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Abstract

We prove a Gauss–Bonnet formula for the extrinsic curvature of complete surfaces in hyperbolic space
under some assumptions on the asymptotic behavior. The result is given in terms of the measure of geodesics
intersecting the surface non-trivially, and of a conformal invariant of the curve at infinity.
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1. Introduction and main results

In this paper we prove a Gauss–Bonnet formula for the total extrinsic curvature of complete
surfaces in hyperbolic space. Our result is analogous to those obtained by Dillen and Kühnel in
[2] for submanifolds of euclidean space, where the total curvature of a submanifold S is given
in terms of the Euler characteristic χ(S), and the geometry of S at infinity (see also Dutertre’s
work [3] on semi-algebraic sets).

Our starting point is the following well-known equality for S � H
3, a compact surface with

boundary immersed in hyperbolic 3-space:
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∫
S

K dS = 2πχ(S) + F(S) −
∫
∂S

kg ds (1)

being K the extrinsic curvature of S (i.e. the product of its principal curvatures), F(S) the area,
and kg the geodesic curvature of ∂S in S. This formula follows from the classical (intrinsic)
Gauss–Bonnet theorem, and the Gauss equation. We plan to make S expand over a complete
non-compact surface, but the last two terms in (1) are likely to become infinite. To avoid an
indeterminate form, we add and subtract the area enclosed by the curve ∂S. Such a notion was
defined by Banchoff and Pohl (cf. [1] and also [12]) for any closed space curve C as

A(C) := 1

π

∫
L

λ2(�,C)d�

where L is (in our case) the space of geodesics in H
3, d� is the invariant measure on L (unique

up to normalization), and λ(�,C) is the linking number of C with � ∈ L. This definition was
motivated by the Crofton formula which states

F(S) = 1

π

∫
L

#(� ∩ S)d�, (2)

where # stands for the cardinal. Hence, we can rewrite (1) as follows

∫
S

K dS = 2πχ(S) + 1

π

∫
L

(
#(� ∩ S) − λ2(�, ∂S)

)
d� + A(∂S) −

∫
∂S

kg ds.

Our main result is a similar formula for complete surfaces in H3 defining a smooth curve C in
∂∞H

3, the ideal boundary of hyperbolic space. In that case, the last two terms of the previous
equation are replaced by a conformal (or Möbius) invariant of the geometry of C in ∂∞H

3. To
be precise, our result applies to surfaces with cone-like ends in the sense defined next. A similar
notion of cone-like ends for submanifolds in euclidean space appears in [2].

Definition 1.1. Let f :S � H
3 be an immersion of a C 2-differentiable surface S in hyperbolic

space. We say S has cone-like ends if

i) S is the interior of a compact surface with boundary S, and taking the Poincaré half-space
model of hyperbolic space, f extends to a C 2-differentiable immersion f :S � R

3,
ii) C = f (∂S) is a collection of simple closed curves contained in ∂∞H

3, the boundary of the
model, and

iii) f (S) is orthogonal to ∂∞H
3 along C.

In particular, such a surface is complete with the induced metric. We will see that surfaces
with cone-like ends have finite total extrinsic curvature. There are also examples of complete
non-compact surfaces with finite total extrinsic curvature which do not fulfill i) or ii) in the
previous definition. Condition iii) however is necessary for the total curvature to be finite: the
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limit of the extrinsic curvature of S at an ideal point x ∈ C is cos2(β) where β is the angle
between S and ∂∞H

3 at x.
In the Klein (or projective) model, the definition reads the same, but replacing the word ‘or-

thogonal’ by ‘transverse’. We will mainly work with the Poincaré half-space model. Unless
otherwise stated all the metric notions (such as length, area or curvature) will refer to the hy-
perbolic metric.

Given a connected oriented curve C ⊂ ∂∞H
3 ≡ R

2, and a pair of distinct points x, y ∈ C,
let us consider the oriented angle at x from C to the oriented circle through x that is positively
tangent to C at y. This angle admits a unique continuous determination θ :C × C → R that
vanishes on the diagonal. Note that θ(y, x) = θ(x, y) and θ is independent of the orientation
of C.

We will prove the following result.

Theorem 1. Let S ⊂ H
3 be a simply connected surface of class C 2, embedded in the Poincaré

half-space model of hyperbolic space, and with a (connected) cone-like end C ⊂ ∂∞H
3. Then,

the integral over S of the extrinsic curvature K is∫
S

K dS = 1

π

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d� − 1

π

∫
C×C

θ sin θ
dx dy

‖y − x‖2
(3)

where

• d� is an invariant measure on the space of geodesics L,
• λ2(�,C) is 1 if the ideal endpoints of � are on different components of ∂∞H

3 \ C and 0
otherwise, and

• dx, dy denote length elements on C with respect to the euclidean metric ‖·‖ on ∂∞H
3 ≡ R

2.

The integrals in (3) are absolutely convergent.

Remark 1. The most interesting term in (3) is the last one, which we call the ideal defect of S.
It defines a functional for plane curves which is invariant under the action of the Möbius group.
In fact, the form dx dy/‖y − x‖2, as well as θ(x, y), is invariant under Möbius transformations.
Similar expressions for space curves appear often in the study of conformally invariant knot
energies (cf. [5]).

The first term in the right-hand side of (3) is positive, and can be considered as a ‘truncated
area’ of S, in view of (2). We call this term the measure of non-trivial geodesics of S. From
Proposition 6, it will be clear that it is a natural functional of S.

The idea of the proof is roughly the following. We pull-back d� to the space of point pairs
of S. Integration gives the measure of non-trivial geodesics. Applying Stokes’ theorem yields
then the result. This procedure was already used by Pohl in the euclidean setting in [8], but here
we use a different ‘primitive’ of d�. This leads to a somehow dual construction, where the total
curvature instead of the area appears. This dual approach is not possible in euclidean space.

From Theorem 1 one gets easily a formula for a general surface with cone-like ends.

Corollary 2. Let S � H
3 be a C 2-immersed complete surface with cone-like ends C1, . . . ,Cn,

the curves Ci being simple and closed. Then
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∫
S

K dS = 2π
(
χ(S) − n

) + 1

π

∫
L

(
#(� ∩ S) −

n∑
i=1

λ2(�,Ci)

)
d�

− 1

π

n∑
i=1

∫
Ci×Ci

θ sin θ
dx dy

‖y − x‖2
,

and the previous integrals are absolutely convergent.

