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Abstract

We first give some new characterizations on BMOA–Teichmüller space and various characterizations
on VMOA–Teichmüller space as well. In particular, we prove that a quasisymmetric conformal welding h
corresponds to an asymptotically smooth curve in the sense of Pommerenke (1978) [32] precisely when h is
absolutely continuous with log h′

∈ VMO. We then show that these BMO–Teichmüller spaces have natural
complex structures.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let ∆ = {z : |z| < 1} denote the unit disk in the extended complex plane Ĉ. ∆∗
= Ĉ − ∆

is the exterior of ∆, and S1
= ∂∆ = ∂∆∗ is the unit circle. C , C1,C2 · · · will denote universal

constants that might change from one line to another, while C(·),C1(·),C2(·) · · · will denote
constants that depend only on the elements put in the brackets.

The Bers model T of the universal Teichmüller space can be characterized in the following
ways (see [1,29,30]).

(T1) T is the set of all conformal mappings (up to a Möbius transformation) on ∆ which can be
extended to a quasiconformal mapping in the whole complex plane C.
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(T2) T is the set of all quasicircles (up to a Möbius transformation) in the extended complex
plane Ĉ. Here a closed Jordan curve Γ in the extended complex plane Ĉ is a quasicircle if
there exists a constant C(Γ ) > 0 such that the diameter (ζ z) ≤ C(Γ )|ζ − z| for the smaller
subarc ζ z of Γ joining any two finite points z and ζ of Γ . Let f be a conformal mapping
on the unit disk ∆. Then f satisfies condition T1 if and only if Γ = f (S1) is a quasicircle.

(T3) T is the set of all quasisymmetric homeomorphisms (up to a Möbius transformation of ∆)
of the unit circle S1. Here a sense preserving self-homeomorphism h of the unit circle S1

is quasisymmetric if there exists a constant C(h) > 0 such that |h(I ∗)| ≤ C(h)|h(I )| for
any interval I ⊂ S1 with |I | ≤ π , where I ∗ is the interval with same center as I but with
double length and | · | denotes the Lebesgue measure. Let f be a conformal mapping on
the unit disk ∆, and g be a conformal mapping from ∆∗ onto Ĉ − f (∆). Then f satisfies
condition T1 if and only if h = f −1

◦g is quasisymmetric. h is called the conformal welding
corresponding to f .

It is well known that a quasisymmetric homeomorphism need not be absolutely continuous,
and a quasicircle need not be locally rectifiable (see [10,11,37]). An important problem of long
time has been to determine when a quasisymmetric homeomorphism is absolutely continuous,
when a quasicircle is locally rectifiable, and much work has been done in this direction (see [2,5,
12,13,17,20,22,38]). Carleson [13] initiated such an investigation, giving a sufficient condition on
the dilatation of a quasiconformal self-mapping of the unit disk to have an absolutely continuous
boundary value. A much satisfactory answer is given by the following theorem. Recall that a
positive measure λ defined in a simply connected domain Ω is called a Carleson measure if

∥λ∥2
c = sup


λ(Ω ∩ D(z, r))

r
: z ∈ ∂Ω , 0 < r < diameter(∂Ω)


< ∞, (1.1)

where D(z, r) is the disk with center z and radius r . A Carleson measure λ is called a vanishing
Carleson measure if limr→0 λ(Ω ∩ D(z, r))/r = 0 uniformly for z ∈ ∂Ω . We denote by
C M(Ω) and C M0(Ω) the set of all Carleson measures and vanishing Carleson measures on
Ω , respectively.

Theorem A. Let f be a conformal mapping on ∆ and h = f −1
◦ g be the corresponding

quasisymmetric conformal welding. Then the following statements are equivalent.

(B1) f can be extended to a quasiconformal mapping in the whole plane whose complex
dilatation µ induces a Carleson measure |µ(z)|2/(|z|2 − 1) ∈ C M(∆∗).

(B2) log f ′ belongs to BMOA(∆), the space of analytic functions in ∆ of bounded mean
oscillation (see [23,24,33,43]), or equivalently, N f = f ′′/ f ′ induces a Carleson measure
|N f (z)|2(1 − |z|2) ∈ C M(∆).

(B3) S f = N ′

f − N 2
f /2 induces a Carleson measure |S f (z)|2(1 − |z|2)3 ∈ C M(∆).

(B4) Γ = f (S1) is a quasicircle satisfying the Bishop–Jones condition (see [12]).
(B5) h is strongly quasisymmetric, namely, for each ϵ > 0 there is a δ > 0 such that

|E | ≤ δ|I | ⇒ |h(E)| ≤ ϵ|h(I )|

whenever I ⊂ S1 is an interval and E ⊂ I a measurable subset.

B5 ⇒ B1 was proved by Fefferman–Kenig–Pipher [22] by means of a Beurling–Ahlfors [10]
type extension. Conversely, B1 ⇒ B5 is implied by a theorem in [22], and was reproved
by Astala–Zinsmeister [5] and Bishop–Jones [12]. (B1 ⇒ B3 ⇒ B2 and B4 ⇒ B5 were
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proved by Astala–Zinsmeister [5], while B2 ⇔ B4 was proved by Bishop–Jones [12], who
also gave a new proof of B3 ⇒ B2. A direct proof of B1 ⇒ B2 without using the Schwarzian
derivative was given later by Dynkin [20].) This was proved formerly by Semmes [38] when the
Carleson norm of |µ(z)|2/(1 − |z|2) is small. Recently, Cui–Zinsmeister [16] have proved that
the Douady–Earle [19] extension of a strongly quasisymmetric homeomorphism also satisfies B1
using B5 ⇒ B1.

In this paper, we shall continue to study the BMO theory of the universal Teichmüller space,
because of its great importance in the application to harmonic analysis (see [17,22,27,38]) and
also of its own interest. We first give two more characterizations of this BMOA–Teichmüller
space (see Theorem 3.1) and various characterizations of the VMOA–Teichmüller space (see
Theorem 4.1), the set of all conformal mappings f on ∆ which can be extended to a
quasiconformal mapping in the whole complex plane C such that log f ′ belongs to VMOA(∆),
the space of analytic functions in ∆ of vanishing mean oscillation (see [24,33,43]). Then we
show that these BMO–Teichmüller spaces have natural complex structures. As an application,
we prove that h is the quasisymmetric conformal welding corresponding to f with log f ′

∈

VMOA(∆) precisely when h is absolutely continuous with log h′ belongs to VMO(S1), the space
of integrable functions on S1 of vanishing mean oscillation (see [24,33,35,43]). We hope that this
complex analytic theory could find applications to some other problems in complex analysis, and
also real analysis.

2. Kernel functions and corresponding operators

In this section, as a sequel to [26], we shall continue to discuss some kernel functions induced
by a quasisymmetric homeomorphism or by the corresponding conformal mapping. These
kernel functions will be used to give some new characterizations for a strongly quasisymmetric
homeomorphism. The results in this section also have independent interests of their own.

First we recall the Hilbert space A2 of all holomorphic functions φ in ∆ with the inner product
and norm

⟨φ,ψ⟩ =
1
π


∆
φ(z)ψ(z)dxdy, ∥φ∥ =


1
π


∆

|φ(z)|2dxdy

 1
2

< ∞. (2.1)

Then, Jφ(z) = φ(z̄) determines an isometric isomorphism of A2 onto itself.

