , by

dκ
+


d
2

κ

+


d
4

κ

+ · · · . dκ

(we simply sum a geometric series). This is a small number if one starts the iteration in a sufficiently small scale d.
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Fig. 7. The (d0, ϕ)-diamond property: at small scales, the curve is trapped in a conical region and does not meander back and forth: each cross section of
the cones contains exactly one point of the curve.

In fact, since the tilting tubes Tn that contain pieces of γ in B(x, d/2n) get infinitely thin as n → ∞, one can deduce that
γ ∩ B(x, d) is contained in a double cone with vertex at x, the axis of rotation determined by any point y ∈ ∂B(x, d/2)
and the opening angle proportional to dκ . Replacing the roles of x and y, one checks that the curve at small scales must be
trapped in the intersection of two double cones with vertices at x, y ∈ γ , common axis of rotation given by the line through
x and y, and the opening angle ≈ |x − y|κ , see Fig. 7.

Even more is true. Since the situation persists at all scales smaller than a threshold value determined by the energy, one
can check that in fact in each double cone the intersection of the curve and each plane perpendicular to the cone axis can
consist of only one point. Thus, the curve does not meander back and forth. Since this property is the key to several other
geometric, analytic and topological consequences, it merits a name.

For x ≠ y ∈ R3 and ϕ ∈ (0, π
2 ) we denote by Cϕ(x; y) the double cone whose vertex is at the point x, with cone axis

passing through y, and with opening angle ϕ, or in mathematical terms,

Cϕ(x; y) :=


z ∈ R3

\ {x}: ∃ t ≠ 0 such that <)(t(z − x), y − x) <
ϕ

2


∪ {x}.

Definition 2.5 (Diamond Property). We say that a curve γ ∈ C has the diamond property at scale d0 and with angle
ϕ ∈ (0, π/2), in short the (d0, ϕ)-diamond property, if and only if for each couple of points x, y ∈ γ with |x − y| = d ≤ d0
two conditions are satisfied: we have

γ ∩ B2d(x) ∩ B2d(y) ⊂ Cϕ(x; y) ∩ Cϕ(y; x) (15)

(cf. Fig. 7), andmoreover each plane a+(x−y)⊥, where a ∈ B2d(x)∩B2d(y), contains exactly one point of γ ∩B2d(x)∩B2d(y).

Using this language, one easily translates the geometric considerations above to the following.

Proposition 2.6 (Energy Bounds Imply the Diamond Property). Let γ ∈ C and 0 < E < ∞. Assume that Mp(γ ) ≤ E for
some p > 3. Then, there exist constants δ = δ(p) ∈ (0, 1) and c(p) < ∞ (both depending only on p) such that γ has the
(d0, ϕ)-diamond property for each couple of numbers (d0, ϕ) satisfying

d0 ≤ δ(p)E−1/(p−3), ϕ ≥ c(p)E1/(p+6)dκ
0 , (16)

where κ = (p − 3)/(p + 6).

Note that condition (16) means that one can choose the ‘trapping cones’ in Fig. 7 with angle ϕ ≈ |x − y|κ . Take two
points x = γ (t) and y = γ ′(s) where γ ′ exists. Since γ ′, existing a.e. by the classic theorem of Rademacher, is a unit vector
for an arclength parametrization, the oscillation |γ ′(t) − γ ′(s)| is controlled by the opening angle of the cones. Using this
observation, one checks that γ ′ satisfies

|γ ′(t) − γ ′(s)| . |t − s|κ (17)

for all t, s in a set of full measure in [0, 1]. Such a set is necessarily dense. Thus, γ ′ can be uniquely extended to a function
which still satisfies the same Hölder estimate. Elementary real analysis shows that this unique extension coincides with the
derivative of γ not just almost everywhere but in fact everywhere. Notice the difference to the proof of Theorem 2.1, where
we could use a bound on ropelength: There we were able to trap the curve in lens-shaped regions to obtain (4), here we
used cruder trapping cones to establish the uniform estimate (17) which is much weaker than (4).

In order to finish the proof of Theorem 2.3, one basically has to improve now the Hölder exponent of γ ′ from κ =

(p − 3)/(p + 6) to the (optimal) α = (p − 3)/p. This is the third and last step of the proof. Here is a word of informal
explanation. Suppose that a curve is just C1,α for α = 1 − 3/p and not any smoother, say γ locally looks like the graph
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Fig. 8. The location of typical triples on the nonsmooth graph of the function x → |x|2−(3/p) .

of x → |x|2−(3/p) near zero. We would then expect that typical points γ (ti) (i = 1, 2) with |t1 − t2| ≈ d can be located
roughly at the distance d1+α from the tangent line at γ (s) when |γ (s) − γ (ti)| ≈ d ≈ |s − ti| ≈ d. But then, again typically,
1/R(γ (t1), γ (t2), γ (s))would not exceed a constantmultiple of d1+α/d2 = d−3/p, just by elementary geometry and formula
(10); see Fig. 8.

As we know nothing about the existence of γ ′′, there are no a priori upper bounds for 1/R that wemight use, even locally.
However, expecting C1,α to be the optimal classic function space for finite energy curves, it is illustrative to look at the sets
of ‘bad points’ where the model bound 1/R . d−3/p is violated. A measure theoretic argument, mathematically known as
slicing, indeed, shows that there are ‘not too many’ such bad points at all scales, and this is enough to conclude, since one
can use the many ‘good points’ to determine that γ does not deviate too much from its secants. We refer the reader to [34]
for the details.

2.3.3. Necklaces of disjoint cones
Leaving Theorem 2.3 and local properties of γ ′ aside, let us still assume p > 3 and stick to the situation depicted in Fig. 7

in order to see that it has some global consequences. Obviously, one can imagine a sequence of such small double cones –
trapping the neighbouring short arcs of γ – positioned along the whole curve, with vertices evenly spaced, at sufficiently
small distances, proportional to d ∝ E−1/(p−3), where E is some constant larger than the energy Mp(γ ). Think now about
three of the neighbouring vertices: they do determine two double cones with a common tip. The (d0, ϕ)-diamond property
implies that the angle between the axes of these two double cones must be small. To see that, look back at Fig. 7 and note
that if we add a third point z ∈ γ with |z − y| ≤ |x− y| to the right of y, then z must be inside the double cone Cϕ(y; x) with
vertex at y and axis given v = x − y. Thus, the angle between the axes of two neighbouring cones, i.e. between the vectors
z − y and y− x determined by the three consecutive vertices of the cones, is at most ϕ

2 . (The assumption |z − y| ≤ |y− x| is
not restrictive at all, as we may always relabel the points and call them z, y, x instead of x, y, z). Thus, going from one cone
to another one, the curve cannot make sharp turns. This is why – despite the lack of control of the local curvature, since the
curves of finite Mp-energy do not have to be C2 – integral Menger curvature does yield the means to control howmuch the
curve bends.

There is more to it. If the vertices x1, x2, . . . , xN , xN+1 = x1 of the cones are evenly spaced along the curve, at distances
|xi−xi+1| ≡ d ∝ E−1/(p−3), then each ball Bd(xi) contains only the arcs of γ coming from the two double coneswith common
vertex at xi, see Fig. 9. The arcs contained in all the other double cones but these twomust not enter Bd(xi). A relatively simple
argument that we are going to skip in order to avoid technicalities implies that all such double cones along the curve must
have disjoint interiors, as depicted on Fig. 9.

Let us give, however, a precise statement of that property, since we will refer to it in the sequel. Here is the necessary
notation. For x ≠ y ∈ R3 we denote the closed halfspace

H+(x; y):= {z ∈ R3: ⟨z − x, y − x⟩ ≥ 0} (18)
(y is contained in the interior of H+(x; y), x is on its boundary, and the boundary plane is perpendicular to x − y). ‘Double
cones’ with fixed opening angles 1

4 are denoted by

K(x, y):= C1/4(x; y) ∩ C1/4(y; x) ∩ H+(x; y) ∩ H+(y; x). (19)
Then, the following holds.

Lemma 2.7 (Necklace of Disjoint Double Cones). Suppose that γ ∈ C is simple and has the (d0, 1
4 )-diamond property. If

0 = t1 < · · · < tN < 1 = tN+1 and xi = γ (ti) are such that |xi+1 − xi| ≤ d0, then the open double cones

Ki = int K(xi, xi+1) and Kj = int K(xj, xj+1)

are disjoint whenever i ≠ j (mod N). Moreover, the vectors vi = xi+1 − xi satisfy <)(vi+1, vi) < 1/8.
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Fig. 9. The intuitive meaning of the ‘‘Necklace Lemma 2.7’’: small double cones with vertices along the curve have pairwise disjoint interiors. Moreover,
different strands of the necklace stay well away from each other.

Remark 2.8. The number 1/4 in the lemma has been chosen just for the sake of simplicity. The result holds in fact for any
angle ϕ ≤

1
4 , with 1

8 replaced by ϕ/2.

One can view the Necklace Lemma as a sort of ‘weak excluded volume constraint’ of curves γ with Mp(γ ) < ∞. It is
not an exact excluded volume constraint as described in Section 2.1 for curves with finite ropelength. Here, we have no
uniform tube consisting of the disjoint union of uniformly sized normal discs, and we have no unique next-point projection
onto the curve in a neighbourhood of curves with finite integral Menger curvature. Already Herbert Federer [43] has shown
that such an exact excluded volume constraint, in Federer’s terminology positive reach, is equivalent to C1,1-smoothness,
which generally we do not have for curves with bounded integral Menger curvature. Nevertheless, this weaker form of
excluded volume by the necklace of disjoint double cones can be used to derive crude but explicit bounds on the average
number of crossings and on the so-called stick number in terms of integral Menger curvature. We shall return to that point
in Sections 4.1 and 4.2.

3. Applications in geometric knot theory

Let us now specify inmore detail what ismeant by a knot energy. We follow here the definition of O’Hara, cf. [44, Def. 1.1].

3.1. Being charge: the definition of a knot energy

The crucial requirement of the definition is that you are not allowed to change the knot class if the energy stays
bounded; each knot class is surrounded by infinite energy barriers as visualized in Fig. 10. Mathematically, a functional
E : C → [−∞, ∞] that is finite on all simple smooth loops γ ∈ C with the property that E (γi) tends to +∞ as i → ∞ on
any sequence of simple loops γi ∈ C that converges uniformly to a limit curve with at least one self-intersection, is called
self-repulsive or charge. If E is self-repulsive and bounded from below, it is called a knot energy.

Now, integral Menger curvature Mp is certainly bounded from below, and it is finite on simple smooth loops since then
1/R is bounded. (A priori and according to (10), 1/R might blow up locally, when all the points coalesce, but recall that if
the curve is at least C2, then 1/R(x, y, z) tends to the local curvature κ(z) as x, y → z, and local curvature is bounded for
C2-curves!)

