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1. Introduction

These pages are for students and young researchers of all ages who
may like to hitchhike their way from 1 to s ∈ (0, 1). To wit, for anybody
who, only endowed with some basic undergraduate analysis course (and
knowing where his towel is), would like to pick up some quick, crash and
essentially self-contained information on the fractional Sobolev spaces W s,p.

The reasons for such a hitchhiker to start this adventurous trip might
be of different kind: (s)he could be driven by mathematical curiosity,
or could be tempted by the many applications that fractional calculus
seems to have recently experienced. In a sense, fractional Sobolev spaces
have been a classical topic in functional and harmonic analysis all along,
and some important books, such as [59, 90] treat the topic in detail.
On the other hand, fractional spaces, and the corresponding nonlocal
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equations, are now experiencing impressive applications in different sub-
jects, such as, among others, the thin obstacle problem [87, 69], opti-
mization [37], finance [26], phase transitions [2, 14, 88, 40, 45], stratified
materials [83, 23, 24], anomalous diffusion [68, 98, 65], crystal disloca-
tion [92, 47, 8], soft thin films [57], semipermeable membranes and flame
propagation [15], conservation laws [9], ultra-relativistic limits of quan-
tum mechanics [41], quasi-geostrophic flows [64, 27, 21], multiple scatter-
ing [36, 25, 50], minimal surfaces [16, 20], materials science [4], water
waves [81, 100, 99, 32, 29, 74, 33, 34, 31, 30, 42, 51, 75, 35], elliptic
problems with measure data [71, 54], non-uniformly elliptic problems [39],
gradient potential theory [72] and singular set of minima of variational
functionals [70, 56]. Don’t panic, instead, see also [86, 87] for further
motivation.

For these reasons, we thought that it could be of some interest to write
down these notes – or, more frankly, we wrote them just because if you

really want to understand something, the best way is to try and

explain it to someone else.

Some words may be needed to clarify the style of these pages have been
gathered. We made the effort of making a rigorous exposition, starting from
scratch, trying to use the least amount of technology and with the simplest,
low-profile language we could use – since capital letters were always

the best way of dealing with things you didn’t have a good answer

to.

Differently from many other references, we make no use of Besov spaces4

or interpolation techniques, in order to make the arguments as elementary
as possible and the exposition suitable for everybody, since when you are

a student or whatever, and you can’t afford a car, or a plane fare,

or even a train fare, all you can do is hope that someone will stop

and pick you up, and it’s nice to think that one could, even here

and now, be whisked away just by hitchhiking.

Of course, by dropping fine technologies and powerful tools, we will miss
several very important features, and we apologize for this. So, we highly

4About this, we would like to quote [53], according to which “The paradox of Besov
spaces is that the very thing that makes them so successful also makes them very
difficult to present and to learn”.
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recommend all the excellent, classical books on the topic, such as [59, 90, 1,
93, 94, 101, 80, 91, 67, 60], and the many references given therein. Without
them, our reader would remain just a hitchhiker, losing the opportunity of
performing the next crucial step towards a full mastering of the subject
and becoming the captain of a spaceship.

In fact, compared to other Guides, this one is not definitive, and it
is a very evenly edited book and contains many passages that simply

seemed to its editors a good idea at the time. In any case, of course,
we know that we cannot solve any major problems just with potatoes

– it’s fun to try and see how far one can get though.
In this sense, while most of the results we present here are probably well

known to the experts, we believe that the exposition is somewhat original.

These are the topics we cover. In Section 2, we define the fractional
Sobolev spaces W s,p via the Gagliardo approach and we investigate some
of their basic properties. In Section 3 we focus on the Hilbert case p = 2,
dealing with its relation with the fractional Laplacian, and letting the
principal value integral definition interplay with the definition in the Fourier
space. Then, in Section 4 we analyze the asymptotic behavior of the
constant factor that appears in the definition of the fractional Laplacian.

Section 5 is devoted to the extension problem of a function in W s,p(Ω)
to W s,p(Rn): technically, this is slightly more complicated than the classi-
cal analogue for integer Sobolev spaces, since the extension interacts with
the values taken by the function in Ω via the Gagliardo norm and the
computations have to take care of it.

Sobolev inequalities and continuous embeddings are dealt with in Sec-
tion 6, while Section 7 is devoted to compact embeddings. Then, in Sec-
tion 8, we point out that functions in W s,p are continuous when sp is large
enough.

In Section 9, we present some counterexamples in non-Lipschitz do-
mains.

After that, we hope that our hitchhiker reader has enjoyed his trip from
the integer Sobolev spaces to the fractional ones, with the advantages

of being able to get more quickly from one place to another -

particularly when the place you arrived at had probably become, as

a result of this, very similar to the place you had left.

The above sentences written in old-fashioned fonts are Douglas
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Adams’s of course, and we took the latitude of adapting their meanings to
our purposes. The rest of these pages are written in a more conventional,
may be boring, but hopefully rigorous, style.

2. The fractional Sobolev space W s,p

This section is devoted to the definition of the fractional Sobolev spaces.
No prerequisite is needed. We just recall the definition of the Fourier

transform of a distribution. First, consider the Schwartz space S of rapidly
decaying C∞ functions in R

n. The topology of this space is generated by
the seminorms

pN (ϕ) = sup
x∈Rn

(1 + |x|)N
∑

|α|≤N

|Dαϕ(x)| , N = 0, 1, 2, ... ,

where ϕ ∈ S (Rn). Let S ′(Rn) be the set of all tempered distributions,
that is the topological dual of S (Rn). As usual, for any ϕ ∈ S (Rn), we
denote by

Fϕ(ξ) =
1

(2π)n/2

∫

Rn

e−iξ·x ϕ(x) dx

the Fourier transform of ϕ and we recall that one can extend F from
S (Rn) to S ′(Rn).

Let Ω be a general, possibly non smooth, open set in R
n. For any real

s > 0 and for any p ∈ [1,∞), we want to define the fractional Sobolev
spaces W s,p(Ω). In the literature, fractional Sobolev-type spaces are also
called Aronszajn, Gagliardo or Slobodeckij spaces, by the name of the ones
who introduced them, almost simultaneously (see [3, 44, 89]).

We start by fixing the fractional exponent s in (0, 1). For any p ∈
[1,+∞), we define W s,p(Ω) as follows

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

|u(x)− u(y)|

|x− y|
n
p
+s

∈ Lp(Ω× Ω)

}
; (2.1)

i.e, an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed
with the natural norm

‖u‖W s,p(Ω) :=

(∫

Ω

|u|p dx +

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)1
p

, (2.2)
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where the term

[u]W s,p(Ω) :=

(∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

)1
p

is the so-called Gagliardo (semi )norm of u.

It is worth noticing that, as in the classical case with s being an integer,
the space W s′,p is continuously embedded in W s,p when s ≤ s′, as next
result points out.

Proposition 2.1. Let p ∈ [1,+∞) and 0 < s ≤ s′ < 1. Let Ω be an open
set in R

n and u : Ω → R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some suitable positive constant C = C(n, s, p) ≥ 1. In particular,

W s′,p(Ω) ⊆W s,p(Ω) .

Proof. First,
∫

Ω

∫

Ω∩{|x−y|≥1}

|u(x)|p

|x− y|n+sp
dx dy ≤

∫

Ω

(∫

|z|≥1

1

|z|n+sp
dz

)
|u(x)|p dx

≤ C(n, s, p)‖u‖pLp(Ω) ,

where we used the fact that the kernel 1/|z|n+sp is integrable since n+sp >
n.

Taking into account the above estimate, it follows
∫

Ω

∫

Ω∩{|x−y|≥1}

|u(x)− u(y)|p

|x− y|n+sp
dx dy

≤ 2p−1

∫

Ω

∫

Ω∩{|x−y|≥1}

|u(x)|p + |u(y)|p

|x− y|n+sp
dx dy

≤ 2pC(n, s, p)‖u‖pLp(Ω) . (2.3)

On the other hand,
∫

Ω

∫

Ω∩{|x−y|<1}

|u(x)− u(y)|p

|x− y|n+sp
dx dy ≤

∫

Ω

∫

Ω∩{|x−y|<1}

|u(x)− u(y)|p

|x− y|n+s′p
dx dy .

(2.4)

6



Thus, combining (2.3) with (2.4), we get

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy

≤ 2pC(n, s, p)‖u‖pLp(Ω) +

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+s′p
dx dy

and so

‖u‖pW s,p(Ω) ≤
(
2pC(n, s, p) + 1

)
‖u‖pLp(Ω) +

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+s′p
dx dy

≤ C(n, s, p)‖u‖p
W s′,p(Ω)

,

which gives the desired estimate, up to relabeling the constant C(n, p, s).

We will show in the forthcoming Proposition 2.2 that the result in
Proposition 2.1 holds also in the limit case, namely when s′ = 1, but for
this we have to take into account the regularity of ∂Ω (see Example 9.1).

As usual, for any k ∈ N and α ∈ (0, 1], we say that Ω is of class Ck,α if
there exists M > 0 such that for any x ∈ ∂Ω there exists a ball B = Br(x),
r > 0, and an isomorphism T : Q→ B such that

T ∈ Ck,α(Q), T−1 ∈ Ck,α(B), T (Q+) = B ∩ Ω, T (Q0) = B ∩ ∂Ω

and ‖T‖Ck,α(Q) + ‖T−1‖Ck,α(B) ≤ M,

where

Q :=
{
x = (x′, xn) ∈ R

n−1 ×R : |x′| < 1 and |xn| < 1
}
,

Q+ :=
{
x = (x′, xn) ∈ R

n−1 ×R : |x′| < 1 and 0 < xn < 1
}

and Q0 := {x ∈ Q : xn = 0} .

We have the following result.
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Proposition 2.2. Let p ∈ [1,+∞) and s ∈ (0, 1). Let Ω be an open set
in R

n of class C0,1 with bounded boundary and u : Ω → R be a measurable
function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω) (2.5)

for some suitable positive constant C = C(n, s, p) ≥ 1. In particular,

W 1,p(Ω) ⊆ W s,p(Ω) .

Proof. Let u ∈ W 1,p(Ω). Thanks to the regularity assumptions on the
domain Ω, we can extend u to a function ũ : Rn → R such that ũ ∈
W 1,p(Rn) and ‖ũ‖W 1,p(Rn) ≤ C‖u‖W 1,p(Ω) for a suitable constant C (see,
e.g., [49, Theorem 7.25]).

Now, using the change of variable z = y − x and the Hölder inequality,
we have ∫

Ω

∫

Ω∩{|x−y|<1}

|u(x)− u(y)|p

|x− y|n+sp
dx dy

≤

∫

Ω

∫

B1

|u(x)− u(z + x)|p

|z|n+sp
dz dx

=

∫

Ω

∫

B1

|u(x)− u(z + x)|p

|z|p
1

|z|n+(s−1)p
dz dx

≤

∫

Ω

∫

B1

(∫ 1

0

|∇u(x+ tz)|

|z|
n
p
+s−1

dt

)p

dz dx

≤

∫

Rn

∫

B1

∫ 1

0

|∇ũ(x+ tz)|p

|z|n+p(s−1)
dt dz dx

≤

∫

B1

∫ 1

0

‖∇ũ‖pLp(Rn)

|z|n+p(s−1)
dt dz

≤ C1(n, s, p)‖∇ũ‖
p
Lp(Rn)

≤ C2(n, s, p)‖u‖
p
W 1,p(Ω) . (2.6)

Also, by (2.3),
∫

Ω

∫

Ω∩{|x−y|≥1}

|u(x)− u(y)|p

|x− y|n+sp
dx dy ≤ C(n, s, p)‖u‖pLp(Ω) . (2.7)
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Therefore, from (2.6) and (2.7) we get estimate (2.5).

We remark that the Lipschitz assumption in Proposition 2.2 cannot be
completely dropped (see Example 9.1 in Section 9); we also refer to the
forthcoming Section 5, in which we discuss the extension problem in W s,p.

Let us come back to the definition of the space W s,p(Ω). Before going
ahead, it is worth explaining why the definition in (2.1) cannot be plainly
extended to the case s ≥ 1. Suppose that Ω is a connected open set in R

n,
then any measurable function u : Ω → R such that

∫

Ω

∫

Ω

|u(x)− u(u)|p

|x− y|n+sp
dx dy < +∞

is actually constant (see [10, Proposition 2]). This fact is a matter of
scaling and it is strictly related to the following result that holds for any
u in W 1,p(Ω):

lim
s→1−

(1− s)

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy = C1

∫

Ω

|∇u|p dx (2.8)

for a suitable positive constant C1 depending only on n and p (see [11]).
In the same spirit, in [66], Maz’ja and Shaposhnikova proved that, for

a function u ∈
⋃

0<s<1W
s,p(Rn), it yields

lim
s→0+

s

∫

Rn

∫

Rn

|u(x)− u(y)|p

|x− y|n+sp
dx dy = C2

∫

Rn

|u|p dx, (2.9)

for a suitable positive constant C2 depending5 only on n and p.

When s > 1 and it is not an integer we write s = m + σ, where m
is an integer and σ ∈ (0, 1). In this case the space W s,p(Ω) consists of
those equivalence classes of functions u ∈ Wm,p(Ω) whose distributional
derivatives Dαu, with |α| = m, belong to W σ,p(Ω), namely

W s,p(Ω) :=
{
u ∈ Wm,p(Ω) : Dαu ∈ W σ,p(Ω) for any α s.t. |α| = m

}

(2.10)

5For the sake of simplicity, in the definition of the fractional Sobolev spaces and those
of the corresponding norms in (2.1) and (2.2) we avoided any normalization constant.
In view of (2.8) and (2.9), it is worthing notice that, in order to recover the classical
W 1,p and Lp spaces, one may consider to add a factor C(n, p, s) ≈ s(1 − s) in front of
the double integral in (2.2).
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and this is a Banach space with respect to the norm

‖u‖W s,p(Ω) :=


‖u‖pWm,p(Ω) +

∑

|α|=m

‖Dαu‖pWσ,p(Ω)




1
p

. (2.11)

Clearly, if s = m is an integer, the space W s,p(Ω) coincides with the Sobolev
space Wm,p(Ω).

