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Abstract

We first give some new characterizations on BMOA-Teichmiiller space and various characterizations
on VMOA-Teichmiiller space as well. In particular, we prove that a quasisymmetric conformal welding &
corresponds to an asymptotically smooth curve in the sense of Pommerenke (1978) [32] precisely when 4 is
absolutely continuous with log i’ € VMO. We then show that these BMO-Teichmiiller spaces have natural
complex structures.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let A = {z : |z| < 1} denote the unit disk in the extended complex plane CAa=C-4
is the exterior of A, and S! = 9 A = 9 A* is the unit circle. C, Cy, C; - - - will denote universal
constants that might change from one line to another, while C(-), C1(-), C2(-) - - - will denote
constants that depend only on the elements put in the brackets.

The Bers model T of the universal Teichmiiller space can be characterized in the following
ways (see [1,29,30]).

(Ty) T is the set of all conformal mappings (up to a Mobius transformation) on A which can be
extended to a quasiconformal mapping in the whole complex plane C.
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(T2) T is the set of all quasicircles (up to a Mobius transformation) in the extended complex
plane C. Here a closed Jordan curve I in the extended complex plane Cisa quasicircle if
there exists a constant C(I") > 0 such that the diameter (g“ 7) < C(I")|¢ — z| for the smaller
subarc §~z of I" joining any two finite points z and ¢ of I'. Let f be a conformal mapping
on the unit disk A. Then f satisfies condition 7} if and only if I" = f(S!) is a quasicircle.

(T3) T is the set of all quasisymmetric homeomorphisms (up to a Mobius transformation of A)
of the unit circle S'. Here a sense preserving self-homeomorphism # of the unit circle S'
is quasisymmetric if there exists a constant C (k) > 0 such that |h(I*)| < C(h)|h(I)| for
any interval I C § ! with |[I| < 7, where I'* is the interval with same center as I but with
double length and | - | denotes the Lebesgue measure. Let f be a conformal mapping on
the unit disk A, and g be a conformal mapping from A* onto C — f(A). Then f satisfies
condition 71 if and only if # = f~'og is quasisymmetric. & is called the conformal welding
corresponding to f.

It is well known that a quasisymmetric homeomorphism need not be absolutely continuous,
and a quasicircle need not be locally rectifiable (see [10,11,37]). An important problem of long
time has been to determine when a quasisymmetric homeomorphism is absolutely continuous,
when a quasicircle is locally rectifiable, and much work has been done in this direction (see [2,5,
12,13,17,20,22,38]). Carleson [13] initiated such an investigation, giving a sufficient condition on
the dilatation of a quasiconformal self-mapping of the unit disk to have an absolutely continuous
boundary value. A much satisfactory answer is given by the following theorem. Recall that a
positive measure A defined in a simply connected domain (2 is called a Carleson measure if

2
AllE = "

sup {M 7€d2,0<r < dlameter(z?ﬁ)} (1.D

where D(z, r) is the disk with center z and radius r. A Carleson measure A is called a vanishing
Carleson measure if lim,_,gA(f2 N D(z,r))/r = 0 uniformly for z € df{2. We denote by
CM (L) and CMy({2) the set of all Carleson measures and vanishing Carleson measures on
{2, respectively.

Theorem A. Let f be a conformal mapping on A and h = f~' o g be the corresponding
quasisymmetric conformal welding. Then the following statements are equivalent.

(B1) f can be extended to a quasiconformal mapping in the whole plane whose complex
dilatation u induces a Carleson measure |j1(2)|*/(|z]* — 1) € CM(A*).

(By) log f' belongs to BMOA(A), the space of analytic functions in A of bounded mean
oscillation (see [23,24,33,43] ), or equivalently, Ny = f "/ f" induces a Carleson measure
INf(2)P(1 — Izl ) € CM(A).

(B3) Sy = N/ /2 induces a Carleson measure |Sf(z)| (11— |z|2)3 e CM(A).

(By) I'=f (S ) is a quasicircle satisfying the Bishop—Jones condition (see [12]).

(Bs) h is strongly quasisymmetric, namely, for each € > O there is a § > 0 such that

|E| < 8|1 = |h(E)| < €|lh(])]
whenever I C S is an interval and E C I a measurable subset.