To see that Mp is charge, we employ reductio ad absurdum.9 Assume that a sequence of simple unit loops {γi} ⊂ C with
uniformly bounded energy Mp(γi) ≤ E < ∞, converges uniformly, that is, in the supremum norm to γ̃ which is not a
simple loop. All the γi have the diamond property in the same scale d0, dictated by E, and form a bounded subset in the
space C1,α([0, 1]), α = (p − 3)/p, of C1 curves having their derivatives Hölder continuous with exponent α. It is then a
simple exercise in analysis to use Theorems 2.2 and 2.3 to prove the following.

9 In G.H. Hardy’s words: It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician
offers the game.
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Fig. 10. The concept of a knot energy E : C → [−∞, ∞]: infinitely high walls separate the loops representing different knots.

Lemma 3.1 (Quantitative Self-Avoidance). There exists a number δ = δ(E) > 0, such that for all curves γ ∈ C with Mp(γ ) < E
we have

|γ (s) − γ (t)| > min

δ,

|s − t|
2


. (20)

(Recall that |s − t| denotes the intrinsic distance between γ (s) and γ (t) on the curve. One can check that the statement is
satisfied with some number δ ∝ E−1/(p−3).) Intuitively, the lemma ascertains that (a) locally, in a scale solely dictated by
the energy, γ is nearly straight, (b) bounds on the energy prevent distant strands of the curve from being too close to each
other.

Now, as γ̃ = lim γi is not simple, there exist two parameters s ≠ t ∈ [0, 1) such that γ̃ (s) = γ̃ (t). For sufficiently large
iwe have

min

δ,

|s − t|
2


> |γi(s) − γ̃ (s)| + |γi(t) − γ̃ (t)|,

as the left-hand side is positive and the right-hand side goes to zero as i → ∞. However, since γ̃ (s) = γ̃ (t), by the triangle
inequality the right-hand side exceeds |γi(s) − γi(t)|. This contradicts the quantitative self-avoidance of γi, cf. Lemma 3.1.

So, Mp is indeed charge, and therefore it is a knot energy.

3.2. First impressions of the energy landscape

Let us now investigate a few other knot-theoretic properties of Mp that can be easily obtained from Theorem 2.3 and the
geometric machinery described in Section 2.

3.2.1. Pull-tight phenomenon
For some knot energies E (we shall come to the examples later) knots can pull tight in a convergent sequence of loops for

which E stays uniformly bounded from above. This pull-tight phenomenon is characterized by the presence of nontrivially
knotted arcs Ai ⊂ γi of a fixed knot type, each Ai being a fragment of a loop γi in a sequence (γi) ⊂ C, with the additional
property

Ai ⊂ Bi ≡ B(xi, ri) ⊂ R3, such that ri → 0 as i → ∞; (21)

see [7, Definition 1.3] and Fig. 11. In principle this phenomenon could be the cause why minimizing sequences for E on a
fixed knot class converge to a limit that is embedded itself but in a different knot class. Think of it as a particularly nasty
way of tunnelling from one knot class to another: you deform the curve so that it does not cross itself, and in the limit you
have again a simple curve which, alas, represents a different knot since a small, topologically nontrivial, part of the original
knot has been pulled tight to single point.

It should be clear by now that the pull tight phenomenon cannot happen for sequences of curveswith uniformly bounded
integral Menger curvature. If Mp(γ ) < E, and we look at any of the balls B(x, d) centred on γ , with radius d ∝ E−1/(p−3),
then – due to the diamond property and Proposition 2.6 – the arc of γ contained in B(x, d) is nearly straight, and has only
one common point with each cross-section of the small double cone determined by two of its endpoints. So, unlike in (21),
knotting cannot happen at small length scales.
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Fig. 11. The pull-tight phenomenon.

Thus, for the integral Menger curvature Mp with p > 3, the energy walls between different knot classes are indeed
infinitely high and the ‘pull-tight’ tunnelling is forbidden. Any knot energy E with that more specific property, namely, such
that E (γi) tends to +∞ on every sequence {γi} ⊂ C with a pull-tight phenomenon, is called tight. In particular, Mp is tight
for p > 3.

3.2.2. Existence of minimizers in all knot classes
A knot energy E is minimizable10 if in each knot class there is at least one representative in C minimizing E within this

knot class.
For functionals defined on infinite dimensional spaces, the standard way to prove existence of minimizers is to mix two

ingredients: compactness of the energy sub-levels in an appropriate topology, and continuity or lower semicontinuity of the
function in that topology. (In some cases, it is a delicate art to decide which topology is appropriate: ideally, it should have
many compact sets and allow for many functions to be lower semicontinuous. An improvement in one direction is often a
sacrifice in the other.) Luckily, for Mp considered on all simple unit loops, the situation is rather straightforward — thanks
to our uniform estimate in Theorem 2.3.

Let us fix a knot class [K ]. To minimize Mp with p > 3 on a given knot class [K ] within C, note first that by rescaling a
smooth and regular representative of [K ] to length one and reparametrizing by arclength, we find a representative of [K ] in
C. In particular, there certainly exists a minimizing sequence {γi} ⊂ C with γi ∈ [K ] for all i ∈ N, such that

lim
i→∞

Mp(γi) = inf
C∩[K ]

Mp.

The right-hand side is finite sinceMp is nonnegative. Therefore, there is a constant E which serves as a common upper bound
for all the energy values, Mp(γi) ≤ E for all i ∈ N. Now, Theorem 2.3 yields the crucial uniform bound

∥γi∥C1,α([0,1],R3) ≤ C(p, E), α = 1 −
3
p
.

Thus, the sequences γi and γ ′

i are equicontinuous, and by the elementary compactness theorem of Arzela–Ascoli we can
extract a subsequence {γik} ⊂ {γi} such that γik converges to γ in C1, so that in particular |γ ′

| ≡ 1.
Since we already know that all curves with finite integral Menger curvature are simple, and that Mp is charge, the limit

curve γ is injective. Hence

H 1(γ ) =

 1

0
|γ ′(s)| ds = lim

k→∞

 1

0
|γ ′

ik(s)| ds = lim
k→∞

H 1(γik) = 1

because of the continuity of the curve length with respect to C1 convergence. Therefore the limit curve γ is a simple loop in
C ∩ C1([0, 1], R3). To conclude, one would now like to estimate

Mp(γ ) ≤ lim inf
k→∞

Mp(γik) = inf
C∩[K ]

Mp.

Indeed, there is nothing dangerous here: the circumradius R(·, ·, ·) is clearly continuous at all triples of pairwise distinct
non-collinear points in R3, so that, for a sequence of γik converging in C1 to γ , the inequality above follows from Fatou’s
lemma of Lebesgue integration theory.

3.2.3. Finite number of knot classes under each energy level
At this stage, one can quickly see that there are only finitely many distinct knot types under each fixed energy level

Mp(γ ) < E. We shall prove that now using reductio ad absurdum again. An alternate proof, using the stick number bounds,
or explicitly bounding the average crossing number, shall be discussed later on.

So, let us assume the contrary: for some E and some p > 3, there are infinitely many pairwise distinct knot types [Ki]

with representatives γi ∈ C such that Mp(γi) ≤ E for all i ∈ N. Again, as in the last subsection, we invoke Theorem 2.3 and

10 O’Hara calls this propertyminimizer producing; see [7, Definition 1.2].
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Arzela–Ascoli to extract a subsequence γik → γ in the C1-topology. Sincewe already know thatMp is lower semicontinuous
with respect to the C1-convergence, the inequality Mp(γ ) ≤ E follows. In addition, by Lemma 3.1 no self-intersection or
multiply covered arc can emerge in the limit, and γ is also a simple loop in C.

To reach a contradiction, let us recall that isotopy type is stable under C1-convergence. In the C2-category one finds this
result, e.g., inMorris Hirsch’s book [45, Chapter 8], whereas the only published proofs in C1 we are aware of, are in the papers
by Philipp Reiter [46] and by Simon Blatt in higher dimensions [47]. Anyway, [γ ] = [γik ] for all sufficiently large indices
k ∈ N, contradicting the assumption that all γik represent pairwise different knot types.

A knot energy E which has only finitely many knot types under each energy level is called strong. To summarize the
contents of Section 3.2, we state the following.

Theorem 3.2. For each p > 3, Mp is a charge, minimizable, tight, and strong knot energy.

It should be clear that the Hölder regularity of γ ′ obtained in Theorem 2.3 is the crucial analytic tool here: this is why
sequences of curves under each energy level must contain subsequences that converge not just uniformly but in the more
restrictive C1 topology which preserves length and the isotopy type of simple loops. Without Theorem 2.3 wewould be lost.

There are, however, simple knot-theoretic questions concerning Mp that we cannot answer yet. What do the local and
global minimizers look like? Can Mp distinguish a knot from an unknot? Both questions are imprecise; we take them up –
in comparison to some other knot energies – in the next section.

3.3. Comparison to other knot energies

Once you have a knot energy E , it would be desirable to know that it can – at the very least – distinguish a knot from an
unknot, and that global minima of the energy have a particularly symmetric shape, making the unknottedness obvious. We
refer to the following two properties of knot energies:

(i) A knot energy E distinguishes the unknot or is called unknot-detecting if the infimum of E over the trivial knots (the
‘‘unknots’’) in C is strictly less than the infimum of E over the nontrivial knots in C.

(ii) A knot energy E is called basic if the round circle (of length one) is the unique minimizer of E in C.

We do not know whether integral Menger curvature Mp, p > 3, has these properties. The main difficulty we have faced
when trying to obtain an answer (which we conjecture to be positive in both cases: we are tempted to believe that Mp is
basic and does detect the unknots, and there is some numerical evidence for that which we will discuss in Section 5) is the
fact that the integrand 1/Rp in Mp as a multipoint function is very nonlocal: Already the slightest perturbation of a small arc
of a curve affects 1/R globally. This makes any comparison argument rather difficult.

The same questions – of being basic or unknot-detecting – have been much easier to decide for other knot energies,
including several other relatives of global curvature and ropelength, and the Möbius invariant energy of O’Hara, the so-
calledMöbius energy, studied also by Michael H. Freedman, Zheng-Xu He, and Zhenghan Wang [10].