Corollary 2.3. Let p ∈ [1,+∞) and s, s′ > 1. Let Ω be an open set in R
n

of class C0,1. Then, if s′ ≥ s, we have

W s′,p(Ω) ⊆W s,p(Ω).

Proof. We write s = k + σ and s′ = k′ + σ′, with k, k′ integers and σ, σ′ ∈
(0, 1). In the case k′ = k, we can use Proposition 2.1 in order to conclude
that W s′,p(Ω) is continuously embedded in W s,p(Ω). On the other hand, if
k′ ≥ k+1, using Proposition 2.1 and Proposition 2.2 we have the following
chain

W k′+σ′,p(Ω) ⊆W k′,p(Ω) ⊆W k+1,p(Ω) ⊆W k+σ,p(Ω) .

The proof is complete.

As in the classic case with s being an integer, any function in the
fractional Sobolev space W s,p(Rn) can be approximated by a sequence of
smooth functions with compact support.

Theorem 2.4. For any s > 0, the space C∞
0 (Rn) of smooth functions with

compact support is dense in W s,p(Rn).

A proof can be found in [1, Theorem 7.38].

Let W s,p
0 (Ω) denote the closure of C∞

0 (Ω) in the norm ‖·‖W s,p(Ω) defined
in (2.11). Note that, in view of Theorem 2.4, we have

W s,p
0 (Rn) =W s,p(Rn) , (2.12)

but in general, for Ω ⊂ R
n, W s,p(Ω) 6= W s,p

0 (Ω), i.e. C∞
0 (Ω) is not dense in

W s,p(Ω). Furthermore, it is clear that the same inclusions stated in Propo-
sition 2.1, Proposition 2.2 and Corollary 2.3 hold for the spaces W s,p

0 (Ω).
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Remark 2.5. For s < 0 and p ∈ (1,∞), we can define W s,p(Ω) as the dual
space of W−s,q

0 (Ω) where 1/p+1/q = 1. Notice that, in this case, the space
W s,p(Ω) is actually a space of distributions on Ω, since it is the dual of a
space having C∞

0 (Ω) as density subset.

Finally, it is worth noticing that the fractional Sobolev spaces play an
important role in the trace theory. Precisely, for any p ∈ (1,+∞), assume
that the open set Ω ⊆ R

n is sufficiently smooth, then the space of traces Tu
on ∂Ω of u in W 1,p(Ω) is characterized by ‖Tu‖

W
1−1

p ,p
(∂Ω)

< +∞ (see [43]).

Moreover, the trace operator T is surjective from W 1,p(Ω) onto W 1− 1
p
,p(∂Ω).

In the quadratic case p = 2, the situation simplifies considerably, as we will
see in the next section and a proof of the above trace embedding can be
find in the forthcoming Proposition 3.8.

3. The space Hs and the fractional Laplacian operator

In this section, we focus on the case p = 2. This is quite an important
case since the fractional Sobolev spaces W s,2(Rn) and W s,2

0 (Rn) turn out
to be Hilbert spaces. They are usually denoted by Hs(Rn) and Hs

0(R
n),

respectively. Moreover, they are strictly related to the fractional Laplacian
operator (−∆)s (see Proposition 3.6), where, for any u ∈ S and s ∈ (0, 1),
(−∆)s is defined as

(−∆)su(x) = C(n, s)P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy (3.1)

= C(n, s) lim
ε→0+

∫

CBε(x)

u(x)− u(y)

|x− y|n+2s
dy.

Here P.V. is a commonly used abbreviation for “in the principal value
sense” (as defined by the latter equation) and C(n, s) is a dimensional
constant that depends on n and s, precisely given by

C(n, s) =

(∫

Rn

1− cos(ζ1)

|ζ |n+2s
dζ

)−1

. (3.2)

The choice of this constant is motived by Proposition 3.3.
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Remark 3.1. Due to the singularity of the kernel, the right hand-side of
(3.1) is not well defined in general. In the case s ∈ (0, 1/2) the integral in
(3.1) is not really singular near x. Indeed, for any u ∈ S , we have

∫

Rn

|u(x)− u(y)|

|x− y|n+2s
dy

≤ C

∫

BR

|x− y|

|x− y|n+2s
dy + ‖u‖L∞(Rn)

∫

CBR

1

|x− y|n+2s
dy

= C

(∫

BR

1

|x− y|n+2s−1
dy +

∫

CBR

1

|x− y|n+2s
dy

)

= C

(∫ R

0

1

|ρ|2s
dρ +

∫ +∞

R

1

|ρ|2s+1
dρ

)
< +∞

where C is a positive constant depending only on the dimension and on
the L∞ norm of u.

Now, we show that one may write the singular integral in (3.1) as a
weighted second order differential quotient.

Lemma 3.2. Let s ∈ (0, 1) and let (−∆)s be the fractional Laplacian
operator defined by (3.1). Then, for any u ∈ S ,

(−∆)su(x) = −
1

2
C(n, s)

∫

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, ∀x ∈ R

n.

(3.3)

Proof. The equivalence of the definitions in (3.1) and (3.3) immediately
follows by the standard changing variable formula.

Indeed, by choosing z = y − x, we have

(−∆)su(x) = −C(n, s)P.V.

∫

Rn

u(y)− u(x)

|x− y|n+2s
dy

= −C(n, s)P.V.

∫

Rn

u(x+ z)− u(x)

|z|n+2s
dz. (3.4)

Moreover, by substituting z̃ = −z in last term of the above equality, we
have

P.V.

∫

Rn

u(x+ z)− u(x)

|z|n+2s
dz = P.V.

∫

Rn

u(x− z̃)− u(x)

|z̃|n+2s
dz̃. (3.5)
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and so after relabeling z̃ as z

2P.V.

∫

Rn

u(x+ z)− u(x)

|z|n+2s
dz

= P.V.

∫

Rn

u(x+ z)− u(x)

|z|n+2s
dz + P.V.

∫

Rn

u(x− z)− u(x)

|z|n+2s
dz

= P.V.

∫

Rn

u(x+ z) + u(x− z)− 2u(x)

|z|n+2s
dz. (3.6)

Therefore, if we rename z as y in (3.4) and (3.6), we can write the fractional
Laplacian operator in (3.1) as

(−∆)su(x) = −
1

2
C(n, s)P.V.

∫

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy.

The above representation is useful to remove the singularity of the integral
at the origin. Indeed, for any smooth function u, a second order Taylor
expansion yields

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
≤

‖D2u‖L∞

|y|n+2s−2
,

which is integrable near 0 (for any fixed s ∈ (0, 1)). Therefore, since u ∈ S ,
one can get rid of the P.V. and write (3.3).

3.1. An approach via the Fourier transform

Now, we take into account an alternative definition of the space Hs(Rn) =
W s,2(Rn) via the Fourier transform. Precisely, we may define

Ĥs(Rn) =

{
u ∈ L2(Rn) :

∫

Rn

(1 + |ξ|2s)|Fu(ξ)|2 dξ < +∞

}
(3.7)

and we observe that the above definition, unlike the ones via the Gagliardo
norm in (2.2), is valid also for any real s ≥ 1.

We may also use an analogous definition for the case s < 0 by setting

Ĥs(Rn) =

{
u ∈ S

′(Rn) :

∫

Rn

(1 + |ξ|2)s|Fu(ξ)|2 dξ < +∞

}
,

13



although in this case the space Ĥs(Rn) is not a subset of L2(Rn) and, in
order to use the Fourier transform, one has to start from an element of
S ′(Rn), (see also Remark 2.5).

The equivalence of the space Ĥs(Rn) defined in (3.7) with the one
defined in the previous section via the Gagliardo norm (see (2.1)) is stated
and proven in the forthcoming Proposition 3.4.

First, we will prove that the fractional Laplacian (−∆)s can be viewed
as a pseudo-differential operator of symbol |ξ|2s. The proof is standard and
it can be found in many papers (see, for instance, [91, Chapter 16]). We
will follow the one in [97] (see Section 3), in which is shown how singular
integrals naturally arise as a continuous limit of discrete long jump random
walks.

Proposition 3.3. Let s ∈ (0, 1) and let (−∆)s : S → L2(Rn) be the
fractional Laplacian operator defined by (3.1). Then, for any u ∈ S ,

(−∆)su = F
−1(|ξ|2s(Fu)) ∀ξ ∈ R

n. (3.8)

Proof. In view of Lemma 3.2, we may use the definition via the weighted
second order differential quotient in (3.3). We denote by L u the integral
in (3.3), that is

L u(x) = −
1

2
C(n, s)

∫

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy,

with C(n, s) as in (3.2).
L is a linear operator and we are looking for its “symbol” (or “multiplier”),
that is a function S : Rn → R such that

L u = F
−1(S(Fu)). (3.9)

We want to prove that
S(ξ) = |ξ|2s, (3.10)

where we denoted by ξ the frequency variable. To this scope, we point out

that

|u(x+ y) + u(x− y)− 2u(x)|

|y|n+2s

≤ 4
(
χB1(y)|y|

2−n−2s sup
B1(x)

|D2u|+ χRn\B1(y)|y|
−n−2s sup

Rn
|u|
)

≤ C
(
χB1(y)|y|

2−n−2s(1 + |x|n+1)−1 + χRn\B1
(y)|y|−n−2s

)
∈ L1(R2n).
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Consequently, by the Fubini-Tonelli’s Theorem, we can exchange the in-
tegral in y with the Fourier transform in x. Thus, we apply the Fourier
transform in the variable x in (3.9) and we obtain

S(ξ)(Fu)(ξ) = F (L u)

= −
1

2
C(n, s)

∫

Rn

F (u(x+ y) + u(x− y)− 2u(x))

|y|n+2s
dy

= −
1

2
C(n, s)

∫

Rn

eiξ·y + e−iξ·y − 2

|y|n+2s
dy(Fu)(ξ)

= C(n, s)

∫

Rn

1− cos(ξ · y)

|y|n+2s
dy(Fu)(ξ). (3.11)

Hence, in order to obtain (3.10), it suffices to show that

∫

Rn

1− cos(ξ · y)

|y|n+2s
dy = C(n, s)−1|ξ|2s. (3.12)

To check this, first we observe that, if ζ = (ζ1, ..., ζn) ∈ R
n, we have

1− cos ζ1
|ζ |n+2s

≤
|ζ1|

2

|ζ |n+2s
≤

1

|ζ |n−2+2s

near ζ = 0. Thus,

∫

Rn

1− cos ζ1
|ζ |n+2s

dζ is finite and positive. (3.13)

Now, we consider the function I : Rn → R defined as follows

I(ξ) =

∫

Rn

1− cos (ξ · y)

|y|n+2s
dy.

We have that I is rotationally invariant, that is

I(ξ) = I(|ξ|e1), (3.14)

where e1 denotes the first direction vector in R
n. Indeed, when n = 1,

then we can deduce (3.14) by the fact that I(−ξ) = I(ξ). When n ≥ 2,
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we consider a rotation R for which R(|ξ|e1) = ξ and we denote by RT its
transpose. Then, by substituting ỹ = RTy, we obtain

I(ξ) =

∫

Rn

1− cos
(
(R(|ξ|e1)) · y

)

|y|n+2s
dy

=

∫

Rn

1− cos
(
(|ξ|e1) · (R

Ty)
)

|y|n+2s
dy

=

∫

Rn

1− cos
(
(|ξ|e1) · ỹ

)

|ỹ|n+2s
dỹ = I(|ξ|e1),

which proves (3.14).

As a consequence of (3.13) and (3.14), the substitution ζ = |ξ|y gives
that

I(ξ) = I(|ξ|e1)

=

∫

Rn

1− cos (|ξ|y1)

|y|n+2s
dy

=
1

|ξ|n

∫

Rn

1− cos ζ1∣∣ζ/|ξ|
∣∣n+2s dζ = C(n, s)−1|ξ|2s.

where we recall that C(n, s)−1 is equal to

∫

Rn

1− cos(ζ1)

|ζ |n+2s
dζ by (3.2).

Hence, we deduce (3.12) and then the proof is complete.

Proposition 3.4. Let s ∈ (0, 1). Then the fractional Sobolev space Hs(Rn)
defined in Section 2 coincides with Ĥs(Rn) defined in (3.7). In particular,
for any u ∈ Hs(Rn)

[u]2Hs(Rn) = 2C(n, s)−1

∫

Rn

|ξ|2s|Fu(ξ)|2 dξ.

where C(n, s) is defined by (3.2).

Proof. For every fixed y ∈ R
n, by changing of variable choosing z = x− y,
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we get
∫

Rn

(∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dx

)
dy =

∫

Rn

∫

Rn

|u(z + y)− u(y)|2

|z|n+2s
dz dy

=

∫

Rn

(∫

Rn

∣∣∣∣
u(z + y)− u(y)

|z|n/2+s

∣∣∣∣
2

dy

)
dz

=

∫

Rn

∥∥∥∥
u(z + ·)− u(·)

|z|n/2+s

∥∥∥∥
2

L2(Rn)

dz

=

∫

Rn

∥∥∥∥F
(
u(z + ·)− u(·)

|z|n/2+s

)∥∥∥∥
2

L2(Rn)

dz,

where Plancherel Formula has been used.

Now, using (3.12) we obtain

∫

Rn

∥∥∥∥F
(
u(z + ·)− u(·)

|z|n/2+s

)∥∥∥∥
2

L2(Rn)

dz

=

∫

Rn

∫

Rn

|eiξ·z − 1|2

|z|n+2s
|Fu(ξ)|2 dξ dz

= 2

∫

Rn

∫

Rn

(1− cos ξ · z)

|z|n+2s
|Fu(ξ)|2 dz dξ

= 2C(n, s)−1

∫

Rn

|ξ|2s |Fu(ξ)|2 dξ.

This completes the proof.