2.1. Kernel functions induced by a quasisymmetric homeomorphism

For a quasisymmetric homeomorphism h, two kernel functions were introduced in a previous
paper [26] by Hu and the first author. They are

φh(ζ, z) =
1

2π i


S1

h(w)

(1 − ζw)2(1 − zh(w))
dw, (ζ, z) ∈ ∆ × ∆, (2.2)

ψh(ζ, z) =
1

2π i


S1

h(w)

(ζ − w)2(1 − zh(w))
dw, (ζ, z) ∈ ∆ × ∆. (2.3)

Clearly, both φh and ψh are holomorphic functions. Note that the function φh already appeared
in Cui [15]. It was used in [26] to characterize when a quasisymmetric homeomorphism is
symmetric or even belongs to the Weil–Petersson class. Here it will be used to study the BMO
theory of the universal Teichmüller space.
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In [26] we introduced two operators on A2 induced by φh and ψh , respectively. They are

T −

h ψ(ζ ) =
1
π


∆
φh(ζ, z̄)ψ(z)dxdy, ψ ∈ A2, ζ ∈ ∆, (2.4)

and

T +

h ψ(ζ ) =
1
π


∆
ψh(ζ, z̄)ψ(z)dxdy, ψ ∈ A2, ζ ∈ ∆. (2.5)

It was proved in [26] that both T −

h and T +

h are bounded operators from A2 into itself. In fact, T +

h
is an isomorphism from A2 onto itself (see Lemma 2.3).

Now, as in [26], for each z ∈ ∆, we define

φh(z) =


1
π


∆

|φh(ζ, z)|2dξdη

 1
2

. (2.6)

Then we have the following results (for details, see [26]).

Lemma 2.1. Let ν be the Beltrami coefficient of a quasiconformal extension of h−1 to the unit
disk. Then it holds that

φ2
h(z) ≤

1
π


∆

|ν(w)|2

1 − |ν(w)|2

1

|1 − zw|4
dudv. (2.7)

Lemma 2.2. Let E(h) denote the Douady–Earle extension of h, and ν(h) denote the Beltrami
coefficient of the inverse mapping E−1(h). Then there exists some constant C(h) such that

|ν(h)(w)|2

1 − |ν(h)(w)|2
≤ C(h)φ2

h(w̄)(1 − |w|
2)2. (2.8)

2.2. Grunsky kernel

Let f be a conformal mapping on ∆. Set

U ( f, ζ, z) =
f ′(ζ ) f ′(z)

[ f (ζ )− f (z)]2 −
1

(ζ − z)2
, (ζ, z) ∈ ∆ × ∆. (2.9)

Then S f (z) = −6U ( f, z, z) is the Schwarzian derivative. f determines the so-called Grunsky
operator on A2, defined as

G fψ(ζ ) =
1
π


∆

U ( f, ζ, z̄)ψ(z)dxdy. (2.10)

It is known that G f is a bounded operator from A2 into itself with ∥G f ∥ ≤ 1, and ∥G f ∥ < 1
if and only if f can be extended to a quasiconformal mapping to the whole plane. For details,
see [8,28,36] and also [31].

For each z ∈ ∆, set

ψz(ζ ) =
1

(1 − zζ )2
. (2.11)
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Clearly, ψz ∈ A2, and ∥ψz∥ = (1 − |z|2)−1. We have

G fψz(ζ ) =
1
π


∆

U ( f, ζ, w̄)ψz(w)dudv

=
1
π

 1

0
rdr


|w|=r

U ( f, ζ, w)

(1 − zw̄)2
dw

iw

= U ( f, ζ, z). (2.12)

We also have

⟨U ( f, ·, z), ψz̄⟩ =
1
π


∆

U ( f, ζ, z)

(1 − zζ̄ )2
dξdη

=
1
π

 1

0
rdr


|ζ |=r

U ( f, ζ, z)

(1 − zζ̄ )2
dζ

iζ

= U ( f, z, z). (2.13)

Following Bazilevic [6], we define

U ( f, z) =


1
π


∆

|U ( f, ζ, z)|2dξdη

 1
2

. (2.14)

Like the Schwarzian derivative S f (z), the quantity U ( f, z) plays an important role in the study of
univalent functions (see [3,6,25,44]) and universal Teichmüller space (see [39,40]). Notice that
U ( f, z) = ∥G fψz∥ by (2.12), and it follows from (2.13) that

|S f (z)| = 6|U ( f, z, z)| ≤
6U ( f, z)

1 − |z|2
, z ∈ ∆. (2.15)

Now we begin to prove the main result of this section.

Proposition 2.1. Let f be a conformal mapping on ∆ and h = f −1
◦ g be the corresponding

quasisymmetric conformal welding. Then it holds that T +

h ◦ G f = J ◦ T −

h ◦ J .

Proof. For any ψ ∈ A2, choose φ such that φ′
= ψ , and (Jφ)′ = Jψ . Then,

T +

h ψ(ζ ) =
1
π


∆
ψh(ζ, z̄)ψ(z)dxdy

=
1
π


∆


1

2π i


S1

h(w)

(ζ − w)2(1 − z̄h(w))
dw


ψ(z)dxdy

=
1

2π2i


S1

h(w)

(ζ − w)2
dw


∆

ψ(z)

1 − z̄h(w)
dxdy

=
1

2π2i


S1

h(w)

(ζ − w)2
dw

 1

0
rdr


|z|=r

ψ(z)

1 − z̄h(w)

dz

i z

=
1
π i


S1

h(w)

(ζ − w)2
dw

 1

0
rψ(r2h(w))dr

=
1

2π i


S1

φ(h(w))

(ζ − w)2
dw. (2.16)
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Similarly,

T −

h ψ(ζ ) =
1

2π i


S1

φ(h(w))

(1 − ζw)2
dw. (2.17)

Since

G fψ(ζ ) =
1
π


∆


f ′(ζ ) f ′(z)

[ f (ζ )− f (z)]2 −
1

(ζ − z)2


ψ(z̄)dxdy,

we conclude by f ◦ h = g and (2.16), (2.17) that

(T +

h ◦ G f )ψ(ζ )

= −
1

2π2i


S1

1

(ζ − w)2
dw


∆


f ′(z)

f (h(w))− f (z)
−

1
h(w)− z


ψ(z̄)dxdy

= −
1

2π2i


∆
ψ(z̄)dxdy


S1

1

(ζ − w)2


f ′(z)

f (h(w))− f (z)
−

1
h(w)− z


dw

= −
1

2π2i


∆
ψ(z̄)dxdy


S1

1

(ζ − w)2


f ′(z)

g(w)− f (z)
−

1
h(w)− z


dw

=
1

2π2i


∆
ψ(z̄)dxdy


S1

dw

(ζ − w)2(h(w)− z)

=
1

2π2i


S1

dw

(ζ − w)2


∆

ψ(z)

h(w)− z̄
dxdy

=
1

2π i


S1

φ(h(w))

(ζ − w)2
dw

= (J ◦ T −

h ◦ J )ψ(ζ ).