Proof. Take a compact set K ⊂ H
3 with C 2 boundary ∂K transverse to S, and such that S \K =

S1 ∪ · · · ∪ Sn, where each Si is an embedded topological cylinder over Ci . Applying (1) and (2)
to R = S ∩ K yields∫

R

K dR = 2πχ(R) −
∫
∂R

kg(s) ds + 1

π

∫
L

#(� ∩ R)d� (4)

where kg is the geodesic curvature in R.
Let Ri be a compact surface with boundary such that Ti = Ri ∪ Si is a complete embedded

simply connected surface. Combining again (1) and (2), gives∫
Ri

K dRi = 2π −
∫

∂Ri

kg(s) ds + 1

π

∫
L

#(� ∩ Ri) d�. (5)

Applying Theorem 1 to each Ti , and comparing with (5) yields∫
Si

K dSi = −2π + 1

π

∫
L

(
#(� ∩ Si) − λ2(�,Ci)

)
d�

− 1

π

∫
Ci×Ci

θ sin θ
dx dy

‖y − x‖2
+

∫
∂Ri

kg(s) ds. (6)

Addition of (4) and (6) finishes the proof. �
1.1. The ideal defect

The last term in (3), which we call the ideal defect, can also be described as an integral in the
space of point pairs of ∂∞H

3 ≡ R
2, with respect to the Möbius invariant measure on this space.

Proposition 3. Let Ω ⊂ R2 be a compact domain bounded by a simple closed curve C of
class C 2. Then ∫

C×C

θ sin θ
dx dy

‖y − x‖2
= 4

∫
NT (Ω)

dz dw

‖z − w‖4

where NT (Ω) ⊂ Ω × Ω is the set of point pairs (z,w) such that any circle ξ ⊂ R
2 containing z

and w intersects R
2 \ Ω (i.e. z,w ∈ ξ ⇒ ξ �⊂ Ω).
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Proof. Let Q ⊂ H
3 be the convex hull of Ωc = ∂∞H

3 \ Ω ; i.e. Q is the minimal convex set
containing Ωc . Using the Klein model, Q can be seen as the euclidean convex hull of Ωc . Let
us consider the boundary S = ∂Q ⊂ H

3, which is a surface of class C 1. Next we construct a
sequence of convex sets Qn ⊂ H

3 such that: Qn ⊃ Qn+1, Q = ⋂∞
n=1 Qn, and Sn = ∂Qn is a C 2

surface with cone-like end C. First, let X ∈ X(R3) be a vector field in the Klein model such that
X vanishes only at C, and X|Ω points to the interior of the model. Then, for small t > 0, the flow
ϕt brings Ω to a surface ϕt (Ω) with a cone-like end on C, and bounding a convex domain D. On
the other hand, let Q be approximated by a decreasing sequence Q′

n ⊂ R
3 of euclidean convex

sets with boundary of class C 2 (cf. [11]). Then, smoothening the corners of D ∩ Q′
n yields the

desired sequence.
By Theorem 1

∫
Sn

K dSn = 1

π

∫
L

(
#(� ∩ Sn) − λ2(�,C)

)
d� − 1

π

∫
C×C

θ sin θ
dx dy

‖y − x‖2
.

Using, for instance, the arguments in [6], one can show

lim
n

∫
Sn

K dSn = 0.

On the other hand, by monotone convergence,

lim
n

∫
L

(
#(� ∩ Sn) − λ2(�,C)

)
d� =

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d�.

Hence,

∫
C×C

θ sin θ
dx dy

‖y − x‖2
=

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d�.

The right-hand side above is the measure of geodesics intersecting Q but not Ω . We determine
each geodesic � ∈ L by its ideal endpoints (z,w). This allows to express d� as in (16). Finally,
we just need to note that a geodesic � intersects the convex hull Q if and only if every geodesic
2-plane containing � intersects Ω . �
1.2. Integral of the inverse of the chord

Next we express the ideal defect in an alternative way which is not invariant, but still interest-
ing. Let C ⊂ ∂∞H

3 be a C 2-differentiable simple closed curve, and consider S = C × (0,∞) ⊂
H3. We may think of S as a surface with one end by closing the top end at infinity with an in-
finitesimally small surface. Then, the total curvature of S equals 2π , and Theorem 1 applied to
S yields
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2π + 1

π

∫
C×C

θ sin θ
dx dy

‖y − x‖2
= 2

π

∫
R2×R2

(
#(zw ∩ C) − λ2(z,w;C)

) dzdw

‖w − z‖4

= 2

π

∫
A(2,1)

∑
x,y∈L∩C

(−1)#(xy∩C)

‖y − x‖ dL (7)

where zw denotes the line segment joining z,w ∈ R
2, and dL is the invariant measure on the

space A(2,1) of (unoriented) lines of R
2, normalized as in [10]. The first equality uses (16). The

second equality is Proposition 10.
As a consequence, the integral in (7) is invariant under Möbius transformations, which was a

priori not obvious. In fact, if C bounds a convex domain Ω , then (7) is

4

π

∫
A(2,1)

1

σ(L ∩ Ω)
dL (8)

where σ(L ∩ Ω) is the chord length. The previous functional (8) is one of the so-called Franklin
invariants of convex sets, defined by Santaló in [9] as a generalization of a functional introduced
by Franklin with motivations from stereology (cf. [4]). These functionals had the nice property of
being invariant by dilatations. For instance, the integral (8) could in principle be used to estimate,
by means of line sections, the number of particles in a plane region, if these particles have the
same shape but possibly different size.

An immediate consequence of our results is that (8) is in fact invariant under the Möbius
group. An interesting question is to determine which of the Franklin functionals enjoy this bigger
invariance. Besides, it was conjectured that the Franklin invariants are minimal for balls (cf. [4]
and [9]). This was shown by Franklin among ellipsoids while Santaló obtained some general non-
sharp inequalities. As a consequence of our results, we can prove this conjecture in the planar
case.