Remark 3.5. The equivalence of the spaces Hs and Ĥs stated in Proposi-
tion 3.4 relies on Plancherel Formula. As well known, unless p = q = 2,
one cannot go forward and backward between an Lp and an Lq via Fourier
transform (see, for instance, the sharp inequality in [5] for the case 1 <
p < 2 and q equal to the conjugate exponent p/(p− 1) ). That is why the
general fractional space defined via Fourier transform for 1 < p < ∞ and
s > 0, say Hs,p(Rn), does not coincide with the fractional Sobolev spaces
W s,p(Rn) and will be not discussed here (see, e.g., [101]).

Finally, we are able to prove the relation between the fractional Lapla-
cian operator (−∆)s and the fractional Sobolev space Hs.
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Proposition 3.6. Let s ∈ (0, 1) and let u ∈ Hs(Rn). Then,

[u]2Hs(Rn) = 2C(n, s)−1‖(−∆)
s
2u‖2L2(Rn). (3.15)

where C(n, s) is defined by (3.2).

Proof. The equality in (3.15) plainly follows from Proposition 3.3 and
Proposition 3.4. Indeed,

‖(−∆)
s
2u‖2L2(Rn) = ‖F (−∆)

s
2u‖2L2(Rn) = ‖|ξ|sFu‖2L2(Rn)

=
1

2
C(n, s)[u]2Hs(Rn) .

Remark 3.7. In the same way as the fractional Laplacian (−∆)s is related
to the space W s,2

(
as its Euler-Lagrange equation or from the formula

‖u‖2W s,2 =
∫
u(−∆)su dx

)
, a more general integral operator can be defined

that is related to the space W s,p for any p (see the recent paper [52]).

Armed with the definition of Hs(Rn) via the Fourier transform, we
can easily analyze the traces of the Sobolev functions (see the forthcom-
ing Proposition 3.8). We will follow Sections 13, 15 and 16 in [91].

Let Ω ⊆ R
n be an open set with continuous boundary ∂Ω. Denote by

T the trace operator, namely the linear operator defined by the uniformly
continuous extension of the operator of restriction to ∂Ω for functions
in D(Ω), that is the space of functions C∞

0 (Rn) restricted6 to Ω.

Now, for any x = (x′, xn) ∈ R
n and for any u ∈ S (Rn), we denote by

v ∈ S (Rn−1) the restriction of u on the hyperplane xn = 0, that is

v(x′) = u(x′, 0) ∀x′ ∈ R
n−1. (3.16)

Then, we have

Fv(ξ′) =

∫

R

Fu(ξ′, ξn) dξn ∀ξ′ ∈ R
n−1, (3.17)

6 Notice that we cannot simply take T as the restriction operator to the boundary,
since the restriction to a set of measure 0 (like the set ∂Ω) is not defined for functions
which are not smooth enough.
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where, for the sake of simplicity, we keep the same symbol F for both the
Fourier transform in n− 1 and in n variables.

To check (3.17), we write

Fv(ξ′) =
1

(2π)
n−1
2

∫

Rn−1

e−iξ′·x′

v(x′) dx′

=
1

(2π)
n−1
2

∫

Rn−1

e−iξ′·x′

u(x′, 0) dx′. (3.18)

On the other hand, we have

∫

R

Fu(ξ′, ξn) dξn

=

∫

R

1

(2π)
n
2

∫

Rn

e−i (ξ′,ξn)·(x′,xn)u(x′, xn) dx
′ dxn dξn

=
1

(2π)
n−1
2

∫

Rn−1

e−iξ′·x′

[
1

(2π)
1
2

∫

R

∫

R

e−iξn·xnu(x′, xn) dxndξn

]
dx′

=
1

(2π)
n−1
2

∫

Rn−1

e−iξ′·x′[
u(x′, 0)

]
dx′,

where the last equality follows by transforming and anti-transforming u in
the last variable, and this coincides with (3.18).

Now, we are in position to characterize the traces of the function
in Hs(Rn), as stated in the following proposition.

Proposition 3.8. ([91, Lemma 16.1]). Let s > 1/2, then any function
u ∈ Hs(Rn) has a trace v on the hyperplane

{
xn = 0

}
, such that v ∈

Hs− 1
2 (Rn−1). Also, the trace operator T is surjective from Hs(Rn) onto

Hs− 1
2 (Rn−1).

Proof. In order to prove the first claim, it suffices to show that there exists
an universal constant C such that, for any u ∈ S (Rn) and any v defined
as in (3.16),

‖v‖
Hs−1

2 (Rn−1)
≤ C‖u‖Hs(Rn). (3.19)
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By taking into account (3.17), the Cauchy-Schwarz inequality yields

|Fv(ξ′)|2 ≤

(∫

R

(1 + |ξ|2)s|Fu(ξ′, ξn)|
2 dξn

)(∫

R

dξn
(1 + |ξ|2)s

)
. (3.20)

Using the changing of variable formula by setting ξn = t
√

1 + |ξ′|2, we have

∫

R

dξn
(1 + |ξ|2)s

=

∫

R

(
1 + |ξ′|2

)1/2
(
(1 + |ξ′|2)(1 + t2)

)s dt =

∫

R

(
1 + |ξ′|

) 1
2
−s

(1 + t2)s
dt

= C(s)
(
1 + |ξ′|2

) 1
2
−s
, (3.21)

where C(s) :=

∫

R

dt

(1 + t2)s
< +∞ since s > 1/2.

Combining (3.20) with (3.21) and integrating in ξ′ ∈ R
n−1, we obtain

∫

Rn−1

(
1 + |ξ′|2

)s− 1
2 |Fv(ξ′)|2 dξ′

≤ C(s)

∫

Rn−1

∫

R

(
1 + |ξ|2

)s
|Fu(ξ′, ξn)|

2 dξn dξ
′,

that is (3.19).

Now, we will prove the surjectivity of the trace operator T . For this,
we show that for any v ∈ Hs− 1

2 (Rn−1) the function u defined by

Fu(ξ′, ξn) = Fv(ξ′)ϕ

(
ξn√

1 + |ξ′|2

)
1√

1 + |ξ′|2
, (3.22)

with ϕ ∈ C∞
0 (R) and

∫

R

ϕ(t) dt = 1, is such that u ∈ Hs(Rn) and Tu = v.

Indeed, we integrate (3.22) with respect to ξn ∈ R, we substitute ξn =
t
√

1 + |ξ′|2 and we obtain

∫

R

Fu(ξ′, ξn) dξn =

∫

R

Fv(ξ′)ϕ

(
ξn√

1 + |ξ′|2

)
1√

1 + |ξ′|2
dξn

=

∫

R

Fv(ξ′)ϕ(t) dt = Fv(ξ′) (3.23)
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and this implies v = Tu because of (3.17).

The proof of the Hs-boundedness of u is straightforward. In fact, from
(3.22), for any ξ′ ∈ R

n−1, we have

∫

R

(
1 + |ξ|2

)s
|Fu(ξ′, ξn)|

2 dξn

=

∫

R

(
1 + |ξ|2

)s
|Fv(ξ′)|2

∣∣∣∣∣ϕ
(

ξn√
1 + |ξ′|2

)∣∣∣∣∣

2
1

1 + |ξ′|2
dξn

= C
(
1 + |ξ′|2)s−

1
2 |Fv(ξ′)|2, (3.24)

where we used again the changing of variable formula with ξn = t
√

1 + |ξ′|2

and the constant C is given by

∫

R

(
1 + t2

)s
|ϕ(t)|2 dt. Finally, we obtain

that u ∈ Hs(Rn) by integrating (3.24) in ξ′ ∈ R
n−1.

Remark 3.9. We conclude this section by recalling that the fractional Lapla-
cian (−∆)s, which is a nonlocal operator on functions defined in R

n, may
be reduced to a local, possibly singular or degenerate, operator on func-
tions sitting in the higher dimensional half-space R

n+1
+ = R

n × (0,+∞).
We have

(−∆)su(x) = −C lim
t→0

(
t1−2s∂U

∂t
(x, t)

)
,

where the function U : Rn+1
+ → R solves div(t1−2s∇U) = 0 in R

n+1
+ and

U(x, 0) = u(x) in R
n.

This approach was pointed out by Caffarelli and Silvestre in [19]; see, in
particular, Section 3.2 there, where was also given an equivalent definition
of the Hs(Rn)-norm:

∫

Rn

|ξ|2s|Fu|2 dξ = C

∫

R
n+1
+

|∇U |2t1−2s dx dt.

The cited results turn out to be very fruitful in order to recover an
elliptic PDE approach in a nonlocal framework, and they have recently
been used very often (see, e.g., [18, 88, 13, 17, 78], etc.).
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4. Asymptotics of the constant C(n, s)

In this section, we go into detail on the constant factor C(n, s) that
appears in the definition of the fractional Laplacian (see (3.1)), by analyzing
its asymptotic behavior as s → 1− and s → 0+. This is relevant if one
wants to recover the Sobolev norms of the spaces H1(Rn) and L2(Rn) by
starting from the one of Hs(Rn).

We recall that in Section 3, the constant C(n, s) has been defined by

C(n, s) =

(∫

Rn

1− cos(ζ1)

|ζ |n+2s
dζ

)−1

.

Precisely, we are interested in analyzing the asymptotic behavior as s→ 0+

and s→ 1− of a scaling of the quantity in the right hand-side of the above
formula.

By changing variable η′ = ζ
′

/|ζ1|, we have

∫

Rn

1− cos(ζ1)

|ζ |n+2s
dζ =

∫

R

∫

Rn−1

1− cos(ζ1)

|ζ1|n+2s

1

(1 + |ζ ′|2/|ζ1|2)
n+2s

2

dζ ′dζ1

=

∫

R

∫

Rn−1

1− cos(ζ1)

|ζ1|1+2s

1

(1 + |η′|2)
n+2s

2

dη′dζ1

=
A(n, s)B(s)

s(1− s)

where

A(n, s) =

∫

Rn−1

1

(1 + |η′|2)
n+2s

2

dη′ (4.1)

and7

B(s) = s(1− s)

∫

R

1− cos t

|t|1+2s
dt. (4.2)

Proposition 4.1. For any n > 1, let A and B be defined by (4.1) and (4.2)
respectively. The following statements hold:

7Of course, when n = 1 (4.1) reduces to A(n, s) = 1, so we will just consider the case
n > 1.
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(i) lim
s→1−

A(n, s) = ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2
+1
dρ < +∞;

(ii) lim
s→0+

A(n, s) = ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2

dρ < +∞;

(iii) lim
s→1−

B(s) =
1

2
;

(iv) lim
s→0+

B(s) = 1,

where ωn−2 denotes (n− 2)-dimensional measure of the unit sphere Sn−2.
As a consequence,

lim
s→1−

C(n, s)

s(1− s)
=

(
ωn−2

2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2
+1
dρ

)−1

(4.3)

and

lim
s→0+

C(n, s)

s(1− s)
=

(
ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2

dρ

)−1

. (4.4)

Proof. First, by polar coordinates, for any s ∈ (0, 1), we get

∫

Rn−1

1

(1 + |η′|2)
n+2s

2

dη′ = ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n+2s

2

dρ.

Now, observe that for any s ∈ (0, 1) and any ρ ≥ 0, we have

ρn−2

(1 + ρ2)
n+2s

2

≤
ρn−2

(1 + ρ2)
n
2

and the function in the right hand-side of the above inequality belongs
to L1((0,+∞)) for any n > 1.

Then, the Dominated Convergence Theorem yields

lim
s→1−

A(n, s) = ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2
+1
dρ

and

lim
s→0+

A(n, s) = ωn−2

∫ +∞

0

ρn−2

(1 + ρ2)
n
2

dρ.
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This proves (i) and (ii).

Now, we want to prove (iii). First, we split the integral in (4.2) as follows

∫

R

1− cos t

|t|1+2s
dt =

∫

|t|<1

1− cos t

|t|1+2s
dt +

∫

|t|≥1

1− cos t

|t|1+2s
dt.

Also, we have that

0 ≤

∫

|t|≥1

1− cos t

|t|1+2s
dt ≤ 4

∫ +∞

1

1

t1+2s
dt =

2

s

and
∫

|t|<1

1− cos t

|t|1+2s
dt−

∫

|t|<1

t2

2|t|1+2s
dt ≤ C

∫

|t|<1

|t|3

|t|1+2s
dt =

2C

3− 2s
,

for some suitable positive constant C.

From the above estimates it follows that

lim
s→1−

s(1− s)

∫

|t|≥1

1− cos t

|t|1+2s
dt = 0

and

lim
s→1−

s(1− s)

∫

|t|<1

1− cos t

|t|1+2s
dt = lim

s→1−
s(1− s)

∫

|t|<1

t2

2|t|1+2s
dt.

Hence, we get

lim
s→1−

B(s) = lim
s→1−

s(1− s)

(∫ 1

0

t1−2s dt

)
= lim

s→1−

s(1− s)

2(1− s)
=

1

2
.

Similarly, we can prove (iv). For this we notice that

0 ≤

∫

|t|<1

1− cos t

|t|1+2s
dt ≤ C

∫ 1

0

t1−2s dt

which yields

lim
s→0+

s(1− s)

∫

|t|<1

1− cos t

|t|1+2s
dt = 0.
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Now, we observe that for any k ∈ N, k ≥ 1, we have

∣∣∣∣∣

∫ 2(k+1)π

2kπ

cos t

t1+2s
dt

∣∣∣∣∣ =
∣∣∣∣
∫ 2kπ+π

2kπ

cos t

t1+2s
dt+

∫ 2kπ+π

2kπ

cos(τ + π)

(τ + π)1+2s
dτ

∣∣∣∣

=

∣∣∣∣
∫ 2kπ+π

2kπ

cos t

(
1

t1+2s
−

1

(t+ π)1+2s

)
dt

∣∣∣∣

≤

∫ 2kπ+π

2kπ

∣∣∣∣
1

t1+2s
−

1

(t + π)1+2s

∣∣∣∣ dt

=

∫ 2kπ+π

2kπ

(t + π)1+2s − t1+2s

t1+2s(t+ π)1+2s
dt

=

∫ 2kπ+π

2kπ

1

t1+2s(t+ π)1+2s

(∫ π

0

(1 + 2s)(t+ ϑ)2s dϑ

)
dt

≤

∫ 2kπ+π

2kπ

3π(t+ π)2s

t1+2s(t + π)1+2s
dt

≤

∫ 2kπ+π

2kπ

3π

t(t+ π)
dt

≤

∫ 2kπ+π

2kπ

3π

t2
dt ≤

C

k2
.