This completes the proof of Proposition 2.1. �

Corollary 2.1. Under the assumption of Proposition 2.1, it holds that

U ( f, z) ≤ φh(z̄) ≤ ∥T +

h ∥U ( f, z), z ∈ ∆. (2.18)

Proof. Recall that U ( f, z) = ∥G fψz∥. Now (2.17) implies that φh(ζ, z) = T −

h ψz(ζ ), so
φh(z) = ∥T −

h ψz∥. On the other hand, it follows from (2.11) that Jψz = ψz̄ . Thus, we conclude
by Proposition 2.1 that φh(z̄) = ∥(T +

h ◦ G f )ψz∥ ≤ ∥T +

h ∥U ( f, z). The first inequality in (2.18)
follows from the following lemma. �

Lemma 2.3. For any quasisymmetric homeomorphism h, it holds that

∥T +

h ψ∥
2

= ∥ψ∥
2
+ ∥T −

h ψ∥
2, ψ ∈ A2. (2.19)

Proof. By means of an approximation process, we may assume that ψ is smooth on ∆. Choose
φ such that φ′

= ψ as before. Let P(u) denote the Poisson integral of an integrable function u
on the unit circle S1. Then,

P(φ ◦ h)(z) =
1

2π i


S1

Re
w + z

w − z

φ(h(w))

w
dw. (2.20)
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By means of (2.16), and (2.17) we have

∂P(φ ◦ h) = T +

h ψ, ∂P(φ ◦ h) = J ◦ T −

h ψ. (2.21)

On the other hand, we have the following computation by Green’s formula, as observed in [34]:
∆

|φ′(w)|2dudv =
1
2i


S1
φ̄dφ =

1
2i


S1
φ ◦ hd(φ ◦ h) =

1
2i


S1

P(φ ◦ h)d P(φ ◦ h)

=


∆
(|∂P(φ ◦ h)|2 − |∂P(φ ◦ h)|2)dxdy.

Then, (2.19) follows immediately. �

The following estimates follow from Lemma 2.1, (2.15) and Corollary 2.1 immediately.

Corollary 2.2. Let h = f −1
◦ g be the corresponding quasisymmetric conformal welding of the

conformal mapping f on ∆, and ν be the Beltrami coefficient of a quasiconformal extension of
h−1 to the unit disk. Then it holds that

(1 − |z|2)2

36
|S f (z)|

2
≤ U 2( f, z) ≤ φ2

h(z̄) ≤
1
π


∆

|ν(w)|2

1 − |ν(w)|2

1

|1 − z̄w|4
dudv. (2.22)

3. BMOA–Teichmüller space

We will give two characterizations for BMOA–Teichmüller space by means of the kernels
introduced in Section 2. Precisely, we will prove the following

Theorem 3.1. Let f be a conformal mapping on ∆ and h = f −1
◦ g be the corresponding

quasisymmetric conformal welding. Then each of the following two statements is equivalent to
those in Theorem A.

(B6) φh induces a Carleson measure φ2
h(z̄)(1 − |z|2) ∈ C M(∆).

(B7) U ( f, ·) induces a Carleson measure U 2( f, z)(1 − |z|2) ∈ C M(∆).

Proof. We first point out that B6 was asserted in [26]. Corollary 2.1 implies that B6 ⇔ B7. (2.15)
implies that B7 ⇒ B3. We will show that B1 ⇒ B6 (note that the converse follows from (2.8)).

Suppose f can be extended to a quasiconformal mapping to the whole plane whose complex
dilatation µ induces a Carleson measure |µ(z)|2/(|z|2 − 1) ∈ C M(∆∗). Then |µ(z−1)|2/

(1 − |z|2) ∈ C M(∆). Noting that h = f −1
◦ g, we conclude that h−1 may be extended

to a quasiconformal mapping to ∆∗ with the same complex dilatation µ. By reflection, h−1

may be extended to a quasiconformal mapping to ∆ whose complex dilatation ν satisfies
|ν(z)| = |µ(z−1)| so that |ν(z)|2/(1 − |z|2) ∈ C M(∆). It follows from Lemma 2.1 and the
following lemma (with α = β = 1) that φ2

h(z̄)(1 − |z|2) ∈ C M(∆). This completes the proof of
Theorem 3.1. �

Lemma 3.1. Let α > 0, β > 0. For a positive measure λ on ∆, set

λ̃(z) =


∆

(1 − |z|2)α(1 − |w|
2)β

|1 − z̄w|α+β+2 λ(w)dudv. (3.1)

Then λ̃ ∈ C M(∆) if λ ∈ C M(∆), and ∥λ̃∥c ≤ C∥λ∥c, while λ̃ ∈ C M0(∆) if λ ∈ C M0(∆).
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Proof. When α = β = 1, the first statement was proved by Cui–Zinsmeister [16] by definition.
We will give a new proof by means of a characterization of Carleson measure (see [24,43]). Our
approach also gives the proof of the second statement simultaneously.

Recall that for a positive measure λ on ∆, λ ∈ C M(∆) if and only if

sup
ζ∈∆


∆

1 − |ζ |2

|1 − ζ̄ z|2
λ(z)dxdy < ∞, (3.2)

while λ ∈ C M0(∆) if and only if

lim
|ζ |→1−


∆

1 − |ζ |2

|1 − ζ̄ z|2
λ(z)dxdy = 0. (3.3)

Furthermore, there exist two universal positive constants C1,C2 such that

C1∥λ∥
2
c ≤ sup

ζ∈∆


∆

1 − |ζ |2

|1 − ζ̄ z|2
λ(z)dxdy ≤ C2∥λ∥

2
c . (3.4)

On the other hand, by Lemma 1 in Zhao [42], there exists some universal constant C3 > 0 such
that for any ζ,w ∈ ∆,

∆

(1 − |z|2)α

|1 − z̄w|α+β+2|1 − ζ̄ z|2
dxdy ≤

C3

(1 − |w|2)β |1 − ζ̄w|2
. (3.5)

It follows from (3.1) and (3.5) that
∆

1 − |ζ |2

1 − ζ̄ z |
2 λ̃(z)dxdy =


∆

1 − |ζ |2

|1 − ζ̄ z|2
dxdy


∆

(1 − |z|2)α(1 − |w|
2)β

|1 − z̄w|α+β+2 λ(w)dudv

=


∆

1 − |ζ |2

(1 − |w|2)−β
λ(w)dudv

×


∆

(1 − |z|2)α

|1 − z̄w|α+β+2|1 − ζ̄ z|2
dxdy

≤ C3


∆

1 − |ζ |2

|1 − ζ̄w|2
λ(w)dudv.

Consequently, λ̃ ∈ C M(∆) if λ ∈ C M(∆), and ∥λ̃∥c ≤ C∥λ∥c, while λ̃ ∈ C M0(∆) if
λ ∈ C M0(∆). �

Remark 3.1. If h = f −1
◦ g is the quasisymmetric conformal welding corresponding to f , then

h−1
= g−1

◦ f is the quasisymmetric conformal welding corresponding to j ◦ g ◦ j , where
j (z) = z̄−1 is the standard reflection of the unit circle. By a result of Coifman–Fefferman [14],
a quasisymmetric homeomorphism h is strongly quasisymmetric if and only if h−1 is strongly
quasisymmetric. We conclude that in Theorems A and 3.1 the corresponding statements hold for
g on ∆∗.

4. VMOA–Teichmüller space

In this section, we shall give various characterizations on VMOA–Teichmüller space. We first
note the following basic result.
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Lemma 4.1. Let φ be analytic in ∆, n ∈ N, α > 0. Then the following statements hold.

(1) If |φ(z)|n(1 − |z|2)α ∈ C M(∆), then supz∈∆ |φ(z)|n(1 − |z|2)α+1 < ∞.
(2) If |φ(z)|n(1 − |z|2)α ∈ C M0(∆), then lim|z|→1− |φ(z)|n(1 − |z|2)α+1

= 0.