Corollary 4. For a convex set Ω ⊂ R
2 we have

∫
A(2,1)

1

σ(L ∩ Ω)
dL � π2

2
(9)

where σ is the length of the chord, and A(2,1) is the space of lines. Equality holds in (9) if and
only if Ω is a round disk. Moreover, the left-hand side of (9) is invariant by Möbius transforma-
tions (keeping Ω convex).

Proof. By (7) we have

4

π

∫
A(2,1)

1

σ(L ∩ Ω)
dL = 2π + 1

π

∫
C×C

θ sin θ
dx dy

‖y − x‖2
� 2π,

and the equality occurs if and only if θ ≡ 0. Indeed, since C is convex it is easy to see that
−π < θ < π . �
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2. The space of geodesics

Let F = {(x;g1, g2, g3)} be the bundle of positive orthonormal frames of H
3; i.e., each

(gi)i=1,2,3 is a positive orthonormal basis of TxH3. We consider on F the dual and connection
forms

ωi = 〈dx,gi〉, ωij = 〈∇gi, gj 〉,
where 〈 , 〉 denotes the (hyperbolic) metric in H

3, and ∇ is the corresponding riemannian con-
nection. The structure equations read

dωi = ωj ∧ ωji, dωij = ωi ∧ ωj + ωik ∧ ωkj . (10)

Let L+ be the space of oriented geodesics of H
3. Clearly L+ is a double cover of L. Consider

π1 : F → L+ given by π1(x;g1, g2, g3) = � with x ∈ �, and g1 ∈ Tx� pointing in the positive
direction. The space L+ can be endowed with a differentiable structure such that π1 is a smooth
submersion. Moreover, L+ admits a volume form d� invariant under isometries of H

3, which is
unique up to normalization, and characterized by (cf. [10])

π∗
1 (d�) = ω2 ∧ ω12 ∧ ω3 ∧ ω13. (11)

Similarly, one can consider L2, the space of (unoriented) totally geodesic surfaces (geodesic
planes) of H

3. We will use the space of flags

L1,2 = {
(�,℘) ∈ L+ × L2

∣∣ � ⊂ ℘
}
,

and the canonical projection π : L1,2 → L+ which makes L1,2 a principal S
1-bundle over L+.

Let us project π1,2 : F → L1,2 so that π1,2(x;gi) = (�,℘) with ℘ ⊃ � = π1(x;gi) and g3 ⊥Tx℘.
Then ω23 = π∗

1,2ϕ for a certain form ϕ ∈ Ω1(L1,2), which is an invariant global angular form (or
connection) of the bundle π .

Proposition 5. There exists a unique 2-form α ∈ Ω2(L+) such that

π∗(α) = dϕ ∈ Ω2(L1,2),

where ϕ is the global angular form of π . Moreover α ∧ α = 2d�, so that α is an invariant
symplectic form on L+.

Proof. Assuming α exists, structure equations (10) give

π∗
1 (α) = dω23 = ω2 ∧ ω3 − ω12 ∧ ω13, (12)

whence
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π∗
1 (α ∧ α) = −2ω2 ∧ ω3 ∧ ω12 ∧ ω13 = 2π∗

1 (d�).

Therefore α ∧ α = 2d� (as dπ1 is exhaustive).
Let X ∈ X(L1,2) be the tangent vector field along the fibers of π such that ϕ(X) = 1. By (12),

for any X̃ ∈ X(F ) such that dπ1,2X̃ = X,

π∗
1,2(iX dϕ) = i

X̃
dω23 = 0,

whence iX dϕ = 0. Then LXϕ = 0, and

LX dϕ = dLX ϕ = 0.

Hence, dϕ is constant along the fibers of π , and null on their tangent vectors, which shows the
existence of α. The uniqueness follows from the injectivity of π∗. �

It follows from the previous proposition that

d
(
π∗α ∧ ϕ

) = 2 · π∗(d�). (13)

This will be used in Section 4 to prove Theorem 1 by means of Stokes’ theorem.

Remark 2. The forms ϕ,α are in some sense dual to the forms ω1, dI used in [8]. In fact, many
of the subsequent constructions are parallel to those of [8]. However, choosing α leads us to
results involving the total curvature, while dI made the area appear. This choice could not be
done in the euclidean setting since there α ∧ α vanishes.

The following notation will be used throughout the paper:

A � B := {
(x, y) ∈ A × B

∣∣ x �= y
}
.

In the Poincaré model, by considering the ideal endpoints z,w of each geodesic �, one identifies
(a full-measure subset of) L+ with R

2
� R

2. Then, an elementary computation with moving
frames (cf. (17)) gives the following expression for α at a point (z,w) ≡ � ∈ L+:

α = 2

‖w − z‖2
(dz1 ∧ dw2 + dz2 ∧ dw1) (14)

where the coordinate system of R
2 has been chosen in such a way that z2 = w2 = 0 and w1 =

−z1. In particular, if z = z(x) and w = w(y) are curves parametrized by arc-length, then

α = 2 sin θ(x, y)
dx ∧ dy

‖w(y) − z(x)‖2
(15)

where θ(x, y) is the oriented angle between the two oriented circles through z(x),w(y), tangent
to z′(x) and w′(y) respectively.

Using (14) we can also obtain an expression for the measure of geodesics. Indeed,
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d� = 1

2
α ∧ α = 4

dz ∧ dw

‖w − z‖4
(16)

where dz, dw denote the area elements of the ideal endpoints z,w in R
2.

Remark 3. The following complex valued two form in C � C was introduced by Langevin and
O’Hara in [5] under the name infinitesimal cross-ratio

ωcr = d(z1 + iz2) ∧ d(w1 + iw2)

(w − z)2
, (z,w) ∈ C � C.

This form ωcr is invariant under the diagonal action of the Möbius group Sl(2,C). Using this
fact, one checks easily that −α/2 coincides with Im(ωcr ), the imaginary part of the infinitesimal
cross-ratio.

We end the section by showing that the measure of non-trivial geodesics is a natural quantity.
This fact was already noticed in the euclidean setting by Pohl (cf. [8], Eq. (6.5)).

Proposition 6. Let S ⊂ H
3 be an embedded surface with cone-like ends C ⊂ ∂∞H

3. Let
Φ :S � S → L+ be such that Φ(x,y) is the oriented geodesic going first through x and then
through y. Then

∫
S�S

Φ∗(d�) = 1

2

∫
L+

(
#(� ∩ S) − λ2(�,C)

)
d�.

