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1. Introduction

We begin with some basic definitions and notations. Let Δ = {z : |z| < 1} denote the unit disk in the
extended complex plane Ĉ. Δ∗ = Ĉ−Δ is the exterior of Δ, and S1 = ∂Δ = ∂Δ∗ is the unit circle. For any
function f = f(ζ) defined on the unit circle S1, we always denote by f̂ the function defined by f̂(θ) = f(eiθ).
C, C1, C2, · · · will denote universal constants that might change from one line to another, while C(·), C1(·),
C2(·), · · · will denote constants that depend only on the elements put in the brackets.

The universal Teichmüller space T is a universal parameter space for all Riemann surfaces and one of its
models can be defined as the space of all normalized quasisymmetric homeomorphisms on the unit circle,
namely, T = QS(S1)/Möb(S1). Here, QS(S1) denotes the group of all quasisymmetric homeomorphisms of
the unit circle, and Möb(S1) the subgroup of Möbius transformations of the unit disk. Recall that a sense
preserving self-homeomorphism h of the unit circle S1 is quasisymmetric if there exists a constant C(h) > 0
such that

1
C(h) ≤ |h(I1)|

|h(I2)|
≤ C(h)
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for all pairs of adjacent arcs I1 and I2 on S1 with the same arc-length |I1| = |I2| (≤ π). Beurling and Ahlfors
[6] proved that a sense preserving self-homeomorphism h is quasisymmetric if and only if there exists some
quasiconformal homeomorphism of Δ onto itself which has boundary values h. Later Douady and Earle [9]
gave a quasiconformal extension of h to the unit disk which is also conformally invariant.

It is known that the universal Teichmüller space T is an infinite dimensional complex manifold modeled
on a Banach space (see [22,23]), and the tangent space to T was identified by Reimann [27] and later by
Gardiner and Sullivan [16]. Let Λ denote the Zygmund space in the usual sense (see [34]), which consists of
all continuous functions H on the real line satisfying the condition

∣∣H(x + t) − 2H(x) + H(x− t)
∣∣ = O(t) (1.1)

for all real number x and t > 0. Then the tangent space to T at the identity map is the set of all functions
H on the unit circle which satisfy the condition Ĥ ∈ Λ and the normalized conditions

�ζ̄H(ζ) = 0 (1.2)

and

H(1) = H(−1) = H(i) = 0. (1.3)

It is also known that the universal Teichmüller space plays a significant role in Teichmüller theory, and
it is also a fundamental object in mathematics and in mathematical physics. In addition, several subclasses
of quasisymmetric homeomorphisms and their Teichmüller spaces were introduced and studied for various
purposes in the literature. We refer to the books [2,13–15,20,22,23,25] and the papers [4,7,16,18,31,32] for an
introduction to the subject and more details. In this paper, we shall continue to study the BMO-Teichmüller
space and VMO-Teichmüller space, which were introduced and investigated in our recent paper [31].

A quasisymmetric homeomorphism h is said to be strongly quasisymmetric if for each ε > 0 there is a
δ > 0 such that

|E| � δ|I| ⇒
∣∣h(E)

∣∣ � ε
∣∣h(I)

∣∣ (1.4)

whenever I ⊂ S1 is an interval and E ⊂ I a measurable subset. In other words, h is strongly quasisymmetric
if and only if h is absolutely continuous so that ĥ′ belongs to the class of weights A∞ introduced by
Muckenhoupt (see [17]), in particular, log ĥ′ belongs to BMO(S1), the space of integrable functions on S1

of bounded mean oscillation (see [12,17,25,33] and also the next section). This sub-class of quasisymmetric
homeomorphisms was much investigated because of its great importance in the application to harmonic
analysis (see [8,11,21,29]). Let SQS(S1) denote the set of all strongly quasisymmetric homeomorphisms
of the unit circle. Then Tb = SQS(S1)/Möb(S1) is a model of the BMO-Teichmüller space. We say a
quasisymmetric homeomorphism h is strongly symmetric if it is absolutely continuous such that log ĥ′

belongs to VMO(S1), the space of integrable functions on S1 of vanishing mean oscillation (see [17,25,28,33]
and also the next section). We denote by SS(S1) the set of all strongly symmetric homeomorphisms of the
unit circle. Then Tv = SS(S1)/Möb(S1) is a model of the VMO-Teichmüller space.