Proof. The proof is standard. Set λ(z) = |φ(z)|n(1 − |z|2)α . Denote by D(ζ, r) the ball of
center ζ with radius r as before. For any z ∈ ∆, it is easy to see that D(z, (1 − |z|)/2) ⊂

∆ ∩ D(z/|z|, 3(1 − |z|)/2). Thus,
D(z,(1−|z|)/2)

|φ(ζ )|n(1 − |ζ |2)αdξdη ≤ λ(∆ ∩ D(z/|z|, 3(1 − |z|)/2)).

On the other hand, for ζ ∈ D(z, (1 − |z|)/2), 1 − |ζ |2 ≥ (3 + |z|)(1 − |z|)/4, so
D(z,(1−|z|)/2)

|φ(ζ )|n(1 − |ζ |2)αdξdη

≥
(3 + |z|)α(1 − |z|)α

4α


D(z,(1−|z|)/2)

|φ(ζ )|ndξdη

≥ π
(3 + |z|)α(1 − |z|)α

4α
(1 − |z|)2

4
|φ(z)|n .

Consequently, there exists some constant C(α) such that

|φ(z)|n(1 − |z|2)α+1
≤ C(α)

λ(∆ ∩ D(z/|z|, 3(1 − |z|)/2))
1 − |z|

,

from which we obtain the required results immediately. �

Theorem 4.1. Let f be a bounded conformal mapping on ∆ and h = f −1
◦ g be the

corresponding quasisymmetric conformal welding. Then the following statements are equivalent.

(V1) f can be extended to a quasiconformal mapping to the whole plane whose complex
dilatation µ induces a vanishing Carleson measure |µ(z)|2/(|z|2 − 1) ∈ C M0(∆∗).

(V2) log f ′ belongs to VMOA(∆), or equivalently, |N f (z)|2(1 − |z|2) ∈ C M0(∆).
(V3) |S f (z)|2(1 − |z|2)3 ∈ C M0(∆).
(V4) Γ = f (S1) is asymptotically smooth in the sense of Pommerenke [32], namely,

lim|ζ−z|→0 |ζ z|/|ζ − z| = 1 for any two points z and ζ of Γ .
(V5) h is absolutely continuous, and log h′

∈ VMO(S1).
(V6) φ

2
h(z̄)(1 − |z|2) ∈ C M0(∆).

(V7) U 2( f, z)(1 − |z|2) ∈ C M0(∆).

Proof. V1 ⇔ V4 was proved by Pommerenke [32]. By the same reasoning as B1 ⇒ B6 in
Section 3, we find that V1 ⇒ V6 follows from Lemmas 2.1 and 3.1. V6 ⇔ V7 follows from
Corollary 2.1. V7 ⇒ V3 follows from (2.15). It remains to prove V3 ⇒ V2 ⇒ V1 and V2 ⇔ V5.
It should be pointed out that V1 ⇒ V2 was implicitly proved by Dynkin [20].

If log f ′ belongs to VMOA(∆), then log f ′ belongs to the little Bloch space, namely,
|N f (z)|(1 − |z|2) → 0 as |z| → 1− (see [24,33,43]). This also follows from the fact that
|N f (z)|2(1 − |z|2) ∈ C M0(∆) along with Lemma 4.1 (with n = 2, α = 1). By a result of
Becker–Pommerenke [7], f can be extended to a quasiconformal mapping in the whole plane
whose complex dilatation µ satisfies |µ(z)| = |N f (z̄−1)|(1 − |z|−2)|z|−1 as |z| → 1+. Since
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|N f (z)|2(1 − |z|2) ∈ C M0(∆), we conclude that |µ(z)|2/(|z|2 − 1) ∈ C M0(∆∗). This proves
V2 ⇒ V1.

Now we prove V3 ⇒ V2. For any ζ ∈ ∆, set

γζ (z) =
z − ζ

1 − ζ̄ z
, z ∈ ∆. (4.1)

Then,

γ ′
ζ (z) =

1 − |ζ |2

(1 − ζ̄ z)2
, Nγζ =

γ ′′
ζ (z)

γ ′
ζ (z)

=
2ζ̄

1 − ζ̄ z
. (4.2)

Set fζ = f ◦ γ−1
ζ so that f = fζ ◦ γζ . Then

N f = N fζ ◦γζ = (N fζ ◦ γζ )γ
′
ζ + Nγζ = (N fζ ◦ γζ − N

γ−1
ζ

◦ γζ )γ
′
ζ . (4.3)

Now suppose |S f (z)|2(1−|z|2)3 ∈ C M0(∆). In order to prove |N f (z)|2(1−|z|2) ∈ C M0(∆),
by (3.3) it is sufficient to show that

lim
|ζ |→1−


∆

|γ ′
ζ (z)|(1 − |z|2)|N f (z)|

2dxdy = 0. (4.4)

By Lemma 4.1 (with n = 2, α = 3), |S f (z)|(1 − |z|2)2 → 0 as |z| → 1−. By another result of
Becker–Pommerenke [7], |N f (z)|(1 − |z|2) → 0 as |z| → 1−. Thus, we have

lim
|ζ |→1−


∆

|γ ′
ζ (z)|(1 − |z|2)|N f (z)|

2dxdy

= lim
|ζ |→1−


∆
(1 − |γζ |

2)|(N fζ ◦ γζ − N
γ−1
ζ

◦ γζ )γ
′
ζ |

2dxdy

= lim
|ζ |→1−


∆
(1 − |w|

2)|N fζ (w)− N
γ−1
ζ
(w)|2dudv

≤ C1 lim
|ζ |→1−


|N fζ (0)− N

γ−1
ζ
(0)|2 +


∆
(1 − |w|

2)3|N ′

fζ (w)− N ′

γ−1
ζ

(w)|2dudv



= C1 lim
|ζ |→1−


|N f (ζ )|

2(1 − |ζ |2)2 +


∆
(1 − |w|

2)3|S fζ (w)

+
1
2
(N 2

fζ (w)− N 2
γ−1
ζ

(w))|2dudv



≤ C2 lim
|ζ |→1−


∆
(1 − |z|2)3|γ ′

ζ (z)|(|S f (z)|
2
+ |N f (z)− 2Nγζ (z)|

2
|N f (z)|

2)dxdy

≤ C3 lim
|ζ |→1−


∆
(1 − |z|2)3|γ ′

ζ (z)|(|N f (z)|
2
+ |Nγζ (z)|

2)|N f (z)|
2dxdy.