Proof. By the coarea formula

∫
S�S

Φ∗(d�) =
∫

L+
μ(�)d�

where

μ(�) =
∑

(x,y)∈Φ−1(�)

−ε(x)ε(y)

being ε(u) the sign at u of the algebraic intersection � · S. Now, let p (resp. q) be the number of
points of � ∩ S with ε = 1 (resp. ε = −1), so that

#(� ∩ S) = p + q, λ(�,C) = � · S = p − q.

Then Φ−1(�) contains (p(p − 1) + q(q − 1))/2 pairs (x, y) with ε(x) = ε(y), and pq elements
with ε(x) = −ε(y). Therefore 2μ(�) = 2pq − p(p − 1) − q(q − 1) = #(� ∩ S) − λ2(�,C). �
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3. Convergence results

Next we establish the convergence of the integrals appearing in Theorem 1. In the whole
section, S ⊂ H

3 will denote a complete surface with a connected cone-like end C ⊂ ∂∞H
3. Here

H
3 denotes the Poincaré half-space model. For h > 0, we set Sh = {x ∈ S | x3 � h} which is a

compact surface with boundary Ch = ∂Sh = {x ∈ S | x3 = h}.

Proposition 7. If K denotes the extrinsic curvature of S, and dS is the area element, then

∫
S

K dS

is absolutely convergent.

Proof. Let us consider the global orthonormal frame ei(x) = x3∂/∂xi (i = 1,2,3), defined for
all x ∈ H

3. The connection forms θij = 〈∇ei, ej 〉 are then given by

θi3 = dxi

x3
, θij = 0 for i, j �= 3. (17)

Let us fix now y ∈ S. After a change of coordinates, we can assume e2(y) ∈ TyS. Let v1, v2, v3
be a frame locally defined on S (around y) so that v2(y) = e2(y), and v1(x), v2(x) ∈ TxS. Then
vi(x) = aij (x)ej (x) for an orthogonal matrix (aij (x)) ∈ O(3). In particular v1(y) = cosαe1 +
sinαe3, and v3(y) = − sinαe1 + cosαe3 for some α ∈ [0,2π). Then (ωij )y = 〈∇vi, vj 〉y are
given by

(ω12)y = 〈∇(a1iei), e2
〉
y

= da12 + a12(y)〈∇e1, e2〉 + a32(y)〈∇e3, e2〉

= da12 + cosαθ12 + sinαθ32
(17)= da12 − sinα

dx2

y3
, (18)

(ω13)y = 〈∇(a1iei),− sinαe1 + cosαe3
〉
y

= − sinα
(
da11 + a1i (y)θi1

) + cosα
(
da13 + a1i (y)θi3

)
= − sinαda11 + cosαda13 + dx1

y3
,

and similarly

(ω23)y = − sinα da21 + cosα da23 + cosα
dx2

y3
. (19)

In particular

ω13(v1) = − sinα da11(v1) + cosα da13(v1) + dx1(v1) = O(y3) + dx1(v1)
.

y3 y3
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But dx1(v1/y3) = cosα = O(y3). Indeed, cosα = 〈e1, v1〉 is a C 1 function on S = S ∪ C and
vanishes at C. One checks similarly that ωi3(vj ) = O(y3) for i, j = 1,2. We have thus that

K(y) = det
(
ωi3(vj )

∣∣ i, j = 1,2
) = ω13(v1)ω23(v2) − ω13(v2)ω23(v1) = O

(
y2

3

)
.

The result follows since y2
3 dS is the euclidean area element of S in the model. �

The following proposition is a first step towards the existence of formula (3).

Proposition 8. Let S,R ⊂ H
3 be two surfaces with the same cone-like end ∂∞S = ∂∞R ⊂ ∂∞H

3.
Then

∫
S

K dS −
∫
R

K dR = 2π
(
χ(S) − χ(R)

) + lim
h→0

1

π

∫
L

(
#(� ∩ Sh) − #(� ∩ Rh)

)
d�.

Proof. From (1) and (2) one gets

∫
Sh

K dSh = 2πχ(Sh) + 1

π

∫
L

#(� ∩ Sh)d� −
∫

∂Sh

kg(s) ds

and similarly for Rh. We must show that

∫
∂Sh

kg(s) ds −
∫

∂Rh

kg(s) ds

tends to zero as h → 0. By Eq. (18) we have

kg = −ω12(v2) = −da12(v2) + sinα.

In the previous proof we learned that cosα = O(h), and thus sinα = 1 + O(h2). Besides, in the
choice of the local frame v1, v2, v3 one could further assume that v1 is everywhere orthogonal
to e2. Hence a12 = 〈v1, e2〉 ≡ 0, so kg = sinα = 1 + O(h2), and

∫
∂Sh

(
kg(s) − 1

)
ds =

∫
∂Sh

O
(
h2)ds = O(h),

and similarly for ∂Rh. Thus, it suffices to show that the difference of (hyperbolic) lengths of ∂Sh

and ∂Rh tends to zero as h → 0. This follows from the fact that ∂∞S is an euclidean geodesic of
both S and R, and geodesics are extremals of the length. Indeed, the euclidean lengths of ∂Sh and
∂Rh differ both from the length of ∂∞S with an order O(h2). Hence, their respective hyperbolic
lengths have a difference of order O(h). �

Next we study the convergence of the measure of non-trivial geodesics.
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Lemma 9. If λ(�,Ch) denotes the linking number (defined up to sign) of a geodesic � with the
curve Ch, then

lim
h→0

∫
L

(
#(� ∩ Sh) − λ2(�,Ch)

)
d� =

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d� (20)

where λ(�,C) is the limit of λ(�,Ch) when h → 0.

Proof. Let � ∈ L be transverse to S, which happens for almost every �. Then #(� ∩ Sh) is an in-
creasing function of h. For h small enough, Ch is connected, and thus λ2(�,Ch) � 1. Therefore
#(� ∩ Sh) − λ2(�,Ch) is an increasing function of h. Then (20) follows by monotone conver-
gence. �

We will see below, that the limit in (20) is finite. For the moment, we show this fact for the
infinite cylinder over C.