In our previous paper [31] we showed that both the BMO-Teichmüller space Tb and the VMO-Teichmüller
space Tv are complex manifolds modeled on certain Banach spaces. Thus, it is reasonable to identify the
function spaces which are the tangent spaces to Tb and Tv, respectively. By right translations it is enough
to restrict attention to the tangent spaces at the identity map. To state our results, we denote by Λb the
set of all functions H on the unit circle S1 such that H is absolutely continuous with Ĥ ′ ∈ BMO(S1), and
Λv the subset of Λb which consists of those functions H with Ĥ ′ ∈ VMO(S1). We shall prove
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Theorem 1.1. The tangent space at the identity to the manifold Tb is the function space consisting of all
functions H ∈ Λb with the normalized conditions (1.2) and (1.3).

Theorem 1.2. The tangent space at the identity to the manifold Tv is the function space consisting of all
functions H ∈ Λv with the normalized conditions (1.2) and (1.3).

2. Preliminaries

In this section, we shall review the BMO-Teichmüller theory established in our previous paper [31]. Before
this, we recall some basic definitions and results on Carleson measures and BMO-functions. For primary
references, see [17,22,23].

2.1. Carleson measure and BMO-function

A positive measure λ defined in a simply connected domain Ω is called a Carleson measure if

‖λ‖2
c = sup

{
λ(Ω ∩D(z, r))

r
: z ∈ ∂Ω, 0 < r < diameter(∂Ω)

}
< ∞, (2.1)

where D(z, r) is the disk with center z and radius r. A Carleson measure λ is called a vanishing Carleson
measure if

lim
r→0

λ(Ω ∩D(z, r))
r

= 0

uniformly for z ∈ ∂Ω. We denote by CM(Ω) and CM0(Ω) the sets of all Carleson measures and vanishing
Carleson measures on Ω, respectively.

We denote by BMO(S1) the space of all integrable functions on S1 of bounded mean oscillation. Namely,
ψ ∈ L1(S1) belongs to BMO(S1) if

‖ψ‖BMO = sup
I

1
|I|

∫
I

|ψ − ψI |dθ < ∞, (2.2)

where I is any arc on S1, and

ψI = 1
|I|

∫
I

ψdθ

is the average of ψ over I. We say ψ ∈ BMO(S1) is of vanishing mean oscillation and belongs to the class
VMO(S1) if

lim
|I|→0

1
|I|

∫
I

|ψ − ψI |dθ = 0.

Denote by H1 the Hardy space in the usual sense. Namely, φ ∈ H1 if φ is holomorphic in Δ with

‖φ‖H1 = sup
0<r<1

2π∫ ∣∣φ(reiθ)∣∣dθ < ∞. (2.3)

0
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We denote by BMOA(Δ) the subspace of H1 which consists of those φ such that φ|S1 ∈ BMO(S1), and by
VMOA(Δ) the subspace of H1 which consists of those φ such that φ|S1 ∈ VMO(S1). We say φ ∈ BMOA(Δ∗)
if φ(z−1) ∈ BMOA(Δ), and φ ∈ VMOA(Δ∗) if φ(z−1) ∈ VMOA(Δ). For more information on BMOA
functions, we refer to [5,17,33].

2.2. Teichmüller spaces

We begin with the standard theory of the universal Teichmüller space (see [2,15,22,23]). Let M(Δ)
denote the open unit ball of the Banach space L∞(Δ) of essentially bounded measurable functions on Δ.
For μ ∈ M(Δ), let fμ be the quasiconformal mapping of Δ onto itself with complex dilatation equal to μ

and keeping the points 1, −1 and i fixed. We say two elements μ and ν in M(Δ) are equivalent, denoted by
μ ∼ ν, if fμ|S1 = fν |S1 . Then M(Δ)/∼ is the Bers model of the universal Teichmüller space T . There exists
the one to one map Ψ which maps M(Δ)/∼ onto T = QS(S1)/Möb(S1) by sending [μ] to fμ|S1 . It is known
that T = QS(S1)/Möb(S1) = M(Δ)/∼ carries a natural complex structure so that the natural projection
Φ from M(Δ) onto T is a holomorphic split submersion.