As a consequence,

∣∣∣∣
∫ +∞

1

cos t

t1+2s
dt

∣∣∣∣ ≤

∫ 2π

1

1

t
dt+

∣∣∣∣∣

+∞∑

k=1

∫ 2(k+1)π

2kπ

cos t

t1+2s
dt

∣∣∣∣∣

≤ log(2π) +
+∞∑

k=1

C

k2
≤ C,

up to relabeling the constant C > 0.

It follows that
∣∣∣∣
∫

|t|≥1

1− cos t

|t|1+2s
dt−

∫

|t|≥1

1

|t|1+2s
dt

∣∣∣∣ =

∣∣∣∣
∫

|t|≥1

cos t

|t|1+2s
dt

∣∣∣∣

= 2

∣∣∣∣
∫ +∞

1

cos t

t1+2s
dt

∣∣∣∣ ≤ C
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and then

lim
s→0+

s(1− s)

∫

|t|≥1

1− cos t

|t|1+2s
dt = lim

s→0+
s(1− s)

∫

|t|≥1

1

|t|1+2s
dt.

Hence, we can conclude that

lim
s→0+

B(s) = lim
s→0+

s(1− s)

∫

|t|≥1

1

|t|1+2s
dt

= lim
s→0+

2s(1− s)

∫ +∞

1

t−1−2s dt

= lim
s→0+

2s(1− s)

2s
= 1.

Finally, (4.3) and (4.4) easily follow combining the previous estimates
and recalling that

C(n, s) =
s(1− s)

A(n, s)B(s)
.

The proof is complete.

Corollary 4.2. For any n > 1, let C(n, s) be defined by (3.2). The
following statements hold:

(i) lim
s→1−

C(n, s)

s(1− s)
=

4n

ωn−1

;

(ii) lim
s→0+

C(n, s)

s(1− s)
=

2

ωn−1
.

where ωn−1 denotes the (n−1)-dimensional measure of the unit sphere Sn−1.

Proof. For any θ ∈ R such that θ > n− 1, let us define

En(θ) :=

∫ +∞

0

ρn−2

(1 + ρ2)
θ
2

dρ.
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Observe that the assumption on the parameter θ ensures the convergence
of the integral. Furthermore, integrating by parts we get

En(θ) =
1

n− 1

∫ +∞

0

(ρn−1)′

(1 + ρ2)
θ
2

dρ

=
θ

n− 1

∫ +∞

0

ρn

(1 + ρ2)
θ+2
2

dρ

=
θ

n− 1
En+2(θ + 2). (4.5)

Then, we set

I(1)n := En(n+ 2) =

∫ +∞

0

ρn−2

(1 + ρ2)
n
2
+1

dρ

and

I(0)n := En(n) =

∫ +∞

0

ρn−2

(1 + ρ2)
n
2

dρ.

In view of (4.5), it follows that I
(1)
n and I

(0)
n can be obtained in a recursive

way, since

I
(1)
n+2 = En+2(n + 4) =

n− 1

n+ 2
En(n+ 2) =

n− 1

n+ 2
I(1)n (4.6)

and

I
(0)
n+2 = En+2(n + 2) =

n− 1

n
En(n) =

n− 1

n
I(0)n . (4.7)

Now we claim that
I(1)n =

ωn−1

2nωn−2

(4.8)

and
I(0)n =

ωn−1

2ωn−2

. (4.9)

We will prove the previous identities by induction. We start by noticing
that the inductive basis are satisfied, since

I
(1)
2 =

∫ +∞

0

1

(1 + ρ2)2
dρ =

π

4
, I

(1)
3 =

∫ +∞

0

ρ

(1 + ρ2)
5
2

dρ =
1

3
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and

I
(0)
2 =

∫ +∞

0

1

(1 + ρ2)
dρ =

π

2
, I

(0)
3 =

∫ +∞

0

ρ

(1 + ρ2)
3
2

dρ = 1.

Now, using (4.6) and (4.7), respectively, it is clear that in order to check
the inductive steps, it suffices to verify that

ωn+1

ωn

=
n− 1

n

ωn−1

ωn−2

. (4.10)

We claim that the above formula plainly follows from a classical recursive
formula on ωn, that is

ωn =
2π

n− 1
ωn−2. (4.11)

To prove this, let us denote by ̟n the Lebesgue measure of the n-
dimensional unit ball and let us fix the notation x = (x̃, x′) ∈ R

n−2 × R
2.

By integrating on R
n−2 and then using polar coordinates in R

2, we see
that

̟n =

∫

|x|2≤1

dx =

∫

|x′|≤1

(∫

|x̃|2≤1−|x′|2
dx̃

)
dx′

= ̟n−2

∫

|x′|≤1

(
1− |x′|2

) (n−2)
2 dx′

= 2π̟n−2

∫ 1

0

ρ
(
1− ρ2

) (n−2)
2 dρ =

2π̟n−2

n
. (4.12)

Moreover, by polar coordinates in R
n,

̟n =

∫

|x|≤1

dx = ωn−1

∫ 1

0

ρn−1 dρ =
ωn−1

n
. (4.13)

Thus, we use (4.13) and (4.12) and we obtain

ωn−1 = n̟n = 2π̟n−2 =
2πωn−3

n− 2
,

which is (4.11), up to replacing n with n−1. In turn, (4.11) implies (4.10)
and so (4.8) and (4.9).
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Finally, using (4.8), (4.9) and Proposition 4.1 we can conclude that

lim
s→1−

C(n, s)

s(1− s)
=

2

ωn−2I
(1)
n

=
4n

ωn−1

and

lim
s→0+

C(n, s)

s(1− s)
=

1

ωn−2I
(0)
n

=
2

ωn−1

,

as desired8.

Remark 4.3. It is worth noticing that when p = 2 we recover the constants
C1 and C2 in (2.8) and (2.9), respectively. In fact, in this case it is known
that

C1 =
1

2

∫

Sn−1

|ξ1|
2dσ(ξ) =

1

2n

n∑

i=1

∫

Sn−1

|ξi|
2dσ(ξ) =

ωn−1

2n

and C2 = ωn−1 (see [11] and [66]). Then, by Proposition 3.15 and Corol-
lary 4.2 it follows that

lim
s→1−

(1− s)

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy

= lim
s→1−

2(1− s)C(n, s)−1‖|ξ|sFu‖2L2(Rn)

=
ωn−1

2n
‖∇u‖2L2(Rn)

= C1‖u‖
2
H1(Rn)

and

lim
s→0+

s

∫

Rn

∫

Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy = lim

s→0+
2sC(n, s)−1‖|ξ|sFu‖2L2(Rn)

= ωn−1‖u‖
2
L2(Rn)

= C2‖u‖
2
L2(Rn).

8Another (less elementary) way to obtain this result is to notice that En(θ) =
2B ((n− 1)/2, (θ − n− 1)/2), where B is the Beta function.
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We will conclude this section with the following proposition that one
could plainly deduce from Proposition 3.3. We prefer to provide a di-
rect proof, based on Lemma 3.2, in order to show the consistency in the
definition of the constant C(n, s).

Proposition 4.4. Let n > 1. For any u ∈ C∞
0 (Rn) the following statements

hold:

(i) lims→0+(−∆)su = u;

(ii) lims→1−(−∆)su = −∆u.

Proof. Fix x ∈ R
n, R0 > 0 such that supp u ⊆ BR0 and set R = R0+|x|+1.

First,

∣∣∣∣
∫

BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

∣∣∣∣ ≤ ‖u‖C2(Rn)

∫

BR

|y|2

|y|n+2s
dy

≤ ωn−1‖u‖C2(Rn)

∫ R

0

1

ρ2s−1
dρ

=
ωn−1‖u‖C2(Rn)R

2−2s

2(1− s)
. (4.14)

Furthermore, observe that |y| ≥ R yields |x±y| ≥ |y|−|x| ≥ R−|x| > R0

and consequently u(x± y) = 0. Therefore,

−
1

2

∫

Rn\BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy = u(x)

∫

Rn\BR

1

|y|n+2s
dy

= ωn−1u(x)

∫ +∞

R

1

ρ2s+1
dρ

=
ωn−1R

−2s

2s
u(x). (4.15)

Now, by (4.14) and Corollary 4.2, we have

lim
s→0+

−
C(n, s)

2

∫

BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy = 0
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and so we get, recalling Lemma 3.2,

lim
s→0+

(−∆)su = lim
s→0+

−
C(n, s)

2

∫

Rn\BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

= lim
s→0+

C(n, s)ωn−1R
−2s

2s
u(x) = u(x),

where the last identities follow from (4.15) and again Corollary 4.2. This
proves (i).

Similarly, we can prove (ii). In this case, when s goes to 1, we have no
contribution outside the unit ball, as the following estimate shows

∣∣∣∣
∫

Rn\B1

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

∣∣∣∣

≤ 4‖u‖L∞(Rn)

∫

Rn\B1

1

|y|n+2s
dy

≤ 4ωn−1‖u‖L∞(Rn)

∫ +∞

1

1

ρ2s+1
dρ

=
2ωn−1

s
‖u‖L∞(Rn).

As a consequence (recalling Corollary 4.2), we get

lim
s→1−

−
C(n, s)

2

∫

Rn\B1

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy = 0. (4.16)

On the other hand, we have

∣∣∣∣
∫

B1

u(x+ y) + u(x− y)− 2u(x)−D2u(x)y · y

|y|n+2s
dy

∣∣∣∣

≤ ‖u‖C3(Rn)

∫

B1

|y|3

|y|n+2s
dy

≤ ωn−1‖u‖C3(Rn)

∫ 1

0

1

ρ2s−2
dρ

=
ωn−1‖u‖C3(Rn)

3− 2s
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and this implies that

lim
s→1−

−
C(n, s)

2

∫

B1

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

= lim
s→1−

−
C(n, s)

2

∫

B1

D2u(x)y · y

|y|n+2s
dy. (4.17)

Now, notice that if i 6= j then
∫

B1

∂2iju(x)yi · yj dy = −

∫

B1

∂2iju(x)ỹi · ỹj dỹ,

where ỹk = yk for any k 6= j and ỹj = −yj, and thus
∫

B1

∂2iju(x)yi · yj dy = 0. (4.18)

Also, up to permutations, for any fixed i, we get
∫

B1

∂2iiu(x)y
2
i

|y|n+2s
dy = ∂2iiu(x)

∫

B1

y2i
|y|n+2s

dy = ∂2iiu(x)

∫

B1

y21
|y|n+2s

dy

=
∂2iiu(x)

n

n∑

j=1

∫

B1

y2j
|y|n+2s

dy =
∂2iiu(x)

n

∫

B1

|y|2

|y|n+2s
dy

=
∂2iiu(x) ωn−1

2n(1− s)
. (4.19)

Finally, combining (4.16), (4.17), (4.18), (4.19), Lemma 3.2 and Corol-
lary 4.2, we can conclude

lim
s→1−

(−∆)su = lim
s→1−

−
C(n, s)

2

∫

B1

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

= lim
s→1−

−
C(n, s)

2

∫

B1

D2u(x)y · y

|y|n+2s
dy

= lim
s→1−

−
C(n, s)

2

n∑

i=1

∫

B1

∂2iiu(x)y
2
i

|y|n+2s
dy

= lim
s→1−

−
C(n, s)ωn−1

4n(1− s)

n∑

i=1

∂2iiu(x) = −∆u(x).
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5. Extending a W s,p(Ω) function to the whole of R
n

As well known when s is an integer, under certain regularity assump-
tions on the domain Ω, any function in W s,p(Ω) may be extended to a
function in W s,p(Rn). Extension results are quite important in applica-
tions and are necessary in order to improve some embeddings theorems, in
the classic case as well as in the fractional case (see Section 6 and Section 7
in the following).

For any s ∈ (0, 1) and any p ∈ [1,∞), we say that an open set Ω ⊆
R

n is an extension domain for W s,p if there exists a positive constant
C = C(n, p, s,Ω) such that: for every function u ∈ W s,p(Ω) there exists
ũ ∈ W s,p(Rn) with ũ(x) = u(x) for all x ∈ Ω and ‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω).

In general, an arbitrary open set is not an extension domain for W s,p.
To the authors’ knowledge, the problem of characterizing the class of sets
that are extension domains for W s,p is open9. When s is an integer, we
cite [58] for a complete characterization in the special case s = 1, p = 2 and
n = 2, and we refer the interested reader to the recent book by Leoni [60],
in which this problem is very well discussed (see, in particular, Chapter 11
and Chapter 12 there).

In this section, we will show that any open set Ω of class C0,1 with
bounded boundary is an extension domain for W s,p.

We start with some preliminary lemmas, in which we will construct the
extension to the whole of Rn of a function u defined on Ω in two separated
cases: when the function u is identically zero in a neighborhood of the
boundary ∂Ω and when Ω coincides with the half-space R

n
+.

Lemma 5.1. Let Ω be an open set in R
n and u a function in W s,p(Ω) with

s ∈ (0, 1) and p ∈ [1,+∞). If there exists a compact subset K ⊂ Ω such
that u ≡ 0 in Ω \K, then the extension function ũ defined as

ũ(x) =

{
u(x) x ∈ Ω ,

0 x ∈ R
n \ Ω

(5.1)

9 While revising this paper, we were informed that an answer to this question has
been given by Zhou, by analyzing the link between extension domains in W s,p and the
measure density condition (see [102]).
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belongs to W s,p(Rn) and

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω),

where C is a suitable positive constant depending on n, p, s, K and Ω.

