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 Minimal varieties in riemannian manifolds

 By JAMES SIMONS
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 0. Introduction

 Our object in this paper is twofold. First, we give a basic exposition of
 immersed minimal varieties in a riemannian manifold. The principal result of

 this general investigation is the derivation of the linear elliptic second order

 equation satisfied by the second fundamental form of any minimal variety in
 any ambient manifold (cf. Theorem 4.2.1).

 Second, we apply these general results in a more detailed study of mini-
 mal varieties in the sphere and in euclidean space. This study includes an

 estimation of a lower bound for the index and the nullity of a non-totally
 geodesic closed minimal variety immersed in S f; a theorem which generalizes
 to arbitrary co-dimensions the theorem of De Giorgi [8] concerning the image
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 MINIMAL VARIETIES 63

 of the Gauss map of a closed co-dimension 1 variety in S ; a theorem which

 estimates an upper bound for the minimum value taken by the scalar curva-

 ture of any closed non-totally geodesic minimal variety in S ; a theorem

 which calculates an explicit neighborhood of the standard metric on SP isolat-

 ing it in the space of metric obtained from non-totally geodesic minimal im-

 mersions in S ; a theorem generalizing the result of Almgren [91 in which
 we show that the cone over any co-dimension 1 non-totally geodesic closed

 minimal variety in So is unstable with respect to its boundary for n ? 6, and

 an example of a cone over such a variety in S7 which is at least locally stable.

 The consequences of this last result are an extension through dimension 7 of

 interior regularity of solutions to the co-dimension 1 Plateau problem, and an

 extension through dimension 8 of the Bernstein conjecture.

 We wish to express our indebtedness to F. J. Almgren who acquainted

 us with several of the outstanding problems in this field, and with whom we

 have had a number of useful and highly informative conversations.

 1. Riemannian vector bundles

 1.1. Definitions. Let M denote a p-dim riemannian manifold with or

 without boundary. We will always take M to be oriented. T(M) will denote
 its tangent bundle, and T(M)m its tangent space at m e M. For x, y e T(M)m,
 <x, y> will denote their inner product. This inner product extends to an

 inner product on all tensors of any given type, and we shall use the same <, >

 to denote this extension. The riemannian connection on T(M) extends nat-

 urally to a connection on the vector bundle of tensors of any given type.

 This connection preserves the above mentioned inner product.

 If Z is a tensor field on M, and x e T(M)m, we shall use VxZ to denote

 the covariant derivative of Z in the x direction. VXZ is a tensor at m of the
 same type as Z. Because the connection preserves inner products we have

 (1.1.1) VX<ZJ W> = <VxZZ W> + <Z, V W>,

 where Z, W are tensor fields of the same type.
 If X, Y are vector fields on M, we have the first structural equation

 (1.1.2) VXY - VyX = [X, Y] .

 For x, y e T(M)m, R.,, will denote the corresponding curvature transfor-
 mation. Rx,, T(M)m T(M)m and is a skew symmetric linear transformation.
 RxY extends naturally to a skew symmetric endomorphism of all the associated
 tensor spaces. The skew symmetry is with respect to the above mentioned
 inner product on these spaces. Let x, y e T(M)m, and let z be a tensor at m.
 Choose X and Y, vector fields on M, and Z a tensor field on M, which extend
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 x, y, and z, respectively. We then have the usual second structural equation

 (1.1.3) Rxtyz = VXVYZ - VYVXZ - V[XYJZ.
 Definition. Let V(M) be a vector bundle over M. Suppose the fibres of

 V(M) have a euclidean inner product, and suppose there is a linear connection

 on V(M) which preserves this inner product. Then V(M) is called a rieman-

 nian vector bundle over M.

 We shall use the same <, > to denote inner products on the fibres of V(M).

 If 2 is a cross-section in V(M), and x E T(M)m, we shall use the same Vx* to
 denote the co-variant derivative of / in the x direction. VI* e V(M)m. Since
 the connection preserves inner products, we have

 (1.1.4) V=K+, 9> = K<VX, 9> + KA, Vat>

 where A, 9 are cross-sections in V(M).

 The connections and inner products on V(M) and T(M) naturally extend

 to a connection and an inner product on the tensor product of all associated

 vector bundles. In particular, it defines a connection and an invariant inner

 product on H(T, V) = Hom (T(M), V(M)). In fact, if r, s e H(T, V)m, we set

 (1.1.5) <r, s> = E' 1 <r(ei), s(e)>,

 where {et} is a frame in T(M)m. If UC is a cross-section in H(T, V), we set

 (1.1.6) VX(:7C)(Y) = VI(27C(Y)) - C(VZY)I

 where x, y e T(M)m, and Y is an arbitrary vector field extending y. This

 connection and inner product are easily seen to be well defined, and it is also

 easy to check that the inner product is invariant.

 1.2. The Laplace operator. If * is a cross-section in V(M), it gives rise
 to V+, a cross-section in H(T, V), by setting

 (1.2.1) V*(x) = VI+

 Using the connection on H(T, V), given x, y e T(M)m, we define V, e V(M).

 (1.2.2) VX ,+ = VX(V*)(y) .

 Clearly, the map (x, y) Vx At is a bilinear form on T(M)m with values in
 V(M)mn

 Definition. Let f be a cross-section in V(M). We define V2* to be a
 new cross-section in V(M) by setting V2*(m) = trace of the bilinear form

 (x1,Y ) Vx,+Y*

 PROPOSITION 1.2.1. Let e1, ***, ep be a frame in T(M)m. Extend them to

 vector fields E1, * * *, E, such that <Ej, Ej> = 3ij and VE.Ej(m) = 0. If * is a
 cross-section in V(M), we have
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 MINIMAL VARIETIES 65

 (1.2.3) V2*(M) = E VEjVEj*(M).
 PROOF. By the definition of trace, and by (1.2.2), we see that

 V2*(m) = J V Vif =l )(ei)

 - E=l VE.(V*(Ei))(m) - Fi=lV(VEi)
 - , VE;VE;f(m). q.e.d.

 PROPOSITION 1.2.2. V2 is a differential operator on the cross-sections of

 V(M). If M is compact and closed, or if M is compact with boundary, and

 A, q' vanish on AM, we have

 (1.2.4) 9IV2 > = < <V2T>= - <V PVT>.

 Thus, V2 is a negative, semi-definite, self adjoint differential operator.

 PROOF. Using (1.2.3) and (1.1.4),

 <V ASr, 9> = 2'=1 <VEiVEj*r 9>

 = E 1 VE9<VEi1 )> - Ei=j <Veiy VeiP>.
 From (1.1.5), we see that the second term is -<VA, V9>. Let 8 be a real
 valued differential 1-form on M defined by

 8(x) = <Vxu* 9>.
 The first term is then 30, and we thus have

 <V2*fr, 9> = _ -<Vk, V9>.

 By Stokes' theorem,

 I<V2*1A =- <v+, vT> + I *

 But, by our assumption, 8* I = 0. q.e.d.

 PROPOSITION 1.2.3. Let L be an arbitrary Co cross-section in Hom (V(M),
 V(M)). Suppose L is symmetric at each point. Then V2 + L is strongly
 elliptic and has uniqueness in the Cauchy problem at each point m; i.e., if

 * satisfies V2y + L(+) = 0, and U U 0 where U is an open set, then up_
 o everywhere.

 PROOF. Let x1, ..., xp be a normal coordinate system in a neighborhood
 of m. Let v1, ..., vd be a frame in V(M)m. Extend these to local cross-sec-

 tions, V1, ..., Vd, by parallel translation along geodesic rays emanating from

 m. If # is any local cross-section at m, it may be written as

 u = U1V1 + * * * + UdVd 2

 where the us e C-(M). Set u = (ul, ..., nd). At m we clearly have
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 =V [EI'] -H + [ a=Ud.iVd.
 V + [E=1 aX2 ] l+ E=1 ax2

 Thus, if we identify the space of local cross-sections with the space of

 d-tuples of functions u = (ui, * **, Ud) at m, the system looks like

 2=1 U - L,(u1, * ,d)

 a=1 =Ud Ld(Ul, *,d)

 where the Lj are defined by:

 L(,uk Vk) = -,jLj(u,, * , uk) Vk

 It is trivial to check that the complex characteristics at m of the above linear

 system are all distinct. Therefore, since m was arbitrarily chosen, they are

 distinct everywhere. One may thus apply the main theorem of [1]. q.e.d.

 2. Immersed submanifolds

 2.1. Connections in the tangent and normal bundles. Let M be a p-dim

 manifold, with or without boundary, and let M be an n-dimensional rieman-

 nian manifold. Suppose f: M M is a Co immersion.

 Let T(M) and N(M) denote the tangent and normal bundles of M. The

 connection and metric on M lead to connections and invariant inner products

 on T(MU) and N(M). That on T(M) is, of course, the unique riemannian con-
 nection induced by the inherited metric. We will define these connections

 explicitly.

 Let Y be a vector field on M. Restrict Y to a neighborhood of m E M

 small enough to be mapped diffeomorphically into M. Let us identify Y with

 df (Y), a vector field in M defined along the image of M. Let x e T(M)m. We
 set

 (2.1.1) V'Y = (V1Y)T

 where V is the riemannian connection in T(M), and where ( )T denotes pro-

 jection into T(M)m.

 PROPOSITION 2.1.1. V is the unique riemannian connection on T(M)
 with respect to the metric on M inherited from the immersion.

 PROOF. Let Y and Z be vector fields on M. Let x e T(M)m.

 <VZY. Z> + <Y, VZ> = <(VxY)T, Z> + <Y, (VZZ)T>
 =<VzY, Z> + <Y. VzZ>

 Vz<YJ Z> = VZ<Y, Z>.
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 MINIMAL VARIETIES 67

 Thus, V preserves inner products on T(M). To show that V has torsion 0,

 VyZ - VZY - [Y. Z] (VYZ)T - (VZY)T - [Y. Z]
 (VYZ)T _ (VZY)T - [Y, Z]T

 - (Z- VZY - [, Z])T = 0. q.e.d.

 The connection in N(M) is defined similarly. Let V be a cross-section in

 N(M). Restrict V to a neighborhood of m e M which is mapped diffeomorphic-

 ally into M. We may now regard V as a vector field in M defined along the

 image of M. Let x e T(M)m. We set

 (2.1.2) VX V V (VX V)N

 where ( )N denotes projection into N(M)m.

 PROPOSITION 2.1.2. V is a connection on N(M) which preserves inner

 products.

 PROOF. Same as that of Proposition 2.1.1. q.e.d.

 2.2. The second fundamental form. We define two vector bundles over

 M associated to T(M) and N(M). Let S(M) be the bundle whose fibre at each

 point is the space of symmetric linear transformations of T(M)m T(M)m.

 Let H(M) Hom (N(M), S(M)). If L E H(M)m and w E N(M)m, we will let

 Lw: T(M)m T(M)m denote the associated symmetric linear transformation.

 The second fundamental form A is a cross-section in H(M) which we shall

 define below.

 Definition. Let w E N(M)m. Extend w to an arbitrary vector field W in

 M, such that W is normal to f (M) in a neighborhood of f(m). We define

 Aw: T(M)m T(M)m by

 (2.2.1) Aw (x) = (Vx W)T

 A is called the second fundamental form of the immersion.

 PROPOSITION 2.2.1. A is well defined by (2.2.1) and is a C- cross-section

 in H(M).

 PROOF. Let W' be another local normal field in M which extends w. Let

 e T(M)m, and let Y denote any vector field in M which is tangent to M and

 which extends y. We then have

 <-(VxW)T, y> - <-(VxW')T, y>
 = <VX W'-VXW. y> = <VX(W' - W), y>

 = <VX(W'- W)y Y> = VX<W - WY Y> -<W' -WY VY> .