We proceed to discuss the BMO-Teichmüller spaces. We denote by L(Δ) the Banach space of all essentially
bounded measurable functions μ on Δ each of which induces a Carleson measure λμ(z) = |μ(z)|2/(1−|z|2) ∈
CM(Δ). The norm on L(Δ) is defined as

‖μ‖c = ‖μ‖∞ + ‖λμ‖c, (2.4)

where ‖λμ‖c is the Carleson norm of λμ defined in (2.1). L0(Δ) is the subspace of L(Δ) consisting of
all elements μ such that λμ ∈ CM0(Δ). Similarly, we denote by L(Δ∗) the Banach space of all essentially
bounded measurable functions μ on Δ∗ each of which induces a Carleson measure λμ(z) = |μ(z)|2/(|z|2−1) ∈
CM(Δ∗), and by L0(Δ∗) the subspace of L(Δ∗) consisting of all elements μ such that λμ ∈ CM0(Δ∗). Set
M(Δ) = M(Δ) ∩ L(Δ), M0(Δ) = M(Δ) ∩ L0(Δ). Then M(Δ)/∼ is a model of the BMOA Teichmüller
space Tb, while M0(Δ)/∼ is a model of the VMOA Teichmüller space Tv. We proved in [31] that both Tb =
SQS(S1)/Möb(S1) = M(Δ)/∼ and Tv = SS(S1)/Möb(S1) = M0(Δ)/∼ have natural complex structures
so that the projections Φ : M(Δ) → Tb and Φ : M0(Δ) → Tv are holomorphic split submersions.

3. Quasiconformal deformation extensions for functions in Λb and Λv

Our discussion will be based on the theory of quasiconformal deformations. According to Ahlfors [3],
a complex-valued function F defined in a domain Ω is called a quasiconformal deformation (abbreviated
to q.d.) if it has the generalized derivative ∂F such that ∂F ∈ L∞(Ω). There are several reasons for being
interested in quasiconformal deformations; because of their close relation with quasiconformal mappings
and Teichmüller spaces (see [1,16,22,23]) and also of their own interests (see [3,26,30]). In particular, the
notion of quasiconformal deformations is closely related to that of Zygmund functions. Reich and Chen [26]
proved that any function H on S1 with Ĥ ∈ Λ has a q.d. extension to the unit disk and conversely, any
continuous function H on the unit circle which has a q.d. extension to the unit disk must satisfy Ĥ ∈ Λ

if H also satisfies the normalized condition (1.2). Later, the second-named author [30] showed that for a
continuous function H on the unit circle, Ĥ ∈ Λ if and only if H can be extended to a quasiconformal
deformation H̃ of the whole plane C so that H̃(z) = O(z2) as z → ∞. Furthermore, it was proved that

E(H)(z) = |1 − |z|2|3
2πi

∫
S1

H(ζ)
(1 − zζ)3(ζ − z)dζ, z ∈ C \ S1 (3.1)

is a desired extension of H when Ĥ ∈ Λ. For details, see [26] and [19].
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In this section, we are concerned with the q.d. extensions for functions in Λb and Λv based on the
discussion from our previous paper [30]. For completeness and for the paper to be self-contained, we will
repeat some discussion from [30]. We need some basic results.

Lemma 3.1. (See [31].) Let α > 0, β > 0. For a positive measure λ on Δ, set

λ̃(z) =
∫∫
Δ

(1 − |z|2)α(1 − |w|2)β
|1 − z̄w|α+β+2 λ(w)dudv. (3.2)

Then λ̃ ∈ CM(Δ) if λ ∈ CM(Δ), and ‖λ̃‖c ≤ C‖λ‖c, while λ̃ ∈ CM0(Δ) if λ ∈ CM0(Δ).

Lemma 3.2. Let F be analytic in Δ. Then F (z) ∈ BMOA(Δ) if and only if zF (z) ∈ BMOA(Δ), and
F (z) ∈ VMOA(Δ) if and only if zF (z) ∈ VMOA(Δ).