Proof. Clearly ũ ∈ Lp(Rn). Hence, it remains to verify that the Gagliardo
norm of ũ in R

n is bounded by the one of u in Ω. Using the symmetry of
the integral in the Gagliardo norm with respect to x and y and the fact
that ũ ≡ 0 in R

n \ Ω, we can split as follows
∫

Rn

∫

Rn

|ũ(x)− ũ(y)|p

|x− y|n+sp
dx dy =

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy (5.2)

+2

∫

Ω

(∫

Rn\Ω

|u(x)|p

|x− y|n+sp
dy

)
dx,

where the first term in the right hand-side of (5.2) is finite since u ∈
W s,p(Ω). Furthermore, for any y ∈ R

n \K,

|u(x)|p

|x− y|n+sp
=
χK(x)|u(x)|

p

|x− y|n+sp
≤ χK(x)|u(x)|

p sup
x∈K

1

|x− y|n+sp

and so∫

Ω

(∫

Rn\Ω

|u(x)|p

|x− y|n+sp
dy

)
dx ≤

∫

Rn\Ω

1

dist(y, ∂K)n+sp
dy ‖u‖pLp(Ω) . (5.3)

Note that the integral in (5.3) is finite since dist(∂Ω, ∂K) ≥ α > 0 and
n+ sp > n. Combining (5.2) with (5.3), we get

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω)

where C = C(n, s, p,K).

Lemma 5.2. Let Ω be an open set in R
n, symmetric with respect to

the coordinate xn, and consider the sets Ω+ = {x ∈ Ω : xn > 0} and
Ω− = {x ∈ Ω : xn ≤ 0}. Let u be a function in W s,p(Ω+), with s ∈ (0, 1)
and p ∈ [1,+∞). Define

ū(x) =

{
u(x′, xn) xn ≥ 0 ,

u(x′,−xn) xn < 0 .
(5.4)

Then ū belongs to W s,p(Ω) and

‖ū‖W s,p(Ω) ≤ 4‖u‖W s,p(Ω+) .
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Proof. By splitting the integrals and changing variable x̂ = (x′,−xn), we
get

‖ū‖pLp(Ω) =

∫

Ω+

|u(x)|p dx+

∫

Ω+

|u(x̂′, x̂n)|
p dx̃ = 2‖u‖pLp(Ω+). (5.5)

Also, if x ∈ R
n
+ and y ∈ CR

n
+ then (xn − yn)

2 ≥ (xn + yn)
2 and therefore

∫

Ω

∫

Ω

|ū(x)− ū(y)|p

|x− y|n+sp
dx dy =

∫

Ω+

∫

Ω+

|u(x)− u(y)|p

|x− y|n+sp
dx dy

+2

∫

Ω+

∫

CΩ+

|u(x)− u(y′,−yn)|
p

|x− y|n+sp
dx dy

+

∫

CΩ+

∫

CΩ+

|u(x′,−xn)− u(y′,−yn)|
p

|x− y|n+sp
dx dy

≤ 4‖u‖pW s,p(Ω+).

This concludes the proof.

Now, a truncation lemma near ∂Ω.

Lemma 5.3. Let Ω be an open set in R
n, s ∈ (0, 1) and p ∈ [1,+∞). Let

us consider u ∈ W s,p(Ω) and ψ ∈ C0,1(Ω), 0 ≤ ψ ≤ 1. Then ψu ∈ W s,p(Ω)
and

‖ψ u‖W s,p(Ω) ≤ C‖u‖W s,p(Ω), (5.6)

where C = C(n, p, s,Ω).

Proof. It is clear that ‖ψ u‖Lp(Ω) ≤ ‖u‖Lp(Ω) since |ψ| ≤ 1. Furthermore,
adding and subtracting the factor ψ(x)u(y), we get

∫

Ω

∫

Ω

|ψ(x) u(x)− ψ(y) u(y)|p

|x− y|n+sp
dx dy

≤ 2p−1

(∫

Ω

∫

Ω

|ψ(x) u(x)− ψ(x) u(y)|p

|x− y|n+sp
dx dy

+

∫

Ω

∫

Ω

|ψ(x) u(y)− ψ(y) u(y)|p

|x− y|n+sp
dx dy

)

≤ 2p−1

(∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy (5.7)

+

∫

Ω

∫

Ω

|u(x)|p |ψ(x)− ψ(y)|p

|x− y|n+sp
dx dy

)
.

35



Since ψ belongs to C0,1(Ω), we have

∫

Ω

∫

Ω

|u(x)|p |ψ(x)− ψ(y)|p

|x− y|n+sp
dx dy ≤ Λp

∫

Ω

∫

Ω∩|x−y|≤1

|u(x)|p |x− y|p

|x− y|n+sp
dx dy

+

∫

Ω

∫

Ω∩|x−y|≥1

|u(x)|p

|x− y|n+sp
dx dy

≤ C̃‖u‖pLp(Ω), (5.8)

where Λ denotes the Lipschitz constant of ψ and C̃ is a positive constant
depending on n, p and s. Note that the last inequality follows from the fact
that the kernel |x− y|−n+(1−s)p is summable with respect to y if |x− y| ≤ 1
since n + (s − 1)p < n and, on the other hand, the kernel |x − y|−n−sp is
summable when |x− y| ≥ 1 since n+ sp > n. Finally, combining (5.7) with
(5.8), we obtain estimate (5.6).

Now, we are ready to prove the main theorem of this section, that states
that every open Lipschitz set Ω with bounded boundary is an extension
domain for W s,p.

Theorem 5.4. Let p ∈ [1,+∞), s ∈ (0, 1) and Ω ⊆ R
n be an open set of

class C0,1 with bounded boundary10. Then W s,p(Ω) is continuously embedded
in W s,p(Rn), namely for any u ∈ W s,p(Ω) there exists ũ ∈ W s,p(Rn) such
that ũ|Ω = u and

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω)

where C = C(n, p, s,Ω).

Proof. Since ∂Ω is compact, we can find a finite number of balls Bj such

that ∂Ω ⊂
k⋃

j=1

Bj and so we can write R
n =

k⋃

j=1

Bj ∪ (Rn \ ∂Ω).

If we consider this covering, there exists a partition of unity related
to it, i.e. there exist k + 1 smooth functions ψ0, ψ1,..., ψk such that

10 Motivated by an interesting remark of the anonymous Referee, we point out that
it should be expected that the Lipschitz assumption on the boundary of Ω may be
weakened when s ∈ (0, 1), since in the case s = 0 clearly no regularity at all is needed
for the extension problem.
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sptψ0 ⊂ R
n \ ∂Ω, sptψj ⊂ Bj for any j ∈ {1, ..., k}, 0 ≤ ψj ≤ 1 for any

j ∈ {0, ..., k} and

k∑

j=0

ψj = 1. Clearly,

u =
k∑

j=0

ψju .

By Lemma 5.3, we know that ψ0 u belongs to W s,p(Ω). Furthermore, since
ψ0 u ≡ 0 in a neighborhood of ∂Ω, we can extend it to the whole of Rn,
by setting

ψ̃0 u(x) =

{
ψ0 u(x) x ∈ Ω,

0 x ∈ R
n \ Ω

and ψ̃0 u ∈ W s,p(Rn). Precisely

‖ψ̃0 u‖W s,p(Rn) ≤ C ‖ψ0 u‖W s,p(Ω) ≤ C ‖u‖W s,p(Ω), (5.9)

where C = C(n, s, p,Ω) (possibly different step by step, see Lemma 5.1 and
Lemma 5.3).

For any j ∈ {1, ..., k}, let us consider u|Bj∩Ω and set

vj(y) := u (Tj(y)) for any y ∈ Q+,

where Tj : Q → Bj is the isomorphism of class C0,1 defined in Section 2.
Note that such a Tj exists by the regularity assumption on the domain Ω.

Now, we state that vj ∈ W s,p (Q+). Indeed, using the standard changing
variable formula by setting x = Tj(x̂) we have

∫

Q+

∫

Q+

|v(x̂)− v(ŷ)|p

|x̂− ŷ|n+sp
dx̂ dŷ

=

∫

Q+

∫

Q+

|u(Tj(x̂))− u(Tj(ŷ))|
p

|x̂− ŷ|n+sp
dx̂ dŷ

=

∫

Bj∩Ω

∫

Bj∩Ω

|u(x)− u(y)|p

|T−1
j (x)− T−1

j (y)|n+sp
det(T−1

j )dx dy

≤ C

∫

Bj∩Ω

∫

Bj∩Ω

|u(x)− u(y)|p

|x− y|n+sp
dx dy, (5.10)
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where (5.10) follows from the fact that Tj is bi-Lipschitz. Moreover, using
Lemma 5.2 we can extend vj to all Q so that the extension v̄j belongs to
W s,p(Q) and

‖v̄j‖W s,p(Q) ≤ 4‖vj‖W s,p(Q+).

We set
wj(x) := v̄j

(
T−1
j (x)

)
for any x ∈ Bj.

Since Tj is bi-Lipschitz, by arguing as above it follows that wj ∈
W s,p(Bj). Note that wj ≡ u (and consequently ψj wj ≡ ψj u) on Bj ∩ Ω.
By definition ψj wj has compact support in Bj and therefore, as done for

ψ0 u, we can consider the extension ψ̃j wj to all R
n in such a way that

ψ̃j wj ∈ W s,p(Rn). Also, using Lemma 5.1, Lemma 5.2, Lemma 5.3 and
estimate (5.10) we get

‖ψ̃j wj‖W s,p(Rn) ≤ C‖ψj wj‖W s,p(Bj) ≤ C ‖wj‖W s,p(Bj )

≤ C‖v̄j‖W s,p(Q) ≤ C‖vj‖W s,p(Q+)

≤ C‖u‖W s,p(Ω∩Bj), (5.11)

where C = C(n, p, s,Ω) and it is possibly different step by step.

Finally, let

ũ = ψ̃0 u+

k∑

j=1

ψ̃j wj

be the extension of u defined on all Rn. By construction, it is clear that
ũ|Ω = u and, combining (5.9) with (5.11), we get

‖ũ‖W s,p(Rn) ≤ C‖u‖W s,p(Ω)

with C = C(n, p, s,Ω).

Corollary 5.5. Let p ∈ [1,+∞), s ∈ (0, 1) and Ω be an open set in R
n of

class C0,1 with bounded boundary. Then for any u ∈ W s,p(Ω), there exists
a sequence {un} ∈ C∞

0 (Rn) such that un → u as n→ +∞ in W s,p(Ω), i.e.,

lim
n→+∞

‖un − u‖W s,p(Ω) = 0 .
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Proof. The proof follows directly by Theorem 2.4 and Theorem 5.4.

6. Fractional Sobolev inequalities

In this section, we provide an elementary proof of a Sobolev-type in-
equality involving the fractional norm ‖ · ‖W s,p (see Theorem 6.5 below).

The original proof is contained in the Appendix of [84] and it deals
with the case p = 2 (see, in particular, Theorem 7 there). We note that
when p = 2 and s ∈ [1/2, 1) some of the statements may be strengthened
(see [10]). We also note that more general embeddings for the spaces W s,p

can be obtained by interpolation techniques and by passing through Besov
spaces; see, for instance, [6, 7, 95, 96, 63]. For a more comprehensive
treatment of fractional Sobolev-type inequalities we refer to [61, 62, 12, 1,
91] and the references therein.

We remark that the proof here is self-contained. Moreover, we will not
make use of Besov or fancy interpolation spaces.

In order to prove the Sobolev-type inequality in forthcoming Theo-
rem 6.5, we need some preliminary results. The first of them is an el-
ementary estimate involving the measure of finite measurable sets E in
R

n as stated in the following lemma (see [85, Lemma A.1] and also [20,
Corollary 24 and 25]).

Lemma 6.1. Fix x ∈ R
n. Let p ∈ [1,+∞), s ∈ (0, 1) and E ⊂ R

n be a
measurable set with finite measure. Then,

∫

CE

dy

|x− y|n+sp
≥ C |E|−sp/n,

for a suitable constant C = C(n, p, s) > 0.

Proof. We set

ρ :=

(
|E|

ωn

)1
n

and then it follows

|(CE) ∩Bρ(x)| = |Bρ(x)| − |E ∩ Bρ(x)| = |E| − |E ∩Bρ(x)|

= |E ∩ CBρ(x)|.
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Therefore,
∫

CE

dy

|x− y|n+sp
=

∫

(CE)∩Bρ(x)

dy

|x− y|n+sp
+

∫

(CE)∩CBρ(x)

dy

|x− y|n+sp

≥

∫

(CE)∩Bρ(x)

dy

ρn+sp
+

∫

(CE)∩CBρ(x)

dy

|x− y|n+sp

=
|(CE) ∩Bρ(x)|

ρn+sp
+

∫

(CE)∩CBρ(x)

dy

|x− y|n+sp

=
|E ∩ CBρ(x)|

ρn+sp
+

∫

(CE)∩CBρ(x)

dy

|x− y|n+sp

≥

∫

E∩CBρ(x)

dy

|x− y|n+sp
+

∫

(CE)∩CBρ(x)

dy

|x− y|n+sp

=

∫

CBρ(x)

dy

|x− y|n+sp
.

The desired result easily follows by using polar coordinates centered at
x.

Now, we recall a general statement about a useful summability property
(see [84, Lemma 5]. For related results, see also [38, Lemma 4]).

Lemma 6.2. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Fix T > 1;
let N ∈ Z and

ak be a bounded, nonnegative, decreasing sequence

with ak = 0 for any k ≥ N .

(6.1)

Then, ∑

k∈Z

a
(n−sp)/n
k T k ≤ C

∑

k∈Z

ak 6=0

ak+1a
−sp/n
k T k,

for a suitable constant C = C(n, p, s, T ) > 0, independent of N .

Proof. By (6.1),

both
∑

k∈Z

a
(n−sp)/n
k T k and

∑

k∈Z

ak 6=0

ak+1a
−sp/n
k T k are convergent series. (6.2)
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Moreover, since ak is nonnegative and decreasing, we have that if ak = 0,
then ak+1 = 0. Accordingly,

∑

k∈Z

a
(n−sp)/n
k+1 T k =

∑

k∈Z

ak 6=0

a
(n−sp)/n
k+1 T k.