3.3.1. Knot energies interpolating between ropelength and integral Menger curvature
The global radius of curvature ϱG[γ ](x), defined in (1), is obtained by the infimization of R(x, y, z) with respect to all

points y, z ∈ γ \ {x}. Obviously, we have R ≥ ϱG[γ ] ≥ △[γ ]. There is one more natural intermediate radius, namely

ϱ[γ ](x, y) := inf
z∈γ

z≠x≠y≠z

R(x, y, z). (22)

Repeated integrations over inverse powers of all these radii with respect to the remaining variables lead to other Menger
curvature energies, as already suggested by Gonzalez and Maddocks in [9, Section 6],

Ip(γ ) :=


γ


γ

dH 1(x)dH 1(y)
ϱ[γ ](x, y)p

, (23)

and

Up(γ ) :=


γ

dH 1(x)
ϱG[γ ](x)p

, (24)

where the integration is taken with respect to the one-dimensional Hausdorff-measure H 1. Since

R(x, y, z) ≥ ϱ[γ ](x, y) ≥ ϱG[γ ](x) ≥ △[γ ],

the energy values on a fixed loop γ ∈ C are ordered as

M 1/p
p (γ ) ≤ I 1/p

p (γ ) ≤ U 1/p
p (γ ) ≤

1
△[γ ]

for all p ≥ 1 (25)
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with the limits

lim
p→∞

M 1/p
p (γ ) = lim

p→∞
I 1/p

p (γ ) = lim
p→∞

U 1/p
p (γ ) =

1
△[γ ]

, (26)

and each of the sequences {M
1/p
p (γ )}, {I 1/p

p (γ )}, {U 1/p
p (γ )} is nondecreasing as p → ∞ on a fixed loop γ ∈ C. Allowing

higher order contact of circles (or spheres) to a given loop γ ∈ C one defines various other radii as discussed in detail in [48].
A particular example is the tangent-point radius

rtp[γ ](x, y) (27)

defined as the radius of the unique circle through x, y ∈ γ that is tangent to γ at the point x. For loops γ ∈ C this is a correct
definition for almost every x ∈ γ . This leads to the corresponding tangent-point and symmetrized tangent-point energy (as
mentioned in [9, Section 6])

Ep(γ ) :=


γ


γ

dH 1(x)dH 1(y)
rtp[γ ](x, y)p

, E sym
p (γ ) :=


γ


γ

dH 1(x)dH 1(y)
rtp[γ ](x, y)rtp[γ ](y, x)

p/2 , (28)

to complement the list of Menger curvature energies on C. As the tangent-point radius rtp[γ ](x, y) is certainly not
smaller11 than thedouble radiusϱ[γ ](x, y)definedby (22),we can complement the order of integrals in (25) by the following
inequalities

(E sym
p )1/p(γ ) ≤ E 1/p

p (γ ) ≤ I 1/p
p (γ ) ≤ U 1/p

p (γ ) ≤
1

△[γ ]
for all p ≥ 1 ; (29)

the leftmost inequality follows easily from ab ≤ (a2 + b2)/2.
The self-avoidance and regularization properties, described for the integral Menger curvature Mp in Section 2, persist for

the curvature-related energies mentioned above. The overall scheme of reasoning that one uses to check this is, basically,
pretty similar to the one described in Section 2.3; one has to adjust numerous technical details and we shall not dwell too
much on that. Let us just mention two notable differences.

The first one, rather obvious, is that the scale invariant exponents are different.
For all the energies that involve double integration, i.e. for Ip, Ep and E

sym
p , the scale invariant exponent is p = 2. The

analogue of Theorem 2.2 holds: one can prove that if any of these double integral energies of a Lipschitz curve γ is finite for
some p ≥ 2, then the image of γ is a one-dimensional topological manifold. If Ip, Ep or E

sym
p is finite for a loop γ ∈ C and

p > 2, then γ ′ exists everywhere and is Hölder continuous with exponent α2 = 1 −
2
p ; see [49,42,50]. Counterparts of the

(d0, ϕ)-diamond property, cf. Proposition 2.6, do also hold, for distances d0 and angles ϕ satisfying an appropriate variant
of the balance condition (16), namely

d0 . E−1/(p−2), ϕ & E1/(p+4)dκ2
0 , where κ2 = (p − 2)/(p + 4),

and where E denotes the upper bound for a given knot energy. The reader who wishes to think just in terms of pictures is
again invited to visualize the necklace of double cones from Fig. 9. Quantitatively, the relation between the energy bound
E and the size and proportion of the cones is (formally) different. Qualitatively, the picture is the same for Ip, Ep and E

sym
p :

the energy value specifies a scale d0 below which there is no knotting, the curve is nearly straight. Moreover, the energy
controls the bending (though it does not control the second derivative at all) at small and intermediate length scales. Thus,
the following is true.

Theorem 3.3. Assume p > 2. Each of the three energies Ip, Ep and E
sym
p is charge, minimizable, tight and strong.

For Up, i.e., for the integral of p-th power of the global curvature κG[γ ](x) = 1/ϱG[γ ](x), the scale invariant exponent is
p = 1. Here, one can show, cf. [51], that all curves γ ∈ C are simple and have continuous tangents, also for p = 1. It turns
out that the integrability of global curvature prevents self-intersections12 and yields good control of the oscillations of the
tangent vector, via the uniform estimate

|γ ′(s) − γ ′(t)| ≤

 t

s

1
ϱG(γ (τ ))

dτ ≤ |s − t|1−
1
p

 t

s

1
ϱG(γ (τ ))p

dτ
1/p

≤ |s − t|1−
1
p Up(γ )1/p.

This is a source of one contrast betweenUp and other energies discussed above: due to the left-most inequality, γ ′: [0, 1] →

R3 is an absolutely continuous function, therefore the second derivative γ ′′ exists almost everywhere on [0, 1]. Thus,
finiteness of Up-energy implies that the local curvature of γ is defined almost everywhere, and is dominated by the global
curvature κG = 1/ϱG. However, assuming p = 1 is not enough for compactness arguments similar to those that we have
earlier described for Mp. For p > 1 the following holds.

11 One deals with a limit z → x in the definition of rtp(x, y) instead of the infimum over all z in the definition of ϱ[γ ](x, y).
12 The reader might try and prove it by hand; if the curve has a double point, then the integral


κG diverges at least as fast as


(1/x) near 0.



274 P. Strzelecki, H. von der Mosel / Physics Reports 530 (2013) 257–290

Theorem 3.4. Assume p > 1. The Up-energy is charge, minimizable, tight and strong.

The second important difference between the integral Menger curvature Mp and all the other energies related to the
circumradius R via a mixture of maximizations and integrations is that in all the cases different from Mp it is easier – due to
maximization which carries strict global pointwise information and not just the averaged one – to control the behaviour of
Up, Ip, Ep and E

sym
p on some curves. As a consequence, the following results hold [52].

Theorem 3.5. Assume that p > 2. The energies Ip, Ep and E
sym
p are basic.

Theorem 3.6. Assume that p ≥ 1. The energy Up is basic and unknot-detecting.

The main ingredient behind Theorem 3.5 is the relation between E
sym
2 and the average crossing number; we shall come

back to that in Section 4. For Up, being basic is related to a simple isoperimetric inequality, see [51, Section 3]. To see why
Up does detect the unknots, we need to compare it with yet another well-known energy, the total curvature.

3.3.2. The total curvature
To see that Up does detect the unknots, one has to quote a celebrated result in classic differential geometry: the Farý–

Milnor theorem [53,54] which ascertains that for a nontrivially knotted curve the total curvature, defined as the integral of
the absolute value of curvature along the curve,

TK(γ ) :=

 1

0
|κ(s)| ds, γ ∈ C,

must be at least 4π , whereas for the unknots the absolute minimum of


|κ| is equal to 2π . Since we already know that
1/ϱG dominates the local curvature, it is easy to conclude that

4π ≤


γ

|κ| ds ≤ U1(γ ) ≤ Up(γ )1/p for each nontrivially knotted γ ∈ C, p ≥ 1,

whereas, since Up is basic,

inf

Up(γ )1/p: γ ∈ C is unknotted


= Up(round circle)1/p = 2π.

Thus, Up is unknot-detecting because it is minimized (only) by round circles and it dominates the total curvature which is
unknot-detecting by Farý–Milnor theorem.

Notice that total curvature itself is not a reasonable knot energy: being unknot-detecting is its only property from the list
we have discussed so far. Since the curvature κ is determined locally by the parametrization of the curve, TK does not even
detect self-intersections. On the class of simple loops in C it is neither charge, nor strong, nor minimizable. It certainly is not
basic, as it only measures the amount of turning: each convex curve γ in the plane has the total curvature of 2π according
to a well-known theorem of Werner Fenchel.

3.3.3. The Möbius energy. A summary
One of the first knot energies studied in detail was theMöbius energy, introduced by O’Hara in [13],

EMöb(γ ) :=

 1

0

 1

0


1

|γ (s) − γ (t)|2
−

1
|s − t|2


ds dt for γ ∈ C, (30)

which is nonnegative, since the intrinsic distance |s − t| of the two curve points γ (s), γ (t) always dominates the extrinsic
Euclidean distance |γ (s)−γ (t)|. (The term1/|γ (s)−γ (t)|2 alone,modelling the situationwhere each two curve points repel
each other with a force analogous to the electrostatic one, would produce a divergent integral, hence the regularization13).
That this energy is indeed self-repulsive is proven in [44, Theorem 1.1] and [10, Lemma 1.2]. However, O’Hara observed
in [44, Theorem 3.1] that the Möbius energy is not tight. This is related to the property behind the name of this energy: EMöb
is Möbius invariant, i.e. invariant under all transformations of the curve which belong to the Möbius group, generated by
scalings, translations and inversions of R3 with respect to spheres.

Freedman, He andWang [10] used this invariance to establish the existence of EMöb-minimizing knots but only restricted
to prime knot classes. They have shown that 1

2π EMöb(γ ) dominates the minimal number of crossings of the knot that is
represented by γ ; this implies that EMöb is strong. Finally, they have also demonstrated that loops minimizing EMöb must be
of class C1,1 (= have Lipschitz continuous derivative). Later on, He [56] improved this, demonstrating – via heavy analytic
methods applied to the gradient flow of EMöb – that all loops minimizing EMöb are in fact infinitely smooth. Simon Blatt,
Philipp Reiter, and Armin Schikorra have very recently shown that even all critical points of EMöb are C∞-smooth [57].

The properties of the energies E :C → R discussed so far are summarized in a compact way in Table 1. All the presented
properties concerning ropelength 1/△ can be derived from the corresponding properties of Up, but they were established
long before Menger curvatures were systematically studied; see, e.g., [5,58,59,19,20,60].

13 There is certainly some ambiguity of what kind of regularization one should work with for repulsive potentials, and this ambiguity is one of the central
arguments of Jayanth R. Banavar et al. [55] to propose serious analytic (and numerical) research for global curvature and integral Menger curvature.
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Table 1
The comparison of integral Menger curvature (and other energies related to the global radius of curvature) to ropelength 1/△, Möbius energy of O’Hara
and total curvature.