Proof. Recall that an analytic function f on the unit disk Δ belongs to BMOA(Δ) if and only if there exists
some b ∈ L∞(S1) such that

f(z) =
∫
S1

b(ζ)
ζ − z

dζ.

Furthermore, F ∈ VMOA(Δ) if and only if b can be chosen to be continuous (see [5,33]). We simply say
that f corresponds to b.

Now suppose F ∈ BMOA(Δ) so that there exists some b ∈ L∞(S1) such that

F (z) =
∫
S1

b(ζ)
ζ − z

dζ.

Then,

zF (z) =
∫
S1

zb(ζ)
ζ − z

dζ =
∫
S1

ζb(ζ)
ζ − z

dζ −
∫
S1

b(ζ)dζ.

Thus zF (z) corresponds to ζb(ζ) and belongs to BMOA(Δ).
Conversely, if zF (z) ∈ BMOA(Δ) so that there exists some b ∈ L∞(S1) such that

zF (z) =
∫
S1

b(ζ)
ζ − z

dζ.

Noting that b must satisfy the condition
∫
S1

b(ζ)
ζ

dζ = 0,

we conclude that

zF (z) =
∫
S1

b(ζ)
ζ − z

dζ −
∫
S1

b(ζ)
ζ

dζ =
∫
S1

zζ̄b(ζ)
ζ − z

dζ,

which implies that
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F (z) =
∫
S1

ζ̄b(ζ)
ζ − z

dζ.

Thus F (z) corresponds to ζ̄b(ζ) and belongs to BMOA(Δ).
The second statement can be proved by the same way. �
We now prove

Proposition 3.1. Let F be analytic in Δ. Then the following statements are equivalent:
(1) F is continuous in Δ ∪ S1 with F |S1 ∈ Λb;
(2) F ′ ∈ BMOA(Δ);
(3) |F ′′′(z)|2(1 − |z|2)3 ∈ CM(Δ);
(4) F can be extended to a quasiconformal deformation F̃ to the whole plane so that ∂F̃ ∈ L(Δ∗), and

F̃ (z) = O(z2) as z → ∞.

Proof. We first point out (see [10]) that for an analytic function F on the unit disk Δ, F is continuous in
Δ ∪ S1 such that F |S1 is absolutely continuous in S1 if and only if F ′ ∈ H1, and

F̂ ′(θ) = ieiθF ′(eiθ). (3.3)

Now suppose that F is analytic in Δ and is continuous in Δ ∪ S1 with F |S1 ∈ Λb. Then F ′ ∈ H1, which
implies that zF ′(z) ∈ H1. Thus, zF ′(z) ∈ BMOA(Δ), which implies by Lemma 3.2 that F ′ ∈ BMOA(Δ).
Conversely, suppose that F ′ ∈ BMOA(Δ). Then F is continuous in Δ ∪ S1 such that F |S1 is absolutely
continuous. On the other hand, Lemma 3.2 implies that zF ′(z) ∈ BMOA(Δ), which implies by (3.3) that
F̂ ′ ∈ BMO(S1). Thus F |S1 ∈ Λb. This completes the proof of (1) ⇔ (2).

(2) ⇔ (3) is a well-known result (see [17,33]).
To prove (3) ⇒ (4), we assume that |F ′′′(z)|2(1 − |z|2)3 ∈ CM(Δ). We conclude by Lemma 4.1 in [31]

that

sup
z∈Δ

∣∣F ′′′(z)
∣∣(1 − |z|2

)2
< ∞. (3.4)

Set

F̃ (z) = F
(
z̄−1)− (

z̄−1 − z
)
F ′(z̄−1) + 1/2

(
z̄−1 − z

)2
F ′′(z̄−1), z ∈ Δ∗ \ {∞}.

Clearly, F̃ (z) = O(z2) as z → ∞. A direct computation shows that

∂F̃ (z) = −1/2
(
z̄−1 − z

)2
F ′′′(z̄−1)z̄−2,

which implies that

∣∣∂F̃ (z)
∣∣ = 1/2

∣∣F ′′′(z̄−1)∣∣(1 −
∣∣z−1∣∣2)2.