Bs = Bj was proved by Fefferman—Kenig—Pipher [22] by means of a Beurling—Ahlfors [10]
type extension. Conversely, By = Bs is implied by a theorem in [22], and was reproved
by Astala—Zinsmeister [5] and Bishop—Jones [12]. (By = B3 = B and B4 = Bs were
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proved by Astala—Zinsmeister [5], while B, < B4 was proved by Bishop—Jones [12], who
also gave a new proof of B3 = Bj. A direct proof of By = B, without using the Schwarzian
derivative was given later by Dynkin [20].) This was proved formerly by Semmes [38] when the
Carleson norm of | ,u(z)|2 /(1 - |z|2) is small. Recently, Cui—Zinsmeister [16] have proved that
the Douady—Earle [19] extension of a strongly quasisymmetric homeomorphism also satisfies B
using Bs = Bj.

In this paper, we shall continue to study the BMO theory of the universal Teichmiiller space,
because of its great importance in the application to harmonic analysis (see [17,22,27,38]) and
also of its own interest. We first give two more characterizations of this BMOA-Teichmiiller
space (see Theorem 3.1) and various characterizations of the VMOA-Teichmiiller space (see
Theorem 4.1), the set of all conformal mappings f on A which can be extended to a
quasiconformal mapping in the whole complex plane C such that log f’ belongs to VMOA(A),
the space of analytic functions in A of vanishing mean oscillation (see [24,33,43]). Then we
show that these BMO-Teichmiiller spaces have natural complex structures. As an application,
we prove that £ is the quasisymmetric conformal welding corresponding to f with log f/ €
VMOA (A) precisely when  is absolutely continuous with log 4’ belongs to VMO(S), the space
of integrable functions on § Lof vanishing mean oscillation (see [24,33,35,43]). We hope that this
complex analytic theory could find applications to some other problems in complex analysis, and
also real analysis.

2. Kernel functions and corresponding operators

In this section, as a sequel to [26], we shall continue to discuss some kernel functions induced
by a quasisymmetric homeomorphism or by the corresponding conformal mapping. These
kernel functions will be used to give some new characterizations for a strongly quasisymmetric
homeomorphism. The results in this section also have independent interests of their own.

First we recall the Hilbert space .A” of all holomorphic functions ¢ in A with the inner product
and norm

1 - 1
@) = —// ST @dxdy, 6] = (— // |¢<z>|2dxdy)2 < 0. @1
4 A 4 A

Then, J¢(z) = ¢(Z) determines an isometric isomorphism of .A? onto itself.
2.1. Kernel functions induced by a quasisymmetric homeomorphism

For a quasisymmetric homeomorphism #, two kernel functions were introduced in a previous
paper [26] by Hu and the first author. They are

_ 1 h(w)

¢h(§7 Z) - 2_7_” gl (1 — é_u))2(1 — Zh(w))dw’ (Cv Z) [S A X Av (22)
o hw

Yn(g,2) = o /Sl T wad —zh(w))dw’ (¢,z) € Ax A. (2.3)

Clearly, both ¢, and v, are holomorphic functions. Note that the function ¢, already appeared
in Cui [15]. It was used in [26] to characterize when a quasisymmetric homeomorphism is
symmetric or even belongs to the Weil-Petersson class. Here it will be used to study the BMO
theory of the universal Teichmiiller space.
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In [26] we introduced two operators on A” induced by ¢, and v, respectively. They are

1
L) = / /A on(c. DY @dxdy, ¥ e A € A, 2.4)

and
1
T, v() = ;//A Vi (C, DV (2)dxdy, ¢ e A% ¢ e A (2.5)

It was proved in [26] that both 7}~ and Th+ are bounded operators from A2 into itself. In fact, Th+
is an isomorphism from A? onto itself (see Lemma 2.3).
Now, as in [26], for each z € A, we define

1
| 1
on(z) = (— / / |¢h<;,z>|2dsdn>2. (2.6)
T JJA

Then we have the following results (for details, see [26]).