 But both of these terms are 0, and thus Aw is well defined. To show that Aw

 is symmetric, extend both x, y to X and Y, vector fields on M tangent to M.
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 We then have

 <Aw(x), y> - <AW(y), x>

 -<V'W, Y> + <VYW, X>

 =-V XW9 Y> + Vy<W9 X> + <W. IVXY> - <U VyX>

 0 + <W, [X, Y]> = 0.
 Clearly A is linear in all variables and therefore does define a cross-section in

 H(M). A calculation of A in local coordinates would show that A E CW.

 q.e.d.

 It will sometimes be more convenient to regard the second fundamental

 form as a symmetric bilinear form on T(M)m with values in N(M)m. Let x,

 y E T(M)m. We define B(x, y) E N(M)m by

 (2.2.2) <B(x, y), w> = <Aw(x), y>.

 PROPOSITION 2.2.2. Let x, y E T(M)m. Extend y to a vector field Y in M

 which is tangent to f (M). Then

 (2.2.3) B(x, y) = (VYxY)N .

 PROOF. From (2.2.2) and (2.2.1) we see

 <B(x , y) , w> = <Aw (x) , y> =-<VW9 Y>

 =-<VxW. Y> -VX<W. Y> + <W. Vx Y>
 = 0 + <V'Yq w> .q.e.d.

 A gives rise to three important cross-sections in bundles associated to

 T(M) and N(M). The first of these is the mean curvature.

 Definition. Since B is a vector valued bilinear form on each T(M)m
 taking values in N(M)m, we may define its trace with respect to the inner

 product on T(M)m. This will be a cross-section in N(M), and we will denote

 it by K. K is called the mean curvature of the immersed M. Let e1, ... , ep
 be a frame in T(M)m. Then

 (2.2.4) K = P B(e , en)

 Since A is a cross-section in Hom (N(M), S(M)), and since each of these

 bundles has a euclidean inner product, we may construct tA, the transpose of

 A. tA is a cross-section in Hom (S(M), N(M)) I.e., if s E S(M)n and v E N(H)n,
 <tA(s), v> = <Av, s>. We then set

 (2.2.5) A = tAoA.

 We now observe that, if V, w E N(M)m and s E S(M)m, [AV, LAw, s]] E S(M)m,
 i.e., the map (v, w) - ad Av ad Aw is a bilinear form on N(M)m with values in

 Hom (S(M)m, S(M)n). We define A to be the trace of this form; i.e., if v1, ... ,
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 v._p is a frame in N(M)m,

 (2.2.6) A 4 ad Avi ad Avi

 PROPOSITION 2.2.3. A is a C- cross-section in Hom (N(M), N(M)), and A

 is a Co cross-section in Hom (S(M), S(M)). At each point m, A and A are

 symmetric, positive semi-definite operators.

 PROOF. Co is easily checked. Let v, w E N(M)m. By (2.2.5) we have

 <A(v), w> = <tA(AV), w> = <Av, Aw>. Thus A is symmetric, and

 (2.2.7) <A(v), v> = II Av 112

 Let s1, s2 E S(M)m. Then by (2.2.6)

 (2.2.8) <A(S1), S2> =En ip <[Avi, [A" , s1]], S2>
 S~~~~~~nap <[AVI, sil, [AVI, S2]>

 Thus A is symmetric and positive semi-definite.

 2.3. Curvature in T(M) and N(M). Using the second fundamental form

 and the curvature form of M, we can easily compute the curvature forms in

 T(M) and N(M).

 For x, y E T(M)m, we define Qly: N(M)m > N(M)m by

 (2.3.1) <QN~, w> =><[AV, AwI(x), y> .

 Clearly, Qf is skew symmetric in x and y, and is a skew symmetric linear

 transformation of N(M)m N(M)m.

 Let R denote the curvature tensor in M. For x, y E T(M)m, we define

 RXV N(M)m N(M)m by

 (2.3.2) R v = (RX,Yv) .

 Again it is clear that RN is skew symmetric in x and y and is a skew sym-

 metric linear transformation of N(M)m N(M)m.

 PROPOSITION 2.3.1. Let R denote the curvature tensor for N(M). Then

 for x, y E T(M)rm ,
 Rx=Rx NY + QN

 PROOF. Let v, w E NV(M)m. Extend them to local cross-sections V, W in

 N(M)m, and extend x, y to local vector fields X, Y on M. Then by (2.1.2)

 <RXqYV9 W> = <VXVYV, W> - <VYVXV, W> - <V[x'y]V, W>
 = <Vx(VyV)N, W> - <Vy(VXV)N, W> - <V[Xy]V, W>
 = <VxVy V, W> -<Vyvx V W> - <V[X,Y] V, W>

 - <VX(V V) T, W> + <Vy(VX V) T, W>.

 Now, using (2.2.1), (2.2.2), and (2.2.3),
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 - <RXYVq w> + <vx(Av(Y)), W> - <y(Av(X)), W>
 - <EMS w> + <B(x, AV(y)), w> -<B(y, AV(x)), w>
 - <RfNV W> + <AwAV(y), x> - <AwAV(x), y>

 - <RN V W> + <[AV, Aw](x), y> . q.e.d.

 For x, y E T(M)m, we define QxT'Y: T(M)m T(M)m by

 (2.3.3) <Qx'Y u> = -<B(x, z), B(y, u)> + <B(x, u), B(y, z)>.

 Clearly QxTv is skew symmetric in x and y, and is a skew symmetric linear

 transformation of T(M)m T(M)m.

 We also define R T(M)m T(M)m by

 (2.3.4) Rx (R Z)

 PROPOSITION 2.3.2. Let R denote the curvature tensor for T(M). Then

 R = RT + QT

 PROOF. The proof is a calculation similar to that of the previous proposi-

 tion.

 In future calculations, it will sometimes be helpful to have QT v defined

 in terms of A rather than B. In the proposition below, we make the identi-

 fication between A2T(M)m and skew symmetric linear endomorphisms of

 T(M)m.

 PROPOSITION 2.3.3. Let v1, ... * vnp be a frame in N(M)m. Then

 Q -T r Avi(x) A Avi(y)

 PROOF. Straightforward calculation.

 2.4. Variations. Definition. Let {ft} be a 1-parameter family of im-
 mersions of M - with the property that fo = f, and that the map

 F: M x [0, 1] M, defined by F(m, t) = ft(m), be CW. Then {ft} is called a
 variation of f.

 If {ft} is a variation of f, it induces a vector field in M defined along the
 image of M. We shall denote this field by E, and it is constructed as follows.
 Let &/&t be the standard vector field in M x [0, 1]. We set

 (2.4.1) E(m) = dF(&/&t(m, 0)) .

 E gives rise to cross-sections EN and ET in N(M) and T(M) respectively,

 by orthogonally projecting E into the appropriate space. We can easily see

 PROPOSITION 2.4.1. Let {ft} be a variation of f. Then EN and ET are

 Co cross-sections in N(M) and T(M) respectively.

 Since ET is a vector field on M, and M has a volume form induced by its
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 MINIMAL VARIETIES 71

 metric, ET corresponds to a differential (p - 1)-form on M. We denote this

 form by IET; i.e.,

 (2.4.2) OET(xl, ..., XP-1) = <ET A x1 A ... A xp-1, e, A ... A ep>,

 where e1, ***, ep is any positively oriented frame in T(M)m.

 THEOREM 2.4.1. Suppose M is compact. Let d(t) = p-dim area of f,(M).
 Then d(t) e Co and

 (2.4.3) d (0) = - 5<E N K> + 5 TM
 M am

 where the integration over M of the function <EN, K> is understood to be

 with respect to the volume form corresponding to its riemannian structure.

 PROOF. As this is a well known result, we shall not give its proof here.

 One may rather easily do the calculation in local coordinates, cf. [2]. One

 may also do it globally by lifting each ft to a map Jf, of M into GP(M), the
 Grassmann bundle of oriented p-planes, cf. [3]. In this bundle is a natural p-

 form o, such that d(t) = 5Qo df . The calculation then proceeds easily via

 a simple formula which relates doi to mean curvature. This global approach

 is particularly useful in calculating the second variation.

 3. Minimal varieties

 3.1. Definitions and examples. As in the previous section, we have

 f: M-) M an immersion.
 Definition. M is called a minimal variety in M if K _ 0, i.e., the mean

 curvature of M vanishes at each point.

 The simplest examples of minimal varieties are where dim M = 1. In

 this case they are simply geodesics in M. In higher dimensions every totally

 geodesic submanifold is a minimal variety, in fact, the condition "totally

 geodesic" is equivalent to the condition that the entire second fundamental

 form vanish identically.

 The class of minimal varieties is much richer than the class of totally

 geodesic submanifolds. Geodesics in M are the projection down of the integral

 curves of a direction field in the sphere bundle. In an analogous fashion,
 minimal varieties in M are the projection down of the p-dim integral sub-

 manifolds of a differential ideal in GP(M), the bundle of oriented p-planes,

 cf. [3]. Moreover, this ideal has no (p - 1)-dim characteristics which do not
 intersect the vertical. One may thus use the Cartan-Kifhler theorem to prove

 THEOREM 3.1.1. Suppose M is real analytic. Let U be a neighborhood

 of 0 in R"-', and g: Us- Il an analytic imbedding. For u e U, let dg(u) de-
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 note the (p - 1)-plane tangent to g(U) at g(u). Suppose along g(U) we are

 given an analytic field of oriented p-planes P, such that dg(u) c P(u). Then

 there exists a neighborhood of 0, V = U, and an s > 0, and an imbedding

 f: V x [0, s] - M which satisfies
 (1) f (v, O) = g(v);
 (2) df (v, 0) = P(v);
 (3) V x [0, s) is imbedded as a minimal variety in M.

 Moreover, f is unique up to analytic parametrization.

 The above theorem is of no use in constructing local minimal varieties in

 Co manifolds. Moreover, since the system of partial differential equations

 defining a minimal variety is elliptic, the natural problem to try to solve is

 the boundary value problem. Extensive research has been carried out in this

 area, and in the past few years a great deal of progress has been made. A

 complete set of references may be found in [4].

 The most interesting minimal varieties, at least from the geometric point

 of view, are the closed minimal varieties in compact manifolds, and the com-

 plete minimal varieties in non-compact manifolds. In [5] Hsiang has demon-

 strated that, under the action of a closed subgroup of isometries of a compact

 manifold, an orbit of maximum area is a closed minimal variety. This produces

 a wide class of examples, including new examples of closed, co-dimension 1,

 minimal varieties in So. Of equal interest are complete minimal varieties in

 Re. The well known Bernstein conjecture states that, if f(x1, * , Xn-1) is

 defined everywhere and its graph is a minimal variety in Rn, then f is a

 linear function. This conjecture has been proved for n = 3, 4, 5, see [6], [7],

 [8], and [9]. In the last section of the present paper, we show that the con-

 jecture holds through n = 8. It is interesting to note, as we have mentioned

 in ? 0, that there is a close relationship between complete minimal varieties
 in euclidean space and closed minimal varieties in the sphere.

 As a final class of examples, we turn to Kihler manifolds. The following

 theorem is well known.

 THEOREM 3.1.2. Let M be a 2n-dimensional Kdhler manifold, and let

 M be a 2p-dimensional immersed Kdhler submanifold. Then M is a minimal

 variety in M.

 PROOF. Let J denote the covariant constant linear transformation with

 J2= -1. Let m C M. Since Mis sub-Kahler, if x e T(M)m, then J(x) C T(M)m.
 We first show

 (3.1.1) B(x, x) + B(J(x), J(x)) = 0.

 Extend x to a vector field X on M. Then by (2.2.3) and the invariance of J.
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 B(J(x), J(x)) = (Vj(X)J(X)) (J(VJ(X)))N = J((VJ(X)X)N)

 Since B is symmetric

 = J((VXJ(X))N) = J2(B(x, x)) - -B(x, x).

 Now, we may choose a frame in T(M)m, el, ... , ep, ..* ,fp where J(e,) = fi.
 Then from (2.2.4) and the above, the theorem follows. q.e.d.