We conclude by (3.4) that ∂F̃ ∈ L∞(Δ∗) so that F̃ is a quasiconformal deformation.
Set λ(z) = |∂̄F̃ (z)|2/(|z|2 − 1). Then

λ

(
1
z

)
1

|z|2 = 1
4
∣∣F ′′′(z̄)

∣∣2(1 − |z|2
)3
.

Thus,
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λ

(
1
z

)
1

|z|2 ∈ CM(Δ),

which implies that λ(z) ∈ CM(Δ∗) and (4) follows.
(4) ⇒ (3) Let F̃ be a q.d. extension of F to the whole plane so that ∂F̃ ∈ L(Δ∗), and F̃ (z) = O(z2) as

z → ∞. Set ∂̄F̃ = μ. For any z ∈ Δ, noting that F̃ (z) = O(z2) as z → ∞, we conclude by Cauchy and
Green formulas that

F ′′′(z) = 3
πi

∫
S1

F (ζ)
(ζ − z)4 dζ = 3

πi

∫
S1

F̃ (ζ)
(ζ − z)4 dζ = − 6

π

∫∫
Δ∗

μ(ζ)
(ζ − z)4 dξdη.

Set λ(z) = |μ(z−1)|2/(1 − |z|2) so that λ ∈ CM(Δ). By Hölder’s inequality we have

∣∣F ′′′(z)
∣∣2 ≤ 36

π2

∫∫
Δ∗

|μ(ζ)|2
|ζ − z|4 dζdη

∫∫
Δ∗

1
|ζ − z|4 dξdη

= 36
π(1 − |z|2)2

∫∫
Δ

(1 − |ζ|2)
|1 − ζz|4 λ(ζ)dξdη.

Therefore,

∣∣F ′′′(z)
∣∣2(1 − |z|2

)3 ≤ 36
π

∫∫
Δ

(1 − |ζ|2)(1 − |z|2)
|1 − ζz|4 λ(ζ)dξdη.

By means of Lemma 3.1 with α = β = 1 we conclude that |F ′′′(z)|2(1 − |z|2)3 ∈ CM(Δ). �
Examining the proof of Proposition 3.1, we have

Proposition 3.2. Let F be analytic in Δ. Then the following statements are equivalent:
(1) F is continuous in Δ ∪ S1 with F |S1 ∈ Λv;
(2) F ′ ∈ VMOA(Δ);
(3) |F ′′′(z)|2(1 − |z|2)3 ∈ CM0(Δ);
(4) F can be extended to a quasiconformal deformation F̃ to the whole plane so that ∂F̃ ∈ L0(Δ∗), and

F̃ (z) = O(z2) as z → ∞.

Proposition 3.3. Let G be analytic in Δ∗. Then the following statements are all equivalent:
(1) G is continuous in Δ∗ ∪ S1 with G|S1 ∈ Λb;
(2) G′ ∈ BMOA(Δ∗);
(3) |G′′′(z)|2(|z|2 − 1)3 ∈ CM(Δ∗);
(4) G can be extended to a quasiconformal deformation G̃ to the whole plane so that ∂G̃ ∈ L(Δ).

Proof. Set

F (z) = G
(
z−1)z2, z ∈ Δ.

Then G is analytic in Δ with

F ′(z) = −G′(z−1),
F ′′′(z) = −G′′′(z−1)z−4.
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It is easy to see that F satisfies one of the conditions in Proposition 3.1 precisely when G satisfies the
corresponding condition in Proposition 3.3. Thus, Proposition 3.3 follows directly from Proposition 3.1. �

By the same reasoning as in the proof of Proposition 3.3, we conclude by Proposition 3.2 the following

Proposition 3.4. Let G be analytic in Δ∗. Then the following statements are all equivalent:
(1) G is continuous in Δ∗ ∪ S1 with G|S1 ∈ Λv;
(2) G′ ∈ VMOA(Δ∗);
(3) |G′′′(z)|2(|z|2 − 1)3 ∈ CM0(Δ∗);
(4) G can be extended to a quasiconformal deformation G̃ to the whole plane so that ∂G̃ ∈ L0(Δ).