Lemma 2.1. Let v be the Beltrami coefficient of a quasiconformal extension of h™' to the unit
disk. Then it holds that

2
¢2(z)§%ff v(w) L dudv. @7
A

=) |1 —zw*

Lemma 2.2. Let E(h) denote the Douady—Earle extension of h, and v(h) denote the Beltrami
coefficient of the inverse mapping E = (h). Then there exists some constant C (h) such that

[v(h)(w)|? 2iov 00
—1_|v(h)(w)|2sc<h>¢>h<w)<1 lw|?)?. (2.8)

2.2. Grunsky kernel

Let f be a conformal mapping on A. Set

f' @) f' () 1
U(f,¢,2) = — , , A x A. 2.9
D= To-ror o P8 @9
Then Sy¢(z) = —6U(f, z, z) is the Schwarzian derivative. f determines the so-called Grunsky
operator on AZ, defined as
1 _
Gry(4) = ;//A U(f. ¢, )Y (z)dxdy. (2.10)

It is known that G f is a bounded operator from A2 into itself with IGfIl < 1,and |Gyl < 1
if and only if f can be extended to a quasiconformal mapping to the whole plane. For details,
see [8,28,36] and also [31].

For each z € A, set

Yo (5) = (2.11)

_
(1—25)%
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Clearly, y, € A2, and ||, || = (1 — |z|*)~". We have

1
Gy (8) = ;[/ U(f, ¢, w)¥,(w)dudv

_l U(f,¢,w)dw
_77/0 /w|r(1_ZW)2 iw

U(f, ¢, 2). (2.12)

‘We also have

U(ffz)
U s Ty yYz) = —
(U(f. 2, v2) f/A S

_ / / U(f. ¢ 2)dg
el=r (1= 2)2 i¢
=U(f.z,2). (2.13)

Following Bazilevic [6], we define

1

1 2
v = (5 [[ weeoraean) 2.14)
Like the Schwarzian derivative S¢(z), the quantity U (f, z) plays an important role in the study of

univalent functions (see [3,6,25,44]) and universal Teichmiiller space (see [39,40]). Notice that
U(f,z) = IIG sl by (2.12), and it follows from (2.13) that

6
ISr ()| =6lU(f, z,2)| < 1(—J|C|Z2) z € A. (2.15)

Now we begin to prove the main result of this section.

Proposition 2.1. Let f be a conformal mapping on A and h = f~' o g be the corresponding
quasisymmetric conformal welding. Then it holds that Th+ oGyr=JoT, ol.

Proof. For any i/ € A2, choose ¢ such that ¢’ = v, and (J¢)' = J. Then,

1
Th+¢(§') = —f Y (¢, )Y (2)dxdy

- 2i Jg1 (€ — w)2(1 — zh(w)) ey
- / h(w) // Y@
= = y

2n2i Jo1 (L — u))2 A l—zh(w)

1 / h(w) / / V() dz
2w Ja (¢ — w)2 o= 1 — Zh(w) iz

_ b h(w) 2
=i —(g“ — w)2dw/o ryr(rch(w))dr
1 ¢ (h(w))
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Similarly,

1 RAUCHR

Ly = 271 Jgi (1 — cw)?

(2.17)

Since

I FOF @) 1 ) ]
G = — - dxdy,
o=z //A([f({)—f(z)]z @ =2 ) Y @dxdy

we conclude by f o h = g and (2.16), (2.17) that
(T+on)w(c)
() 1 ) _
= dxd
T 2nZi /s C—w?’ // (f(h(w))—f(z) hw) =z ) V@D

— / w(z)dxdy/ 2( fo )dw
©2m2i st (@ —w)* \fh(w)) — f(2) h(w)—z

/l/f(z)dxd/ ! ( fo_ 1 )dw
TonZi Ve € = w)2 gw) — ) h(w) —z

2n2/ v @)dxdy /s = w)%h(w)—z)

/ // Y (2)
= 22 g1 (¢ — w)2 h(w) —Z

_ ¢ (h(w))
T 2wi Jo (0 — w)?
= oT, o NY().

This completes the proof of Proposition 2.1. [J

dw

Corollary 2.1. Under the assumption of Proposition 2.1, it holds that

U(f,2) <én@ < IIT,TIIU(f2), z€ A (2.18)

Proof. Recall that U(f,z) = G sy;|l. Now (2.17) implies that ¢,,(¢,z) = 1) ¥;(¢), so
¢n(z) = |IT, ¥|l. On the other hand, it follows from (2.11) that J+; = vz. Thus, we conclude
by Proposition 2.1 that ¢, (z) = ||(Th+ oGyl < ||Th+||U(f, 7). The first inequality in (2.18)
follows from the following lemma. [J