 3.2. The first and second variations. In this section and all the follow-

 ing, M will be a p-dim manifold, M an n-dim riemannian manifold, and

 f: M - l.l an immersion of M as a minimal variety in M.

 THEOREM 3.2.1. Let {ft} be a variation of f. Suppose that for all t,

 f,(aM) = f(aM). Then if M is compact and (X(t) = area of M under ft,
 d'(?) = 0.

 PROOF. Follows directly from Theorem 2.4.1 and the observation that
 our boundary conditions imply that OET 0aM = . q.e.d.

 The above theorem shows that compact minimal varieties are critical

 points of the area function. This being the case, we should be able to calculate
 the second variation simply in terms of EN.

 Let v C N(M)m. Let el, . * *, ep be a frame in T(M)P. We define

 (3.2.1) R(v) = (Re .,vei)N

 Equation (3.2.1) defines a linear transformation from N(M), into itself. Note

 <R(v), w> = <R(w), v>. Clearly this definition did not depend on choice of
 frame. It is a sort of partial Ricci transformation.

 THEOREM 3.2.2. Let {ft} be a variation of f such that each f,(&M) =
 f(M). Suppose M is compact. Set V = EN, the cross-section in N(M) defined
 in Proposition 2.4.1. Then

 (3.2.2) aft(0) = <Vv, Vv> + <R(v), v> - <A(v), v> .
 M

 PROOF. (3.2.2) is simply a restatement in our terminology of the similar

 calculation in [10]. A formula of this type may also be found in [11], however

 it has a sign error in the term involving the second fundamental form, and

 this interferes with the author's geometric applications.

 Using Proposition 1.2.2, we may rewrite (3.2.2) as

 (3.2.3) LU'(O) = <_ V2 V + R( V) - A(V), V> .
 M

 Let M be compact and V, W cross-sections in N(M) which vanish on AM.

 We set
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 (3.2.4) I(V, W) = <-V2V + R(V) - A(V), W>.
 M

 From Proposition 1.2.3 and the standard facts about strongly elliptic differ-

 ential operators, we see

 PROPOSITION 3.2.1. I is a symmetric bilinear form on the space of cross-

 sections in N(M) which vanish on aM. I may be diagonalized with respect

 to the standard inner product, and has distinct, real eigenvalues {XiJ such
 that

 X1 < X2 < ... < Xi < ...> + ao

 Moreover, the dimension of each eigenspace is finite.

 Definition. The index of a compact M is the sum of the dimensions of

 the eigenspaces corresponding to negative eigenvalues. The nullity of M is

 the dimension of the O-eigenspace.

 3.3. Jacobi fields. Definition. A cross-section V in N(M) is called a

 Jacobi field if it satisfies

 (3.3.1) V2V = R( V) - A(V) .

 We may easily see

 PROPOSITION 3.3.1. Let M be compact. Then the space of Jacobi fields

 on M which vanish on AM is finite dimensional and is equal to the kernel
 of I. Thus, the dimension of this space is the nullity of M.

 The following theorem is the p-dimensional analogue of the usual theorem

 for geodesics. The proof is a straightforward, although involved, calculation,

 and we therefore leave it for the reader to verify.

 THEOREM 3.3.1. Let ft} be a variation of M. Suppose each (M, ft) is

 an immersed minimal variety. Then EN is a Jacobi field on M.

 COROLLARY 3.3.1. Let V be a killing vector field on M. Let VI be the

 cross-section in N(M) obtained by projection of V. Then VN is a Jacobi

 field on M.

 COROLLARY 3.3.2. Let M be a Kdhler manifold and suppose V is a con-

 formal vector field on M, i.e., the Lie derivative of J in the V direction

 vanishes. Then, if M is an immersed Kdhler submanifold, VN is a Jacobi

 field on M.

 In a subsequent section we will characterize all Jacobi fields on compact,

 closed, Kiihler submanifolds.

 In the case of geodesics, the converse of Theorem 3.3.1 is also true. As
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 far as we know, it is an open question as to whether or not even a local

 version of this converse is true for higher dimensional minimal varieties.

 Namely, given a Jacobi field on M, does it always arise, at least locally, from

 a one-parameter family of minimal varieties? In the real analytic case, such

 a result could probably be obtained via Theorem 3.1.1.

 3.4. The Morse index theorem. The original Morse index theorem is a

 formula which relates the index of a geodesic segment to its conjugate points

 relative to one end point. For a statement and proof see [12]. Recently,

 Smale [13] has substantially generalized this result to a theorem which, in a

 similar way, evaluates the index of any symmetric, strongly elliptic, differ-

 ential operator on the cross-sections of a vector bundle. The theorem applies

 perfectly to the case of minimal varieties, and gives a natural generalization

 of the index theorem for geodesics. In [13], Smale was kind enough to credit

 us with this result; however, while we did have a correct statement of the

 theorem, we were never able to produce a correct proof. The following will

 be an exposition of Smale's result in our context.

 Let M be compact, and suppose that dim AM - p-1.

 Definition. Let {g,} be a 1-parameter family of diffeomorphisms of M
 into itself. Suppose g. 0 identity, and the map (m, t) - gt(m) is CW. Let M,
 denote the image of M under g,. If MX -i MI, whenever t > s, {g,} is called a
 contraction of M. {g,} is said to be of s-type if a(Mt) < s for sufficiently large t.

 LEMMA 3.4.1. Let C-N(Mt) denote the space of C- cross-sections in

 N(M,) which vanish on D(M,). Then there exists an s > 0 such that, for any
 contraction {gt}, Ct(Mt) < s implies that It( V, V) > 0 for any Ve CON(M,)
 where

 It(V, V) < -v V + R(V) - A(V) , V> . Mt

 PROOF. See [13].

 Definition. Given a fixed contraction {gJ}, aM, is called a conjugate
 boundary if there is a Jacobi field in CON(Mt). The order of a conjugate
 boundary is defined to be the dimension of the space of such Jacobi fields.

 THEOREM 3.4.1. Let s be chosen as in Lemma 3.4.1, and let {gt} be a
 contraction of s-type. Then there exist only a finite number of conjugate

 boundaries, aMti, and the index of M is the sum of the orders of these
 boundaries for all ti # 0.

 PROOF. Since we have shown in Proposition 1.2.3 that - V2 + R-A is

 strongly elliptic and has uniqueness in the Cauchy problem, we may directly

 apply the main theorem of [13]. q.e.d.
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 3.5. Jacobi fields on Kdhler submanifolds. In [17], Federer shows that
 a compact Kihler submanifold of a Kihler manifold is an absolute minimum

 of area among all homologous competitors with the same boundary. A simple

 consequence of this is that the index of such a minimal variety must be 0.

 An interesting question then is, what is the nullity? To give an example of

 these notions of index and nullity, we prove Theorem 3.5.1 below.
 In the following, we will assume that M is a 2p dimensional immersed

 Kihler submanifold of a 2n dimensional Kahler manifold M. The J operator

 gives an automorphism of each T(M)m and N(M)m. A cross-section V in

 N(M)m will be called holomorphic if, for any x E T(M)m,

 VJ ()V= J(VZV) .

 THEOREM 3.5.1. Let M be compact with dimaM = 2p - 1. Then the

 index of M = the nullity of M = 0. Let M be compact and closed. Then the

 index of M = 0, and the nullity of M is equal to the dimension of the space

 of globally defined holomorphic cross-sections in N(M).

 The proof of this theorem will follow from a series of lemmas.

 LEMMA 3.5.1. For any v E N(M)m,

 (3.5.1) JoAv = AJ(v) AVoJ.

 (3.5.2) AoJ=JoA.

 PROOF. Extend v to V, a local cross-section in N(M)m. Let x G T(M)m.
 Using (2.2.1),

 J(Av(x)) _ J(( V) ) = (J(V V))

 =- (txJ(V))T = AJ(v)(x)

 Thus, Jo Av AJ(v). Also, for x, y E T(M)m,

 <Av(J(x)), y> = <AV(y), J(x)> - <J(Av(y)), x>
 = <AJ(v)(y), x> =- <AJ(v)(x), y> .

 Thus AVoJ AJ(v), and this proves (3.5.1).

 To prove (3.5.2), we use (3.5.1) and (2.2.5), which defines A. Let v,
 w E N(M)m.

 <A(J(v)), w> <AJ(v), AW> <Jo AV, AW>
 -<AvJoAw> -<Av AJ(w)>

 =-<A(v), J(w)> <J(A(v)), w> . q.e.d.

 Let R denote the curvature form in N(M). Let e1, ..., ep, f1, ..., fp be
 a frame in T(M)m with fj = J(ej). We define RJ, a symmetric, linear trans-
 formation of N(M)m into itself, by

This content downloaded from 129.49.5.35 on Thu, 23 Apr 2020 20:33:13 UTC
All use subject to https://about.jstor.org/terms



 MINIMAL VARIETIES 77

 Ri? - Jo 57R R RJ = _ JO S=1 Reipfi-

 Clearly RJ is well defined.

 LEMMA 3.5.2. RJ(v) = R(v) - A(v).

 PROOF. From Proposition 2.3.1, we know

 (*) Reijf ReI,. + QN

 Using the first Bianchi identity, and the fact that the curvature transforma-

 tions in M commute with J, we see that, for v e N(M)m,

 Re NfjV = (ReifiV)N (Rvefi - Rf,vei )N
 (Reie,veJ(ei) + Rf,,,J(fi)) = J(Rivei + Rfvfi)

 Thus by (3.2.1) which defines R(v),

 (**) ~~~~~~~-J? ,E= R N fv = R(V) .

 Let v, w e N(M)m. By (2.3.1) which defines QN, and using Lemma 3.5.1,

 <Ne 'f Vq W> =<[AV, Alv](ei), fi>

 <Alv(ei), AV(fi)> - <AW(fi), AV(ei)>

 -<Aw(ei), AJ(v)(ei)> - <AW(f,), AJ(v)(fi)> -

 Thus

 V 1 <QN f iV, W> - -<AW, AJ(v)>
 - -<A(J(v)), w> -<J o A(v), w>.

 So we get

 JEl,1 QN,~ =V A(v) .
 Putting together (*), (**) and (***) the lemma is proved. q.e.d.

 From the definition of Jacobi field (3.3.1) and of the form I( V, W) (3.2.4),

 the above lemma shows

 LEMMA 3.5.3. Let V be a cross-section in N(M). Then V is a Jacobi

 field if and only if

 V2 V = RJ(V) .

 Moreover, for any V with V aM = 0,

 I(V, V) = V2V + RJ(V), V> .
 M

 LEMMA 3.5.4. Let V be a holomorphic cross-section in N(M). Then V

 is a Jacobi field.

 PROOF. Choose e1, ..., ep, f1, ..., fp a frame in T(M)m with fi = J(ei).
 Extend these to local vector fields {Ei, Fi}, such that they form a frame at
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 each point, Fi = J(Ei), and VxEi(m) =VFi(m) = 0 for all i and all x e T(M).
 Now, using (1.2.3) and the definition of holomorphic cross-section,

 V2 V = E@p (VEiVEi V + VFiVFi V)

 = i= (VEiVEi V + J(VFiVEi V))

 Li=1 (VEiVEi V + 'J(VEiVFi V) + J(Rf ei V))
 =L-1 (ViVEi' V + J2(VEiVEi V) -J(Rejfi V))= Rj( V). q.e.d.

 PROOF OF THEOREM. If V is any cross-section in N(M), it gives rise to

 DV, a cross-section in Hom (T(M), N(M)) defined by

 DV(x) =VJ(x)V- J(VXV).

 Clearly V is holomorphic if and only if DV 0. Now, using the standard

 Stokes' theorem technique (cf. Proposition 1.2.2), one may easily show that,

 for any V with V I AM = 0, we have

 <DV, DV> = 2@ <-V2V + Rj(V), V>.
 M .U

 Using Lemma 3.5.3, we see

 (*) I(V, V) - 15<DV,DV>.