Proposition 10. Let C ⊂ ∂∞H
3 be a simple closed curve, and let R = C × (0,∞) ⊂ H

3. Then
the following integrals converge and coincide∫

L

(
#(� ∩ R) − λ2(�,C)

)
d� =

∫
A(2,1)

∑
x,y∈L∩C

(−1)#(xy∩C)

‖y − x‖ dL < ∞

where dL is an invariant measure in the space A(2,1) of lines in R
2.

Proof. After a vertical projection onto ∂∞H3, each geodesic � is mapped to a segment zw, and
R projects onto C. From the proof of Proposition 6 we know

#(� ∩ R) − λ2(�,C) = −
∑

x,y∈zw∩C

ε(x)ε(y)

where ε(u) is the sign at u of the algebraic intersection zw · C. The equality of the integrals
follows from (16), together with (cf. [10], Eq. (4.2))

dzdw = ‖t − s‖ds dt dL

where s, t are arc-length parameters of z,w along L. In order to check the convergence, we use
the following expression of the measure of lines in R

2 (cf. [8])

dL = | sinβx sinβy | dx dy

‖y − x‖
where x, y are intersection points with C, and βx,βy are the oriented angles between L and C at
x, y respectively. Then the integral over A(2,1) above becomes

−
∫

C×C

sinβx sinβy

dx dy

‖y − x‖2
.

This integral converges since βx,βy = O(‖y − x‖) as one can easily prove. �
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Lemma 11. Let S,R ⊂ H
3 be two surfaces with the same cone-like end ∂∞S = ∂∞R ⊂ ∂∞H

3.
Then the following integrals are uniformly bounded for all h > 0∫

L

(
λ2(�, ∂Sh) − λ2(�, ∂Rh)

)
d�.

Proof. Let Th be the region of {x ∈ H
3 | x3 = h} bounded by ∂Sh and ∂Rh. If a geodesic �

is disjoint from Th, then λ2(�, ∂Sh) = λ2(�, ∂Th). Hence, the integral above is bounded by the
measure of geodesics intersecting Th. By the Crofton formula (2), this measure is proportional
to the area of Th. Since S and R are tangent at infinity, the euclidean area of Th has order O(h2).
Therefore, its hyperbolic area is uniformly bounded. �
Proposition 12. The measure of non-trivial geodesics∫

L

(
#(� ∩ S) − λ2(�,C)

)
d�

is absolutely convergent.

Proof. Clearly∫
L

(
#(� ∩ Sh) − λ2(�, ∂Sh)

)
d� =

∫
L

(
#(� ∩ Sh) − #(� ∩ Rh)

)
d�

+
∫

L

(
#(� ∩ Rh) − λ2(�, ∂Rh)

)
d�

+
∫

L

(
λ2(�, ∂Rh) − λ2(�, ∂Sh)

)
d�.

The last three integrals are uniformly bounded by Propositions 8 and 10 and Lemma 11 respec-
tively. Thus, by monotonicity, the following limit

lim
h→0

∫
L

(
#(� ∩ Sh) − λ2(�, ∂Sh)

)
d�,

exists and is finite. Since #(� ∩ S) − λ2(�,C) is positive, Lemma 9 shows the absolute conver-
gence of the integral. �
Corollary 13. Let S ⊂ H

3 be a surface with a cone-like end C ⊂ ∂∞H
3. Then∫

S

KdS = 2πχ(S) + 1

π

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d� − δ(C)

where δ(C) depends only on the ideal curve C. All the integrals above are absolutely convergent.
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Proof. The convergence has been established in Propositions 7 and 12. The result follows then
from Proposition 8. �
Remark 4. We have assumed C to be connected for simplicity. If C is a collection of disjoint
simple closed curves, each of them arbitrarily oriented, the previous results hold without change.
The key fact for the convergence is that λ2(·,C) � 1 outside a compact subset of L. As for δ(C),
it depends in this case on the orientations of C, as well as the relative positions of the several
components.

Remark 5. In order to get explicit expressions of δ(C), it is enough to find, for each curve
C ⊂ ∂∞H

3, a surface S with cone-like ends on C for which the total curvature and the measure
of non-trivial geodesics can be computed. In fact, this is what we did in Subsections 1.1 and 1.2.

However, in order to get the expression of δ(C) that appears in Theorem 1, we will need to
follow a different strategy.

4. Proof of Theorem 1

4.1. The space of chords

Given a C 2-differentiable manifold S (without boundary), the space of chords of S is a C 1-
differentiable manifold MS with boundary, introduced by Whitney in [13], and described in detail
in [8]. This space is the blow-up of S × S along the diagonal. In particular, the interior of MS is
S � S, and the boundary is the sphere bundle of oriented tangent directions of S

∂MS = T +S := (
T S \ {

(x, �0)
∣∣ x ∈ S

})
/R

+.

The reader is referred to [8] for details on the differentiable structure of MS . The following
property describes this structure quite well: given a regular injective C 2-differentiable curve
x : [0,1) → S, the curve c : (0,1) → S � S defined by c(t) = (x(0), x(t)) extends to a C 1-
differentiable curve c : [0,1) → MS which meets ∂MS transversely at c(0) = [x′(0)] ∈ T +S.
Another basic property is the following: the natural projections p1,p2 :S � S → S extend natu-
rally to differentiable submersions p1,p2 :MS → S.

Let now S be a manifold with boundary. The space MS of chords of S is constructed as
follows. We consider a manifold without boundary S̃ extending S. Let p1,p2 :M

S̃
→ S̃ be the

submersions mentioned above. The space of chords of S is then defined as MS = p−1
1 (S) ∩

p−1
2 (S) ⊂ M

S̃
(i.e. MS contains the chords of S̃ with both ends in S). This space is a topological

manifold with boundary, but this boundary is not smooth. Indeed, the interior of MS is S � S,
and the boundary is ∂MS = T +S ∪ (S � ∂S)∪ (∂S �S). The faces T +S, S � ∂S, and ∂S �S are
pairwise transverse outside T +∂S (in fact, ∂S � S and S � ∂S are tangent at points of T +∂S).
Hence, MS \ T +∂S is a manifold with corners in the usual sense (cf. for instance [7]).