Therefore, we may use the Hölder inequality with exponents α := n/sp and
β := n/(n− sp) by arguing as follows.

1

T

∑

k∈Z

a
(n−sp)/n
k T k =

∑

k∈Z

a
(n−sp)/n
k+1 T k

=
∑

k∈Z

ak 6=0

a
(n−sp)/n
k+1 T k

=
∑

k∈Z

ak 6=0

(
a
sp/(nβ)
k T k/α

)(
a
1/β
k+1a

−sp/(nβ)
k T k/β

)

≤

(
∑

k∈Z

(
a
sp/(nβ)
k T k/α

)α
)1/α



∑

k∈Z

ak 6=0

(
a
1/β
k+1a

−sp/(nβ)
k T k/β

)β



1/β

≤

(
∑

k∈Z

a
(n−sp)/n
k T k

)sp/n


∑

k∈Z

ak 6=0

ak+1a
−sp/n
k T k




(n−sp)/n

.

So, recalling (6.2), we obtain the desired result.

We use the above tools to deal with the measure theoretic properties
of the level sets of the functions (see [84, Lemma 6]).

Lemma 6.3. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Let

f ∈ L∞(Rn) be compactly supported. (6.3)

For any k ∈ Z let
ak :=

∣∣{|f | > 2k}
∣∣. (6.4)

Then, ∫

Rn

∫

Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≥ C

∑

k∈Z

ak 6=0

ak+1a
−sp/n
k 2pk,
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for a suitable constant C = C(n, p, s) > 0.

Proof. Notice that

∣∣|f(x)| − |f(y)|
∣∣ ≤ |f(x)− f(y)|,

and so, by possibly replacing f with |f |, we may consider the case in
which f ≥ 0.

We define
Ak := {|f | > 2k}. (6.5)

We remark that Ak+1 ⊆ Ak, hence

ak+1 ≤ ak. (6.6)

We define

Dk := Ak \ Ak+1 = {2k < f ≤ 2k+1} and dk := |Dk|.

Notice that

dk and ak are bounded and they become zero when k is large enough,
(6.7)

thanks to (6.3). Also, we observe that the Dk’s are disjoint, that

⋃

ℓ∈Z

ℓ≤k

Dℓ = CAk+1 (6.8)

and that ⋃

ℓ∈Z

ℓ≥k

Dℓ = Ak. (6.9)

As a consequence of (6.9), we have that

ak =
∑

ℓ∈Z

ℓ≥k

dℓ (6.10)

and so
dk = ak −

∑

ℓ∈Z

ℓ≥k+1

dℓ. (6.11)
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We stress that the series in (6.10) is convergent, due to (6.7), thus so is
the series in (6.11). Similarly, we can define the convergent series

S :=
∑

ℓ∈Z

aℓ−1 6=0

2pℓa
−sp/n
ℓ−1 dℓ. (6.12)

We notice that Dk ⊆ Ak ⊆ Ak−1, hence a
−sp/n
i−1 dℓ ≤ a

−sp/n
i−1 aℓ−1. Therefore

{
(i, ℓ) ∈ Z s.t. ai−1 6= 0 and a

−sp/n
i−1 dℓ 6= 0

}

⊆
{
(i, ℓ) ∈ Z s.t. aℓ−1 6= 0

}
.

(6.13)

We use (6.13) and (6.6) in the following computation:
∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ≥i+1

2pia
−sp/n
i−1 dℓ =

∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ≥i+1

a
sp/n
i−1

dℓ 6=0

2pia
−sp/n
i−1 dℓ

≤
∑

i∈Z

∑

ℓ∈Z

ℓ≥i+1
aℓ−1 6=0

2pia
−sp/n
i−1 dℓ

=
∑

ℓ∈Z

aℓ−1 6=0

∑

i∈Z

i≤ℓ−1

2pia
−sp/n
i−1 dℓ

≤
∑

ℓ∈Z

aℓ−1 6=0

∑

i∈Z

i≤ℓ−1

2pia
−sp/n
ℓ−1 dℓ

=
∑

ℓ∈Z

aℓ−1 6=0

+∞∑

k=0

2p(ℓ−1)2−pka
−sp/n
ℓ−1 dℓ ≤ S. (6.14)

Now, we fix i ∈ Z and x ∈ Di: then, for any j ∈ Z with j ≤ i − 2 and
any y ∈ Dj we have that

|f(x)− f(y)| ≥ 2i − 2j+1 ≥ 2i − 2i−1 = 2i−1

and therefore, recalling (6.8),

∑

j∈Z

j≤i−2

∫

Dj

|f(x)− f(y)|p

|x− y|n+sp
dy ≥ 2p(i−1)

∑

j∈Z

j≤i−2

∫

Dj

dy

|x− y|n+sp

= 2p(i−1)

∫

CAi−1

dy

|x− y|n+sp
.
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This and Lemma 6.1 imply that, for any i ∈ Z and any x ∈ Di, we have
that ∑

j∈Z

j≤i−2

∫

Dj

|f(x)− f(y)|p

|x− y|n+sp
dy ≥ co2

pia
−sp/n
i−1 ,

for a suitable co > 0.
As a consequence, for any i ∈ Z,

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≥ co2

pia
−sp/n
i−1 di . (6.15)

Therefore, by (6.11), we conclude that, for any i ∈ Z,

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≥ co


2pia−sp/n

i−1 ai −
∑

ℓ∈Z

ℓ≥i+1

2pia
−sp/n
i−1 dℓ


 .

(6.16)

By (6.12) and (6.15), we have that

∑

i∈Z

ai−1 6=0

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≥ coS. (6.17)

Then, using (6.16), (6.14) and (6.17),

∑

i∈Z

ai−1 6=0

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy

≥ co



∑

i∈Z

ai−1 6=0

2pia
−sp/n
i−1 ai −

∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ≥i+1

2pia
−sp/n
i−1 dℓ




≥ co



∑

i∈Z

ai−1 6=0

2pia
−sp/n
i−1 ai − S




≥ co
∑

i∈Z

ai−1 6=0

2pia
−sp/n
i−1 ai −

∑

i∈Z

ai−1 6=0

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy.
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That is, by taking the last term to the left hand side,

∑

i∈Z

ai−1 6=0

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≥ co

∑

i∈Z

ai−1 6=0

2pia
−sp/n
i−1 ai, (6.18)

up to relabeling the constant c0.

On the other hand, by symmetry,

∫

Rn×Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy

=
∑

i,j∈Z

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy

≥ 2
∑

i,j∈Z

j<i

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy

≥ 2
∑

i∈Z

ai−1 6=0

∑

j∈Z

j≤i−2

∫

Di×Dj

|f(x)− f(y)|p

|x− y|n+sp
dx dy. (6.19)

Then, the desired result plainly follows from (6.18) and (6.19).

Lemma 6.4. Let q ∈ [1,∞). Let f : Rn → R be a measurable function.
For any N ∈ N, let

fN(x) := max
{
min{f(x), N}, −N

}
∀x ∈ R

n. (6.20)

Then
lim

N→+∞
‖fN‖Lq(Rn) = ‖f‖Lq(Rn).

Proof. We denote by |f |N the function obtained by cutting |f | at level N .
We have that |f |N = |fN | and so, by Fatou Lemma, we obtain that

lim inf
N→+∞

‖fN‖Lq(Rn) = lim inf
N→+∞

(∫

Rn

|f |qN

)1
q

≥

(∫

Rn

|f |q
)1

q

= ‖f‖Lq(Rn).

The reverse inequality easily follows by the fact that |f |N(x) ≤ |f(x)| for
any x ∈ R

n.
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Taking into account the previous lemmas, we are able to give an elemen-
tary proof of the Sobolev-type inequality stated in the following theorem.

Theorem 6.5. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Then
there exists a positive constant C = C(n, p, s) such that, for any measurable
and compactly supported function f : Rn → R, we have

‖f‖p
Lp⋆(Rn)

≤ C

∫

Rn

∫

Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy. (6.21)

where p⋆ = p⋆(n, s) is the so-called “fractional critical exponent” and it is
equal to np/(n− sp).

Consequently, the space W s,p(Rn) is continuously embedded in Lq(Rn)
for any q ∈ [p, p⋆].

Proof. First, we note that if the right hand side of (6.21) is unbounded
then the claim in the theorem plainly follows. Thus, we may suppose that
f is such that ∫

Rn

∫

Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy < +∞. (6.22)

Moreover, we can suppose, without loss of generality, that

f ∈ L∞(Rn). (6.23)

Indeed, if (6.22) holds for bounded functions, then it holds also for the
function fN , obtained by any (possibly unbounded) f by cutting at levels
−N and +N (see (6.20)). Therefore, by Lemma 6.4 and the fact that (6.22)
together with the Dominated Convergence Theorem imply

lim
N→+∞

∫

Rn

∫

Rn

|fN(x)− fN(y)|
p

|x− y|n+sp
dx dy =

∫

Rn

∫

Rn

|f(x)− f(y)|p

|x− y|n+sp
dx dy,

we obtain estimate (6.21) for the function f .

Now, take ak and Ak defined by (6.4) and (6.5), respectively. We have

‖f‖p
⋆

Lp⋆(Rn)
=
∑

k∈Z

∫

Ak\Ak+1

|f(x)|p
⋆

dx ≤
∑

k∈Z

∫

Ak\Ak+1

(2k+1)p
⋆

dx

≤
∑

k∈Z

2(k+1)p⋆ak.
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That is,

‖f‖p
Lp⋆(Rn)

≤ 2p

(
∑

k∈Z

2kp
⋆

ak

)p/p⋆

.

Thus, since p/p⋆ = (n− sp)/n = 1− sp/n < 1,

‖f‖p
Lp⋆(Rn)

≤ 2p
∑

k∈Z

2kpa
(n−sp)/n
k (6.24)

and, then, by choosing T = 2p, Lemma 6.2 yields

‖f‖p
Lp⋆(Rn)

≤ C
∑

k∈Z

ak 6=0

2kpak+1a
− sp

n
k , (6.25)

for a suitable constant C depending on n, p and s.
Finally, it suffices to apply Lemma 6.3 and we obtain the desired result,

up to relabeling the constant C in (6.25).
Furthermore, the embedding for q ∈ (p, p⋆) follows from standard applica-
tion of Hölder inequality.

Remark 6.6. From Lemma 6.1, it follows that

∫

E

∫

CE

dx dy

|x− y|n+sp
≥ c(n, s) |E|(n−sp)/n (6.26)

for all measurable sets E with finite measure.
On the other hand, we see that (6.21) reduces to (6.26) when f = χE ,

so (6.26) (and thus Lemma 6.1) may be seen as a Sobolev-type inequality
for sets.

The above embedding does not generally hold for the space W s,p(Ω)
since it not always possible to extend a function f ∈ W s,p(Ω) to a function
f̃ ∈ W s,p(Rn). In order to be allowed to do that, we should require further
regularity assumptions on Ω (see Section 5).

Theorem 6.7. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Let
Ω ⊆ R

n be an extension domain for W s,p. Then there exists a positive
constant C = C(n, p, s,Ω) such that, for any f ∈ W s,p(Ω), we have

‖f‖Lq(Ω) ≤ C‖f‖W s,p(Ω), (6.27)
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for any q ∈ [p, p⋆]; i.e., the space W s,p(Ω) is continuously embedded in Lq(Ω)
for any q ∈ [p, p⋆].

If, in addition, Ω is bounded, then the space W s,p(Ω) is continuously
embedded in Lq(Ω) for any q ∈ [1, p⋆].

Proof. Let f ∈ W s,p(Ω). Since Ω ⊆ R
n is an extension domain for W s,p,

then there exists a constant C1 = C1(n, p, s,Ω) > 0 such that

‖f̃‖W s,p(Rn) ≤ C1‖f‖W s,p(Ω), (6.28)

with f̃ such that f̃(x) = f(x) for x a.e. in Ω.
On the other hand, by Theorem 6.5, the space W s,p(Rn) is continuously

embedded in Lq(Rn) for any q ∈ [p, p⋆]; i.e., there exists a constant C2 =
C2(n, p, s) > 0 such that

‖f̃‖Lq(Rn) ≤ C2‖f̃‖W s,p(Rn). (6.29)

Combining (6.28) with (6.29), we get

‖f‖Lq(Ω) = ‖f̃‖Lq(Ω) ≤ ‖f̃‖Lq(Rn) ≤ C2‖f̃‖W s,p(Rn)

≤ C2C1‖f‖W s,p(Ω),

that gives the inequality in (6.27), by choosing C = C2C1.

In the case of Ω being bounded, the embedding for q ∈ [1, p) plainly
follows from (6.27), by using the Hölder inequality.

Remark 6.8. In the critical case q = p⋆ the constant C in Theorem 6.7
does not depend on Ω: this is a consequence of (6.21) and of the extension
property of Ω.

6.1. The case sp = n

We note that when sp → n the critical exponent p⋆ goes to ∞ and so
it is not surprising that, in this case, if f is in W s,p then f belongs to Lq

for any q, as stated in the following two theorems.

Theorem 6.9. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp = n. Then
there exists a positive constant C = C(n, p, s) such that, for any measurable
and compactly supported function f : Rn → R, we have

‖f‖Lq(Rn) ≤ C‖f‖W s,p(Rn), (6.30)
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for any q ∈ [p,∞); i.e., the space W s,p(Rn) is continuously embedded in
Lq(Rn) for any q ∈ [p,∞).

Theorem 6.10. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp = n. Let
Ω ⊆ R

n be an extension domain for W s,p. Then there exists a positive
constant C = C(n, p, s,Ω) such that, for any f ∈ W s,p(Ω), we have

‖f‖Lq(Ω) ≤ C‖f‖W s,p(Ω), (6.31)

for any q ∈ [p,∞); i.e., the space W s,p(Ω) is continuously embedded
in Lq(Ω) for any q ∈ [p,∞).

If, in addition, Ω is bounded, then the space W s,p(Ω) is continuously
embedded in Lq(Ω) for any q ∈ [1,∞).