 Case I: dimaM = 2p- 1. The above (*) shows I(V, V) > 0 which im-
 plies the index of M = 0; (*) also shows that I( V, V) = 0 implies V is holo-

 morphic. But since V I aM 0, we must have V 0. Thus the nullity of
 M =0.

 Case II: aM= 0. (*) again shows that the index of M= 0. Since V a

 Jacobi field implies I(V, V) = 0, (*) also shows that all Jacobi fields are holo-

 morphic. Lemma 3.5.4 shows that holomorphic cross-sections are Jacobi

 fields. Thus, the nullity of M is equal to the dimension of the space of global

 holomorphic cross-sections. q.e.d.

 3.6. An extension of the Synge lemma. The well known Synge lemma

 states that, in a manifold of strictly positive sectional curvature, any closed

 geodesic admitting a parallel normal vector field may be deformed to a closed

 curve of shorter length. Such a normal field may always be constructed, for

 example, if the dimension of the manifold is even. There is an easy genera-

 lization of this theorem to compact, closed minimal varieties of arbitrary

 dimension.

 If x, y are tangent vectors at M e M, let k(x, y) denote the sectional

 curvature of the plane section they span. If x y 1 and <x, y> = 0,

 (3.6.1) k(x, y) =-<Rxyx Y>.
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 If P is a tangent p-plane at mih e M, and y e Pl, the normal space to P, we set

 (3.6.2) k(P9 y) = =1k(ei , y) = - L" 1 <Re,,,veis ,> ,
 where e1, ... , ep is a frame spanning P. Clearly k(P, y) is defined independ-
 ently of the choice of frame. Note that for p = dim P n - 1, k(P, y) is the

 Ricci curvature of y.

 THEOREM 3.6.1. Let MI be a riemannian manifold having the property

 that, for any p-plane P and any y e P1, k(P, y) > 0. Then, if M is a com-

 pact, closed minimal variety immersed in iM such that there exists a global-

 ly defined, parallel cross-section in N(M), M is deformable to a closed mani-

 fold of smaller area.

 COROLLARY 3.6.1. If M has positive Ricci curvature, then any co-

 dimension 1 closed minimal variety immersed in M is deformable to a closed
 manifold of smaller area.

 PROOF. The corollary follows trivially from the theorem, since the unit

 normal field is always parallel in N(M) under the co-dimension 1 assumption.

 To prove the theorem, let V be a parallel normal cross-section in N(M),

 and choose a variation {ff} such that EN = V. (This may be done, for ex-
 ample, via the exponential map.) Looking at the second variation formula
 (3.2.2) we see that

 (*) d"(0) 5<R(V), V> - <A(V), V> .
 M

 But, if P(m) denotes the tangent p-plane to f (M) at f (m), (3.6.2) shows that

 <R(V), V> =-k(P(m), V(n)).
 Since by (2.2.7), <A( V), V> = 11 Av 112, we see that both terms in (*) are nega-
 tive, and so (i"(0) < 0. Since d'(0) = 0, we see that area is decreasing. q.e.d.

 4. The fundamental elliptic equation

 4.1. The first order system. We have defined the second fundamental

 form A to be a cross-section in H(M) = Hom (N(M), S(M)). Since this bundle

 is a riemannian vector bundle, we may use its connection to make calculations

 involving derivatives of A. In the event that M is a minimal variety, such

 calculations show that A satisfies an elliptic first order system and an elliptic

 second order system. In both cases the coefficients depend only on the curva-

 ture tensor of the ambient manifold and on A itself. When the ambient

 manifold is special, e.g., the sphere or euclidean space, the equations take a

 particularly nice form and enable one to make geometric conclusions about
 the immersed variety.
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 As in the previous section, M will denote a p-dim manifold, M an n-dim

 riemannian manifold, and f an immersion of M into M as a minimal variety.

 THEOREM 4.1.1. Let B(, ) denote the second fundamental form of M,

 when that object is regarded as a symmetric bilinear form on T(M)m with

 values in N(M)m. Then

 (4.1.1) V.(B)(y, z) - Vy(B)(x, z)- (Rx,yz)N VX, y, z e T(M)m

 (4.1.2) ,=1 V 4B)(e, Z) = '==1 (Reizei)N VZ G T(M)m-

 PROOF. We first prove (4.1.1), which holds for any submanifold of M

 whether or not it is a minimal variety.

 Extend x, y, z to X, Y, Z, local vector fields on M such that all the
 covariant constant at m with respect to V. Then, using the standard facts

 about covariant differentiation,

 Vx(B)(y, z) =Vx(B(Y, Z)) = VX(VYZ)N
 (tVx(VYZ)N)N = (Vxy) (V (V IZ)T)N - V(yZ (VXVYZ)AV - V

 (VxVYZ)N - B(x, VyZ) = (V xVYZ)N

 since VYZ = 0. Interchanging x and y, we see that

 Vx(B) (y, z) - Vy(B)(x, z) = (VxVYZ - VYVXZ)N

 = (Rx yz)N + (V[rxY]Z)A = (RX ,Z)N

 since [X, Y] - 0.

 To prove (4.1.2) let e1, ... , ep be a frame in T(M)m. Then, using (4.1.1),
 and the symmetry of B,

 Es'=i Vei(B)(ei, z) EP Ve(B)(Z, e,)
 = 1(=7(Vz(B)(ei, ei) + (Rei,zei )N)

 But since M is a minimal variety, tr B = 0, which implies tr VZ(B) = 0. The

 theorem now follows. q.e.d.

 4.2. The second order system. We now define several new cross-sections

 in H(M). Let e1, * , e. be a frame in T(M1l)m. For x, y E T(M)m and w E N(M)m,
 set

 (4.2.1) <RPW(X), Y> = E" 1 (<Vx(R)e,,yeiq w> + <Vej(R)e,,xyq, w>)
 Clearly R' is defined independently of the choice of frame and is linear in w,

 x, and y. To see that it is symmetric in x and y, use the second Bianchi

 identity on the first piece and the first Bianchi identity on the second piece.

 We also set
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 2<Rei,,B(x, el), w> + 2<R.,,XB(y, em), w>)

 (4.2.2) KR(A)w(x), y> = , <Aw(X), Reiyei> -<Aw(y), Reei>

 + <Re,,B(,,y)ei, w> -2<Aw(ei), Rei,zy>)

 Again, R(A) is defined independently of the choice of frame. To see that it

 is symmetric in x and y, we observe that interchanging these two variables

 interchanges term one with term two, and term three with term four. Term

 five is obviously symmetric in x and y. So is term six, and this may be seen

 by using the first Bianchi identity and the fact that Aw is symmetric and

 RX, is anti-symmetric.
 We have thus seen

 PROPOSITION 4.2.1. kR and R(A) are Co cross-sections in H(M). R' de-

 pends only on the covariant differential of R in the ambient M. R(A) is
 linear in R and A.

 From Proposition 2.2.3, we see that A o A and Ao A are also cross-sections
 in H(M).

 THEOREM 4.2.1. Let A be the second fundamental form of a minimal

 variety. Then A satisfies

 V2A = -AoA - AoA + R(A) + Rk

 PROOF. Let e1, ..., ep denote a frame in T(M)m, and let E1, ..., E, be
 local, orthonormal vector fields on M which extend e,, ... , ep, and which are
 covariant constant with respect to V at m. Let x, y C T(M)m, and let X, Y

 be local extensions which are also covariant constant with respect to V. Since

 the subsequent calculation is rather lengthy, we break it up into a series of

 lemmas. The curvature form for all bundles associated with T(M) and N(M)

 will always be denoted by R.

 LEMMA a.

 V2(B)(x, y) = EP 1 (Reiz(B)(ei, y)
 + (X(PE~iyEi)N)N + (VEi(iEX Y)N)N).

 PROOF. Using (4.1.1) and (4.1.2), we have

 V((B)(x, y) = x:1 VEiVEi(B)(x, y)X Y))
 i= (Vi(Vx(B)(Ei, Y)) + VEi(REiXY) )
 - Li~l (VEiVx(B)(ei, y) ? VEi(REi,XY))

 - Lil (Re iVX(B)(ei, y) + VXVEi(B)(ei, y) + VEN(RE),XY))
 - i= (Re ,x(B)(ej, y) + VX(VEi(B)(Ei, Y)) + VEi(REi,XY))
 - i (Rei,z(B)(ei9 y) + VX(RE ,YEi)N + VE(REiXY)N)

 - Li~l (Retx(B)(ei9 y) + (Vx(REi,yEi)N) + (VEi(PEixY)N)N)
 q.e.d.
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 We now examine separately each of the three terms in Lemma a.

 LEMMA b.

 E. i (Vx(REi YEi)N)N = ES_, ((fz(R)ejiieij

 + (RB(,,ei),Yei)N + (Rei,B(xy)ei)N

 + (RejyB(x, ei))N - B(x, (R,,eij)T))-

 PROOF.

 LiP ((ReisrEi)Nf)N

 = i, ((Vx(REiYEi))N (V (REi yEi)T)N)

 = E ((V.(R)e,,Yei)N + (RVXEi yEi)N + (REiVxyEi)

 + (REiyVYXEi)N - B(x, (Rei,yei)T))

 Since at n, VxEi = VxY = 0, we see that at m, VxEj = B(x, ej) and VXY =
 B(x, y). Plugging these into the last line of the calculation proves the lemma.

 q.e.d.

 LEMMA C.

 E$=j (fEi(REiX )N

 = 2l ((Vei(R)eiYei)N + (ReiB(ei,)y)N

 + (RexzB(ei, y))N - B(ej, (Reis)y))-

 PROOF. Similar to that of the preceding lemma. One term disappears
 since

 - B(ej, ej) = 0 . q.e.d.

 LEMMA d.

 LiP ReiX(B)(eig y)

 = P ((Te i y)) B((Re-,zei) y)
 - B(ei (Re jiy)T) + Q y)

 - B(QTZeii y) - B(ei, QT,.y))

 PROOF.

 E=1 ie X(B)(eij y)

 = Eii (Re ,,(B(ei, y)) - B(Reixei, y) - B(ei, Rej,zy)) .

 The lemma now follows from Propositions 2.3.1 and 2.3.2 which express R in

 terms of R, and QN, and QT. q.e.d.

 Plugging the formulas proved in Lemmas b-d into the formula in

 Lemma a, and using the definitions of R(A) and R'(A), we have proved
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 LEMMA e.

 <V2(B)(x, y), w> = <R(A)w(x), y> + <R'W(x), y>

 L+ , (<Qei.B(ei, y), w> - <B(Qe,xei, y), w>
 -<B(e, Qixy), w>)

 We now examine the terms involving Q.

 LEMMA f. Let v,, ***, vn-p be a frame in N(M)m. Then

 /i~l <QN xB(eiq y), w> = LIP <Avi o [AW, Avj](x), y>
 PROOF.

 i y<QN .B(e, y), w> = - 1 <QNQ,xw, B(e,, y)>
 - i= j1 7 Qeis vj><B(ei, y), vj>
 n-p tP 1 <[AW, Avi](x), ei><Avi(y)g ei>

 En-p <[Aw, Av j](x), Av j(y)>

 =n-P <Avi o [AW, Avi](x), Y>

 where we have used (2.3.1) which defines QN. q.e.d.

 LEMMA g.

 -E)1 <B(QTeig y), w> = -En. p<AwAviAvj(x) y>
 PROOF. We recall Proposition 2.3.3 which defines QT.

 -EP 1 <B(Q tsei yw

 - P 1 <Aw (y), 9QTXei>

 E- 1 E-p <Aw(y), (Avi(ei) A Avj(x))(ei)>
 - EiP~l J.--P <Aw(y), <Avi(ei), ei>Avi(x) - <Avi(x), ei>Avi(ei)>

 = Ln-p Eip 1 <Aw(y) , Avj(ei)><Avj(x), ei>
 _n <AviAW(y), Avi(x)> = -l> <AWAVjAVj(x), y>. q.e.d.

 LEMMA h.

 L!1 <B(ei, QTxy), W> = -<AA(w)(X), y> + 13 n-P <AiAwAVi(x), y>A

 PROOF.