We proceed to discuss the q.d. extensions for functions in Λb and Λv. For a continuous function H on
the unit circle, we consider the Cauchy integral

C(H)(z) = 1
2πi

∫
S1

H(ζ)
ζ − z

dζ, z ∈ Δ ∪ Δ∗.

More precisely, we always set F (z) = C(H)(z) for z ∈ Δ, G(z) = C(H)(z) for z ∈ Δ∗ in the rest of this
section. Then F and G are holomorphic in Δ and Δ∗, respectively. We also let J denote the harmonic
conjugation operator in the usual sense (see [10,17]), namely, J(H) is the following Cauchy principle value
integral

J(H)(z) = − 1
π

∫
S1

H(ζ)
ζ − z

dζ, z ∈ S1. (3.5)

It is well known that J preserves the Zygmund space Λ and the BMO spaces BMO(S1) and VMO(S1)
(see [17]). We now show that J also preserves the spaces Λb and Λv.

Theorem 3.1. The harmonic conjugation operator J keeps the spaces Λb and Λv invariant.

Proof. Suppose H ∈ Λb so that H is absolutely continuous on S1 with Ĥ ′ ∈ BMO(S1). For F (z) = C(H)(z),

F ′(z) = 1
2πi

∫
S1

H(ζ)
(ζ − z)2 dζ = 1

2πi

∫
S1

H ′(ζ)
ζ − z

dζ.

Then

zF ′(z) = 1
4πi

∫
S1

ζ + z

ζ − z
H ′(ζ)dζ − 1

4πi

∫
S1

H ′(ζ)dζ

= 1
4πi

2π∫
0

eiθ + z

eiθ − z
Ĥ ′(θ)dθ − 1

4πi

2π∫
0

Ĥ ′(θ)dθ.

Thus zF ′(z) is analytic in Δ with boundary values (Ĥ ′ + iJ(Ĥ ′))/2 up to a constant. Since Ĥ ′ ∈ BMO(S1),
and J preserves BMO(S1), we conclude that zF ′(z) ∈ BMOA(Δ), which implies F ′ ∈ BMOA(Δ) by
Lemma 3.2. Thus, F is continuous in Δ∪S1 and absolutely continuous in S1. Noting that F = (H+iJ(H))/2
on S1, we conclude that J(H) is absolutely continuous in S1, and Ĥ ′(θ) + iĴ(H)

′
(θ) = 2F̂ ′(θ) =

2ieiθF ′(eiθ) ∈ BMO(S1), which implies that Ĵ(H)
′
∈ BMO(S1). Thus, J(H) ∈ Λb as required.

Replacing BMO(S1) by VMO(S1) in the proof, we find out that J also keeps Λv invariant. �
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Now we can prove the main results in this section.

Theorem 3.2. Let H be continuous on the unit circle. Then the following statements are equivalent:
(1) H ∈ Λb;
(2) |F ′′′(z)|2(1 − |z|2)3 ∈ CM(Δ), and |G′′′(z)|2(|z|2 − 1)3 ∈ CM(Δ∗);
(3) F and G have q.d. extensions F̃ and G̃ respectively to the whole plane so that ∂F̃ ∈ L(Δ∗), ∂G̃ ∈ L(Δ),

and F̃ (z) = O(z2) as z → ∞;
(4) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃|Δ ∈ L(Δ),

∂H̃|Δ∗ ∈ L(Δ∗), and H̃(z) = O(z2) as z → ∞.

Proof. Noting that F = (H + iJ(H))/2, G = (−H + iJ(H))/2 on S1, we conclude that (1) ⇔ (2) ⇔ (3) by
means of Theorem 3.1 and Propositions 3.1 and 3.3.

(3) ⇒ (4) Suppose F and G have q.d. extensions F̃ and G̃ respectively to the whole plane so that
∂F̃ ∈ L(Δ∗), ∂G̃ ∈ L(Δ), and F̃ (z) = O(z2) as z → ∞. Define H̃ by H̃(z) = F (z) − G̃(z) on Δ ∪ S1, and
H̃(z) = F̃ (z) −G(z) on Δ∗ ∪ S1 \ {∞}. Then H̃ is the desired q.d. extension of H to the whole plane.