Is the energy: Mp>3 Ip>2 Up>1 Ep>2 E
sym
p>2 1/△ EMöb TK

Charge Yes Yes Yes Yes Yes Yes Yes No
Minimizable Yes Yes Yes Yes Yes Yes No No
Tight Yes Yes Yes Yes Yes Yes No No
Strong Yes Yes Yes Yes Yes Yes Yes No
Unknot-detecting ? Yes Yes Yes Yes Yes Yes Yes
Basic ? ? Yes ? ? Yes Yes No

(a) A round circle always projects to an ellipse. (b) A projection of an unknot can have many crossings.

Fig. 12. The average crossing number is not a topological invariant.

4. Controlling knot invariants

In this section, we explain inmore detail how integral Menger curvature is related to other quantities, considered in knot
classic theory and geometric knot theory.

4.1. Average crossing number estimates

The average crossing number of a knotted loop γ ∈ C is defined as follows. For each unit vector v ∈ S2 one projects γ
orthogonally onto the two-dimensional plane Pv = (v)⊥ perpendicular to v, and counts the number n(γ , v) of crossings of
the planar curve obtained in Pv . (See Fig. 12.) The average crossing number acn γ is defined simply as the average of n(γ , v)
over all directions v ∈ S2, i.e.

acn (γ ) =
1
4π


S2

n(γ , v) dH 2(v). (31)

As Freedman, He andWang explain in [10, Section 3], there is another – often more handy – formula for acn(γ ). Namely,
one has

acn (γ ) =
1
4π


[0,1]×[0,1]

det(γ ′(s), γ ′(t), γ (s) − γ (t))


|γ (s) − γ (t)|3
ds dt for any γ ∈ C. (32)

To see that both formulae define the same quantity, identify [0, 1] with the circle S = R/Z of length one, and take the map

F : S × S \ {(t, t): t ∈ [0, 1]} → S2, F(s, t) =
γ (s) − γ (t)
|γ (s) − γ (t)|

.

A computation shows that the absolute value of the Jacobian determinant of this map is equal to the integrand in (32).
Therefore, the right-hand side of (32) is just the area covered by F on the unit sphere S2 – counting (unsigned) multiplicities
– divided by 4π , i.e. by the area of S2. On the other hand, for a fixed vector v ∈ S2, the number n(γ , v) of crossings of
the projection of γ onto Pv = (v)⊥ is equal to the number of points in the preimage F−1({v}). Thus, according to the area
formula [61, Theorem 3.2.3] one computes in (31) and (32) in fact the same area and then divides by 4π .
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Please note that the average crossing number is not a topological invariant of a knot. A flat circle γ0 has acn (γ0) = 0;
a complicated unknot can have the average crossing number as high as one wishes. The crossing number of a knot is the
minimum of n(γ , v) over all simple loops γ representing that knot and over all directions v ∈ S2. For simple loops γ ∈ C,
the average crossing number obviously dominates the crossing number of the knot-type represented by γ , and the crossing
number is a knot invariant.

To see that bounds on integral Menger curvature Mp, or in fact on any of the energies Ip, Ep and E
sym
p discussed in the

previous section, imply rough but direct bounds on the crossing number, we shall discuss a crude estimate of the average
crossing number for curves that have the diamond property. Here is a technical statement.

Proposition 4.1. Let γ ∈ C. Assume that there exists d1 such that for each d ≤ d1 the curve γ satisfies the

d, ϕ(d)


-diamond

property, where ϕ(d) = Adα for some α ∈ ( 1
2 , 1] and ϕ(d1) ≤

1
4 . Then the average crossing number of the curve is finite and

there exist two absolute constants c1 and c2 such that

acn(γ ) <
A2c1

2α − 1
d2α−1
1 + c2d

−
4
3

1 . (33)

Before translating this estimate into an inequality, relating the energy bounds directly to the average crossing number,
let us mention that the general idea of proof of (33) is analogous to Gregory Buck and Jonathan Simon’s papers [5, Cor. 4.1]
and [58, Cor. 2.1]. We split the integral expressing the average crossing number into two parts; one of them, the local
contribution, can be controlled using the local smoothness properties of the curve; the other one takes into account the
interactions of distant portions of the curve. These long-range interactions have not really been taken into account to prove
our key-estimate (6) in Theorem 2.3, but the diamond property as a weak excluded volume constraint can be used here.
Indeed, Lemma 2.7 and the necklaces of double cones provides an excluded volume that prevents tight stuffing of many
strands in nested thin spherical shells. Such stuffing would contribute a lot to the average crossing number.

More precisely, let us split

acn(γ ) = Iclose + Idistant
where

Iclose =
1
4π


S1


{t∈S1 : |s−t|≤d1}

det(γ ′(s), γ ′(t), γ (s) − γ (t))


|γ (s) − γ (t)|3
dt ds

and

Idistant =
1
4π


S1


{t∈S1 : |s−t|>d1}

det(γ ′(s), γ ′(t), γ (s) − γ (t))


|γ (s) − γ (t)|3
dt ds.

It is easy to estimate the local term Iclose. Since the curve γ satisfies the (d, ϕ)-diamond property, the arc of γ between γ (s)
and γ (t) is trapped in the double cone with vertices at γ (s) and γ (t) and the opening angle ϕ = A|γ (s) − γ (t)|α . Thus, the
three unit vectors w1 = γ ′(s), w2 = γ ′(t) and w3 = (γ (s) − γ (t))/|γ (s) − γ (t)| belong to the same cone with opening
angle ϕ, and therefore, using the geometric interpretation of the determinant as the volume of the parallelepiped spanned
by three vectors, one quickly obtains

| det(γ ′(s), γ ′(t), γ (s) − γ (t))| ≤ |γ (s) − γ (t)| sin2 ϕ ≤ A2
|γ (s) − γ (t)|1+2α

where, by assumption, we can use ϕ = C |γ (s) − γ (t)|α . Thus, for |s − t| ≤ d1, when the curve points γ (s) and γ (t) are at
a distance at most d1, the integrand in (32) is at most

A2
|γ (s) − γ (t)|2α−2.

Since at small distances γ is nearly straight, we have in fact |γ (s) − γ (t)| ≈ |s − t| in this regime, and Therefore,

Iclose .


S1

 s+d1

s−d1
|s − t|2α−2dt ds = 2

d2α−1
1

2α − 1
.

(Here, to obtain convergence, the assumption α > 1
2 on the local Hölder exponent of the derivative is necessary). This

estimate of Iclose corresponds to the first term on the right hand side of (33).
Here is the rough idea how to the estimate the integral Idistant. We split this integral into the terms so that in each term

the distance |γ (s) − γ (t)| is roughly constant, equal to a fixed multiple of d1, and then use a brute force estimate of the
determinant, yielding

Idistant =
1
4π

N
k=1


S1


{t∈S1:|γ (s)−γ (t)|≈k·d1}

| det(γ ′(s), γ ′(t), γ (s) − γ (t))|
|γ (s) − γ (t)|3

dt ds

.

N
k=1


S1


{t∈S1:|γ (s)−γ (t)|≈k·d1}

|γ (s) − γ (t)|−2 dt ds.
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To see how large the above sum is, we do three things. First, we assume the worst case scenario: the curve is packed as
densely as possible around each of its points γ (s). (Then, the integrand |γ (s) − γ (t)|−2 is large on sets that are as large as
possible.) Second, we fix a necklace of double cones along γ , with vertices xi at distances between d1/2 and d1, and fixed
opening angles equal to 1

4 . The length of γ in a spherical shell Sk = {t ∈ S1: |γ (s) − γ (t)| ≈ k · d1} having the fixed point
γ (s) as its centre and the radii, say, (k − 1)d1 and (k + 1)d1 is, roughly, proportional to Nk · d1 where Nk is the number of
double cones of the necklace falling into Sk. Third, since the cones in the necklace are disjoint, the sum of their volumes –
which is proportional to the total length of the axes times d21, i.e. to Nkd31 – cannot exceed the volume of the shell which is
proportional to (kd1)2 · d1. Comparing these two estimates, we conclude that

length of γ ∩ Sk ≈ Nk · d1 ≤ k2 d1. (34)

Plugging this inequality into the sum that dominates the integral Idistant and noting that in each term of that sum |γ (s) −

γ (t)|−2
≈ (kd1)−2, we obtain

Idistant .

N
k=1


S1


{t∈S1:|γ (s)−γ (t)|≈k·d1}

|γ (s) − γ (t)|−2 dt ds .
1
d1

· N. (35)

The last step is to estimate the number N of the terms in the sum we just dealt with. The worst case scenario (of dense
packing) we assumedmeans that the length of γ in Sk in (34) is in fact proportional to k2d1. Then, computing the total length
of the loop gives

H 1(γ ) = 1 .

N
k=1

k2d1 . N3d1,

which means that the worst scenario of dense packing occurs for N ∝ d−1/3
1 , and (35) translates to

Idistant .
1
d1

· N . d−4/3
1 ,

up to an absolute constant. This is the second term of the inequality (33).
Using the quantitative relation between the energy bounds for Mp and the sizes of the double cones, stated earlier in

Proposition 2.6, one can express the constants d1 and A from Proposition 4.1 as

d1 = δ(p)E−β , A = c(p)Eαβ ,

where β = 1/(p − 3) and α = (p − 3)/(p + 6). Inserting the above quantities into formula (33), and next using the
elementary inequality Eβ

≤ 1 + E4β/3, we obtain the following direct corollary.

Corollary 4.2. Let γ ∈ C and 0 < E < ∞. If Mp(γ ) < E for some p > 12 then there exist constants c1(p) and c2(p), such that

acn(γ ) < c1(p) + c2(p)E
4

3(p−3) . (36)

Notice that the requirement p > 12 guarantees that the assumption α > 1/2 in Proposition 4.1 is satisfied, which was
necessary to control the local contribution Iclose of the average crossing number. In addition, one can compare inequality
(36) with the corresponding average crossing number estimate in terms of ropelength of Buck and Simon [5, Corollary 4.1]
and [58, Corollary 2.1]:

acn(γ ) ≤
11
4π

·


1

△[γ ]

4/3

. (37)

Although our constants c1(p) and c2(p) in (36) are quite large (in comparison to the 11/(4π) in (37))we see the characteristic
power 4/3 for the energy in both estimates: as p → ∞ in (36), the energy term behaves like E4/(3p), which bounds
(Mp(γ ))4/(3p), and the latter converges to (1/△[γ ])4/3 as p → ∞. Examples of infinite families of curves such that

acn(γ ) ≈


1

△[γ ]

4/3

are given e.g. by Jason Cantarella, Rob Kusner and John Sullivan in [62]. (It is not difficult to imagine one: fix a solid rotational
torus T with both radii ≈ 1/n, and consider a tightly packed curve γ in T which represents the (n, n − 1)-torus knot; since
a cross section of T has the area ≈ 1/n2 and contains n equal cross sections of the thick tube centred on γ , the thickness of
γ must be ≈


1/(n2 · n) = 1/n3/2. Thus, the right hand side of (37) is roughly n2. The left hand side is also ≈ n2, as the

crossing number of the (n, n − 1)-torus knot is n(n − 2) ≈ n2.)
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Fig. 13. Left: The stick number of the trefoil knot equals six. Right: Hausdorff distance alone does not distinguish the knot type.