It remains to show that

lim
|ζ |→1−


∆
(1 − |z|2)3|γ ′

ζ (z)|(|N f (z)|
2
+ |Nγζ (z)|

2)|N f (z)|
2dxdy = 0. (4.5)
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For any ϵ > 0, choose some 0 < r < 1 such that |N f (z)|(1 − |z|2) < ϵ as r < |z| < 1. Then,
by (3.4) we have

r<|z|<1
(1 − |z|2)3|γ ′

ζ (z)|(|N f (z)|
2
+ |Nγζ (z)|

2)|N f (z)|
2dxdy

≤ ϵ2


∆
(1 − |z|2)|γ ′

ζ (z)|(|N f (z)|
2
+ |Nγζ (z)|

2)dxdy

≤ ϵ2


C4∥ |N f (z)|
2(1 − |z|2)∥2

c + 4|ζ |2(1 − |ζ |2)


∆

1 − |z|2

|1 − ζ̄ z|4
dxdy


≤ ϵ2(C4∥ |N f (z)|

2(1 − |z|2)∥2
c + C5). (4.6)

On the other hand,
|z|<r

(1 − |z|2)3|γ ′
ζ (z)|(|N f (z)|

2
+ |Nγζ (z)|

2)|N f (z)|
2dxdy

≤ 64


|z|<r

1 − |ζ |2

(1 − |z|2)|1 − ζ̄ z|2
dxdy

≤
64π

(1 − r2)(1 − r)2
(1 − |ζ |2). (4.7)

Now (4.5) follows from (4.6) and (4.7).
To prove V2 ⇒ V5, we consider the pull-back operator Ph(u) = u ◦ h induced by a

quasisymmetric function h. Jones [27] proved that Ph is a bounded operator from BMO(S1), the
space of integrable functions on S1 of bounded mean oscillation (see [24,33,43]), into itself if
and only if h is strongly quasisymmetric. In this case, Ph maps VMO(S1) into itself, as observed
in [2]. In fact, VMO(S1) is the closed subspace of BMO(S1) which is precisely the closure of the
space of all continuous functions in S1 under the BMO norm (see [24,35,43]). Since Ph maps a
continuous function u to a continuous function u ◦ h, we conclude that Ph maps VMO(S1) into
itself.

Now suppose log f ′
∈ VMOA(∆). Then, Γ = f (S1) is asymptotically smooth. Without

loss of generality, we may assume that Γ = f (S1) does not pass through 0. Then j (Γ ) is also
asymptotically smooth. As pointed out in Remark 3.1, h−1

= g−1
◦ f is the quasisymmetric

conformal welding corresponding to j ◦ g ◦ j . We conclude that log g′
∈ VMOA(∆∗). Clearly,

h = f −1
◦ g is strongly quasisymmetric (by Theorem A) and thus absolutely continuous. Noting

that h′
= g′/( f ′

◦ h), we see that log h′
= log g′

− log f ′
◦ h ∈ VMO(S1).

The proof of V5 ⇒ V2 will be given at the end of the paper. �

Remark 4.1. Theorem 4.1 does not hold if f is an unbounded mapping. For example, let
f (z) = z/(1 − eiθ z) so that h(z) = z, but log f ′(z) = −2 log(1 − eiθ z) does not belong to
VMOA(∆).

Remark 4.2. V2 ⇒ V5 generalizes a related result by Anderson–Becker–Lesley [2], who proved
that if a quasisymmetric homeomorphism h can be extended to a quasiconformal mapping to ∆
whose complex dilatation µ satisfies 1

0


ess sup

1−t≤|z|<1
|µ(z)|

2
dt

t
< ∞, (4.8)
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then h is absolutely continuous, and log h′ belongs to VMO(S1). It is easy to see that (4.8) implies
that |µ(z)|2/(1 − |z|2) ∈ C M0(∆). Notice that the condition (4.8) first appeared in Carleson’s
paper [13] and later in many other papers (see [20]).

5. On Schwarzian derivative model

In the rest of the paper, we will discuss the complex analytic theory of BMO–Teichmüller
spaces, and then complete the proof of (V5 ⇒ V2 of) Theorem 4.1. In this section, we will define
BMO–Teichmüller spaces and discuss their Schwarzian derivative models.

We begin with the standard theory of the universal Teichmüller space (see [1,29,30]). Let
M(∆∗) denote the open unit ball of the Banach space L∞(∆∗) of essentially bounded measurable
functions on ∆∗. Forµ ∈ M(∆∗), let fµ be the quasiconformal mapping on the extended plane Ĉ
with complex dilatation equal to µ in ∆∗, conformal in ∆, normalized by fµ(0) = f ′

µ(0)− 1 =

f ′′
µ(0) = 0. We say two elements µ and ν in M(∆∗) are equivalent, denoted by µ ∼ ν, if

fµ|∆ = fν |∆. Then T = M(∆∗) /∼ is the Bers model of the universal Teichmüller space. We
let Φ denote the natural projection from M(∆∗) onto T so that Φ(µ) is the equivalence class [µ].
[0] is called the base point of T .

Let B(∆) denote the Banach space of functions φ holomorphic in ∆ with norm

∥φ∥B = sup
z∈∆

(1 − |z|2)2|φ(z)|. (5.1)

B0(∆) is the subspace of B(∆) consisting of all functions φ such that (1 − |z|2)2|φ(z)| → 0 as
|z| → 1−. Consider the map S : M(∆∗) → B(∆) which sends µ to the Schwarzian derivative of
fµ|∆. It is known that S is a holomorphic split submersion onto its image, which descends down
to a map β : T → B(∆) known as the Bers embedding. Via the Bers embedding, T carries a
natural complex structure so that Φ is a holomorphic split submersion.

Now we begin to discuss the BMO–Teichmüller spaces. We denote by L(∆∗) the Banach
space of all essentially bounded measurable functions µ on ∆∗ each of which induces a Carleson
measure λµ(z) = |µ(z)|2/(|z|2 − 1) ∈ C M(∆∗). The norm on L(∆∗) is defined as

∥µ∥c = ∥µ∥∞ + ∥λµ∥c, (5.2)

where ∥λµ∥c is the Carleson norm of λµ defined in (1.1). L0(∆∗) is the subspace of
L(∆∗) consisting of all elements µ such that λµ ∈ C M0(∆∗). Set M(∆∗) = M(∆∗) ∩

L(∆∗),M0(∆∗) = M(∆∗)∩ L0(∆∗). We call Tb = M(∆∗) /∼ the BMOA–Teichmüller space,
and Tv = M0(∆∗) /∼ the VMOA–Teichmüller space.

We denote by B(∆) the Banach space of functions φ holomorphic in ∆ each of which induces
a Carleson measure λφ(z) = |φ(z)|2(1 − |z|2)3 ∈ C M(∆). The norm on B(∆) is

∥φ∥B = ∥λφ∥c. (5.3)

Lemma 4.1 implies that B(∆) ⊂ B(∆), and the inclusion map is continuous. We denote by
B0(∆) the subspace of B(∆) consisting of all functions φ such that λφ ∈ C M0(∆). Then
B0(∆) ⊂ B0(∆).

We proceed to consider the Bers projection S : M(∆∗) → B(∆). Theorem A implies that
S(M(∆∗)) = S(M(∆∗)) ∩ B(∆), so S(M(∆∗)) is an open subset of B(∆) by the openness of
S(M(∆∗)) in B(∆). Similarly, S(M0(∆∗)) = S(M(∆∗)) ∩ B0(∆), so S(M0(∆∗)) is an open
subset of B0(∆). Now we prove the following
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Theorem 5.1. S : M(∆∗) → B(∆) is a holomorphic split submersion from M(∆∗) onto
its image. Consequently, Tb has a unique complex structure such that β : Tb → B(∆) is a
biholomorphic map from Tb onto a domain in B(∆). Under this complex structure, the natural
projection Φ from M(∆∗) onto Tb is a holomorphic split submersion.