(4) ⇒ (3) Suppose H can be extended to a quasiconformal deformation H̃ to the whole plane so that
∂H̃|Δ ∈ L(Δ), ∂H̃|Δ∗ ∈ L(Δ∗), and H̃(z) = O(z2) as z → ∞. Denote ∂H̃ = μ. Set

G̃(z) = 1
π

∫∫
Δ

μ(ζ)
ζ − z

dξdη,

and F̃ (z) = H̃(z) + G̃(z). Clearly, both F̃ and G̃ are quasiconformal deformations on the whole plane,
∂F̃ |Δ∗ ∈ L(Δ∗), ∂G̃|Δ ∈ L(Δ), and F̃ (z) = O(z2) as z → ∞. For any z ∈ Δ∗, Green’s formula implies that

G̃(z) = 1
π

∫∫
Δ

μ(ζ)
ζ − z

dξdη = 1
2πi

∫
S1

H(ζ)dζ
ζ − z

= G(z).

Thus G̃ is a q.d. extension of G. On the other hand, when z ∈ Δ, Pompeiu’s formula implies that

F̃ (z) = H̃(z) + G̃(z) = H̃(z) + 1
π

∫∫
Δ

μ(ζ)
ζ − z

dξdη = 1
2πi

∫
S1

H(ζ)dζ
ζ − z

= F (z).

Thus F̃ is a q.d. extension of F .

Examining the proof of Theorem 3.2, we have

Theorem 3.3. Let H be continuous on the unit circle. Then the following statements are equivalent:
(1) H ∈ Λv;
(2) |F ′′′(z)|2(1 − |z|2)3 ∈ CM0(Δ), and |G′′′(z)|2(|z|2 − 1)3 ∈ CM0(Δ∗);
(3) F and G have q.d. extensions F̃ and G̃ respectively to the whole plane so that ∂F̃ ∈ L0(Δ∗),

∂G̃ ∈ L0(Δ), and F̃ (z) = O(z2) as z → ∞;
(4) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃|Δ ∈ L0(Δ),

∂H̃|Δ∗ ∈ L0(Δ∗), and H̃(z) = O(z2) as z → ∞.

Remark. Recall that

E(H)(z) = |1 − |z|2|3
2πi

∫
H(ζ)

(1 − zζ)3(ζ − z)dζ, z ∈ C \ S1,
S1
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defines a q.d. extension of a continuous function H on S1 with Ĥ ∈ Λ. When H ∈ Λb, E(H) is an extension
of H satisfying condition (4) in Theorem 3.2. In fact, by differentiating (3.1) with respect to z, we obtain

∂E(H)(z) = 3
2πi

(
χΔ(z) − χΔ∗(z)

)(
1 − |z|2

)2 ∫
S1

H(ζ)
(1 − z̄ζ)4 dζ, z ∈ Δ ∪ Δ∗ \ {∞},

where χ denotes the characteristic function of a set. Since H ∈ Λb, it follows from Theorem 3.2 that H can
be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃|Δ ∈ L(Δ), ∂H̃|Δ∗ ∈ L(Δ∗),
and H̃(z) = O(z2) as z → ∞. Thus, by Green’s formula and Hölder’s inequality, we obtain

|∂E(H)(z)|2
1 − |z|2 � 9

π

∫∫
Δ

|∂H̃(w)|2
1 − |w|2

(1 − |z|2)(1 − |w|2)
|1 − z̄w|4 dudv, z ∈ Δ.

Consequently, Lemma 3.1 (with α = β = 1) implies ∂E(H)|Δ ∈ L(Δ). In the same way, ∂E(H)|Δ∗ ∈ L(Δ∗).
Similarly, when H ∈ Λv, E(H) is an extension of H satisfying condition (4) in Theorem 3.3.

When H satisfies the normalized condition (1.2), we can obtain some stronger results, which will be used
to prove Theorems 1.1 and 1.2 in the next section.