 - 1 <Aw(ei), QTy>
 = 1 n-1p <Aw(ei), (Avi(ei) A Avi(x))(y)>
 = Ejn-p <AW(ei), <Avi(ei), y>Avi(x) - <Avi(x), y>Avi(ei)>
 = P~ 1n-Ip (<AW(ei), Avj(x)><Avj(ei), y>- <AW(ei), Avj(ei)><Avj(x), y>)
 = n-p (<AWAVj(x), Avj(y)> - <A(w), vj><Avj(x), Y>)

 - K<AAIw)(x), y> + E"- <AvjAWAVj(x), y>. q.e.d.
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 PROOF OF THEOREM. Plugging the formulas proved in Lemmas f, g, and

 h back into the formula of Lemma e yields

 <V2(B)(x, y), w> = <R(A)w(x), y> + <R'w(x), y>

 - <AAlw)(X), y> - <(4(AW))(x), y>

 Clearly <V2(B)(x, y), w> = <V2(A)w(x), y>, and thus the theorem is proved.
 q.e.d.

 5. Closed minimal varieties in spheres

 5.1. Index and nullity. The simplest example of a closed, p-dim, mini-

 mal variety in S? is SP with the usual totally geodesic imbedding. In order

 to compare other minimal varieties to SP, we observe

 PROPOSITION 5.1.1. When SP is regarded as a minimal variety in SI,

 its index is n - p and its nullity is (p + 1)(n - p).

 PROOF. Since the normal bundle N(SP) is trivial, we may choose V1, *,

 V,_p_ to be covariant constant cross-sections in N(SP) such that, at each
 m e SP, { V(m)} is a frame in N(SP)m. We also note that, for any p-dim
 minimal variety in Sn, (3.2.1) gives

 (5.1.1) R(v) -pv.

 Thus, since in this case A _ 0 (3.2.4) becomes

 (5.1.2) I( V, W) - p <-V2V V, W>.

 Therefore the eigen spaces of I, are exactly those of -V2, and if X is an

 eigenvalue of - V2, the corresponding eigenvalue of I is X - p. Any cross-

 section V in N(SP) is of the form V = P , gi Vi where the {go} are functions
 on SP. Since the { Vi are covariant constant, - V2 V = -P- V2(gi) Vi.
 Thus, -V2V= X V if and only if

 (-V2(gl), . . ., -V2(gn-p)) = (Xg1, .* . . Xgn-p)

 Therefore the X-eigenspace of - V2 acting on cross-sections in N(SP) consists

 exactly of (n - p)-tuple of x-eigenvectors of - V2 acting on functions on SP.

 Now, on functions, - V2 has a 1-dim 0 eigenspace consisting of the constants,

 and it has a (p - 1) dim eigenspace corresponding to the eigenvalue p. This

 space consists of the restriction to SP of linear functionals on RP+'. The other

 eigenvalues of - V2 on functions are all strictly greater than p. Thus, on

 cross-sections in N(SP), - V2 has an (n - p) dim O-eigenspace, and (p + 1)(n - p)

 dimensional p-eigenspace, and all other eigenvalues are greater than p. Thus,

 I has an (n - p) dim eigenspace corresponding to - p, and a (p + 1)(n - p)

 dim O-eigenspace, and all other eigenvalues are positive. q.e.d.
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 THEOREM 5.1.1. Let M be a compact, closed p-dim minimal variety im-

 mersed in S". Then the index of M is greater than or equal to (n - p), and

 equality holds only when M is SP. The nullity of M is greater than or equal

 to (p + 1)(n - p), and equality holds only when M is SP.

 PROOF. Let e denote the (n -i 1) dim vector space of vector fields on S'

 which are tangential projections onto Sn of parallel vector field in R"+.

 LEMMA 5.1.1. Let Zc i. Then given any m e Sn, there is a X such that,

 for any x c T(Sn)m,

 (5.1.3) VZ= x

 where V denotes covariant differentiation in Sn.

 PROOF. Let V denote covariant differentiation in R Z WT where

 W is a parallel field in Rn+'. Thus

 VXZ (VxZ) = (Vx WT) = -(V. WN)T = A' (x)

 where A denotes the second fundamental form of Sn in Rn+'. But AwN = XI

 where I denotes the identity transformation. q.e.d.

 Since Z e ~ is a vector field on Sn, restricting it to M, and projecting into

 normal and tangential components, gives cross-sections ZN and ZT in N(M)

 and T(M) respectively.

 LEMMA 5.1.2. Let Z e d. Then when ZN and ZT are regarded as cross-

 sections in T(M) and N(M), they satisfy

 (5.1.4) VXZN - B(x, ZT)

 (5.1.5) V ZT AzN(x) + X

 where x e T(M)m, and X is independent of x.

 PROOF. Using (5.1.3), we see

 VXZN = (VXZN)N = (VXZ - VxZT)N

 = (\X VxZT)N = 0 - B(x, ZT)

 Again by (5.1.3),

 VZT (VxZT)T (VxZ - VxZN)T x + AZ(x). q.e.d.

 LEMMA 5.1.3. Let Z e B. Then, when ZN is regarded as a cross-section

 in N(M), it satisfies

 (5.1.6) V2(ZN) = -A(ZN).

 PROOF. Let el, ..., ep be a frame in T(M)m, and let E1, l.., EP be exten-
 sions to orthonormal vector fields in a neighborhood of m such that V8.Ej =
 0. Then, by (5.1.4),
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 V2(Z ) E=P V i.V~.(ZN) = = VEi(B(Ej, ZT))
 - -. (V..(B3)(e ZT) + B(V,.E?, ZT) + B(e,, V.Z T))

 Using Theorem 4.1.1, and the fact that the ambient M is S", we see that the

 first term is 0. The second term vanishes since V. Ei = 0. Thus

 V2(ZN) = _j:1 B(ei, V. ZT)
 Now, using (5.1.5),

 V2(ZA) = P 1 (XB(ei, en) + B(ei, AZN(ej))).
 The first term vanishes since M is a minimal variety. Slight algebraic manip-

 ulation shows that the second term is exactly -A(ZN). q.e.d.

 LEMMA 5.1.4. Let Z c ?. Then, when ZN is regarded as a cross-section

 in N(M), we have

 I(ZN, Za) p 11 ZN 112
 M

 PROOF. Since (5.1.1) holds for any p-dim minimal variety in So, (3.2.1)

 gives

 I(ZN, ZN) = <-V2(ZN) - pZN A(ZN), ZN>.
 M

 Lemma 5.1.3 now gives the desired conclusion. q.e.d.

 Let Av denote the vector space of cross-sections in N(M) consisting of

 the elements ZN where Z e d. We have proved

 LEMMA 5.1.5. The index form, I(,), when restricted to the finite dimen-

 sional vector space by, is negative definite.

 LEMMA 5.1.6. Dim ly > n - p. Dim lN = n -p if and only if M is

 diffeomorphic to SP, and imbedded in the standard way as a totally geodesic

 submanifold.

 PROOF. At each m e M, e spans the entire tangent space T(S7)m. Thus,

 at each m, N spans N(M)m. Therefore dim bN > (n - p).

 Suppose dim i = (n - p). Let ! be the kernel of the homomorphism of

 eN by.Jf Z erAd ZT = Z at every point of M. Now for some m e M, let /m

 be the kernel of the homomorphism $ - N(M). defined by Z - (ZN)(m),
 Clearly ! ' dime On the other hand, dim Dit, = n + 1 - (n - p), and our as-

 sumption that dim IN = (n - p) implies that dim r = n + 1 - (n - p). Thus

 'l f/m. Since Z-o ZT(m) maps Sm onto T(M)m, it also maps '2onto T(M)m.
 We have therefore shown that dim ON = (n - p) implies

 (*) Given z e T(M)m, there exists Z e e such that Z(m) = z, and Z is

 everywhere tangent to M.
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 Using (*) and (5.1.4) we see that, for x, Z e T(M)m,

 B(x, z) = -VXZ = 0 .

 Thus B _ 0, and so M is totally geodesic. The only such immersed submani-
 fold of SI is SP. q.e.d.

 Lemmas 5.1.5 and 5.1.6 prove the first half of the theorem.

 Let a2 denote the vector space of Killing vector fields on S%. If W e &2,
 WN defines a cross-section in N(M) by normal projection. From Corollary
 3.3.1, we see

 LEMMA 5.1.7. For We 52, WN is a Jacobi field on M.

 The above lemma could actually be proved directly, in this case, via

 calculations similar to those used in proving Lemma 5.1.3. However, we shall

 omit this alternative.

 Let &2N denote the finite dimensional space of cross-sections in N(M)

 consisting of the Jacobi fields WN.

 LEMMA 5.1.8. For fixed m e M, let v e N(M)m, and h e Hom (T(M)m,
 N(M)m). Then 3 V e &2N such that

 V(m) = v and (V, V)(m) = h(x) .

 PROOF. Let g be some skew symmetric endomorphism of T(Sn)m such

 that g I T(M)m = h. By standard facts about the killing vector fields on Sn,
 there exists a unique W e i2 such that

 (*) W(m) = v and (V.W)(m) = g(x) vx e T(S-),,.

 Let us set V = WN. Clearly V(m) = v. Now, using (*),

 V V = V WN = (VX WN)N = (VX W)N - (V WT)N

 = g(x) - B(x, WT(m)) = h(x)
 since WT(m) = 0. q.e.d.

 LEMMA 5.1.9. Dim uN > (p + 1)(n - p). Dim &N = (p + 1)(n - p) if

 and only if M is diffeomorphic to SP, and imbedded in the standard way as
 a totally geodesic submanifold.

 PROOF. For fixed m e M, we define

 99,m ON N(M)mn ED Hom (T(M)mn, N(M)mn)
 q'm(V) = (V(m) ,h) where h(x) = VV V.

 Clearly q'm is a linear transformation, and Lemma 5.1.8 shows that (P. is onto.
 Thus, dim ON > (n - p) + p(n - p) = (p + 1)(n - p).

 Suppose dim &2N = (p + 1)(n - p). This means that qn is an isomorphism.
 Thus, if We a2, such that WN(m) = 0 and Vx WN(m) = 0 for all x e T(M)m,
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 then WN= 0, i.e., W is everywhere tangent to M.
 Let Gm be the subgroup of the full isometry group of Sn consisting of

 elements g which satisfy

 g(m) = m , dg(T(M)m) = T(M)m , dg I N(M)m = I.

 The elements dg are exactly the full orthogonal group of T(M)m. Clearly,

 the killing vector fields corresponding to Gm are elements W e &2 satisfying

 W(m) = 0 V We T(M)m for x e T(M)i

 VW= O for veN(M)m.

 However, if W satisfies (*) we see that WAT(m) 0, and

 1VXWN - (V W)N = (V.W)N -(VWT)N

 = - B(x, WT) = 0 .

 Thus, by the assumption dim f2N = (p + 1)(n - p), we see that W is every-

 where tangent to M. Therefore Gm acts on M, mapping it into itself. Since

 the orthogonal transformations dg(m) are transitive on the unit vectors in

 T(M)m, and hold the normal space fixed, we may conclude that B(e,, e,) =

 B(ej, ej) for e,, ej distinct unit vectors in T(M)m. But this implies B- 0.
 Since m was arbitrary, M is totally geodesic. q.e.d.

 Lemma 5.1.7 and 5.1.9 now prove the second half of the theorem.

 5.2. An extrinsic rigidity theorem. In [8] it is proved that any non-
 parametric, cone shaped, minimal variety in R"+' is a hyperplane. This is

 equivalent to a statement about the image of the Gauss map of a closed, co-

 dimension 1, minimal variety in S". Below we shall give a short proof of this

 theorem, and then go on to obtain a similar result for minimal varieties in So

 of arbitrary co-dimension.