Proof. It is sufficient to show that S : M(∆∗) → B(∆) is a holomorphic split submersion
from M(∆∗) onto its image. We first show that S : M(∆∗) → B(∆) is continuous. We
borrow some discussion from Astala–Zinsmeister [5]. By an integral representation of the
Schwarzian derivative by means of the representation theorem of quasiconformal mappings,
Astala–Zinsmeister [5] proved that for any two elements µ and ν in M(∆∗), there exists some
constant C1(∥µ∥∞) such that

|S(ν)(z)− S(µ)(z)|2 ≤
C1(∥µ∥∞)

(1 − |z|2)2

×


∆∗

|ν(ζ )− µ(ζ )|2 + ∥ν − µ∥
2
∞|µ(ζ )|2

|ζ − z|4
dξdη. (5.4)

By Lemma 2.1 we conclude that there exists some constant C2(∥µ∥∞) such that

∥S(ν)− S(µ)∥2
B ≤ C2(∥µ∥∞)(∥λν − λµ∥

2
c + ∥ν − µ∥

2
∞∥λµ∥

2
c)

≤ C2(∥µ∥∞)(1 + ∥µ∥
2
c)∥ν − µ∥

2
c .

Consequently, S : M(∆∗) → B(∆) is continuous.
To prove that S : M(∆∗) → B(∆) is a holomorphic map, we use a general result about

the infinite dimensional holomorphy (see [29,30]). It says that a continuous map f from a
domain U in a complex Banach space X into another complex Banach space Y is holomorphic
if for each pair (u, x) in U × X and each element y∗ from a total subset Y ∗

0 of the dual space
Y ∗, y∗( f (u + t x)) is a holomorphic function in a neighborhood of zero in the complex plane.
Here a subset Y ∗

0 of Y ∗ is total if y∗(y) = 0 for all y∗
∈ Y ∗

0 implies that y = 0.
Now for each z ∈ ∆, define lz(φ) = φ(z) for φ ∈ B(∆). Lemma 4.1 says that

|φ(z)|(1 − |z|2)2 ≤ C∥φ∥B , which implies that ∥lz∥ ≤ C(1 − |z|2)−2. Thus, lz ∈ B∗(∆).
Set A = {lz : z ∈ ∆}. Clearly, A is a total subset of B∗(∆). Now for each z ∈ ∆, each pair
(µ, ν) ∈ M(∆∗) × L(∆∗) and small t in the complex plane, by the well known holomorphic
dependence of quasiconformal mappings on parameters (see [1,29,30]), we conclude that
lz(S(µ+tν)) = S(µ+tν)(z) is a holomorphic function of t . Consequently, S : M(∆∗) → B(∆)
is holomorphic.

Finally, we prove S : M(∆∗) → B(∆) is a split submersion onto its image, or equivalently,
S : M(∆∗) → B(∆) has local holomorphic sections. Fix φ = S(µ) and set D = fµ(∆), D∗

=

fµ(∆∗). Denote by ρD the hyperbolic metric in D, that is, ρD( fµ(z))| f ′
µ(z)| = (1 − |z|2)−1 for

z ∈ ∆. Consider Uϵ(φ) = {ψ ∈ B(∆) : ∥ψ − φ∥B < ϵ} for ϵ > 0. Then for each ψ ∈ Uϵ(φ)
there exists a unique locally univalent function fψ in ∆ with fψ (0) = f ′

ψ (0) − 1 = f ′′
ψ (0) = 0

such that S fψ = ψ . Set gψ = fψ ◦ f −1
µ . Then Sgψ = ((ψ − φ) ◦ f −1

µ )( f −1
µ )′

2
, and

supz∈D ρ
−2
D (z)|Sgψ (z)| = ∥ψ − φ∥B . Since the inclusion map i : B(∆) → B(∆) is continuous,

∥ψ − φ∥B < Cϵ for ψ ∈ Uϵ(φ). When ϵ is small, Ahlfors [1] (see also Earle–Nag [21]) proved
that gψ is univalent and can be extended to a quasiconformal mapping in the whole plane whose
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complex dilatation µψ has the form

µψ (z) =
Sgψ (r(z))(r(z)− z)2∂r(z)

2 + Sgψ (r(z))(r(z)− z)2∂r(z)
, z ∈ D∗ (5.5)

where r : D∗
→ D is a quasiconformal reflection which satisfies

C−1
3 (∥µ∥∞) ≤ |r(z)− z|2ρD(r(z))|∂r(z)| ≤ C3(∥µ∥∞), z ∈ D∗. (5.6)

It should be pointed out that we may choose r = fµ ◦ j ◦ f −1
µ if we choose µ appropriately

(see [1,21,5,16,22] for details). Then,

|µψ (z)| ≤ C4(∥µ∥∞)|Sgψ (r(z))|ρ
−2
D (r(z)), z ∈ D∗. (5.7)

Consequently, fψ = gψ ◦ fµ is univalent in ∆ and has a quasiconformal extension to the whole
plane whose complex dilatation νψ is

νψ =
µ+ (µψ ◦ fµ)τ

1 + µ(µψ ◦ fµ)τ
, τ =

∂ fµ
∂ fµ

. (5.8)

Now, it follows from (5.7) that

|µψ ( fµ(z))| ≤ C4(∥µ∥∞)|Sgψ (r( fµ(z)))|ρ
−2
D (r( fµ(z)))

= C4(∥µ∥∞)|Sgψ ( fµ( j (z)))|ρ−2
D ( fµ( j (z)))

= C4(∥µ∥∞)|ψ( j (z))− φ( j (z))|(1 − | j (z)|2)2,

which implies that ∥λµψ◦ fµ∥c ≤ C5(∥µ∥∞)∥ψ − φ∥B . Thus, µψ ◦ fµ ∈ M(∆∗), and we
conclude by (5.8) that νψ ∈ M(∆∗). On the other hand, from (5.5) and (5.8) it is easy to see
that νψ depends holomorphically on ψ . Since S(νψ ) = ψ , we conclude that ν : Uϵ(φ) →

B(∆) is a local holomorphic section to S : M(∆∗) → B(∆). This completes the proof of
Theorem 5.1. �

Examining the proof of Theorem 5.1, we may obtain the following

Theorem 5.2. S : M0(∆∗) → B0(∆) is a holomorphic split submersion from M0(∆∗) onto
its image. Consequently, Tv has a unique complex structure such that β : Tv → B0(∆) is a
biholomorphic map from Tv onto a domain in B0(∆). Under this complex structure, the natural
projection Φ from M0(∆∗) onto Tv is a holomorphic split submersion.

Remark 5.1. Let w : ∆∗
→ ∆∗ be a quasiconformal mapping with complex dilatation µ. Then

w induces a biholomorphic isomorphism Rw : M(∆∗) → M(∆∗) as

Rw(ν) =


ν − µ

1 − µ̄ν

∂w

∂w


◦ w−1. (5.9)

Rw descends down a biholomorphic isomorphism w∗
: T → T by w∗

◦ Φ = Φ ◦ Rw.

Suppose w is quasi-isometric under the Poincaré such that µ ∈ M(∆∗). Examining the proof
of Lemma 10 in [16], we find that Rw(ν) ∈ M(∆∗) with ∥Rw(ν)∥c ≤ C1(∥µ∥∞)∥ν − µ∥c
whenever ν ∈ M(∆∗). It is easy to see that Rw : M(∆∗) → M(∆∗) is biholomorphic. It
follows from Theorem 5.1 that w∗

: Tb → Tb is biholomorphic.
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6. On pre-logarithmic derivative model

Recall that the pre-logarithmic derivative model T̂ of the universal Teichmüller space consists
of all functions log f ′, where f belongs to the well known class SQ of all univalent analytic
functions f in the unit disk ∆ with the normalized condition f (0) = f ′(0) − 1 = 0 that can
be extended to a quasiconformal mapping in the whole plane (see [4,45]). Under the topology of
Bloch norm (see [33,43]), T̂ is a disconnected open set. Precisely, T̂ = T ∪θ∈[0,2π) Tθ , where
T = {log f ′

: f ∈ SQ is bounded} and Tθ = {log f ′
: f ∈ SQ satisfies f (eiθ ) = ∞}, θ ∈

[0, 2π), are the all connected components of T̂ (see [45]). Each Tθ is a copy of the Bers model
T , while T is a fiber space over T . In fact, T is a model of the universal Teichmüller curve
(see [9,41]).