4.2. Bundles and sections

In this subsection we use the Klein model of hyperbolic space. Hence H
3 is the interior of the

closed unit ball B
3 in R

3. Let Ψ : B
3

� B
3 → L+ be such that (x, y) is mapped to the geodesic

line going first through x and then through y. This map extends naturally to Ψ : MB3 \ T +
S

2 →
L+. This extension is smooth by the results of [8].
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Let now S◦ ⊂ H
3 be a simply connected surface with a cone-like end C ⊂ ∂∞H

3. Then, the
closure S = S◦ ∪ C is a compact surface with boundary in B

3, transverse to the ideal sphere
S

2 = ∂∞H
3. Notice that we slightly modified, for simplicity, the notation used in the previous

sections.
As seen in [8], the inclusion MS ⊂ MB3 is compatible with the differentiable structures.

Hence, the mapping

Φ :MS \ T +C → L+

obtained as a restriction of Ψ is smooth. Note that this extends the mapping Φ defined in Propo-
sition 6.

To simplify the notation we denote B := MS \ T +C. By Proposition 6, the measure of non-
trivial geodesics can be obtained by integrating Φ∗(d�) on B . Our aim is to compute this integral
by means of Stokes’ theorem, using an invariant form whose differential is d�. Such a form is
given by (13), but it lives in the bundle L1,2. In fact, there is no invariant form in L+ whose
differential is d�. We are thus led to consider the pull-back by Φ of the S

1-bundle π : L1,2 → L+.
More precisely, we consider E := Φ∗(L1,2) = {(z,℘) ∈ B × L2 | Φ(z) ⊂ ℘}, and the following
commutative diagram with the obvious mappings

E
Φ ′−−−−→ L1,2

Φ∗π
⏐⏐� ⏐⏐�π

B
Φ−−−−→ L+

(21)

It would be desirable to define a section of Φ∗π :E → B . This section should be canonically
constructed in some geometric way. This can be done quite naturally, but only at the boundary
∂B; in fact only on

∂B \ (C � C) = (
T +S \ T +C

) ∪ (
S◦ × C

) ∪ (
C × S◦) = ∂MS \ MC.

Indeed, for z = (x, [v]) ∈ T +S \ T +C we choose the geodesic plane ℘(z) spanned by TxS. For
z = (x, y) ∈ C ×S◦, and for z = (y, x) ∈ S◦ ×C, we choose the plane ℘(z) tangent to C at x and
containing y. Note that this definition does not extend to C �C: the two planes through x, y ∈ C

that are tangent to C at x and y respectively, form a certain angle. In fact, this is precisely the
angle θ appearing in Theorem 1.

To summarize, we have defined

s : ∂MS \ MC → E,

z �→ (
z,℘ (z)

)
(22)

in such a way that Tx℘ (z) = TxS if z = (x, [v]) ∈ T +S, and TxC ⊂ Tx℘ (z) for z = (x, y) ∈
S◦ × C, or z = (y, x) ∈ C × S◦.

We already noted that s has a jump discontinuity in C �C. To solve this, we shall complete the
image of s with a family of fiber intervals interpolating the two one-sided limits of s. However,
these intervals are not well-defined in the S

1-bundle E. We are led to consider an infinite cyclic
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cover of E that gives an R-bundle over B . Next we define this cover, and we show it admits a lift
of s. Here we take great advantage of the assumption that S is simply connected.

Proposition 14. The principal S
1-bundle Φ∗π :E → B is trivial. Moreover, there is a bundle

isomorphism τ :E → B × S
1, such that τ ◦ s lifts over the covering q :B × R → B × S

1; i.e.,
there exists a continuous function

g : ∂MS \ MC → R

such that q(x, g(x)) = τ ◦ s(x) for every x ∈ ∂MS \ MC .

Proof. Consider an isotopy of embeddings H : S × [0,1] → B
3 such that H0 = id and H1(S

◦)
is contained in a plane ℘ ∈ L2. We may construct the isotopy so that H(C × [0,1]) ⊂ S

2. Put
H̃ (x, y, t) := (Ht (x),Ht (y)) for (x, y) ∈ S � S. Clearly H̃ extends continuously to H̃ :B ×
[0,1] → MB3 \T +

S
2. Furthermore the bundle (Ψ ◦H̃1)

∗π clearly admits a global section s1 ≡ ℘.
By the covering homotopy theorem, s1 extends to a global section s̃ of (Ψ ◦ H̃ )∗π , and therefore
this principal bundle is trivial. This already shows that E = (Ψ ◦ H̃0)

∗(L1,2) is trivial. Let

τ̃ : (Ψ ◦ H̃ )∗(L1,2) → MS × [0,1] × S
1

be the isomorphism corresponding to this global section, i.e. such that τ̃ ◦ s̃(z, t) = (z, t,1). For
each t , the construction above (cf. (22)) yields a section st of the restriction of Ψ ∗π to each
∂MSt \ M∂St , with s1 ≡ ℘, and s0 = s. Clearly these fit together to give a global section s of the
restriction of (Ψ ◦ H̃ )∗π to ∂MS \ MC × [0,1]. From the construction of τ̃ it is clear that the
restriction of τ̃ ◦ s to ∂MS \ MC × {1} lifts over q . Now the covering homotopy theorem implies
that τ̃ ◦ s lifts over all of ∂MS \ MC × [0,1]. Hence we may take τ to be the restriction of τ̃ to
(Ψ ◦ H̃0)

∗(L1,2) = E. �
While g cannot be continuously defined over all ∂B , we can consider the continuous exten-

sions of g to S �C and C �S respectively. We denote these extensions by g1 and g2 respectively.
This way, θ(x, y) = g2(x, y) − g1(x, y) in the notation of Theorem 1, for every (x, y) ∈ C � C.
Let T1 ⊂ B × R be the graph of g over ∂B \ C � C, completed with the graphs of g1 and g2

over C � C. Now we sew in a family of vertical intervals over C � C interpolating these two
one-sided limits. To be precise we consider T2 = C � C × [0,1] together with the mapping

σ :T2 → C � C × R, (23)

(x, y, t) �→ (
x, y, tg1(x, y) + (1 − t)g2(x, y)

)
.