 Suppose M has co-dimension 1 in S?. Having chosen an orientation let

 N(m) denote the unit normal vector at m. N(m) is parallel to a unit vector

 in Rn+' based at the origin, and thus defines a point on Sn which we denote

 by m*. Let M* denote the image of M under the mapping m - m*. The

 following is equivalent to the theorem of [8].

 THEOREM 5.2.1. Suppose M is a closed minimal variety of co-dimension

 1. Then either M* is a single point, in which case M = SI`, or M* lies in

 no open hemisphere of S%.

 PROOF. Let w e Sn, By parallel translation, w defines a unique parallel
 vector field W in Rn+l Via tangential projection onto S", W corresponds to

 a vector field Z e Q (see Lemma 5.1.1). Clearly

 <m*, w> = <N(m), Z> .
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 Thus, it is sufficient to prove

 (*) Let Z e d. Then <N(m), Z> > 0 everywhere implies that M = SI-'.

 To prove (*), we set F(m) = <N(m), Z>. Then F is a real valued function on
 M. Now, <N(m), Z> = <N(m), ZN>, and since N(m) is covariant constant,
 we see

 V2F = <N(m), V2(ZN)> = -<N(m), A(ZN)>

 by Lemma 5.1.3. However, since we are in co-dimension 1, the definition of

 A shows that A(ZN) = ||A 112ZN . Thus

 V2 F= -HIA 112F.
 Since M is closed, Stokes' theorem gives

 II 112 A F = 0
 M

 But, if F > 0 everywhere, II A 2 = 0 everywhere, and this implies AO 0
 which implies M is totally geodesic. q.e.d.

 Let Gn"+j' denote the Grassmann manifold of oriented (n - p)-planes in Rn

 The elements of G11iP may be identified with the decomposable elements of
 unit norm in the Grassmann algebra A-PRn+l If g1, g2 e GP, we let <g1, g2>
 denote their inner product under this identification.

 Definition. Let -1 < 3 < 1. If g1 e GiP9, we define the 3-ball about
 to equal the set of g2 e G-P such that <g1, 92>> 3.

 Clearly the (-ball about g1 is an open neighborhood of g1. If n-p 1,

 Gn+= S, and the 0-ball about g1 is the open hemisphere with g1 as center.
 Let M be a p-dimensional submanifold of Sn+'. Having chosen an orienta-

 tion for M, let N(m) denote the oriented (n - p)-dimensional normal space at

 m. N(m) is parallel to an oriented (n - p)-plane through the origin, and thus

 defines a point in Gn-+P, which we denote by m*. Let M* denote the image of

 M under the mapping m m*.

 THEOREM 5.2.2. There exists a constant 6 depending only on p and n

 such that, for any closed, p-dim immersed minimal variety M, either M is

 SP, in which case M* is a single point; or M* lies in no a-ball in G-P.

 PROOF. Let w e G-4P. w may be identified with w1 A ... A w_, where
 each wj is a vector in Rn+, and where 11 w1 A ... Aw *wnp II = 1. By parallel
 translation, w defines a unique parallel field W = W1 A ... A W._p in all of
 R"'. Via tangential projection onto S", W corresponds to Z = Z1 A\ */ -pA
 a field on SI, where each Zi e d. We clearly have

 <m*, w> = <N(m), Z>,

 where the right hand side is the inner product of two tensors in T(S")m. We
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 also note that Z < 1 at each point. Clearly

 <N(m), Z> = <N(m), ZIN A ... A * ZNp>.

 The theorem may now be restated.

 (*) There exists a s < 1 such that, for any closed p-dim minimal variety

 M, and any Z1, * * , Zn-p e $ with I Z1/ A ... A Zn-p I I < 1, everywhere, F(m) =
 <N(m), Z[NA ... A ZNp> < 3 at some m, unless M is SP.

 Now, N(m) and Z[NA . .. A ZfP are both cross-sections in Al-PN(M).
 Moreover, N(m) is parallel. Thus, for x e T(M)m

 VxF =E,- <N(m), ZNA /\ A VZZN ... /\ Zn-p> A
 and therefore

 V2F = _71' <N(m), ZN A ... A V2(ZjN) A ... A ZNp>
 + 2 E (- 1)j+k+l<N(m), [E> VN.Z7 AV.sZ ]
 +~~~z 2\ Ej\ i= \ ** */\ZjNA /\ ** \ n-k

 A ZYA ...A ZjvA ..A ZNA .. A ZLP >.

 Using Propositions 5.1.2 and 5.1.3, we see

 V2F = -E3.-'<N(m), Z1NA A. A A(ZjN) A * A ZA >

 + 2Ej<k (- )ij+?+KN(m), [> B(ej, Zf) A B(ej, ZkDI
 A ZNA/\ ... A ZjA A * A ZjA /\ *A Zn-p>.

 The first piece of the above is exactly - tr A<N(m), Z/N A ... A ZnLp>.
 It is easily seen from the definition of A that tr A = IIA 112 Thus

 T = - IA12F.

 Let us now suppose that F(m) > 0. Thus, Z/N A ... A ZZp(m) ? 0.
 Since Z1 A ... A Zn-p is invariant under any unimodular transformation, we
 may assume that the following conditions hold at m:

 IZj 1= x all j=1,...,n-p;
 <Zj Zk> =O all j # k;

 <Zi S Zk > = ? all j # k;

 <ZkjZk)=0 all j # k .
 The last condition is implied by the previous two conditions. Using these we

 see

 = [2 j<k 1 2 J1 <B(e, ZjT) A B(ej, Zk,) Zj3 A Zk >]F
 j 11 ZjN 112 11 ZkN 12 , ]F

 = jk= IZjN 112 11 ZN [Azj, Azk ](ZjT, Z&]F.
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 Letting q denote the coefficient of F in (, our equation at m now reads:

 (5.2.1) V2F = (9p-f I A 2)F.

 We wish to estimate I f 1. Clearly

 f2f ?9 7i~ I - <[Ar , Ak](Zk ), Zk > . ZjIZI~rfIIIZNA H2Z

 For j = 1, * *, n- p set v; = (1/1l ZjN ff)Zf1. Then v1, ... * ,vp is a frame in
 N(M)m. Also, for j = 1, - - *, n - p, set

 If~ ej - 1 ZjT if I I ZjT I I 0
 ej 0 O if | ZT ||=o

 191 ? < IIn-p Zj f Ik I <[Avi, Avk](ej), ek> I
 j H~ IZjNII 1f ZN ff

 < supj=l."-p {f 1 ZjT 4 kl (I <Avi(ek), Avk(ej)>

 + I <Avj(ej), Avk(ek)> |)

 Examining these terms, and using the fact that the {ej} are a partial frame

 in T(M)., we have

 k I <Avi(ek), Avk(ej)> I < 1 k (II AVi(ek) H2 + If Avk(ej) 112)

 = -lP 1 11 AVi(ej) 112 < ?1 A 12.

 We also have

 k-| <Avi(ej), Alk(ek)> I - k (If Avi(ej) 112 + I| Avk(ek) 112)
 = (n- p)I AvJ(ej) 12 < (n-p)1 A 112

 We have therefore proved

 191 sUpf=,. II2( - p + 1) IIAl2
 I ZjNf2

 Since

 I Z|ff1 2 + ff ZT 1f 2 = |Z |f2 = X2 <1

 we see

 || ZT 112 < 1-11 ZN 112

 and therefore

 11 Zj 12< 1 1
 ZjN 112 - II ZjN I12

 Since F2(m) = If ZN 112 ... 1f Z4_p 112 and each of the factors is smaller than 1,
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 we see that Hl ZN I2 > F2(m). Thus

 1 1 1 _
 1 Z-N 112 F 2(m)

 Therefore, at m we have

 1 I<(n - p + 1)(F2(M) -i) 11AJ2.

 Up to this point, we have used only the assumption that F(m) > 0.

 Plugging our estimate for I 9 I into (5.2.1), we have proved

 V2F12 VF < [(n- p + 1( -)1] 11 A 1
 F L F2 JJ

 where the above holds at all m where F(m) > 0.

 Now, suppose that, at all m E M, F satisfies the inequality

 (5.2.2) F(m) > (n-p + 1)1/2
 n -p + 2

 Then certainly F > 0 everywhere, and inserting this inequality into the

 previous one, yields

 V2F < -el IA 112 everywhere ,

 where s > 0 is a constant. Thus

 V2F <-s 11 A112F,

 and so by Stokes' theorem,

 I 11 A11l2 F < 0 .
 M

 Since F satisfies (5.2.2) , we must have II A 112 =-O everywhere, and so M is
 totally geodesic. We have thus proved (*) with

 a = (n-P + i)112 . q.e.d.
 n -p + 2

 It would be nice if one could prove Theorem 5.2.2 with a = 0, as it is in

 the co-dimension 1 case. If this were true, it would imply that the (p + 1)-

 plane in Rn+', which is spanned by T(M)m and the radial vector m has non-
 trivial intersection with every fixed (n - p)-plane in Rn+1. In any event, the
 result is strong enough to prove a rigidity theorem.

 THEOREM 5.2.3. Let f: SPY Sn be the usual totally geodesic imbedding.

 Then there is a C' neighborhood of f in the space of C- immersions of SI

 S, such that no f' in this neighborhood is a minimal immersion, unless f' =
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 Go f where G e O+'(Rn+').

 PROOF. Since (SP)* is a single point in Gn-P, we can obviously choose a

 C' neighborhood of f such that, if M = SP together with f' in this neighbor-

 hood, then M* ' s-ball in Gn+P. Thus M is not minimal unless M is totally

 geodesic, in which case f' = G o f for some orthogonal G. q.e.d.

 5.3. The fundamental equation and an intrinsic rigidity theorem. In

 this section we examine the fundamental elliptic equation in the special case

 where M= S. It has several interesting consequences, one of which bears

 on the internal geometry of M.

 THEOREM 5.3.1. Let M be a p-dim minimal variety immersed in Sn.

 Then the second fundamental form satisfies

 (5.3.1) V2A=pA-AoA-A-A.

 If M is of co-dimension 1, the equation becomes

 (5.3.2) V2A = pA-11 A J2 A .

 PROOF. Since the ambient manifold is So, formula (4.2.1) shows R' 0.
 Also, for any ti, t2, t3 E T(S")m, we have

 R t11t2t3 = <t19 t3>t2 + <t29 t3>tl.

 Using this formula in (4.2.2) shows

 R(A) = pA.

 Plugging these facts into Theorem 4.2 yields formula (5.3.1). To prove (5.3.2)

 we observe that, from the definitions of A and A, (2.25) and (2.26), the as-
 sumption of co-dimension 1 shows that

 AoA 0 and AoA= 1AI12A.
 Thus (5.3.2) follows from (5.3.1). q.e.d.

 LEMMA 5.3.1. The second fundamental form A of any p-dim variety in

 any manifold always satisfies

 <Ao A + A oA, A> ? q | A114
 where

 q=2- 1
 n-p

 PROOF. Using Proposition 2.2.3, we may choose a frame v1, ..., v.P in
 N(M)m such that

 A(vi) = Xvi and 11A ll2= - X X

 Thus
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 <A a A, A> V <A o A(vi), Avi>

 - Nip1 X<Avi, Avi> - @j?1- K4<A(vi), vi> = zi1 As.
 We also see from Proposition 2.2.3

 <A o A, A> - A-7 I II [Avi, Avj] 12 < 2E nP 11 Avi 112 11 Avi 112 =2 _ tP

 Thus combining the two estimates,

 <AoA + AoA, A> < E'iI7M + 2

 = 2 [n P 2]2 - Din \4

 ? [2 1 1[EtflP 2 q If A I. q.e.d.

 THEOREM 5.3.2. Let M be a closed, p-dim minimal variety immersed in

 S . Then its second fundamental form A satisfies the inequality

 (5.3.3) 1 1(| A 1!2 - Pq 11 A 112 > ?