4.2. Stick numbers

The stick number seg[K ] of a knot-type [K ] is the minimal number of segments (=‘‘sticks’’) needed to construct a polyg-
onal representative of [K ]. It is clear that three sticks never suffice to tie a polygonal knot, since the resulting triangle is
a planar (and therefore unknotted) curve. Looking at possible planar projections of a polygonal knot with very few seg-
ments one can actually show that one needs at least six sticks to tie a nontrivial polygonal knot; see the nice argument in
[63, Section 1.6] and Fig. 13(left).

For a very complex knot-type it is supposedly very difficult to determine the stick number, but if that knot-type can be
represented below certain energy levels for an energy that controls some features of the curve, then one might hope to at
least bound the stick number from above. That this is indeed possible for ropelength, because of its control of local curvature
and the exact excluded volume constraint, was shown by Richard A. Litherland, Jonathan K. Simon, Oguz C. Durumeric, and
Eric J. Rawdon in [59]:

seg[K ] ≤


1
π

·
1

△[γ ]


+ 1, (38)

where ⌊a⌋ denotes the largest integer below the real number a. This estimate implies a bound on the number of knot-types
representable below given values for ropelength, since the stick number is strongly related to the crossing number, and
explicit bounds can be derived as in [10, Section 3].

Integral Menger curvature, on the other hand, does not control local curvature, but due to the diamond property (see
Definition 2.5) that controls the amount of local bending and serves as a weak excluded volume constraint, one can hope
that stick numbers may be estimated. That this is indeed the case follows from the following result.

Theorem 4.3. A unit loop γ ∈ C with Mp(γ ) ≤ E < ∞ for some p > 3 represents the same knot-type as any inscribed polygon
of which the edge-length is bounded by δ1(p)E1/(3−p), where δ1(p) ∈ (0, 1) is an absolute constant depending only on p.

Since themaximal number of edges is proportional to the inverse of the maximal edge-length one immediately deduces the
desired stick number bound, which in turn can be used to explicitly bound the number of knot-types by integral Menger
curvature.

Corollary 4.4 (Stick Number). If the knot-type [K ] possesses a representative γ ∈ C with Mp(γ ) ≤ E < ∞ for some p > 3,
then

seg[K ] ≤


E1/(p−3)

δ1(p)


+ 1. (39)

For the proof of Theorem 4.3 we use Lemma 2.7 and the diamond property to construct explicitly a deformation of
3-space that maps the curve to such an inscribed polygon with vertices xi ∈ γ without ever leaving the knot-class, that
is, we construct an ambient isotopy between γ and the inscribed polygon. To that end cover γ with a necklace of double
cones K(xi, xi+1) that, by virtue of Lemma 2.7, have pairwise disjoint interiors, since for each i the polygonal edge connecting
xi and xi+1 is sufficiently short by assumption. The desired isotopy is constant off the union of the K(xi, xi+1), and in each
double cone it maps each two-dimensional cross section Di(z) := Ki ∩ (z + v⊥

i ), containing z ∈ [xi, xi+1] and perpendicular
to vi := xi+1 − xi, homeomorphically to itself, keeping the boundary of Di(z) fixed and moving the point γ (s) ∈ Di(z) along
a straight segment until it hits the axis of the cone.
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(a) A ∆-move replaces an edge of a polygonal knot by the
union of two new edges.

(b) A ∆−1-move is an inverse operation: it replaces two
edges by one.

Fig. 14. ∆ and ∆−1-moves. In both cases, the (full) triangle formed by the new and old edges cannot be intersected by the other edges of the knot.

A surprising second consequence of Theorem 4.3, besides the stick number bound in Corollary 4.4, is that Hausdorff-
distance can be used for finite energy curves to determine neighbourhoods in the space C of unit loops where only one
knot-type is present. (This would even work for loops without fixed length as long as their Mp-energy remains bounded.)
Hausdorff-distance distH is a means to measure the distance between sets, say X, Y ⊂ R3, and is defined as

distH (X, Y ) := inf{ϵ > 0 : X ⊂ Bϵ(Y ) and Y ⊂ Bϵ(X)},

where we used the notation Bϵ(X) := {z ∈ R3
: dist(z, X) < ϵ} for the ϵ-neighbourhood of a set X ⊂ R3.

In general, Hausdorff-distance is by no means a reasonable tool to separate distinct knot-types: For any given ϵ > 0
and any embedded curve γ0 ∈ C one finds infinitely many other unit loops γn ∈ C with distH (γ0, γn) < ϵ representing
mutually distinct knot-types [Kn]; see Fig. 13(right). However, finite integral Menger curvature introduces via the diamond
property so much rigidity that the following result is true.

Theorem 4.5 (Isotopy by Hausdorff-Distance). Any two unit loops γ1, γ2 ∈ C with Mp(γi) ≤ E < ∞ for i = 1, 2 and some
p > 3, are of the same knot-type, as long as

distH (γ1, γ2) ≤ δ2(p)E1/(3−p), (40)

where δ2(p) is a universal constant depending just on p.

The idea of proof for this isotopy result is as follows. We know by Proposition 2.6 that both curves enjoy the diamond
property beyond the same scale d = d(E, p) := δ(p)E1/(3−p) depending only on E and p (see (16)). Choosing δ2(p) :=

0.001 · δ(p) will do the job. Indeed, by Theorem 4.3, we know that every polygon P inscribed in γ1, with vertices xi = γ1(ti)
for equidistantly spaced and pairwise sufficiently close parameters ti, is of the same knot-type as γ1. The goal is, to find a
second polygon Q inscribed in the second curve γ2 with the same number of edges, such that, on the one hand, this polygon
Q is of the same knot-type as γ2, which can be guaranteed by sufficiently short edges, and, on the other hand, such that one
can see by elementary topological operations on the polygons, that also the polygons P and Q are of the same knot-type.
Then one concludes that γ1 and γ2 represent the same knot-type.

In order to construct such a polygon Q one introduces planes Πi through xi and orthogonal to the tangent γ ′

1(ti). Then
one can show by means of the quantitative self-avoidance estimate in Lemma 3.1 that the planes Πi and Πi+1 bound
disjoint small tubular regions Bϵ(αi) about the subarc αi := γ1([ti, ti+1]) connecting xi and xi+1 on γ1. Here one can choose
ϵ = 20 distH(γ1, γ2). In a second step, one finds points yi ∈ Πi ∩ γ2 at distance, say ϵ/10 from xi for each i, by means of
the diamond property of γ1, and the fact that ϵ/10 = 2 distH(γ1, γ2). Crucial for this is the fact that the diamond property
controls the amount of bending of γ1. These points yi ∈ γ2 can be shown to produce a polygon Q (inscribed in γ2) with
sufficiently small edge length such that Q and γ2 are automatically of the same knot-type according to Theorem 4.3. Finally,
it remains to be shown, that P and Q are also of the same knot-type.

To this end, one can use so-called ∆, and ∆−1-moves14 from classic knot theory; see Fig. 14.
The first ∆-move within the first tubular region is to replace the edge [x1, x2] by the union of two new edges, namely

[x1, y1] and [y1, x2]. The second ∆-move replaces the edge [y1, x2] by the union of [y1, y2] and [y2, x2]. Next, one performs
one ∆−1- and one ∆-move by trading first the union of [y2, x2] and [x2, x3] for [y2, x3], and then replacing [y2, x3] by the
union of [y2, y3] and [y3, x3]; see Fig. 15(c)–(f).

14 These are not the famous Reidemeister moves as, e.g., carefully explained in [64, Chapter 1], but they do conserve the combinatorial equivalence and
hence the knot-type of polygons.
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(a) Two curves γ1, γ2 and their inscribed polygons P,Q . (b) Since P and Q are isotopic to γ1 and γ2 , it is enough to
establish their combinatorial equivalence.

(c) Combinatorial equivalence of P and Q , step 1. (d) Combinatorial equivalence of P and Q , step 2.

(e) Combinatorial equivalence of P and Q , step 3. (f) Combinatorial equivalence of P and Q , step 4.

Fig. 15. The proof of Theorem 4.5.

This way, we proceed all the way around the curve constantly interchanging ∆−1- and ∆-moves. Only for the last step
we perform two consecutive∆−1-moves to replace the last segments, say [yN , xN ] and [xN , x1], by [yN , x1], and then [yN , x1]
and the first constructed segment [x1, y1] by [yN , y1], to finally obtain the polygon Q to conclude the proof. One could argue
that ∆-moves in one tubular region surrounding one arc could also affect other parts of the polygons by producing new
(and dangerous) intersections of distant polygonal edges, but such effects are excluded by the choice of ϵ which is directly
related to the small Hausdorff-distance we assumed from the beginning on.

4.3. Packing problems

Among the variational applications of ropelength wementioned in Section 2.1 packing problems, like finding the longest
rope on the unit sphere. Thickness prevents a high degree of bending, and it serves as an excluded volume constraint, so
one may ask for the best way to pack as much rope into a three-dimensional container. Existence theory via the calculus of
variations [20,21] tells us that there is a solution, but – apart from the unique explicit longest ropes on spheres established
in [26,27] – nobody was able so far to analytically describe their actual shape yet. A rather rough account on the ability of
ropelength to prevent a high degree of compaction is the following inequality proven by Buck and Simon in [5, Theorem 2]
for any smooth embedded closed curve γ of length L contained in a closed ball of radius r:

L
△[γ ]

≥


3
32

·
L

r3/2
.

So, if the ball as a container becomes smaller and smaller as its radius r tends to zero, the ropelength of any loop of length
L contained in that ball necessarily blows up like r−3/2. However, this estimate is not sharp enough to prove, e.g., that any
great circle, i.e., equator on the closed ball of radius L/(2π) is the unique ropelength minimizer among all loops of length L
contained in that ball. A direct geometric argument using [20, Lemma 3] shows, on the other hand, that ropelength is basic,
which in particular implies such a result. The same is true for the interpolating energy Up where one integration is involved;
see [51, Lemma 7]. Relaxing Up to the double integral Ip (see (23)) leads to an energy for which it is still open whether or
not it is basic. But the packing problem described above has an affirmative solution as the following result shows; see [52].