Note that σ is a smooth mapping, possibly non-regular.
In the following we will need to specify some orientations. The manifold S � S, and hence

MS is canonically oriented by dS ∧ dS. This induces an orientation on ∂MS , and hence T1 is
naturally oriented. Finally, we choose on T2 the orientation given by dx ∧ dy ∧ dt . This way, T1

and T2 induce opposite orientations on the graphs of g1 and g2.
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4.3. Stokes’ theorem

Before applying Stokes’ theorem, the non-compacity of MS \ T +C needs to be settled. To
this end, let us consider the function f : MS → [0,∞] which vanishes on T +C, and assigns to
each z ∈ MS \ T +C the euclidean distance in ∂∞H

3 between the ideal endpoints of Φ(z). Here
H

3 denotes again the Poincaré model. Then

Δε := f −1([0, ε)
)

is a neighborhood of T +C inside MS , and MS \ Δε is compact. By Sard’s theorem, for almost
every ε, the level set ∂Δε := f −1(ε) is smooth and transverse to ∂MS . Therefore MS \ Δε is
a compact manifold with corners for almost every ε > 0. We denote this manifold by Bε :=
MS \ Δε .

Let us consider T1,ε = T1 \ Δ′
ε , being Δ′

ε = π−1(Δε). Here π :B × R → B is the projection
on the first factor. For a generic ε > 0, Sard’s theorem applied to f ◦ π ensures that T1,ε is a
compact manifold with corners. Also T2,ε = T2 \ σ−1(Δ′

ε) is a compact manifold with corners
for almost every ε.

Since T2,ε can be triangulated, we may think of (T2,ε, σ ) as a (smooth) singular chain. Also
T1,ε can be thought of as a singular chain. Hence it makes sense to consider Tε := T1,ε + T2,ε

as a chain in ∂B × R \ Δ′
ε . Its boundary is a singular chain of ∂Δ′

ε := π−1∂Δε , namely ∂Tε =
(T1 ∩ ∂Δ′

ε) + σ−1(∂Δ′
ε).

In the next subsection, we will construct a chain Rε in ∂Δ′
ε such that ∂Rε = −∂Tε . This way,

Tε + Rε is a cycle, and hence gives an element in the homology group H3(Bε × R). Since S is
contractible, we have the following homotopy equivalences

Bε × R � Bε � B � S � S � S × S
1 � S

1.

Therefore H3(Bε × R) = 0, and Tε + Rε is a boundary.
By composing with π : B × R → B we can consider π∗(Tε + Rε) as a cycle in (∂B) \ Δε ∪

∂Δε = ∂Bε . The latter is an oriented compact manifold so H3(∂Bε,Z) ≡ Z, and [π∗(Tε + Rε)]
is given by some integer n. For any form ω ∈ Ω3(∂Bε) one has

∫
Tε+Rε

π∗ω = n

∫
∂Bε

ω.

Note that π restricted to the interior of T1,ε is a diffeomorphism preserving orientations. Thus,
taking ω supported on the interior of π(T1,ε) makes clear that n = 1.

Now, since H 4(Bε) = 0, there exists some differential form ω ∈ Ω3(Bε) such that dω =
Φ∗ d�. Therefore, by Stokes’ theorem

∫
Bε

Φ∗ d� =
∫
Bε

dω =
∫

∂Bε

ω =
∫

Tε+Rε

π∗ω = 1

2

∫
Tε+Rε

π∗α ∧ ϕ, (24)

since 2π∗ω − π∗α ∧ ϕ is closed by (13), and Tε + Rε is a boundary. Here we are abusing the
notation for simplicity: by α and ϕ we refer to Φ∗α and (Φ ′ ◦ τ−1 ◦ π)∗ϕ respectively. We will
go on with this abuse, and hopefully no confusion will arise.
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4.4. Total curvature and ideal defect

In this section we integrate π∗α ∧ ϕ over T1 and T2. We will get respectively the total curva-
ture, and the ideal defect.

Proposition 15.

lim
ε→0

∫
T1\Δ′

ε

π∗α ∧ ϕ = 2π

∫
S

K dS.

Proof. Recall that

T1 = (graph g|T +S) ∪ (graph g1) ∪ (graph g2).

We claim that π∗α ∧ϕ vanishes on the graphs of g1 and g2. Recall these functions are defined
over S � C and C � S respectively. Indeed, let x be a local coordinate on C. Then expression
(14) shows α ∧ dx = 0. Let now c(t) be the lift in the graph of g of a curve (y(t), x) ∈ S × C or
(x, y(t)) ∈ C × S with x fixed. This curve corresponds to a curve (�(t),℘ (t)) = Φ ′ ◦ q(c(t)) ∈
L1,2. In the Poincaré model, the ideal boundaries of ℘(t) are circles in ∂∞H

3 tangent to C at
the point x. In order to compute ϕ(c′(t)) we take an isometry of H

3 sending the point x ∈ C to
infinity. This way, �(t) become vertical lines, and the geodesic planes ℘(t) are transformed into
a family of parallel vertical planes. By using the expression (17) of the connection forms, it is
clear that ϕ(c′(t)) vanishes. This shows that ϕ is a multiple of π∗dx (on this region of T1), and
the claim follows.

We focus now on the graph over T +S. Given (x, l) ∈ T +S◦, we take v1, v2, v3 an orthonormal
basis of TxH

3 such that [v1] = l, and v3 ⊥ TxS. With such a moving frame, by (12)

π∗α ∧ ϕ = (ω2 ∧ ω3 − ω12 ∧ ω13) ∧ ω23 = −ω12 ∧ ω13 ∧ ω23 = −K(x)ω12 ∧ dS.