Theorem 3.4. Let H be continuous on the unit circle which satisfies the normalized condition (1.2). Then
the following statements are equivalent:

(1) H ∈ Λb;
(2) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃|Δ ∈ L(Δ),

∂H̃|Δ∗ ∈ L(Δ∗), and H̃(z) = O(z2) as z → ∞;
(3) H can be extended to a quasiconformal deformation H1 to Δ so that ∂H1 ∈ L(Δ);
(4) H can be extended to a quasiconformal deformation H2 to Δ∗ \ {∞} so that ∂H2 ∈ L(Δ∗) and

H2(z) = O(z2) as z → ∞.

Proof. It follows from Theorem 3.2 that (1) ⇔ (2). It is obvious that (2) implies both (3) and (4), and
vice versa. So we only need to show that (3) ⇔ (4). Let H1 be a q.d. extension of H to the unit disk so
that ∂H1 ∈ L(Δ). Set H2(z) = −z2H1(z̄−1). Noting that |∂H2(z)|2/(|z|2 − 1) = |∂H1(z̄−1)|2/(|z|2 − 1),
we conclude that H2 is a quasiconformal deformation in Δ∗ \ {∞} with H2(z) = O(z2) as z → ∞, and
∂H2 ∈ L(Δ∗). Since H(ζ) = −ζ2H(ζ) by means of the assumption �ζ̄H(ζ) = 0 on S1, H2 = H on the unit
circle. Thus (3) ⇒ (4) follows. By the same reasoning, we obtain (4) ⇒ (3). �

Similarly, by Theorem 3.3 we obtain

Theorem 3.5. Let H be continuous on the unit circle which satisfies the normalized condition (1.2). Then
the following statements are equivalent:

(1) H ∈ Λv;
(2) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃|Δ ∈ L0(Δ),

∂H̃|Δ∗ ∈ L0(Δ∗), and H̃(z) = O(z2) as z → ∞;
(3) H can be extended to a quasiconformal deformation H1 to Δ so that ∂H1 ∈ L0(Δ);
(4) H can be extended to a quasiconformal deformation H2 to Δ∗ \ {∞} so that ∂H2 ∈ L0(Δ∗) and

H2(z) = O(z2) as z → ∞.
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4. The proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Suppose we are given a curve of strongly quasisymmetric mappings ht(ζ) (t > 0 is
small) normalized to fix ±1 and i, which is the identity for t = 0 and differentiable with respect to t for the
manifold structure on Tb. Denote

ht(ζ) = ζ + tH(ζ) + o(t), t → 0.

Since the natural projection Φ : M(Δ) → Tb is a holomorphic split submersion, we conclude that there is
a differentiable curve of Beltrami coefficients νt ∈ M(Δ) such that ht is the restriction to the unit circle of
the normalized quasiconformal mapping fνt

. Now there exists some μ ∈ L(Δ) such that

νt = tμ + o(t).

Consequently,

fνt
(z) = z + tḟ [μ](z) + o(t), t → 0.

Here ḟ [μ] satisfies the normalized conditions (1.2) and (1.3) and is uniquely determined by the condition
∂ḟ [μ] = μ (see [1,23,24]). Noting that H = ḟ [μ]|S1 , we conclude by Theorem 3.4 that H ∈ Λb and satisfies
the normalized conditions (1.2) and (1.3).

Conversely, suppose we are given a function H ∈ Λb satisfying the normalized conditions (1.2) and (1.3).
By Theorem 3.4, we deduce that H can be extended to the unit disk to a quasiconformal deformation H̃

with ∂-derivative μ = ∂H̃ ∈ L(Δ). Set μt = tμ for small t > 0. Then

fμt
(z) = z + tḟ [μ](z) + o(t), t → 0.

Noting that both ḟ [μ] and H̃ satisfy the normalized conditions (1.2) and (1.3) and have the same
∂-derivative μ, we conclude that ḟ [μ] = H̃. Then,

fμt
(z) = z + tH̃(z) + o(t), t → 0.

Set ht = fμt
|S1 . Then it holds that

ht(ζ) = ζ + tH(ζ) + o(t), t → 0,

which implies that ht is a differentiable curve in Tb with the tangent vector H. �
Proof of Theorem 1.2. Replace Theorem 3.4 by Theorem 3.5 in the proof of Theorem 1.1. �
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