Lemma 2.3. For any quasisymmetric homeomorphism h, it holds that

1Ty = I + 1T, vi?, v e A% (2.19)

Proof. By means of an approximation process, we may assume that v is smooth on A. Choose
¢ such that ¢’ = v as before. Let P(u) denote the Poisson integral of an integrable function u
on the unit circle S1. Then,

w~+ z ¢(h(w))
dw
w—2z w

1
P@oh@ =5 - fs Re (220)
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By means of (2.16), and (2.17) we have

dP(poh) = Th+1/f, dP(poh) = JoT, . (2.21)
On the other hand, we have the following computation by Green’s formula, as observed in [34]:
1 - 1 - 1 N
// ¢’ (w)Pdudv = — ¢d¢=—./ ¢0hd(¢0h)=—.[ P(¢poh)dP(¢poh)
A 2i Jgt 2i Jg1 2i Jg1

://A(|ap(¢oh)|2—|§P(¢>oh)|2)dxdy.

Then, (2.19) follows immediately. [J

The following estimates follow from Lemma 2.1, (2.15) and Corollary 2.1 immediately.

Corollary 2.2. Let h = f~! o g be the corresponding quasisymmetric conformal welding of the
conformal mapping f on A, and v be the Beltrami coefficient of a quasiconformal extension of
h=" to the unit disk. Then it holds that

(1 —z]»?
36

[v(w)[? 1
1— ) 1 - Zw]

S <o 0@ = - [ dudv. (222)
7 JJa

3. BMOA-Teichmiiller space

We will give two characterizations for BMOA-Teichmiiller space by means of the kernels
introduced in Section 2. Precisely, we will prove the following

Theorem 3.1. Let f be a conformal mapping on A and h = f~' o g be the corresponding
quasisymmetric conformal welding. Then each of the following two statements is equivalent to
those in Theorem A.

(Bg) ¢y induces a Carleson measure ¢ﬁ(2)(1 —zI%) e CM(A).
(B7) U(f, ) induces a Carleson measure U(f, z)(1 — |z|?) € CM(A).

Proof. We first point out that Bg was asserted in [26]. Corollary 2.1 implies that Bg < B7.(2.15)
implies that By = B3. We will show that B = Bg (note that the converse follows from (2.8)).

Suppose f can be extended to a quasiconformal mapping to the whole plane whose complex
dilatation p induces a Carleson measure |u(z)>/(|z]> — 1) € CM(A*). Then |u(z~")|?/
(1 — |z]>) € CM(A). Noting that h = f~! o g, we conclude that ~~' may be extended
to a quasiconformal mapping to A* with the same complex dilatation . By reflection, h~!
may be extended to a quasiconformal mapping to A whose complex dilatation v satisfies
v(z)| = |/L(Z_l)| so that |v(z)|2/(1 — |z|2) € CM(A). It follows from Lemma 2.1 and the
following lemma (with « = § = 1) that qb,% (2)(1 — |z|%) € CM(A). This completes the proof of
Theorem 3.1. [J

Lemma 3.1. Let @ > 0, 8 > 0. For a positive measure A on A, set

- (1 —1z1H*1 = JwHPp
Az) = / . TR A(w)dudv. 3.1)

Then » € CM(A) if » € CM(A), and |A|l¢c < C||Alle, while & € CMy(A) if 1 € CMo(A).
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Proof. When o = B = 1, the first statement was proved by Cui—Zinsmeister [16] by definition.
We will give a new proof by means of a characterization of Carleson measure (see [24,43]). Our
approach also gives the proof of the second statement simultaneously.

Recall that for a positive measure A on A, A € CM(A) if and only if

|z|2
A( )dxdy < o0, 3.2)
{EA |1 -
while A € CMy(4) if and only if
|z|2
——=5Mz)dxdy =0. (3.3)
mql A |1
Furthermore, there exist two universal positive constants Cy, Co such that
— IgI? 2
CilAl? < sup ——=—>AM@)dxdy < G|l A (3.4
ceAaltJA |1 - 7]

On the other hand, by Lemma 1 in Zhao [42], there exists some universal constant C3 > 0 such
that for any ¢, w € A,

1— |zH)® C
// ARy < S (3.5)
A |l = Zw|@tA+2|] — ¢ 7|2 1= w1 - ¢w|?
It follows from (3.1) and (3.5) that