By Proposition 7, this volume form has finite integral on T 1S, the euclidean unit tangent of S (in
the Poincaré model). Then we may use Lebesgue’s dominated convergence theorem to get

lim
ε→0

∫
graph g|T +S\Δ′

ε

π∗α ∧ ϕ = lim
ε→0

∫
T +S\Δε

K ω12 ∧ dS

=
∫

T +S

K ω12 ∧ dS = 2π

∫
S

K dS,

where we used the natural orientation of T +S, which is opposite to the one induced by MS . �
Proposition 16.

lim
ε→0

∫
T2\Δ′

ε

π∗α ∧ ϕ = 2
∫

C×C

θ sin θ
dx dy

‖y − x‖2
.
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Proof. Recall that T2 is mapped to the union of vertical segments in B × R interpolating the
one-sided limits of g along C � C (cf. (23)). This segments have length θ , and ϕ restricted to the
fibers is precisely the length element. Hence, Fubini’s theorem gives

lim
ε→0

∫
T2\Δ′

ε

π∗α ∧ ϕ = lim
ε→0

∫
C×C\Δε

θ α = 2 lim
ε→0

∫
C×C\Δε

θ sin θ
dx dy

‖y − x‖2

where we have used (15). The result follows since θ = O(‖y − x‖), which is easy to prove. �
The proof of Theorem 1 is almost finished. So far we have seen (cf. Propositions 6 and 12,

Eq. (24), and Propositions 15 and 16)

∫
L

(
#(� ∩ S) − λ2(�,C)

)
d� = 2

∫
B

Φ∗(d�) = 2 lim
ε→0

∫
Bε

Φ∗(d�)

= lim
ε→0

∫
Rε

π∗α ∧ ϕ + 2π

∫
S

K dS + 2
∫

C�C

θ sin θ
dx dy

‖y − x‖2
.

(25)

It remains only to check that the contribution of Rε vanishes as ε → 0. This is done in the next
subsection.

4.5. Asymptotic estimations

Next we construct a singular chain Rε in ∂Δ′
ε with ∂Rε = −∂Tε as promised. Let v : ∂Δε → E

be the section given by the vertical planes. With the same kind of arguments as in the proof
of Proposition 14 one shows that τ ◦ v lifts over q; i.e. there exists h : ∂Δε → R such that
q(x,h(x)) = τ ◦ v(x). Let R0,ε ⊂ ∂Δ′

ε be the graph of h over ∂Δε . In particular, both T1 ∩ ∂Δ′
ε

and ∂R0,ε project by π onto ∂B ∩ ∂Δε . Next we consider the union of vertical segments
joining these two graphs. More precisely, we define R1,ε = (C � S ∩ ∂Δε) × [0,1], R2,ε =
(S � C ∩ ∂Δε) × [0,1], R3,ε = (T +S ∩ ∂Δε) × [0,1] together with the mappings

σi :Ri,ε → ∂Δ′
ε,

(z, t) �→ (
z, tgi(z) + (1 − t)h(z)

)
,

for i = 1,2. As for σ3, we take the same definition with g in the place of gi . We think of {Ri,ε,

i = 0,1,2,3} as singular chains in ∂Δ′
ε , and we define Rε = ∑3

i=0 Ri,ε . A careful study of the
boundaries shows that ∂Rε = −∂Tε .

To finish the proof of Theorem 1 we only need to establish the following.

Proposition 17.

lim
ε→0

∫
Rε

π∗α ∧ ϕ = 0.
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Proof. Here we assume that S coincides with the cylinder C × (0,∞) ⊂ H
3 in a neighborhood

of infinity. This is no loss of generality by Corollary 13, and Eq. (25).
In particular we may assume that h and g coincide over T +S. Hence, the integral over R3,ε

vanishes. Next we concentrate on R1,ε (the study of R2,ε being obviously symmetric). Given
(x, y) ∈ C×S∩∂Δε , let {x, z} be the ideal endpoints of Φ(x,y). The euclidean distance between
x and z is constant ε. Hence, given x ∈ C the point z is determined by the angle γ between
the straight segment xz and TxC. This angle γ coincides with the length of the fiber interval
π−1(x, y) ∩ R1,ε . By Fubini’s theorem

∫
R1,ε

π∗α ∧ ϕ =
∫

π(R1,ε )

γ · α =
∫

π(R1,ε )

γ cosγ
dx dγ

ε

since α = cosγ ε−1 dx dγ (cf. (14)). The previous integrals vanish when ε → 0 since γ = O(ε).
Indeed, the chords of length smaller than ε make angles with C of order O(ε).

It remains to estimate the integral over R0,ε . Let (x′, y′) ∈ S � S be a generic point in MS ∩
∂Δε . Let x, y ∈ C be the vertical projections of x′, y′. Let z,w be the ideal endpoints of the
geodesic � = Φ(x′, y′). We choose euclidean coordinates on R

2 ≡ ∂∞H
3 so that x2 = y2 = 0.

We can assume z1 < x1 < y1 < w1. Then

dz2 = (t + σ)
dx2

σ
− t

dy2

σ
,

dw2 = (σ + t − ε)
dx2

σ
+ (ε − t)

dy2

σ
,

where t = x1 − z1, σ = y1 − x1, and thus w1 − y1 = ε − t − σ . Recall that (x′, y′) corresponds
(through Φ ′ ◦ τ−1 ◦ π ) to the pair (�,℘) where ℘ is the vertical plane containing �. We take an
adapted orthonormal frame (p;g1, g2, g3) such that p ∈ � projects vertically onto 1

2 (z + w) ∈
∂∞H

3 and g3 ⊥ ℘. Then (17) and the equations above yield

ϕ = 〈∇g2, g3〉 = θ23 = 1

ε
(dz2 + dw2) = 1

εσ

(
(2t + 2σ − ε) dx2 + (ε − 2t) dy2

)
.

Since π∗α = dϕ we get

π∗α = 2

εσ
(dt ∧ dx2 − dt ∧ dy2) − 2t − ε

εσ 2
dσ ∧ dx2 − ε − 2t

εσ 2
dσ ∧ dy2.

Hence, recalling that x, y are restricted to move along C, we get

π∗α ∧ ϕ = 4

ε2σ
dt ∧ dx2 ∧ dy2 = 4

ε2
sinβx sinβy

dt ∧ dx ∧ dy

‖y − x‖ ,

where dx, dy denote arc-length elements on C, and βx , βy are angles between C and the segment
xy. Therefore
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∫
R0,ε

π∗α ∧ ϕ = 4

ε2

∫
x,y∈C,‖y−x‖�ε

sinβx sinβy

(
ε − ‖y − x‖)dx ∧ dy

‖y − x‖

which goes to zero when ε → 0, since βx,βy = O(‖y − x‖). �
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