The proofs can be obtained by simply combining Proposition 2.1 with
Theorem 6.5 and Theorem 6.7, respectively.

7. Compact embeddings

In this section, we state and prove some compactness results involving
the fractional spaces W s,p(Ω) in bounded domains. The main proof is a
modification of the one of the classical Riesz-Frechet-Kolmogorov Theorem
(see [55, 79]) and, again, it is self-contained and it does not require to use
Besov or other interpolation spaces, nor Fourier transform and semigroup
flows (see [28, Theorem 1.5]). We refer to [77, Lemma 6.11] for the case
p = q = 2.

Theorem 7.1. Let s ∈ (0, 1), p ∈ [1,+∞), q ∈ [1, p], Ω ⊂ R
n be a bounded

extension domain for W s,p and T be a bounded subset of Lp(Ω). Suppose
that

sup
f∈T

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy < +∞.

Then T is pre-compact in Lq(Ω).

Proof. We want to show that T is totally bounded in Lq(Ω), i.e., for any
ε ∈ (0, 1) there exist β1, . . . , βM ∈ Lq(Ω) such that for any f ∈ T there
exists j ∈ {1, . . . ,M} such that

‖f − βj‖Lq(Ω) ≤ ε. (7.1)
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Since Ω is an extension domain, there exists a function f̃ in W s,p(Rn)
such that ‖f̃‖W s,p(Rn) ≤ C‖f‖W s,p(Ω). Thus, for any cube Q containing Ω,
we have

‖f̃‖W s,p(Q) ≤ ‖f̃‖W s,p(Rn) ≤ C‖f‖W s,p(Ω).

Observe that, since Q is a bounded open set, f̃ belongs also to Lq(Q)
for any q ∈ [1, p]. Now, for any ε ∈ (0, 1), we let

Co := 1 + sup
f∈T

‖f̃‖Lq(Q) + sup
f∈T

∫

Q

∫

Q

|f̃(x)− f̃(y)|p

|x− y|n+sp
dx dy,

ρ = ρε :=

(
ε

2C
1
q
o n

n+sp
2p

)1
s

and η = ηε :=
ε ρ

n
q

2
,

and we take a collection of disjoints cubes Q1, . . . , QN of side ρ such that11

Ω ⊆ Q =
N⋃

j=1

Qj .

For any x ∈ Ω, we define

j(x) as the unique integer in {1, . . . , N} for which x ∈ Qj(x). (7.2)

Also, for any f ∈ T , let

P (f)(x) :=
1

|Qj(x)|

∫

Qj(x)

f̃(y) dy.

Notice that

P (f + g) = P (f) + P (g) for any f, g ∈ T

and that P (f) is constant, say equal to qj(f), in any Qj , for j ∈ {1, . . . , N}.
Therefore, we can define

R(f) := ρn/q
(
q1(f), . . . , qN (f)

)
∈ R

N

11To be precise, for this one needs to take ε ∈ (0, 1) arbitrarily small and such that
the ration between the side of Q and ρε is integer.
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and consider the spatial q-norm in R
N as

‖v‖q :=

(
N∑

j=1

|vj|
q

)1
q

, for any v ∈ R
N .

We observe that R(f + g) = R(f) +R(g). Moreover,

‖P (f)‖qLq(Ω) =

N∑

j=1

∫

Qj∩Ω

|P (f)(x)|q dx

≤ ρn
N∑

j=1

|qj(f)|
q = ‖R(f)‖qq ≤

‖R(f)‖qq
ρn

. (7.3)

Also, by Hölder inequality,

‖R(f)‖qq =
N∑

j=1

ρn|qj(f)|
q =

1

ρn(q−1)

N∑

j=1

∣∣∣∣∣

∫

Qj

f̃(y) dy

∣∣∣∣∣

q

≤

N∑

j=1

∫

Qj

|f̃(y)|q dy =

∫

Q

|f̃(y)|q dy = ‖f̃‖qLq(Q).

In particular,
sup
f∈T

‖R(f)‖qq ≤ Co,

that is, the set R(T ) is bounded in R
N (with respect to the q-norm of

R
N as well as to any equivalent norm of R

N) and so, since it is finite
dimensional, it is totally bounded. Therefore, there exist b1, . . . , bM ∈ R

N

such that

R(T ) ⊆

M⋃

i=1

Bη(bi), (7.4)

where the balls Bη are taken in the q-norm of RN .

For any i ∈ {1, . . . ,M}, we write the coordinates of bi as

bi = (bi,1, . . . , bi,N) ∈ R
N .

For any x ∈ Ω, we set
βi(x) := ρ−n/q bi,j(x),
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where j(x) is as in (7.2).
Notice that βi is constant on Qj , i.e. if x ∈ Qj then

P (βi)(x) = ρ−
n
q bi,j = βi(x) (7.5)

and so qj(βi) = ρ−
n
q bi,j ; thus

R(βi) = bi. (7.6)

Furthermore, for any f ∈ T

‖f − P (f)‖qLq(Ω) =
N∑

j=1

∫

Qj∩Ω

|f(x)− P (f)(x)|q dx

=

N∑

j=1

∫

Qj∩Ω

∣∣∣∣∣f(x)−
1

|Qj |

∫

Qj

f̃(y) dy

∣∣∣∣∣

q

dx

=
N∑

j=1

∫

Qj∩Ω

1

|Qj |q

∣∣∣∣∣

∫

Qj

f(x)− f̃(y) dy

∣∣∣∣∣

q

dx

≤
1

ρnq

N∑

j=1

∫

Qj∩Ω

[∫

Qj

|f(x)− f̃(y)| dy

]q
dx. (7.7)

Now for any fixed j ∈ 1, · · · , N , by Hölder inequality with p and p/(p−
1) we get

1

ρnq

[∫

Qj

|f(x)− f̃(y)| dy

]q

≤
1

ρnq
|Qj|

q(p−1)
p

[∫

Qj

∣∣f(x)− f̃(y)
∣∣p dy

] q
p

=
1

ρnq/p

[∫

Qj

∣∣f(x)− f̃(y)
∣∣p dy

] q
p

≤
1

ρnq/p
n(

n+sp
2 ) q

pρ
q
p
(n+sp)

[∫

Qj

|f(x)− f̃(y)|p

|x− y|n+sp
dy

] q
p

≤ n(
n+sp

2 ) q
pρsq

[∫

Q

|f(x)− f̃(y)|p

|x− y|n+sp
dy

] q
p

. (7.8)
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Hence, combining (7.7) with (7.8), we obtain that

‖f − P (f)‖qLq(Ω) ≤ n(
n+sp

2 ) q
pρsq

∫

Q

[∫

Q

|f̃(x)− f̃(y)|p

|x− y|n+sp
dy

] q
p

dx

≤ n(
n+sp

2 ) q
pρsq

[∫

Q

∫

Q

|f̃(x)− f̃(y)|p

|x− y|n+sp
dy dx

] q
p

(7.9)

≤ Co n
(n+sp

2 ) q
p ρsq =

εq

2q
.

where (7.9) follows from Jensen inequality since t 7→ |t|q/p is a concave
function for any fixed p and q such that q/p ≤ 1.

Consequently, for any j ∈ {1, ...,M}, recalling (7.3) and (7.5)

‖f − βj‖Lq(Ω) ≤ ‖f − P (f)‖Lq(Ω) + ‖P (βj)− βj‖Lq(Ω) + ‖P (f − βj)‖Lq(Ω)

≤
ε

2
+

‖R(f)−R(βj)‖q
ρn/q

. (7.10)

Now, given any f ∈ T , we recall (7.4) and (7.6) and we take j ∈
{1, . . . ,M} such that R(f) ∈ Bη(bj). Then, (7.5) and (7.10) give that

‖f − βj‖Lq(Ω) ≤
ε

2
+

‖R(f)− bj‖q
ρn/q

≤
ε

2
+

η

ρn/q
= ε. (7.11)

This proves (7.1), as desired.

Corollary 7.2. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Let
q ∈ [1, p⋆), Ω ⊆ R

n be a bounded extension domain for W s,p and T be a
bounded subset of Lp(Ω). Suppose that

sup
f∈T

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy < +∞.

Then T is pre-compact in Lq(Ω).

Proof. First, note that for 1 ≤ q ≤ p the compactness follows from Theo-
rem 7.1.
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For any q ∈ (p, p⋆), we may take θ = θ(p, p⋆, q) ∈ (0, 1) such that
1/q = θ/p+ 1− θ/p⋆, thus for any f ∈ T and βj with j ∈ {1, ..., N} as in
the theorem above, using Hölder inequality with p/(θq) and p⋆/((1 − θ)q),
we get

‖f − βj‖Lq(Ω) =

(∫

Ω

|f − βj |
qθ |f − βj |

q(1−θ) dx

)1/q

≤

(∫

Ω

|f − βj |
p dx

)θ/p (∫

Ω

|f − βj|
p⋆ dx

)(1−θ)/p⋆

= ‖f − βj‖
1−θ
Lp⋆(Ω) ‖f − βj‖

θ
Lp(Ω)

≤ C‖f − βj‖
1−θ
W s,p(Ω) ‖f − βj‖

θ
Lp(Ω) ≤ C̃εθ,

where the last inequalities comes directly from (7.11) and the continuos
embedding (see Theorem 6.7).

Remark 7.3. As well known in the classical case s = 1 (and, more generally,
when s is an integer), also in the fractional case the lack of compactness
for the critical embedding (q = p⋆) is not surprising, because of translation
and dilation invariance (see [76] for various results in this direction, for any
0 < s < n/2).

Notice that the regularity assumption on Ω in Theorem 7.1 and Corol-
lary 7.2 cannot be dropped (see Example 9.2 in Section 9).

8. Hölder regularity

In this section we will show certain regularity properties for functions
in W s,p(Ω) when sp > n and Ω is an extension domain for W s,p with no
external cusps. For instance, one may take Ω any Lipschitz domain (recall
Theorem 5.4).

The main result is stated in the forthcoming Theorem 8.2. First, we
need a simple technical lemma, whose proof can be found in [46] (for
instance).
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Lemma 8.1. ([46, Lemma 2.2]). Let p ∈ [1,+∞) and sp ∈ (n, n + p].
Let Ω ⊂ R

n be a domain with no external cusps and f be a function in
W s,p(Ω). Then, for any x0 ∈ Ω and R,R′, with 0 < R′ < R < diam(Ω), we
have

|〈f〉BR(x0)∩Ω − 〈f〉BR′(x0)∩Ω| ≤ c [f ]p,sp |BR(x0) ∩ Ω|(sp−n)/np (8.1)

where

[f ]p,sp :=

(
sup

x0∈Ω ρ>0
ρ−sp

∫

Bρ(x0)∩Ω

|f(x)− 〈f〉Bρ(x0)∩Ω|
p dx

)1
p

and

〈f〉Bρ(x0)∩Ω :=
1

|Bρ(x0) ∩ Ω|

∫

Bρ(x0)∩Ω

f(x)dx.

Theorem 8.2. Let Ω ⊆ R
n be an extension domain for W s,p with no

external cusps and let p ∈ [1,+∞), s ∈ (0, 1) such that sp > n. Then, there
exists C > 0, depending on n, s, p and Ω, such that

‖f‖C0,α(Ω) ≤ C

(
‖f‖pLp(Ω) +

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy

)1
p

, (8.2)

for any f ∈ Lp(Ω), with α := (sp− n)/p.

Proof. In the following, we will denote by C suitable positive quantities,
possibly different from line to line, and possibly depending on p and s.

First, we notice that if the right hand side of (8.2) is not finite, then
we are done. Thus, we may suppose that

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy ≤ C,

for some C > 0.

Second, since Ω is an extension domain for W s,p, we can extend any f
to a function f̃ such that ‖f̃‖W s,p(Rn) ≤ C‖f‖W s,p(Ω).

Now, for any bounded measurable set U ⊂ R
n, we consider the average

value of the function f̃ in U , given by

〈f̃〉U :=
1

|U |

∫

U

f̃(x) dx.
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For any ξ ∈ R
n, the Hölder inequality yields

∣∣ξ − 〈f̃〉U
∣∣p =

1

|U |p

∣∣∣∣
∫

U

ξ − f̃(y) dy

∣∣∣∣
p

≤
1

|U |

∫

U

|ξ − f̃(y)|p dy.

Accordingly, by taking xo ∈ Ω and U := Br(xo), ξ := f̃(x) and integrating
over Br(xo), we obtain that

∫

Br(xo)

|f̃(x)− 〈f̃〉Br(xo)|
p dx

≤
1

|Br(xo)|

∫

Br(xo)

∫

Br(xo)

|f̃(x)− f̃(y)|p dx dy.

Hence, since |x− y| ≤ 2r for any x, y ∈ Br(xo), we deduce that

∫

Br(xo)

|f̃(x)− 〈f̃〉Br(xo)|
p dx

≤
(2r)n+sp

|Br(xo)|

∫

Br(xo)

∫

Br(xo)

|f̃(x)− f̃(y)|p

|x− y|n+sp
dx dy

≤
2n+sp rspC‖f‖pW s,p(Ω)

|B1|
, (8.3)

that implies
[f ]pp,sp ≤ C‖f‖pW s,p(Ω), (8.4)

for a suitable constant C.

Now, we will show that f is a continuos function. Taking into account
(8.1), it follows that the sequence of functions x → 〈f〉BR(x)∩Ω converges
uniformly in x ∈ Ω when R→ 0. In particular the limit function g will be
continuos and the same holds for f , since by Lebesgue theorem we have
that

lim
R→0

1

|BR(x) ∩ Ω|

∫

BR(x)∩Ω

f(y) dy = f(x) for almost every x ∈ Ω.