 PROOF. Using (5.3.1) and the fact that V2 is negative semi-definite, we

 see

 0 <? <V2A, A> p 11 A 112 + <AoA, A> + <AoA, A>.
 M ho

 Now, using Lemma 5.3 we see

 0 < 5-p A 112 + q II A114 = q II AIj2 ( AII2P). q.e.d. ~~~~~~~~~ q
 Remark 5.3.1. The lower bound for this estimate is, of course, achieved

 when M = Sn. However, there are non-trivial examples when the lower bound

 is achieved. A class of these is the following. Let Sn(r) denote the n-sphere

 of radius r in R"+'. Then

 sits naturally in S2,f+A as a 2n-dim minimal variety. An easy calculation shows

 A12-= _2n.

 COROLLARY 5.3.2. Let M be a closed, p-dim minimal variety immersed

 in S". Then either M is the totally geodesic SP, or II A H2 p/q, or at some
 mGM, M AlII2(M) > p/q.

 PROOF. Suppose II A 112 < p/q everywhere. Then (5.3.3) shows

 ms q A

 Thus IV2A =_ O. which implies that A is covariant constant, which implies that
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 1 A H2 is a constant. Thus either II A I2 ,_ O or I A I 2 p/q. In the first case
 M is SP. Therefore, except for these two possibilities, II A I2 (m) > p/q some-
 where. q.e.d.

 Although the above theorem appears to be an extrinsic comparison of M

 with SP, it is in fact an intrinsic comparison, as we show below.

 Definition. If M is a riemannian manifold and m E M, we let k(m) de-

 note the scalar curvature of M at m. We choose to define k(m) to be the
 average of all the sectional curvatures at m; i.e.,

 k(m) = -1 CP <Re ee>

 PROPOSITION 5.3.1. Let M be a p-dim minimal variety immersed in Sn.
 Then

 (5.3.4) k(m) = - 1 -A 2
 p(p - 1)

 PROOF. Using Propositions 2.3.2 and 2.3.3, and the fact that the ambient
 manifold is Sn, we see

 <R.,81jei, ej> = -<e, A ej, ei A ej>

 - in-p <Avk(e,) A Avk(ej), ei A ej>
 Thus

 P(Pm-11) Ek+1 j= (<Avk(ei), ei><Avk(e6) e6>

 - <Avk(ei), ej><Avk(ej), ei>)

 But since each Avk is symmetric, and has trace 0, we get

 k(m)=1- p(p 1) :k Li j=l<Avk(ei) ,ej>

 =1- ( -1) HAl2 q.e.d.
 AP - 1)

 THEOREM 5.3.3. Let M be a closed, p-dim minimal variety immersed in

 S . Then its scalar curvature k satisfies the inequalities

 k(m) < 1 everywhere,

 and

 -(1 k(m))(1 - q(p_1)-k(m)) > .

 PROOF. Follows directly from (5.3.3) and (5.3.4). q.e.d.

 COROLLARY 5.3.3. Let M be a closed, p-dim minimal variety immersed
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 in S". Then either M is SP, in which case k(m)-1, or k(m)-1-1/(q(p-1)),

 or at some m E M, k(m) < 1 - 1/(q(p - 1)).

 PROOF. Follows directly from (5.3.4) and Corollary (5.3.2).

 An immediate consequence of the above corollary is the following rigidity

 theorem.

 THEOREM 5.3.4. Let g denote the standard metric on SP. Then there is

 a C2 neighborhood of g in the space of non-equivalent riemannian metric

 such that SP, together with any g' in this neighborhood, cannot be isometri-

 cally immersed in S" as a minimal variety.

 PROOF. Let U = {g' I g' -$- g and k'(m) > 1 - 1/(q(p - 1)) at all m e SPI
 where k' denotes the scalar curvature associated to g'. An isometric minimal

 immersion of any such (SP, g') would imply, by Corollary 5.3.3, that the image

 was totally geodesic. But this would mean that g' - g. q.e.d.

 5.4. Holomorphic quadratic differentials. In the case that p = 2 and

 n = 3, the above Theorem 5.3.4 may be strengthened. In fact, it is shown in

 [9] that S2, together with no riemannian structure, may be isometrically im-

 mersed in S3, unless that structure is equivalent to the standard one. The

 proof follows from the observation that the second fundamental form, in this

 case a real-valued bilinear form, is the real part of a holomorphic quadratic

 differential with respect to the conformal structure induced by the inherited

 metric, and the fact that the Riemann-Roch theorem implies that any such

 on S2 must be zero.

 If we remain in co-dimension 1, the second fundamental form is still a

 real-valued bilinear form on M. The first order conditions that make it the

 real part of a holomorphic quadratic differential when p = 2 are simply the

 fundamental first order systems (4.1.1) and (4.1.2) applied to M = S%. That

 is, we have already shown

 THEOREM 5.4.1. Let M be a co-dimension 1 minimal variety in SI. Then

 the second fundamental form B is a symmetric real-valued bilinear form

 which satisfies

 (5.4.1) tr B = 0 and V.(B)(y, z) - V,(B)(x, z) = 0 vx, y, z.

 When dim M = 2, B satisfies (5.4.1) if and only if the form Q(x) =

 B(x, x) - iB(x, J(x)) is a holomorphic quadratic differential (J being the usual

 90? rotation). In higher dimensions, and on a compact manifold, bilinear forms

 satisfying (5.4.1) span a finite dimensional space, however there is no obvious

 relation between its dimension and some topological or differential invariants

 of the manifold. To ask that the dimension of this space be stable under all
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 changes in metric is probably a bit much, however one can easily show that

 it is stable in a C2 neighborhood of the standard metric on SP.

 THEOREM 5.4.2. If B satisfies (5.4.1), then B satisfies

 (5.4.2) V2B(x, y) = EP R.j,X(B)(e9, y)
 Conversely, if M is compact and B satisfies (5.4.2), then B = Xg + H

 where X is a constant, g is the metric, and H satisfies (5.4.1).

 PROOF. The first part is essentially Lemma a of Theorem 4.2.1. The

 converse follows easily from Stokes's theorem.

 If we set R(B)(x, y) = EP Rejx(B)(ei, y), it is easy to see that, with the
 standard metric on SP, R(B) = pB so long as tr B = 0. Thus on the space of

 B with tr B = 0, equation (5.4.2) becomes V2B = pB. This clearly has no
 solutions on SP, and thus the dimension of the space satisfying (5.4.1) is zero.

 Via perturbation of the standard metric we see

 THEOREM 5.4.3. Let g' be any metric on SP such that for all symmetric

 bilinear forms B with tr B =0, g'(R'(B), B) > 0, where R' is the curvature

 associated with g', and R'(B) is as defined above. Then such g' form a C2

 neighborhood of the standard metric, and with respect to any such g', the

 dimension of the solution space to (5.4.1) is zero.

 6. Minimal varieties in euclidean space

 6.1. Cone shaped varieties. In [9] Almgren showed that the cone over
 any 2-dimensional minimal variety in S3, except for the totally geodesic S2,
 is unstable with respect to its boundary. This fact has important conse-

 quences which are outlined in the next section. The method he used depended
 on the conformal analysis of 2-dimensional manifolds and on the Gauss-Bonnet

 theorem. In the present section we show that this instability theorem is true

 for the cone over any immersed, co-dimension 1 minimal variety in SI for

 n < 6. The proof depends on the elliptic methods developed in the previous

 chapters. We also give an example of a minimal variety in S7, the cone over

 which is locally stable in the sense that every variation holding the boundary
 fixed is initially increasing area.

 Definition. Let M be an immersed submanifold in S7. The cone over M,

 CM, is the mapping of M x [0, 1] -p Rn+' defined by (m, t) ) tm.
 The s-truncated cone over M, CM,, is the same mapping restricted to

 M x [s, 1].

 PROPOSITION 6.1.1. Let M be a closed minimal variety in S71. Then

 CM - 0 is a minimal variety immersed in R1+1. CM, is a compact minimal

 variety immersed in RI+' and aCM, = M U M,, where M, denotes the set of
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 points em for m e M.

 PROOF. Let z denote the unit vector field on CM corresponding to the

 coordinate t. The integral curves of z are rays to the origin. Let V denote

 covariant differentiation in R7+. Clearly V:: 0. Let m e M be fixed, and

 let e1, .**, e, be a frame in T(M)m. Extend them to orthonormal local vector

 fields on M, E1, l.., EP, chosen so that they are covariant constant at m with
 respect to the connection on M. By parallel translation in Rn+' extend them

 up and down the rays to get vector fields on CM. For any t, {E,(m, t)} are

 orthonormal. Then, since M is minimal in Sn, an easy calculation shows

 (6.1.1) P VEEi Vt e (0, 1] .
 Thus

 [Vrz + E.=1 VEEi] = 0?
 where [ ]N denotes projection into the normal space to CM at (m, t). Thus

 CM - 0 is a minimal variety in Rn+l So therefore is CME, and clearly its

 boundary is M U M,. q.e.d.

 LEMMA 6.1.1. Let A(m, t) denote the second fundamental form of CM

 or CM, at (m, t). Let A(m) denote the second fundamental form of M at m.
 Then

 11A(m,t) 2_ 1 A(m) 2
 t2

 PROOF. This is simply a statement about the way in which principal

 curvatures behave under dilations. q.e.d.

 If F(m, t) is a function on CM or CM,, for each fixed t, let F, be the
 function on M defined by F,(m) - F(m, t).

 LEMMA 6.1.2. Suppose M is a p-dim minimal variety in Sn, and F(m, t)

 is a Co function on CM or CME. Then

 IV2 (F)(m, t) = V2(Ft)(m) + p 'F(m, t) + 2F(i, t) .

 PROOF. Let El E,E be defined as in Proposition 6.1.1. We first
 observe

 VEi(F)(m, t) = -VEi(Ft)(m)) t

 The above formula holds since the Et were defined along CM by parallel

 translation up and down the rays, and not as the image of the e, under

 m - tm. Moreover,
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 (*) E= VEiVEi(F)(m, t) = 1 E VE.VEi(Ft)(m) = i2 V(Ft)(m)

 Thus,

 V2(F)(m, t) =a2F(m, t) ? EP=1 Veje(F)(m, t)

 - a(in t) + E=1 (VEiVE.(F)(m, t) VVE.E(F)(m, t))

 Now, using the above (*) and (6.1.1), the Lemma follows. q.e.d.

 LEMMA 6.1.3. Let M be a co-dimension 1, closed minimal variety im-

 mersed in Sn. Let N(m, t) denote the unit normal field on CM,. Let F(m, t)
 be a C- function on CM, such that F(m, 1) = F(m, s) = 0 for all m. Set

 V(m, t) =F(m, t).N(m, t). Then V(m, t) is a cross-section in N(CM,) which

 vanishes on aCM,, and we have

 I(V, V) = _ -V2(Ft) - A(m) 112 F - tpKF -t2 F, tp-2F
 jMxE,1]1 at at2'

 where the integration is carried out with respect to the product measure,

 and p = n - 1 = dim M.

 PROOF. Using the fact that the ambient manifold is euclidean space,

 which causes the curvature term to drop out, and the fact that we are in co-

 dimension 1, which makes A(V) = I A 112 V, formula (3.2.4) gives

 I( V, V) < <-V2C(F)(m, t) - I A(m, t) 112 F. F>
 CM,

 Lemmas 6.1.2 and 6.1.1 now give

 I(V, V) = _ -V2(Ft) - IA(m) 12 F - tpaF -t20F I2 F>
 JCM, at at2 t2

 Clearly the volume form on CM, is tP times the volume form on M x [s, 1].

 The Lemma now follows. q.e.d.

 The above lemma suggests the definition of two differential operators:

 L1: C-(M) - C(M), L1(f) -V2(f) I- A I 12f
 L2: C-[s, 1] - Cls, 11 , L2(g) = -t2g"- ptg'

 LEMMA 6.1.4. L, may be diagonalized in C(M) by eigenfunctions {ft}.

 To each i corresponds an eigenvalue Xi, and we have

 x1 < 'X2 < ... < Xi < ...>

 If i # j, then fifj = 0. If f e C(M), then it has a unique decomposition

 f= U= aift.
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 PROOF. This is essentially a restatement of Proposition 3.2.1. q.e.d.