Theorem 4.6 (Optimal Packing in a Ball). Among all unit loops in C that are contained in a fixed closed ball of radius 1/(2π),
any great circle on that ball ‘‘uniquely’’ minimizes Ip for all p ≥ 2.

The mechanism behind the proof is a powerful geometric argument that we refer to as the ‘‘sweeping technique’’ the
essence of which is described in the following statement regarding the integrand ϱ[γ ](x, y) of Ip defined in (22).
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Fig. 16. The sweeping technique. Left: if x, y ∈ γ and ρ = ϱ[γ ](x, y) > |x − y|/2, then γ ∩ S = ∅ for a large region S = S(x, y); hence γ is confined to
the shaded zones. The solid circle in the middle depicts the ball of radius 1/2π that contains γ . Right: a three-dimensional view of the sweep-out region
S, bounded by a self-intersecting torus of revolution. The ball containing γ is partially hidden in that torus.

Assume that there are two distinct points x, y ∈ γ with

ρ := ϱ[γ ](x, y) >
|x − y|

2
, (41)

then no point of γ is contained in the ‘‘sweep-out region’’

S(x, y) :=


x,y∈∂Bρ

Bρ \ ℓ(x, y), (42)

which consists of union of all balls or radius ρ containing the (fixed) points x and y in their boundary ∂Bρ minus the lens-shaped
closure of their common intersection

ℓ(x, y) :=


x,y∈∂Bρ

Bρ;

see Fig. 16.
If,moreover, the points x, ydonot uniquely realize the diameter of the curve γ , i.e., the largest possible Euclidean distance

of point pairs on γ , then one can easily show that the curve cannot be contained within the lens ℓ(x, y).15
Observe that the sweep-out region S(x, y) in (42) can be quite voluminous if ρ = ϱ[γ ](x, y) is fairly large. In particular,

if ϱ[γ ](x, y) were strictly greater than the radius 1/(2π) of the confining ball, then there would be simply no space for the
curve γ left within that ball; see Fig. 16. This observation can be turned into an upper bound on ϱ[γ ](ξ , η) for almost all
pairs ξ, η ∈ γ :

ϱ[γ ](ξ , η) ≤
1
2π

,

which immediately implies the energy inequality

I 1/p
p (γ ) ≥ I

1/2
2 (γ ) ≥ 2π = I

1/2
2 (great circle).

A similar argument shows also that this inequality is actually strict, if γ is not one of the great circles of the confining
ball; for details see the proof of [52, Theorem 3.2].

The sweeping technique just described also leads to the nontrivial lower bound on the Ip-energy of any unit loop γ ∈ C,

I 1/p
p (γ ) ≥ I

1/2
2 (γ ) ≥ min


2 + π,

2
diamγ


≥ 4, (43)

which states that one needs at least anI2-energy level of 16 to close a curve of unit length. This is vaguely reminiscent of the
lower bound 2π for total curvature to close a curve according to Fenchel’s theorem, only that we do not know if the bound
in (43) is sharp — probably not, since we strongly believe that Ip is basic for all p ≥ 2, which would give 2π = I

1/p
p (circle)

as the sharp lower bound. Since the sweeping technique relies on the onemaximization remained in the definition ofIp, we
do not have a corresponding nontrivial lower bound for the Mp-energy. One can, however, turn the arguments in the proof
of the beta number estimate in Lemma 2.4 into a lower bound for the Mp-energy for any loop, but the resulting constant
would be less explicit and much smaller than the right-hand side of (43). In other words, one also needs a positive amount
of Mp-energy to close a curve, but we are far from knowing sharp bounds here. Again, numerical evidence of the simulations
of Hermes [11] strongly suggests that the circle of radius 1/(2π) is the unique minimizer of Mp for all p ≥ 3, so that we
expect 2π as the sharp lower bound for (Mp)

1/p on the class C of unit loops.

15 For p > 2 this would also follow from C1-smoothness of γ with finite Ip-energy; see [49], since γ confined in the lens ℓ(x, y) would lead to sharp
abrupt turns of the tangent γ ′ in the tip points x and y of the lens.
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Another consequence of the sweeping technique is the following rigidity result for curves of constant (pointwise)Menger
curvatures [52, Corollary 3.5].

Theorem 4.7 (Rigidity). If γ ∈ C satisfies either R(x, y, z) = R0, or ϱ[γ ](x, y) = R0, or ρG[γ ](x) = R0 for some 0 < R0 < ∞,
then R0 = 1/(2π), and γ is a circle of radius 1/(2π).

Notice that such a result for classic local curvature is simply not true: there are infinitely many unit loops of constant
local curvature. One can even construct arbitrary C2-knots of constant curvature such as in [65].

5. Higher dimensions and open problems

5.1. Shapes of energy minimizers: numerical evidence and some conjectures

Problem 5.1. Assume p ≥ 3. Is the integral Menger curvature Mp basic?

Even simpler versions of that question are open: it is unknown whether the round circle is the unique minimizer of
Mp restricted to the class of planar unit loops. As we have indicated earlier, the main source of difficulties is the nonlocal
character of Mp: even small changes of the curve affect the integrand, 1/R, at all triples of points, making all comparison
arguments difficult.

Problem 5.2. Does the integral Menger curvature Mp, p ≥ 3, detect the unknot?

Here, we only have a partial answer: the integral Menger curvature Mp detects the unknot for all p ≥ p0, where p0
is a finite number. Since this statement is proved by contradiction, using the convergence of Mp(γ )1/p to ropelength of
γ as p → ∞, we have no explicit estimate of p0. Nevertheless, we are tempted to conjecture that the answers to both
questions, formulated in Problems 5.1 and 5.2, are positive. Numerical evidence, gathered by Tobias Hermes [11] (see the
next subsection for more details), supports that view very strongly. It is also rigorously proved in [11] that the circle is a
critical point of Mp.

We do not knowmuch about the integral Menger curvature for curves in the very interesting, scale-invariant case p = 3.
If M3(γ ) < ∞, then the loop γ is free from self-intersections (cf. Theorem 2.2). However, it is not clear whether γ is
differentiable everywhere! In fact, γ cannot be a polygon (cf. Section 2.2) but we do not know how to exclude e.g. the
possibility that γ spirals in a neighbourhood of a point x so that the tangent at y ∈ γ has no one-sided limits as y → x.

Problem 5.3. Let p = 3 and suppose that a loop γ ∈ C satisfies M3(γ ) < ∞. Is γ differentiable everywhere? If yes, is the
(unit) tangent continuous? How to obtain any compactness estimates, and fill in the entries of Table 1 corresponding toM3?

The question concerning the regularity of minimizers of integral Menger curvature Mp is wide open. Up to now, the
problem of regularity of minimizers of knot energies has been successfully overcome only in a few cases. Minimizers of
O’Hara’s Möbius invariant energy EMöb, see (30), could be shown to be C∞-smooth [10,56]; see also Reiter [66,67] and the
recent work of Blatt, Reiter and Schikorra on critical points of EMöb [57]. The initial gain in regularity up to C1,1 in [10] heavily
relied on this Möbius invariance, a property not shared by Mp or its relatives Up and Ip. The ropelength minimizing links
constructed by Cantarella, Kusner, and Sullivan in [19] show that C1,1 is indeed the optimal regularity in given link classes.
C1,1-regularity of ropelengthminimizersmight in fact be optimal in general: for ideal knots one observes numerically jumps
in local curvature.

However, even for Up with 1 < p < ∞ the situation is unclear.

Problem 5.4. Are the minimizers of Mp and related knot energies of class C1,1? C∞? Does the optimal regularity for
Mp-minimizers depend explicitly on the parameter p, and does that lead to any conclusions about the still open optimal
regularity of ideal knots as p → ∞?

Uniqueness of ideal knots is not to be expected as exhibited by the examples of whole continuous families of ideal links
in [19]; see also Fig. 4. For integral Menger curvature the situation might be different, but also this is an open question.

Problem 5.5. Study the uniqueness (and nonuniqueness) of local minima of Mp in various knot classes. In particular: does
Mp, restricted to the class Cunknot of all unknots in C, have multiple local minima?

5.2. Energy landscape and flow

5.2.1. Second thoughts about the energy landscape of Mp
The energy landscape of integral Menger curvature Mp, and of the other geometric curvature energies interpolating

between Mp and ropelength, on the space C of unit loops is largely unknown. We do not know howmany local or absolute
minimizers it has in particular knot classes, not to speak of the possible distribution of critical points. Even if we dismiss the
restriction of a given knot type we have no rigorous proof that the circle (of length one) is the unique minimizer, although
heuristic arguments and numerical evidence suggest exactly that, which would make Mp basic.
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Theorem 5.6 (Infinitely Many Local Mp-Minima). The integral Menger curvature Mp possesses infinitely many local minima in
C for p > 3.

According to Theorem 3.2, Mp is minimizable for p > 3, so in each prescribed knot class [K ] we find at least one absolute
minimizer γK representing [K ]. Combining this with Theorem 4.5 each suchminimizer γK is a local minimum for Mp among
all unit loops in C (without restrictions on the knot type). Indeed, any loop α ∈ C with Mp(α) < Mp(γK ) =: E and with
Hausdorff distance fromγK less than the constant in (40)would be of the sameknot type [K ], contradictingMp(γK ) ≤ Mp(α).
So, in that neighbourhood, there is simply no other unit loop with smaller integral Menger curvature. Since there are
infinitely many different knot classes we thus obtain infinitely many local minimizers for Mp in the unrestricted class C
of unit loops.