AMdxdy = dxd s(wdud
/A1_§Z|2 ()dxdy = A|1—§Z|2 y A 11— zw[e P2 (w)dudv
— g
.//A 1= wp)- ﬂk(w)dudv
— |z/%)”
dxd
/A 1 —zw|“+ﬂ+2|1 —z)? ray

2
f/ T |C| A(w)dudv

Consequently, . € CM(A) if » € CM(A), and |Allc < C|Alle, while A € CMy(A) if
reCMy(Ad). O

Remark 3.1. If 1 = f~! o g is the quasisymmetric conformal welding corresponding to f, then
h~! = g7 o f is the quasisymmetric conformal welding corresponding to j o g o j, where
j@) = 771 is the standard reflection of the unit circle. By a result of Coifman—Fefferman [14],
a quasisymmetric homeomorphism / is strongly quasisymmetric if and only if /! is strongly
quasisymmetric. We conclude that in Theorems A and 3.1 the corresponding statements hold for
g on A*,

4. VMOA-Teichmiiller space

In this section, we shall give various characterizations on VMOA-Teichmiiller space. We first
note the following basic result.
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Lemma 4.1. Let ¢ be analytic in A,n € N, a > 0. Then the following statements hold.

(D) If ¢ @)1 — |z])* € CM(A), then sup,c 5 1¢(2)|"(1 — |z]*)*T! < o0.
@) If p@I"(1 = [2)* € CMo(A), then Tim, - [¢(2)|"(1 — |z]H*F! = 0.

Proof. The proof is standard. Set A(z) = |¢p(2)|"(1 — 1z|%)?. Denote by D(¢, r) the ball of
center ¢ with radius r as before. For any z € A, it is easy to see that D(z, (1 — |z])/2) C
AN D(z/|zl,3(1 —|z])/2). Thus,

ff SO = £ dEdy < 2(AN DE/l2], 301 = 12)/2).
D(z,(1-]z])/2)

On the other hand, for ¢ € D(z, (1 — |z)/2), 1 — [¢|> > 3+ |z)(1 — |z])/4, s0

/ f lp(O)"(1 — ¢} *dEdn
D(z,(1—1z])/2)

3 a1 - o
> O+ = D f / 60" dEdn
D(z,(1-[z])/2)

4

B+ 1z (1 = [z)* (1 — |z])? 0
> y" T le@I".

Consequently, there exists some constant C(«) such that

MAND(z/lzl, 3(1 — |z)/2))
1—z| '

from which we obtain the required results immediately. [

lp@I"(1 - [z1H*T! < C()

Theorem 4.1. Let f be a bounded conformal mapping on A and h = f~' o g be the
corresponding quasisymmetric conformal welding. Then the following statements are equivalent.

(V1) f can be extended to a quasiconformal mapping to the whole plane whose complex
dilatation p induces a vanishing Carleson measure |[,L(Z)|2/(|Z|2 — 1) e CMy(A4A™).

(V2) log f' belongs to VMOA(A), or equivalently, |N ¢ (z)|*(1 — |z]*) € CMy(A).

(V3) ISr@)17(1 — [z € CMp(A).

(Vo) I' = f(SY is asymptotically smooth in the sense of Pommerenke [32], namely,
lim; ;0 |Ez|/|§ — z| = 1 for any two points z and ¢ of I.

(Vs) h is absolutely continuous, and log i’ € VMO(S1).

(Vo) 93, D(1 = [z]*) € CMo(4).

(V7)) U*(f, (1 = |z*) € CMo(4).

Proof. Vi & V4 was proved by Pommerenke [32]. By the same reasoning as By = Bg in
Section 3, we find that V; = Vg follows from Lemmas 2.1 and 3.1. Vg < V7 follows from
Corollary 2.1. V7 = V3 follows from (2.15). It remains to prove V3 = V, = Vi and V, < Vs.
It should be pointed out that V; = V; was implicitly proved by Dynkin [20].