 LEMMA 6.1.5. Let CO[R,. 1] denote the C- functions on [R, 1] which vanish
 on the end points. Then L2 may be diagonalized on this space by eigenfunc-

 tions {gi}. To each gi corresponds an eigenvalue 8i, and we have 8, < 8, < **< 8i < * *oo. In fact,
 gi =t sin ( C log t)

 log's

 = (P - 12 + ~ 2.
 i(2 ) g A)

 If i j j, then gigjtp-2 = 0. If g e CO [e, 1], then there exist unique constants

 {ai} such that g = aigi.

 PROOF. Direct calculation shows that L2(gi) = 8igi, and that these are all

 of the eigenvectors of L2 in CO[R, 1]. For g, h e CO[R,. 1], the fundamental
 theorem of calculus shows

 L2(g) htp-2 = 5 L2(h) gtp-2.

 Thus for i + j, since 3i 8 Qj, gi and g1 are orthogonal with respect to this
 inner product. The expansion of g follows as a consequence of orthogonality.

 q.e.d.

 LEMMA 6.1.6. With the hypotheses of Lemma 6.1.3, we may choose

 F(m, t) such that I( V, V) < 0 if and only if X1 + 81 < 0, where X1 and 81 are

 defined in the above two lemmas.

 PROOF. Since F(m, t) vanishes on aCMS, Lemmas 6.1.4 and 6.1.5 show

 that F has a unique expansion as

 F(m, t) = = aijfi(m)gj(t)

 Now, using Lemma 6.1.3,

 I( V, V) = 3K~7I[8 i,=1 (a;jL,(fi)gj + ai jfL2(g5)), tp-2 > a f g6>

 = 00 a[Xi + aj~ 2 ~ a~ff~ = \ <s j~laij[\ +afigjg tp- Ei j0 aij figj>

 E ;7jkl=1 aijakdI + ai s i f fikgjgltp-.

 Using Lemma 6.1.4 and 6,1.5 again, we see

 I( V, V) = aj[xi + 8j]

 If I(V, V) < 0, then some Xi + 3j < 0, but since X1 < Xi and 81 < 3j, this
 implies that X1 + 81 < 0. On the other hand, if X1 + 81 < 0, we may simply
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 take F(m, t) =f1.g which would give I(V, V) = X1 + 83. q.e.d.

 In Lemma 6.1.5 we calculated 8i. We now wish to examine xi.

 LEMMA 6.1.7. Let M be a closed, co-dimension 1 minimal variety im-

 mersed in S%. Then Xi ? - p unless M is the totally geodesic S'I`, in which
 case '1 = O. As before, p = n- 1 = dim M.

 PROOF. If M = S ', then L1 - V2, and certainly X1 = 0 with the other
 eigenvalues strictly positive. In general we have

 (*) 1 < [a ~~~~f2| LI(f ) f
 MM

 for any f e C-(M) with f t 0. We will prove the theorem by choosing a one-

 parameter family of f's, plugging each into (*) and passing to the limit.

 For any s > 0, set f, = (1 A 112 + 6)1/2. Clearly fe C-(M), and if M is not
 totally geodesic, then

 (**) limc@0 = A 2 0.
 M M

 Let e1, ***, ep be a frame in T(M)m. Then

 Veifs =Vei(<Aq A> + S)1/2 - (<A, A> + s)-1"2<VeiA, A>.

 Thus

 Vf (<A, A> + 6)-"2<V2A A> ? l { - (<A, A> + s)6-32<VeiA A>2 '>

 > (<A, A> + 42<V'A A> + E ?-(<A, A> ? 6)/A ><VeiA, VetA> }

 ? (<A, A> ? A)-e2<V2AA A>.
 We now use Theorem 5.3.1 which shows

 V2f> > (<A, A> + E)-12<pA - hAll2 A, A>

 = ! [p<11AA1A > -1 IAI Al .

 Thus

 V2f,-f, >p 11 AI112 - Ail4

 and so

 Ll(f.) -, =< h1 A il' - p | Ai2 - - | A112(f )2 <-p || A hI'2

 Therefore

 M M

 Thus, using (**), we have
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 limE-0 f I5M -, -p. [ FM ]IM
 The lemma now follows from (*). q.e.d.

 LEMMA 6.1.1. Let M be a closed co-dimension 1 minimal variety in Sn.

 Suppose M is not the totally geodesic S-'. Then, if n _ 6, the cone CM does

 not minimize area with respect to its boundary.

 PROOF. Since M is not totally geodesic, Lemmas 6.1.7 and 6.1.5 show

 ?X +, ?1 - p ? (P 1)

 The assumption n ? 6 implies p ? 5 which implies that, for sufficiently small

 a, X + 6, < 0. Lemma 6.1.6 shows that, for such a, a variation Vmay be chosen
 of the truncated cone CM, which holds its boundary fixed and decreases area.

 By extending the variation to hold fixed the set of (m, t) with t < e, we get

 an area decreasing variation of CM. q.e.d.

 This technique fails in dimensions 7 and above. In fact the following

 theorem gives an example of a cone over a 6-dimensional minimal variety in

 S7, for which every variation holding the boundary fixed is area increasing.

 THEOREM 6.1.2. Let

 M = S3(V2) x S3(V 2)

 considered as a minimal variety in S7 (see Remark 5.3.1). Then every

 variation of CM which holds M fixed is initially increasing area.

 PROOF. As was pointed out in Remark 5.3.1, 1A 112= 6 everywhere.
 Thus L(ff) -V2(ff -6f, and therefore X, = -6. For any a,

 (62 ) log 6? 4

 Therefore for any s, x + ?1 > 1/4. By Lemma 6.1.6, I(V, V) > 0 for any

 variation of any CM, which holds the boundary fixed. Thus all the truncated

 cones are stable. A variation of CM need not hold the vertex fixed, however,

 since the area of the cone in the neighborhood of the vertex is going to zero

 like sP+' (in this case 67) it is not difficult to show that, given an area decreas-
 ing variation of CM, one can always construct, for sufficiently small 6, an

 area decreasing variation of CM, which holds its boundary fixed. This com-

 pletes the proof. q.e.d.

 6.2. Plateau's problem and the Bernstein conjecture. The results of the

 previous section may be applied to yield the solution of two well known prob-

 lems in the theory of minimal varieties. The first of these is the co-dimension
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 1 Plateau problem.

 Let S be a fixed (n - 2)-dimensional compact, oriented manifold imbedded

 in Rn S defines an integral (n - 2)-dimensional current in the sense of [ ].

 Let JC. denote the set of immersed Co submanifolds H which satisfy

 (a) dimH=n-1
 ( b ) aH = S as currents.

 THEOREM 6.2.1. Suppose n ? 7. Then there exists an He XJC8 having

 minimal n - 1 dimensional area, and whose interior is a real analytic

 minimal variety in R%.

 PROOF. This theorem follows as an immediate consequence of our Theorem

 6.1.1, and of the extensive results of Federer-Fleming [14] along with those

 of De Giorgi [15] and Triscari [16]. The basic idea is to show that one may
 solve the Plateau problem in the framework of integral currents. These are

 then demonstrated to be regular, except on a set of measure 0. It is also

 shown that a singular point may be blown up to yield a set of tangent cones,

 and that these must be stable with respect to their boundary. One argues by

 induction that these cones must lie over regular co-dimension 1 minimal vari-

 eties in the sphere. It is finally shown that, if any of these cones is a disk,

 the current is regular at that point. Now, under the appropriate dimension

 assumptions, Theorem 6.1.1 shows that these cones are stable only if they

 are disks, and thus the current is regular everywhere in its interior.

 A more detailed proof of this theorem may be found in [9], and since the

 proof in higher dimensions is identical, we simply refer the reader to that

 paper. q.e.d.

 Remark 6.2.1. The statement of Theorem 6.2.1 is by no means the
 sharpest possible. We have stated it merely as an example of the type of

 theorem that is true under these dimension restrictions. For a more complete

 list of implications of our instability theorem for cones, the reader is referred

 to Theorems 1 and 2 and Corollaries 1, 2, 3, and 4 of [9], all of which go

 through in our dimensions.

 Remark 6.2.2. The reader will note that, in Theorem 6.2.1, we could

 only conclude that AH = S as currents. It would be nice if it could be shown
 that AS = H as manifolds. Some progress in this direction has been made

 by W. K. Allard in his doctoral thesis at Brown University.

 Remark 6.2.3. Our example given in Theorem 6.1.2 may be a counter-

 example to regularity for solutions to the co-dimension 1 Plateau problem in
 dimensions 8 and above. The cone over S3 x S3 is an integral current with

 an isolated singularity and having S3 x S3 as boundary. Moreover, it is a
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 local minimum of the area function. Whether or not it is a global minimum

 is an open question.

 As was mentioned in ? 3.1, there have been a number of proofs of the

 Bernstein conjecture for graphs in R3. Most of these have used the methods

 of complex analysis. One which does not is that of Fleming L7]. He shows

 that the Bernstein conjecture for graphs in R" would follow from an interior

 regularity theorem for co-dimension 1 minimal integral currents in Rn. This

 gave a proof in R3. De Giorgi [8] then showed that the conjecture for graphs

 in Rn would actually follow from a co-dimension 1 regularity theorem in

 Rn'. This gave a proof in R4. The new interior regularity theorem of

 Almgren [9] for co-dimension 1 minimal currents in R4 proved the Bernstein

 conjecture in Mf. Our interior regularity theorem provides a uniform proof

 in RI' for n < 8.

 THEOREM 6.2.2. Let f(x1, ***, x"_) be a Cog function defined everywhere

 in Rn-I. Suppose its graph is a minimal variety in R". Then if n _ 8, f

 is a linear function.

 PROOF. Fleming's argument is essentially the following. He first shows

 that the graph absolutely minimizes area with respect to any compact bound-

 ary in its interior. Then he takes the intersection of the graph with the ball

 of radius r and contracts by 1/r to get a family of minimal varieties in the

 unit ball whose boundaries are co-dimension 1 submanifolds of Si-`. He then

 takes the limit of these minimal varieties as r - cA, and shows it to be the

 cone over an integral current in Si,`. The above mentioned absolute minimi-

 zation property of the graph implies that the cone is a minimal integral cur-

 rent with respect to its boundary, and an interior regularity theorem would

 imply that it is therefore a disk. He finally shows that the cone is a disk only

 if the graph was a hyperplane. Thus, Theorem 6.2.1 makes this proof work

 for n < 7. De Giorgi then pointed out that interior regularity in Rn'- already

 implied that the limiting cone was over a real analytic minimal variety in S-'.

 Moreover this variety has its normal vector making a non-negative inner

 product with the positive z axis. He could then use his theorem (see our

 Theorem 5.2.1) together with some extra work to show the cone was a disk.

 This then proves the theorem for n < 8. q.e.d.

 Remark 6.2.4. A key feature of Fleming's argument is the above obser-

 vation that the graph is an absolute minimum of area for any boundary in its

 interior. It is possible that one could proceed from that point to prove the

 theorem without actually passing to the cone and using interior regularity.

 In fact, one could attempt to show that, for a sufficiently large boundary,
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 one could construct a variation V vanishing on the boundary, and having

 I( V, V) < 0 unless the surface was a hyperplane. This approach seems rea-

 sonable since it is essentially what is done to prove that the limiting cone is

 unstable, and it has two possible advantages. First, it might work in more

 or all dimensions. Second, it might suggest a more intrinsic hypothesis on a

 complete minimal hypersurface which would guarantee its being a hyperplane.

 To be precise, we conjecture

 Conjecture 6.2.1. Let f: RI`-f R71 be an immersion as a complete mini-

 mal variety. Then either the image is a hyperplane; or, for sufficiently large

 r, the sphere of radius r in Rn-' is mapped in as a conjugate boundary (see

 ?3.4).

 INSTITUTE FOR DEFENSE ANALYSES, PRINCETON
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