Motivated by finite-dimensional calculus one is tempted to say, that we have found infinitely many Mp-critical points,
but for a functional on an infinite dimensional domain, like C, the notion of a critical point needs to be defined with care. In
his Ph.D.-thesis Hermes [11] derived a formula for the first variation of integral Menger curvature,

δMp(γ , h) :=
d
dϵ

Mp(γ + ϵh)

ϵ=0

,

in a mathematically rigorous way, for exactly those curves γ ∈ C of which the energy is finite, and for variations h such that
for all sufficiently small ϵ also the perturbation γ + ϵh has finite energy.16 The term ‘‘perturbation’’ is justified by the fact
that the loops γ + ϵh tend to γ as ϵ → 0, in Hausdorff-distance. But in general the perturbation is not of unit length, so that
γ +ϵh ∉ C for ϵ ≠ 0. Consequently, the (infinitely many) local minimizers γK obtained above, cannot be compared directly
to the perturbed curves γK + ϵh. Hermes considered the scale invariant version Sp of integral Menger curvature instead,

Sp(γ ) :=
M

1/p
p (γ )

length(γ )(3−p)/p
, (44)

for continuous closed curves γ of arbitrary finite length. It turns out that the Mp-minimizers γK ∈ [K ] ∩ C also minimize
the rescaled functional Sp in the class of continuous closed curves of finite length parametrized on the interval [0, 1]. Since
all perturbations γK + ϵh are of that class, we find therefore infinitely many critical points γK of the rescaled energy Sp.
Alternatively, one can use Hermes’ formula for the first variation δMp(γ , h) of integral Menger curvature to derive an
Euler–Lagrange equation for each local minimizer γK of Mp on C involving a Lagrange parameter and the variation of length
due to the length constraint in C. But the Lagrange parameter depends on γK , so that we cannot speak of infinitely many
solutions of the same variational equation in that case.

Let us mention recent work of Jason Cantarella, Jennifer Ellis, Joseph H.G. Fu, and Matt Mastin on the principle of
symmetric criticality for ropelengthwhich can be used to construct ropelength-critical points different from knownminima
as long as one finds representatives with symmetries in the same knot class; see [31].

5.2.2. On the gradient flow for integral Menger curvature
A finer tool to investigate the energy landscape of integral Menger curvature would be a gradient flow, i.e., a time-

dependent partial differential equation of the type γ̇ = V for a family of curves γ = γ (s, τ ) depending on time τ , where the
velocity field V is proportional to the gradient of Mp. A solution γ of this equation would describe the flow in the direction
of steepest descent of Mp. Due to the complexity of the gradient of Mp (derived by Hermes in [11, Section 2.5]) nothing is
known about the existence of such a solution, not even for short time.

Problem 5.7. Does the evolution equation describing the gradient flow for integral Menger curvature Mp has a solution —
at least for a short time interval? Is there a chance to prove long-time existence, and what is the asymptotic behaviour of
the solution as time tends to the boundary of the existence interval?

The only known existence results about gradient flows for knot energies are the contributions of Blatt [68,69] (based
on earlier work of He [56]) on the Möbius energy EMöb, and on related knot energies introduced by O’Hara. Blatt proved
long-time existence and convergence to local minima as time τ → ∞; in case of the Möbius energy, however, under the
additional assumption that the initial curve is sufficiently close to a (possibly different) local minimum of EMöb.

Hermes fully discretized the very complicated evolution equation for the rescaled integral Menger curvature Sp in space
and time and implemented a powerful and reliable numerical scheme to compute the gradient flow for Sp; see [11, Chapter
3]. His impressive simulations demonstrate that integral Menger curvature can be used to flow initially highly complicated
knotted configurations to ‘‘optimal’’ representatives, presumably local Sp-minimizers, and to untangle complex structures,
as long as p > 3. Hermes’ examples also show that for p large the Sp-flow tends to produce nicest embeddings close to
the ideal shapes produced by ridgerunner, the algorithm devised by Ted Ashton, Jason Cantarella, Michael Piatek, and Eric
Rawdon [12] to produce ideal knots and links. For p close to 3, however, the smoothing effects seem to dominate the self-
repulsion effects, so that the final configurations do look different, although the knot class is preserved during both flows; see

16 By the aforementioned characterization of finite energy curves by Blatt [37,38] it suffices to have simple regular curves γ in a certain fractional Sobolev
space, perturbed by h in the same Sobolev space; see [11, Theorem 2.33].
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Fig. 17. Different parameters p > 3 lead to different final configurations for the gradient flow of the rescaled integral Menger curvature Sp , but the knot
type is preserved.
Source: Images by courtesy of T. Hermes.

Fig. 17. In addition, the data produced by Hermes’ flow strongly suggest that integral Menger curvature is basic as indicated
in Fig. 18.

5.3. Energies of sheets, surfaces and submanifolds

It is natural to ask whether the integral Menger curvature Mp (or other related energies that were discussed in Sec-
tion 3) can be extended to surfaces in R3, or, more generally, to m-dimensional sets in Rn, with similar regularizing and
self-avoidance effects as in the curve case. The answer turns out to be positive; surprisingly, one of the crucial difficulties is
the choice of the integrand.

5.3.1. High-dimensional integral Menger curvatures
For the sake of simplicity, let us first describe such an extension of Mp, and a few of its properties, for two-dimensional

surfaces in R3.
The most natural generalization of Mp to two-dimensional closed surfaces Σ ⊂ R3 would be to replace the circumcircle

radius R(x, y, z) of three points x, y, z by the circumsphere radius R(ξ , x, y, z) of the tetrahedron T := (ξ , x, y, z) spanned
by the four non-coplanar points ξ, x, y, z. This radius is given by

1
2R(T )

=

⟨z3, z1 × z2⟩
 |z1 |

2 z2 × z3 + |z2 |
2 z3 × z1 + |z3 |

2 z1 × z2
 , (45)

where z1 = ξ − z, z2 = x − z, z3 = y − z. This would lead to a possible variant of integral Menger curvature for surfaces,
Σ


Σ


Σ


Σ

dH 2(ξ) dH 2(x) dH 2(y) dH 2(z)
Rp(ξ , x, y, z)

, (46)

which, however, has several unpleasant disadvantages. Although the integrand is constant ifΣ happens to be a round sphere
— there are smooth surfaces with straight nodal lines (such as the graph of the function f (x, y) = xy) where the integrand
is not pointwise bounded. The reason is that on a surface, close to every point, there are lots of small spheres intersecting
the surface transversally, along a curve, see Fig. 19. This is a problem since we want to consider arbitrarily large p, and we
envision a whole family of integral Menger curvatures that are finite on any closed smooth surface for any value of p. The
naive generalization (46) fails to satisfy this requirement.

Let us go back to formula (10) for 1/R,
1

R(x, y, z)
=

2 dist(z, Lxy)
|x − z| |y − z|

=
4 Area△(x, y, z)

|x − z| |y − z| |x − y|
,

where Lxy denotes the straight line through x and y. The right hand side expresses, in metric terms, what sort of behaviour is
penalized by integral Menger curvature: if there are lots of small, nearly equilateral, triangles with vertices on γ , the energy
has to be large. On small triangles, with all edges ≈ d (up to, say, a factor of 2), the integrand 1/R becomes bounded only
if the area is ≈ d3, i.e. only if the (shortest) height of the triangle is much smaller than the longest edge. This way, one is
tempted to consider various 4-point-integrands that measure the degree of flatness of tetrahedra T with all four vertices on
the surface.

J.C. Léger [70, p. 833] proposed a general integrand of that type form-dimensional sets; form = 2 his choice is

KLég(ξ , x, y, z, ) =
dist(ξ , ⟨x, y, z⟩)

|ξ − x| |ξ − y| |ξ − z|
(47)
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Fig. 18. A sample of T. Hermes’ computations of integral Menger curvature of various unknots in C different from the circle for p = 50 and p = 3.
Even the slightest perturbations of the circle which, for each p > 0, satisfies (Mp(circle))1/p ≈ 6.2832 lead to a significant increase of integral Menger
curvature for p = 50 (top row) strongly suggesting that Mp is basic for p > 3. Even for p = 3 where no analytic results are available yet, integral Menger
curvature seems to have the circle as the unique minimizer (bottom row). Nota bene: the numerical gradient flow of the rescaled energy S50 does deform
the complicated unknot on the top right into a perfectly round circle.
Source: Images by courtesy of T. Hermes.

Fig. 19. The graph of (x, y) → xy near zero and a sphere of radius R intersecting it at four non-coplanar points. Three of them, and the centre of the sphere,
are in the (x, y)-plane. Similar spheres can be found in smaller scales, closer to (0, 0, 0), making 1/R (essentially) unbounded. Perturbing the four points
in little dark patches, we do not change R too much. An argument based on scaling shows that for this particular surface 1/Rp cannot be integrable over
Σ × Σ × Σ × Σ for p ≥ 8.

where ⟨x, y, z⟩ denotes the affine 2-plane through generic non-collinear points x, y, z ∈ R3. However, for this particular
integrand, due to the lack of symmetry with respect to permutations of the 4 points, the situation is even worse than for
inverse powers of the circumsphere radius: even the energy of a round sphere,

S2


S2


S2


S2

K p
LégdH 2(ξ)dH 2(x)dH 2(y)dH 2(z)

becomes infinite for all sufficiently large p; see [71, Appendix B]. This singular behaviour is caused by small tetrahedra for
which the plane through (x, y, z) is almost perpendicular to the surface.

A whole series of high-dimensional geometric curvatures measuring the flatness of simplices have been introduced
by Gilad Lerman and J. Tyler Whitehouse in their pioneering work [72,73] dealing with m-rectifiability and least square
approximation of m-regular measures. Their discrete curvatures are based, roughly speaking, on the so-called polar sine
function scaled by some power of the diameter of the simplex, and can be used to obtain powerful and very general
characterizations of rectifiability of measures. (In [73, Sections 1.5 and 6] the authors also note that the integrand suggested
by Léger does not fit into their setting.) However, for surfaces the discrete curvatures of Lerman and Whitehouse, e.g. cMT
in [73, p. 327], scale like the inverse of the cube of length. This enforces too much singularity for our purposes, see
[71, Sections 1 and 5]. Namely, it turns out that for any integrand Ks(T ) satisfying

Ks(T ) ≈
hmin(T )

(diam T )2+s
, s > 0,
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i.e. scaling like the inverse of length to some power bigger than one, the corresponding surface energy

E (Σ) :=


Σ4

Ks(T )p dµ,

where dµ = dH 2
⊗ dH 2

⊗ dH 2
⊗ dH 2 is the natural measure on Σ4

= Σ × Σ × Σ × Σ , has the following property:
for all p > 24/s the only surface of finite energy is a flat plane!

Motivated by all this, we have been led to consider another 4-point symmetric integrand, with fewer cancellations in the
denominator. For a tetrahedron T = (ξ , x, y, z) with all vertices on Σ consider the function

K(T ) :=


Volume (T )

Area (T ) (diam T )2
if the vertices of T are not coplanar,

0 otherwise,
(48)

where the total area Area (T ) of T , i.e., the sum of the areas of all four triangular faces of T , could also be replaced by another
factor (diam T )2 (cf. formula (52) in general dimensions). Thus, up to a constant factor K is the ratio of the minimal height
of T to the square of its diameter. Themain – and crucial – difference with the curvatures defined in [73] is that ourK scales
like the inverse of length. The corresponding integral Menger curvature for two-dimensional surfaces Σ ⊂ R3, defined as

Mp(Σ) :=


Σ


Σ


Σ


Σ

Kp(T ) dH 2
⊗ dH 2

⊗ dH 2
⊗ dH 2(T ), (49)

is finite for all C2-surfaces for all finite p, since K(T ) is bounded on the set of all nondegenerate tetrahedra with vertices on
such a surface; we refer to [71, Appendix A] for details.