We come back to our situation. Under the topology of the BMOA norm, T̂ ∩ BMOA(∆)
is a disconnected open subset of BMOA(0) = {φ ∈ BMOA(∆), φ(0) = 0}. Precisely,
T ∩ BMOA(∆) and Tθ ∩ BMOA(∆), θ ∈ [0, 2π), are the all connected components of
T̂ ∩ BMOA(∆) (see [5]). We will show that each Tθ ∩ BMOA(∆) is biholomorphic to the
BMOA–Teichmüller space Tb, while T ∩ BMOA(∆) is a holomorphic fiber space over Tb.

We recall some basic results on BMOA (see [23,24,33,42]). For any φ ∈ BMOA(0), we set
χφ(z) = |φ′(z)|2(1 − |z|2). Then χφ ∈ C M(∆), and BMOA(0) is a Banach space with norm

∥φ∥b = ∥χφ∥c. (6.1)

For any φ ∈ BMOA(0), it is well known that φ′′
∈ B(∆), (φ′)2 ∈ B(∆), and ∥φ′′

∥B ≤

C1∥φ∥b, ∥(φ
′)2∥B ≤ C2∥φ∥

3
b. More generally,

∥(ψ ′)2 − (φ′)2∥B ≤ 2C2(∥ψ∥
2
b + ∥φ∥

2
b)∥ψ − φ∥b. (6.2)

Set

Λ(φ) = φ′′
−

1
2
(φ′)2, φ ∈ BMOA(0). (6.3)

Then Λ(φ) ∈ B(∆), and Λ : BMOA(0) → B(∆) is continuous.

Lemma 6.1. Λ : BMOA(0) → B(∆) is holomorphic.

Proof. Since Λ is continuous, it needs to show that for any φ,ψ in BMOA(0), the Frechet
derivative

dφΛ(ψ) = lim
t→0

Λ(φ + tψ)− Λ(φ)
t

= ψ ′′
+ φ′ψ ′

exists in the norm ∥ · ∥B . This can be done as follows:

lim
t→0

∥
Λ(φ + tψ)− Λ(φ)

t
− (ψ ′′

+ φ′ψ ′)∥B = lim
t→0

|t |

2
∥(ψ ′)2∥B = 0. �

Fix z0 ∈ ∆∗. For µ ∈ M(∆∗), let gµ be the quasiconformal mapping on the extended plane Ĉ
with complex dilatation equal to µ in ∆∗, conformal in ∆, normalized by gµ(0) = g′

µ(0)− 1 =

0, gµ(z0) = ∞. Consider the map L z0 on M(∆∗) by setting L z0(µ) = log g′
µ. Then Theorem A

implies that Leiθ (M(∆∗)) = Tθ ∩ BMOA(∆), and ∪z0∈∆∗ L z0(M(∆∗)) = T ∩ BMOA(∆),
Theorem 4.1 implies that ∪z0∈∆∗ L z0(M0(∆∗)) = T ∩ VMOA(∆). We have the following
result.
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Theorem 6.1. For each z0 ∈ ∆∗, L z0 : M(∆∗) → BMOA(0) is holomorphic.

Proof. It is sufficient to show L = L z0 : M(∆∗) → BMOA(0) is continuous. On proving this,
we can prove L : M(∆∗) → BMOA(0) is holomorphic by the same reasoning as the proof of
the holomorphy of S : M(∆∗) → B(∆). Recall that L is continuous on M(∆∗) in the topology
of the Bloch norm (see [29]), namely,

sup
z∈∆

|Ngν (z)− Ngµ(z)|(1 − |z|2) ≤ C(∥µ∥∞)∥ν − µ∥∞, µ, ν ∈ M(∆∗). (6.4)

For each ζ ∈ ∆, set γζ as in (4.1), and set gµ,ζ = gµ ◦ γ−1
ζ . Then, it follows from (3.4) and

(6.4) that
∆

|γ ′
ζ (z)|(1 − |z|2)|Ngν (z)− Ngµ(z)|

2dxdy

=


∆
(1 − |γζ |

2)|(Ngν,ζ ◦ γζ − Ngµ,ζ ◦ γζ )γ
′
ζ |

2dxdy

=


∆
(1 − |w|

2)|Ngν,ζ (w)− Ngµ,ζ (w)|
2dudv

≤ C1


|Ngν,ζ (0)− Ngµ,ζ (0)|

2
+


∆
(1 − |w|

2)3|N ′
gν,ζ (w)− N ′

gµ,ζ (w)|
2dudv


= C1|Ngν (ζ )− Ngµ(ζ )|

2(1 − |ζ |2)2

+ C1


∆
(1 − |w|

2)3|(Sgν,ζ (w)− Sgµ,ζ (w))+
1
2
(N 2

gν,ζ (w)− N 2
gµ,ζ (w))|

2dudv


≤ C1(∥µ∥∞)∥ν − µ∥∞

+ C2


∆
(1 − |z|2)3|γ ′

ζ (z)|(|S(ν)(z)− S(µ)(z)|2 + |N 2
gν (z)− N 2

gµ(z)|
2)dxdy

≤ C2(∥µ∥∞)(∥ν − µ∥∞ + ∥S(ν)− S(µ)∥2
B + (∥L(ν)∥2

b + ∥L(µ)∥2
b)∥ν − µ∥

2
∞).

Consequently, it follows from (3.4) again that

∥L(ν)− L(µ)∥2
b ≤ C2(∥µ∥∞)(∥ν − µ∥∞ + ∥S(ν)− S(µ)∥2

B
+ (∥L(ν)∥2

b + ∥L(µ)∥2
b)∥ν − µ∥

2
∞).

By the continuity of S : M(∆∗) → B(∆), we conclude that L : M(∆∗) → BMOA(0) is
continuous. �

Theorem 6.2. For each θ ∈ [0, 2π),Λ is a biholomorphic isomorphism from Tθ ∩ BMOA(∆)
onto β(Tb).

Proof. By Lemma 6.1, Λ is holomorphic on Tθ ∩ BMOA(∆). When restricted on Tθ ∩

BMOA(∆),Λ sends log f ′ to S f . By normalization, Λ is one-to-one on Tθ ∩ BMOA(∆).
Noting that S = Λ ◦ Leiθ , we conclude that Λ : Tθ ∩ BMOA(∆) → β(Tb) is surjective, and
Λ−1

: β(Tb) → Tθ ∩ BMOA(∆) is holomorphic since Leiθ : M(∆∗) → Tθ ∩ BMOA(∆) is
holomorphic, and S : M(∆∗) → β(Tb) is a holomorphic split submersion. �
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Similarly, we can prove the following

Theorem 6.3. Λ is a holomorphic split submersion from T ∩ BMOA(∆) onto β(Tb).