If log f/ belongs to VMOA(A), then log f' belongs to the little Bloch space, namely,
INf()I(1 — 1zI) — 0as |z] — 1= (see [24,33,43]). This also follows from the fact that
INf(2)12(1 — |z|*) € CMo(A) along with Lemma 4.1 (with n = 2, = 1). By a result of
Becker-Pommerenke [7], f can be extended to a quasiconformal mapping in the whole plane
whose complex dilatation u satisfies [1(z)] = [Ny(Z™HI(1 — |z|7)]z| 7! as |z] — 1T. Since
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|Nf(Z)|2(1 — 1z1%) € CMy(A), we conclude that |11(z)|?/(|z]> — 1) € CMy(A*). This proves
Vo= V.
Now we prove V3 = V5. Forany ¢ € A, set

Ve(z) = 1Z—_Z§z’ ze A 4.1
Then,
-] y@ 2
4
(Z) = —_, == . (4.2)
S0 T e Ttk
Set f{ =fo Vg_l SO thatf = f; o Y- Then
Ny = Nfop = (Ny, 0 y;)yz/ + Ny, = (Np, 0oyc — Ny§_1 o y;)yé. 4.3)

Now suppose |S(z)|>(1—[z]%)* € CMy(A). In order to prove [N (2)|*(1—|z|*) € CMy(4),
by (3.3) it is sufficient to show that

lim //Awg(z)l(l—|z|2)|Nf(z)|2dxdy=o. (4.4)

[g]—1~

By Lemma 4.1 (withn = 2,0 = 3), |Sr(2)|(1 — |z1*)?> — 0as |z| — 1~. By another result of
Becker-Pommerenke [7], [N (2)[(1 — |z|2) — Qas |z] — 17. Thus, we have

lim //A Y I = 12PN () Pdxdy

[g]—1~

= lim 1=y PNy - N _ "*dxd
\;Hr//A( e DINg, 0 ye = Ny o ye)ye["dxdy

= lim // (1 = [wP)INy, (w) = N, -1 (w)|*dudv
cl>1-JJa ve

<€ lim <|Nf; ©) =N, 1O + f /A (1= [wl?IN}, (w) - N;§1<w>|2dudv>

=C lim_<|Nf<;)|2<1 — |¢|2)2+//A<1 — w38y, (w)

Ig]—>1
Jrl(zv2 (w) — N>_, (w))|*dudv
20k v

=Cp lim_ / fA (1= 12’1y, @IUSF @7 + INf(2) = 2Ny, (2)1*INf () [)dxdy

= tim [[ (=P @IN QP + 1N, @PINy @ Pdxdy.
It remains to show that

Jim //Au — PP @IINF @ + Ny, @ PIN £ ) Pdxdy = 0. @5)
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For any € > 0, choose some 0 < r < 1 such that [N¢(z)|(1 — 1z|?) < €asr < |z| < 1. Then,
by (3.4) we have

< //A(l — 2PV @IIN @ + Ny, () [*)dxdy

1— 2
< é? (c4|| INp(2)2(1 =202+ 412170 — ¢ ffA %dxdy)

_ EZ|4
< X(Call INy 1P = 12112 + Cs). (4.6)
On the other hand,

//| (1 = PV I @IIN @ P + [Ny, @) INf @) Pdxdy

1— 2
564/f 5 er Sdxdy
lzl<r (1 = 2|91 = ¢z]
64

< —— - @.7)
S (=) —rp
Now (4.5) follows from (4.6) and (4.7).

To prove Vo = Vs, we consider the pull-back operator P,(#) = u o h induced by a
quasisymmetric function /. Jones [27] proved that P}, is a bounded operator from BMO(S'), the
space of integrable functions on S I of bounded mean oscillation (see [24,33,43)), into itself if
and only if 4 is strongly quasisymmetric. In this case, P, maps VMO(S') into itself, as observed
in [2]. In fact, VMO(S") is the closed subspace of BMO(S') which is precisely the closure of the
space of all continuous functions in § ! under the BMO norm (see [24,35,43]). Since P, maps a
continuous function u to a continuous function u o h, we conclude that P, maps VMO(S 1) into
itself.

Now suppose log f/ € VMOA(A). Then, I' = £(S') is asymptotically smooth. Without
loss of generality, we may assume that I" = f(S!) does not pass through 0. Then j (I') is also
asymptotically smooth. As pointed out in Remark 3.1, =1 = g~! o f is the quasisymmetric
conformal welding corresponding to j o g o j. We conclude that log g’ € VMOA(A*). Clearly,
h = f~'og is strongly quasisymmetric (by Theorem A) and thus absolutely continuous. Noting
that i’ = g'/(f’ o h), we see that logh’ = log g’ — log ' o h € VMO(S!).