This energy is well defined for a broad admissible class A of nonsmooth surfaces, including all closed Lipschitz surfaces
(i.e., boundaries of domains that are locally a graph of a Lipschitz functions) and some other surfaces that are not even
topological submanifolds of R3, e.g. a sphere with the north and south pole glued together (or, in other words, the horn
torus depicted in Fig. 3(c)), or whole infinite stacks of concatenated spheres or boxes; see the examples in [71].

Our paper [71] contains several results which explain topological, measure theoretic and analytic consequences of the
finiteness ofMp. The scale invariant exponent here is p = 8; for p > 8 one can control the flatness and bending of the surface,
excluding self-intersections, wrinkles, folds along lines, conical or cuspidal singularities etc. The picture is analogous to the
one for integralMenger curvature for curves in Section 2.3. SurfacesΣ withMp(Σ) < ∞ for p > 8 turn out to be C1-smooth
and have well defined tangent planes at every point. Moreover, there is a length scale R0 ≈ E−1/(p−8) depending only on p
and on the energy bound E such that below this scale every surfaceΣ with integralMenger curvatureMp(Σ) ≤ E is a nearly
flat graph over a disc. Here is a more precise formulation.

Theorem 5.8. If Mp(Σ) ≤ E for some p > 8, then for each point x ∈ Σ and each radius r < R0 the intersection Σ ∩ B(x, r)
coincides with Graphf ∩ B(x, r), where f :R2

≡ TxΣ → R ≡ (TxΣ)⊥ is a function defined on the tangent plane to Σ at x; the
function f is of class C1,α for α = 1 −

8
p and satisfies a uniform estimate

∥f ∥C1,α ≤ C(p)E1/p, (50)

with the constant C(p) depending only on p.

Thanks to [38], we know that the exponent 1 −
8
p is best possible.

To prove this, one has to adapt the argument from Section 2.3 from curves to surfaces and overcome one crucial difficulty
which is absent in the case of curves. Namely, we need to know first that if r < R0 and Mp(Σ) ≤ E, then the intersection
Σ ∩ B(x, r) has surface measure comparable to the flat disc of radius r , so that, say

H 2(Σ ∩ B(x, r))
πr2

≥
1
2

for all r < R0 = δ(p)E−1/(p−8). (51)

Note that this property – which we refer to as uniform Ahlfors regularity – cannot be guaranteed even by requiring that Σ

be a priori smooth. Even for a very smooth surface with long thin tentacles or tubes the ratio H 2(Σ ∩ B(x, r))/πr2 can be
as small as one wishes, cf. Fig. 20. (For curves the situation is different: if x ∈ γ and diamγ > 2r , then we certainly have
H 1(γ ∩ B(x, r)) ≥ r , since γ has to reach the exterior of B(x, r) from its centre.)

Since the estimate (50) is uniform, it can be used to obtain compactness results and, as corollaries, the existence of area
minimizers under the constraint of bounded energy and fixed genus, and of energy minimizers in a given isotopy class of
surfaces with uniformly bounded area.

Theorem 5.9. If p > 8, and {Σj} is a sequence of closed, compact and connected Lipschitz surfaces, all of them containing 0 ∈ R3

and satisfying the bounds

Mp(Σj) ≤ E and H 2(Σj) ≤ A for all j ∈ N
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(a) If r ≫ E−1/(p−8) , then the intersection of Σ and the ball
B(x, r) centred on Σ does not have to be a graph.

(b) The ratio H 2(Σ ∩ B(x, r))/πr2 can be made
arbitrarily small just by making the tube thinner;
this would increase Mp(Σ).

Fig. 20. A torus with thin tubes and thick bumps has large integral Menger curvature.

then there is a compact C1,1−8/p-manifold Σ without boundary embedded in R3, and a subsequence {Σj′} converging to Σ in C1

as j′ → ∞, and such that

Mp(Σ) ≤ lim inf
j′→∞

Mp(Σj′).

(Instead of the uniform area bound one could use a uniform diameter bound in the above theorem.)

Theorem 5.10. The class CE(Mg) of all closed, compact and connected Lipschitz surfaces Σ ⊂ R3, ambiently isotopic to a fixed
reference surface Mg ⊂ R3 of genus g and satisfying the constraint Mp(Σ) ≤ E, contains – for each fixed genus g, each Mg and
each energy bound E – a surface of least area.

Similarly, the class CA(Mg) of closed, compact and connected Lipschitz surfacesΣ ⊂ R3 ambiently isotopic to a fixed reference
surface Mg of genus g, and satisfying a uniform area bound H 2(Σ) ≤ A, contains a surface Σ minimizing integral Menger
curvature Mp on CA(Mg).

Following [71–73], and sharpening the higher-dimensional techniques developed in [74], Sławomir Kolasiński [75,76]
has studied a general integral Menger curvature Mp, defined for a wide class of nonsmooth m-dimensional surfaces in Rn.
His Mp is defined as the integral overm + 2 copies of Σ of the multipoint integrand

KSK (x0, x1, . . . , xm+1) :=
H m+1


conv (x0, x1, . . . , xm+1)


diam


x0, x1, . . . , xm+1

m+2 . (52)

Here, x0, x1, . . . , xm+1 ∈ Σ are vertices of an (m + 1)-dimensional simplex T = conv (x0, x1, . . . , xm+1). Again, K scales
like the inverse of length. For m = 2 the integrand differs slightly from (48); nevertheless, all the results from [71] do also
hold for (52) withm = 2. The integral Menger curvature of anm-dimensional set Σ is given by

Mp(Σ) =


Σ


Σ

. . .


Σ  

m+2 times

KSK (x0, x1, . . . , xm+1)
p dH m(x0) dH m(x1) . . . dH m(xm+1). (53)

The large class A of admissible m-dimensional sets considered by Kolasiński in [75] is strongly related but not identical
to the admissibility class considered in [74]. It contains all m-dimensional closed Lipschitz submanifolds of Rn and all sets
Σ = f (M) whereM is an abstract C1 manifold and f :M → Rn an immersion. It also contains all finite unions of embedded
closed C1 manifolds. One of the main results of [75] is the following.

Theorem 5.11. If Σ ⊂ Rn is an m-dimensional admissible surface with Mp(Σ) ≤ E for some p > m(m + 2), then Σ is an
embedded manifold of class C1,α , α = 1 − m(m + 2)/p. Moreover, there is a length scale R0 ≈ E−1/(p−m(m+2)), depending only
on p and the energy bound E, such that for each x ∈ Σ and each radius r < R0 the intersection Σ ∩ B(x, r) is a (nearly flat)
m-dimensional disc: it equals, up to an isometry, Graph f ∩ B(0, r) where f :Rm

→ Rn−m is a function of class C1,α , with

∥f ∥C1,α . Mp(Σ)1/p.

Again, the exponent α = 1 − m(m + 2)/p is best possible here.
This regularity result – again, due to uniform estimates on the patch size R0 and on the norm of the graph representation

f – can be used to deduce that, for each p > m(m+2), each E and each A, there are only finitely many C1-smooth manifolds
M satisfying a uniform volume bound H m(M) ≤ A and a uniform integral Menger curvature bound Mp(M) ≤ E.17

17 This is work in progress [77]. The result can be viewed as an analogue of Anderson–Cheeger finiteness theorems in (smooth) Riemannian geometry,
but here in a setting which is ‘below the C2 category’; see [78] and the references therein.
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5.3.2. Other high-dimensional energies
In our papers [79,80]wehave introduced the concept of thickness△[X] for a large class of nonsmooth parametric surfaces

X:Σ → R3, where Σ is a smooth fixed reference surface. As for curves, a uniform lower bound △[X] ≥ θ > 0 provides
the surface with ‘‘thickness’’; it is equivalent to the requirement that the so-called reach18 of the set X(Σ) ⊂ R3 be at least
θ , see [80, Lemma 6.2]. The normal vector to a surface with △[X] ≥ θ turns out to be (locally, at scales ≈ θ ) Lipschitz
continuous with constant ≈ 1/θ . This is the reason why families of ‘thick surfaces’ with uniform area bounds (or uniform
diameter bounds) are compact in the C1-topology. As a result, one canminimize area under thickness and genus constraints;
more precisely, one can prove that each class of compact, closed surfaces of fixed genus, global curvature bounded from
below by θ > 0, and ambiently isotopic to a fixed reference surface, contains at least one surface of minimal area. For more
details, also for surfaces with nonempty boundary, we refer to [79,80], and to related work of Alexander Nabutovsky [81]
on thick knotted hyperspheres.

Let us also briefly mention that Kolasiński [75] obtains geometric regularity results for high-dimensional integral curva-
tures generalizing the Ip-energy (23) for curves. Setting

K(l)(x0, . . . , xl−1) = sup
xl,xl+1,...,xm+1∈Σ

KSK (x0, . . . , xl−1, xl, . . . , xm+1) (54)

where l = 1, . . . ,m + 1, he considers the integral

E (l)
p =


Σ

. . .


Σ  

l times

K(l)x0, . . . , xl−1
p

dH m(x0) . . . dH m(xl−1). (55)

Analogues of Theorem 5.11 discussed above hold true for each of those energies. For C1 manifolds, Blatt and Kolasiński [38]
give an equivalent condition (expressed in terms of the so-called fractional Sobolev spaces) for finiteness of these energies.
We refer to [75,38] for more details.

In [74], we have studied a high-dimensional counterpart of the tangent-point energy Ep defined for curves by (28), and
obtained self-avoidance and regularity results analogous to (v).

Finally, in the joint work with Kolasiński [82] we study the energy E
(1)
p defined by (55), and a related energy where the

integrand is expressed in terms of the size of spheres tangent to Σ at one point and passing through another point of Σ . It
turns out that for a each of these two energies is finite if and only if the set Σ (which a priori might be nonsmooth and have
self-intersections, cusps, folds etc.) is a manifold of class W 2,p, i.e. locally a graph of a C1 function which has second order
distributional derivatives in Lp.

All the open problems on curves mentioned in the previous sections immediately extend to hard problems in higher
dimension and codimension, such as finding nontrivial (if not sharp) lower bounds for Mp(Σ), optimal regularity of
Mp-minimizing surfaces, and – even more difficult to tackle – the question if there is a reasonable notion of a gradient
flow for higher dimensional integral Menger curvatures.
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