Now, take any x, y ∈ Ω and set R = |x− y|. We have

|f(x)− f(y)| ≤ |f(x)−〈f̃〉B2R(x)|+ |〈f̃〉B2R(x)−〈f̃〉B2R(y)|+ |〈f̃〉B2R(y) − f(y)|

56



We can estimate the first and the third term of right hand-side of the
above inequality using Lemma 8.1. Indeed, getting the limit in (8.1) as
R′ → 0 and writing 2R instead of R, for any x ∈ Ω we get

|〈f̃〉B2R(x) − f(x)| ≤ c [f ]p,sp|B2R(x)|
(sp−n)/np ≤ C[f ]p,spR

(sp−n)/p (8.5)

where the constant C is given by c 2(sp−n)/p/|B1|.

On the other hand,

|〈f̃〉B2R(x) − 〈f̃〉B2R(y)| ≤ |f(z)− 〈f̃〉B2R(x)|+ |f̃(z)− 〈f̃〉B2R(y)|

and so, integrating on z ∈ B2R(x) ∩B2R(y), we have

|B2R(x) ∩B2R(y)| |〈f̃〉B2R(x) − 〈f̃〉B2R(y)|

≤

∫

B2R(x)∩B2R(y)

|f̃(z)− 〈f̃〉B2R(x)| dz

+

∫

B2R(x)∩B2R(y)

|f̃(z)− 〈f̃〉B2R(y)| dz

≤

∫

B2R(x)

|f̃(z)− 〈f̃〉B2R(x)| dz +

∫

B2R(y)

|f̃(z)− 〈f̃〉B2R(y)| dz.

Furthermore, since BR(x) ∪ BR(y) ⊂
(
B2R(x) ∩B2R(y)

)
, we have

|BR(x)| ≤ |B2R(x) ∩ B2R(y)| and |BR(y)| ≤ |B2R(x) ∩ B2R(y)|

and so

|〈f̃〉B2R(x) − 〈f̃〉B2R(y)| ≤
1

|BR(x)|

∫

B2R(x)

|f̃(z)− 〈f̃〉B2R(x)| dz

+
1

|BR(y)|

∫

B2R(y)

|f̃(z)− 〈f̃〉B2R(y)| dz.
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An application of the Hölder inequality gives

1

|BR(x)|

∫

B2R(x)

|f̃(z)− 〈f̃〉B2R(x)| dz

≤
|B2R(x)|

(p−1)/p

|BR(x)|

(∫

B2R(x)

|f̃(z)− 〈f̃〉B2R(x)|
p dz

)1/p

≤
|B2R(x)|

(p−1)/p

|BR(x)|
(2R)s[f ]p,sp

≤ C [f ]p,spR
(sp−n)/p . (8.6)

Analogously, we obtain

1

|BR(y)|

∫

B2R(y)

|f̃(z)− 〈f̃〉B2R(y)| dz ≤ C [f ]p,spR
(sp−n)/p . (8.7)

Combining (8.5), (8.6) with (8.7) it follows

|f(x)− f(y)| ≤ C [f ]p,sp |x− y|(sp−n)/p, (8.8)

up to relabeling the constant C.

Therefore, by taking into account (8.4), we can conclude that f ∈
C0,α(Ω), with α = (sp− n)/p.

Finally, taking R0 < diam(Ω) (note that the latter can be possibly
infinity), using estimate in (8.5) and the Hölder inequality we have, for
any x ∈ Ω,

|f(x)| ≤ |〈f̃〉BR0
(x)|+ |f(x)− 〈f̃〉BR0

(x)|

≤
C

|BR0(x)|
1/p

‖f‖Lp(Ω) + c [f ]p,sp |BR0(x)|
α. (8.9)

Hence, by (8.4), (8.8) and (8.9), we get

‖f‖C0,α(Ω) = ‖f‖L∞(Ω) + sup
x,y∈Ω
x 6=y

|f(x)− f(y)|

|x− y|α

≤ C
(
‖f‖Lp(Ω) + [f ]p,sp

)

≤ C‖f‖W s,p(Ω) .

for a suitable positive constant C.
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Remark 8.3. The estimate in (8.3) says that f belongs to the Campanato
space L p,λ, with λ := sp, (see [22] and, e.g., [46, Definition 2.4]). Then,
the conclusion in the proof of Theorem 8.2 is actually an application of the
Campanato Isomorphism (see, for instance, [46, Theorem 2.9]).

Just for a matter of curiosity, we observe that, according to the def-
inition (2.1), the fractional Sobolev space W s,∞(Ω) could be view as the
space of functions

{
u ∈ L∞(Ω) :

|u(x)− u(y)|

|x− y|s
∈ L∞(Ω× Ω)

}
,

but this space just boils down to C0,s(Ω), that is consistent with the
Hölder embedding proved in this section; i.e., taking formally p = ∞
in Theorem 8.2, the function u belongs to C0,s(Ω).

9. Some counterexamples in non-Lipschitz domains

When the domain Ω is not Lipschitz, some interesting things happen,
as next examples show.

Example 9.1. Let s ∈ (0, 1). We will construct a function u in W 1,p(Ω) that
does not belong to W s,p(Ω), providing a counterexample to Proposition 2.2
when the domain is not Lipschitz.

Take any
p ∈ (1/s,+∞). (9.1)

Due to (9.1), we can fix

κ >
p+ 1

sp− 1
. (9.2)

We remark that κ > 1.

Let us consider the cusp in the plane

C :=
{
(x1, x2) with x1 ≤ 0 and |x2| ≤ |x1|

κ
}

and take polar coordinates on R
2 \ C, say ρ = ρ(x) ∈ (0,+∞) and θ =

θ(x) ∈ (−π, π), with x = (x1, x2) ∈ R
2 \ C.
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We define the function u(x) := ρ(x)θ(x) and the heart-shaped do-
main Ω := (R2 \ C) ∩ B1, with B1 being the unit ball centered in the
origin. Then, u ∈ W 1,p(Ω) \W s,p(Ω).

To check this, we observe that

∂x1ρ = (2ρ)−1∂x1ρ
2 = (2ρ)−1∂x1(x

2
1 + x22) =

x1
ρ

and, in the same way,

∂x2ρ =
x2
ρ
.

Accordingly,

1 = ∂x1x1 = ∂x1(ρ cos θ) = ∂x1ρ cos θ − ρ sin θ∂x1θ =
x21
ρ2

− x2∂x1θ

= 1−
x22
ρ2

− x2∂x1θ.

That is
∂x1θ = −

x2
ρ2
.

By exchanging the roles of x1 and x2 (with some care on the sign of the
derivatives of the trigonometric functions), one also obtains

∂x2θ =
x1
ρ2
.

Therefore,

∂x1u = ρ−1(x1θ − x2) and ∂x2u = ρ−1(x2θ + x1)

and so
|∇u|2 = θ2 + 1 ≤ π2 + 1.

This shows that u ∈ W 1,p(Ω).

On the other hand, let us fix r ∈ (0, 1), to be taken arbitrarily small
at the end, and let us define r0 := r and, for any j ∈ N, rj+1 := rj − rκj .
By induction, one sees that rj is strictly decreasing, that rj > 0 and
so rj ∈ (0, r) ⊂ (0, 1). Accordingly, we can define

ℓ := lim
j→+∞

rj ∈ [0, 1].
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By construction

ℓ = lim
j→+∞

rj+1 = lim
j→+∞

rj − rκj = ℓ− ℓκ,

hence ℓ = 0. As a consequence,

+∞∑

j=0

rκj = lim
N→+∞

N∑

j=0

rκj = lim
N→+∞

N∑

j=0

rj − rj+1

= lim
N→+∞

r0 − rN+1 = r. (9.3)

We define

Dj :=
{
(x, y) ∈ R

2 ×R
2 s.t. x1, y1 ∈ (−rj,−rj+1),

x2 ∈ (|x1|
κ, 2|x1|

κ) and − y2 ∈ (|y1|
κ, 2|y1|

κ)
}
.

We observe that

Ω× Ω ⊇
{
(x, y) ∈ R

2 ×R
2 s.t. x1, y1 ∈ (−r, 0),

x2 ∈ (|x1|
κ, 2|x1|

κ) and − y2 ∈ (|y1|
κ, 2|y1|

κ)
}

⊇

+∞⋃

j=0

Dj,

and the union is disjoint. Also,

rj+1 = rj(1− rκ−1
j ) ≥ rj(1− rκ−1) ≥

rj
2
,

for small r. Hence, if (x, y) ∈ Dj,

|x1| ≤ rj ≤ 2rj+1 ≤ 2|y1|

and, analogously,
|y1| ≤ 2|x1|.

Moreover, if (x, y) ∈ Dj ,

|x1 − y1| ≤ rj − rj+1 = rκj ≤ 2κrκj+1 ≤ 2κ|x1|
κ

and
|x2 − y2| ≤ |x2|+ |y2| ≤ 2|x1|

κ + 2|y1|
κ ≤ 2κ+2|x1|

κ.
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As a consequence, if (x, y) ∈ Dj ,

|x− y| ≤ 2κ+3|x1|
κ.

Notice also that, when (x, y) ∈ Dj , we have θ(x) ≥ π/2 and θ(y) ≤ −π/2,
so

u(x)− u(y) ≥ u(x) ≥
π ρ(x)

2
≥

π |x1|

2
.

As a consequence, for any (x, y) ∈ Dj,

|u(x)− u(y)|p

|x− y|2+sp
≥ c|x1|

p−κ(2+sp),

for some c > 0. Therefore,
∫∫

Dj

|u(x)− u(y)|p

|x− y|2+sp
dx dy ≥

∫∫

Dj

c|x1|
p−κ(2+sp) dx dy

= c

∫ −rj+1

−rj

dx1

∫ −rj+1

−rj

dy1

∫ 2|x1|κ

|x1|κ
dx2

∫ −|y1|κ

−2|y1|κ
dy2|x1|

p−κ(2+sp)

= c

∫ −rj+1

−rj

dx1

∫ −rj+1

−rj

dy1|x1|
p−κ(2+sp)|x1|

κ|y1|
κ

≥ c 2−κ

∫ −rj+1

−rj

dx1

∫ −rj+1

−rj

dy1|x1|
p−κsp

≥ c 2−κ

∫ −rj+1

−rj

dx1

∫ −rj+1

−rj

dy1r
p−κsp
j

= c 2−κrp−κsp+2κ
j = c 2−κrκ−α

j ,

with
α := κ(sp− 1)− p > 1, (9.4)

thanks to (9.2).

In particular,
∫∫

Dj

|u(x)− u(y)|p

|x− y|2+sp
dx dy ≥ c 2−κr−αrκj

and so, by summing up and exploiting (9.3),

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|2+sp
dx dy ≥

+∞∑

j=0

∫∫

Dj

|u(x)− u(y)|p

|x− y|2+sp
dx dy ≥ c 2−κr1−α.
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By taking r as small as we wish and recalling (9.4), we obtain that

∫

Ω

∫

Ω

|u(x)− u(y)|p

|x− y|2+sp
dx dy = +∞,

so u 6∈ W s,p(Ω). ✷

Example 9.2. Let s ∈ (0, 1). We will construct a sequence of functions
{fn} bounded in W s,p(Ω) that does not admit any convergent subsequence
in Lq(Ω), providing a counterexample to Theorem 7.1 when the domain is
not Lipschitz.

We follow an observation by [82]. For the sake of simplicity, fix n =
p = q = 2. We take ak := 1/Ck for a constant C > 10 and we consider the
set Ω =

⋃∞
k=1Bk where, for any k ∈ N, Bk denotes the ball of radius a2k

centered in ak. Notice that

ak → 0 as k → ∞ and ak − a2k > ak+1 + a2k+1.

Thus, Ω is the union of disjoint balls, it is bounded and it is not a Lipschitz
domain.

For any n ∈ N, we define the function fn : Ω → R as follows

fn(x) =

{
π− 1

2 a−2
n x ∈ Bn,

0 x ∈ Ω \Bn .

We observe that we cannot extract any subsequence convergent in L2(Ω)
from the sequence of functions {fn}, because fn(x) → 0 as n → +∞, for
any fixed x ∈ Ω but

‖fn‖
2
L2(Ω) =

∫

Ω

|fn(x)|
2 dx =

∫

Bn

π−1 a−4
n dx = 1.

Now, we compute the Hs norm of fn in Ω. We have

∫

Ω

∫

Ω

|fn(x)− fn(y)|
2

|x− y|2+2s
dx dy = 2

∫

Ω\Bn

∫

Bn

π−1a−4
n

|x− y|2+2s
dx dy

= 2π−1
∑

k 6=n

∫

Bk

∫

Bn

a−4
n

|x− y|2+2s
dx dy. (9.5)
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Thanks to the choice of {ak} we have that

|a2n + a2k| = a2n + a2k ≤
|an − ak|

2
.

Thus, since x ∈ Bn, y ∈ Bk, it follows

|x− y| ≥ |an − a2n − (ak + a2k)| = |an − ak − (a2n + a2k)|

≥ |an − ak| − |a2n + a2k| ≥ |an − ak| −
|an − ak|

2

=
|an − ak|

2
.

Therefore,
∫

Bk

∫

Bn

a−4
n

|x− y|2+2s
dx dy ≤ 22+2s

∫

Bk

∫

Bn

a−4
n

|an − ak|2+2s
dx dy

= 22+2sπ2 a4k
|an − ak|2+2s

. (9.6)

Also, if m ≥ j + 1 we have

aj − am ≥ aj − aj+1 =
1

Cj
−

1

Cj+1
=

1

Cj

(
1−

1

C

)
≥
aj
2
. (9.7)

Therefore, combining (9.7) with (9.5) and (9.6), we get
∫

Ω

∫

Ω

|fn(x)− fn(y)|
2

|x− y|2+2s
dx dy

≤ 23+2sπ
∑

k 6=n

a4k
|an − ak|2+2s

= 23+2sπ

(
∑

k<n

a4k
(ak − an)2+2s

+
∑

k>n

a4k
(an − ak)2+2s

)

≤ 25+4sπ

(
∑

k<n

a4k
a2+2s
k

+
∑

k>n

a4k
a2+2s
n

)

≤ 26+4sπ
∑

k 6=n

a2−2s
k = 26+4sπ

∑

k 6=n

(
1

C2−2s

)k

< +∞.

This shows that {fn} is bounded in Hs(Ω). ✷
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