Proof. Lemma 6.1 implies that Λ is holomorphic on T ∩ BMOA(∆). Fix z0 ∈ ∆∗. Since
S = Λ ◦ L z0 , we conclude that Λ : T ∩ BMOA(∆) → β(Tb) is a holomorphic split submersion
since L z0 : M(∆∗) → T ∩ BMOA(∆) is holomorphic, and S : M(∆∗) → β(Tb) is a
holomorphic split submersion. �

An analogous result holds for the VMOA–Teichmüller space. We say φ ∈ VMOA(0) if
φ ∈ VMOA(∆) and φ(0) = 0. First note the following

Theorem 6.4. For each z0 ∈ ∆∗, L z0 : M0(∆∗) → VMOA(0) is holomorphic.

Theorem 6.5. T ∩ VMOA(∆) is a connected open subset of VMOA(0).

Proof. Clearly, T ∩ VMOA(∆) is an open subset of VMOA(0). It remains to show that each
point of T ∩ VMOA(∆) can be connected to 0 by a path in T ∩ VMOA(∆).

Let log f ′
∈ T ∩VMOA(∆). Theorem 4.1 implies that f can be extended to a quasiconformal

mapping in the whole plane whose Beltrami coefficient µ belongs to M0(∆∗), and z0 =

f −1(∞) ∈ ∆∗. For each t ∈ [0, 1], let ft ∈ SQ be the unique mapping whose quasiconformal
extension to the whole plane has Beltrami coefficient tµ, and ft (z0) = ∞. Theorem 6.4 implies
that log f ′

t , t ∈ [0, 1], is a path in T ∩ VMOA(∆) joining log f ′

0 to log f ′. Now, if z0 = ∞, then
f0(z) = z, and we are done. If z0 ≠ ∞, then f0(z) = z0z/(z0 − z), and log f ′

0(r ·), r ∈ [0, 1], is a
curve in T ∩VMOA(∆) connecting 0 and log f ′

0. This completes the proof of Theorem 6.5. �

Theorem 6.6. Λ is a holomorphic split submersion from T ∩ VMOA(∆) onto β(Tv).

Proof. The proof of Lemma 6.1 implies that Λ : VMOA(0) → B0(∆) is holomorphic.
Thus, Λ is holomorphic on T ∩ VMOA(∆). Choose z0 ∈ ∆∗. Since S = Λ ◦ L z0 , we
conclude that Λ : T ∩ VMOA(∆) → β(Tv) is a holomorphic split submersion since L z0 :

M0(∆∗) → T ∩ VMOA(∆) is holomorphic, and S : M0(∆∗) → β(Tv) is a holomorphic split
submersion. �

7. On the quasisymmetric homeomorphism model

Recall that the universal Teichmüller space T has another model (see [1,29,30]). Precisely,
let QS be the set of all normalized quasisymmetric homeomorphisms of the unit circle
keeping 1, i and −i fixed. Then there exists a homeomorphism Ψ between T and QS (with
Teichmüller metric) which takes a point Φ(µ) to the normalized quasisymmetric conformal
welding corresponding to fµ.

Let SQS be the set of all normalized strongly quasisymmetric homeomorphisms on the unit
circle. Theorem A implies that Ψ establishes a bijective map between Tb and SQS. Recall that
each h ∈ SQS is absolutely continuous, and log h′

∈ BMO(S1). A natural metric assigned to
SQS is the following BMO metric:

d(h1, h2) = ∥ log h′

2 − log h′

1∥BMO, h1, h2 ∈ SQS. (7.1)

Let h ∈ SQS be given. Consider the map Rh defined by Rh(k) = k ◦ h−1. Then Rh is a
bijective map from SQS onto itself. Noting that

d(Rh(k1), Rh(h2)) = ∥(log k′

2 − log k′

1) ◦ h−1
∥,
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we conclude by Jones’ result [27] that Rh is a quasi-isometric map from SQS onto itself under
the BMO topology.

Let wh be a quasiconformal extension of h to ∆∗ such that wh is quasi-isometric under
the Poincaré with Beltrami coefficient µh ∈ M(∆∗). As stated in the Introduction, the
existence of such an extension was first proved by Fefferman–Kenig–Pipher [22] by means of
a Beurling–Ahlfors [10] type extension (see also [16] or Lemmas 2.1 and 2.2). We remarked in
Section 5 that wh induces a biholomorphic isomorphism w∗

h from Tb onto itself. It should be
pointed out that w∗

h depends only on h, not on the extension wh . In fact, it is related to Rh by
Ψ ◦ w∗

h = Ψ ◦ Rh .

Theorem 7.1. Ψ : Tb → SQS is a homeomorphism. Consequently, SQS possesses a complex
structure such that Ψ : Tb → SQS is a biholomorphic isomorphism.

Proof. Recall the holomorphic map L∞ : M(∆∗) → T ∩BMOA(∆) defined in the last section.
It is known that ∥ log h′

∥BMO is small if and only if ∥L∞(µh)∥b is small (see [5,18,38]). By
Theorems 5.1 and 6.3, we conclude that both Ψ : Tb → SQS and its inverse are continuous
at the base point id = Ψ([0]). By using the translations w∗

h and Rh , we conclude that both
Ψ : Tb → SQS and its inverse are continuous at a general point h = Ψ([µh]). �

8. Completing the proof of Theorem 4.1

Let h be the quasisymmetric conformal welding corresponding to a bounded conformal
mapping f on the unit disk. Suppose that h is absolutely continuous, and log h′

∈ VMO(S1).
Then, by Theorem 2 in [35], h must be strongly quasisymmetric. We need to prove log f ′

∈

VMOA(∆).
We use an approximation process. Without loss of generality, we may assume h keeps the

point 1 fixed. Under the arclength parameterization of the unit circle, h may be regarded as
a continuous and strictly increasing function on [0, 2π ] with h(0) = 0, h(2π) = 2π . Recall
that VMO(S1) is the closed subspace of BMO(S1) which is the closure of the space of all
continuous functions in S1 under the BMO norm (see [24,35,43]). So there exists a sequence
of (real) analytic functions ψn on [0, 2π ] such that ∥ψn − log h′

∥BMO → 0 as n → ∞. Set

hn(θ) = 2π

 θ
0 eψn(t)dt 2π

0 eψn(t)dt
. (8.1)

Then hn is an analytic and strictly increasing function from [0, 2π ] onto itself, and ∥ log h′
n −

log h′
∥BMO → 0 as n → ∞. Now, by Theorem 7.1, each hn may be represented as the conformal

welding of a bounded conformal mapping fn on the unit disk such that ∥ log f ′
n−log f ′

∥b → 0 as
n → ∞. Since hn is analytic, it is obvious that log f ′

n ∈ VMOA(∆). Thus, log f ′
∈ VMOA(∆)

due to the closedness of VMOA(∆) in BMOA(∆). This completes the proof of Theorem 4.1.
We say a quasisymmetric homeomorphism h is strongly symmetric if it is absolutely

continuous with log h′
∈ VMO(S1). Let SS be the set of all normalized strongly symmetric

homeomorphisms on the unit circle. It is a metric space under the BMO norm (7.1). Theorem 4.1
implies that Ψ establishes a bijective map between Tv and SS. By Theorem 7.1, we have the
following

Theorem 8.1. Ψ : Tv → SS is a homeomorphism. Consequently, SS possesses a complex
structure such that Ψ : Tv → SS is a biholomorphic isomorphism.
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