The proof of Vs = V, will be given at the end of the paper. [

Remark 4.1. Theorem 4.1 does not hold if f is an unbounded mapping. For example, let
fz) = z/(1 — ¢'%2) so that h(z) = z, but log f'(z) = —2log(l — ¢!z) does not belong to
VMOA(A).

Remark 4.2. V, = V5 generalizes a related result by Anderson—-Becker-Lesley [2], who proved

that if a quasisymmetric homeomorphism /4 can be extended to a quasiconformal mapping to A
whose complex dilatation p satisfies

1 ®dt
/ esssup |u(z)| | — < oo, 4.8)
0 \1-r<jz|<l !
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then 4 is absolutely continuous, and log &’ belongs to VMO(S!). It is easy to see that (4.8) implies
that |u(z)|2/(1 — |z|2) € CMy(A). Notice that the condition (4.8) first appeared in Carleson’s
paper [13] and later in many other papers (see [20]).

5. On Schwarzian derivative model

In the rest of the paper, we will discuss the complex analytic theory of BMO-Teichmiiller
spaces, and then complete the proof of (Vs = V5 of) Theorem 4.1. In this section, we will define
BMO-Teichmiiller spaces and discuss their Schwarzian derivative models.

We begin with the standard theory of the universal Teichmiiller space (see [1,29,30]). Let
M (A*) denote the open unit ball of the Banach space L>(A*) of essentially bounded measurable
functions on A*. For u € M(A*),let f, be the quasiconformal mapping on the extended plane C
with complex dilatation equal to u in A*, conformal in A, normalized by f,(0) = f;i 0 —-1=

IQ’ (0) = 0. We say two elements p and v in M(A*) are equivalent, denoted by u ~ v, if
fula = fula. Then T = M(A*) /. is the Bers model of the universal Teichmiiller space. We
let ¢ denote the natural projection from M (A*) onto T so that ¢(u) is the equivalence class [u].
[0] is called the base point of T'.

Let B(A) denote the Banach space of functions ¢ holomorphic in A with norm

g1l = sup(l — 1z)*1$ ). 5.1)
zeA
By(A) is the subspace of B(A) consisting of all functions ¢ such that (1 — |z|2)2|¢(z)| — Oas
|z| = 17. Consider the map S : M (A*) — B(A) which sends p to the Schwarzian derivative of
Sfula. Itis known that S is a holomorphic split submersion onto its image, which descends down
toamap 8 : T — B(A) known as the Bers embedding. Via the Bers embedding, T carries a
natural complex structure so that @ is a holomorphic split submersion.
Now we begin to discuss the BMO-Teichmiiller spaces. We denote by L£(A*) the Banach
space of all essentially bounded measurable functions p on A* each of which induces a Carleson
measure A, (z) = l(2)1?/(|1z]* — 1) € CM(A*). The norm on £(A*) is defined as

el = litlloo + lAulles (5.2)

where ||A.llc is the Carleson norm of A, defined in (1.1). Lo(A*) is the subspace of
L(A*) consisting of all elements w such that 1, € CMp(A*). Set M(A*) = M(A*) N
L(A*), Mo(A*) = M(A*) N Lo(A*). We call Tp, = M(A*) /. the BMOA-Teichmiiller space,
and T, = My(A*) /. the VMOA-Teichmiiller space.

We denote by B(A) the Banach space of functions ¢ holomorphic in A each of which induces
a Carleson measure Ay(z) = |6 (2)|?(1 — |z]*)3 € CM(A). The norm on B(A) is

lolis = lAglle- (5.3)

Lemma 4.1 implies that 5(A) C B(A), and the inclusion map is continuous. We denote by
Bo(A) the subspace of B(A) consisting of all functions ¢ such that Ay € CMy(A). Then
Bo(A) C By(A).

We proceed to consider the Bers projection S : M(A*) — B(A). Theorem A implies that
S(M(A*)) = S(M(A*)) N B(A), so S(M(A*)) is an open subset of B(A) by the openness of
S(M(A*)) in B(A). Similarly, S(M(4*)) = S(M(A*)) N By(AQ), so S(Mo(A*)) is an open
subset of By(A). Now we prove the following
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Theorem 5.1. S : M(A*) — B(AQ) is a holomorphic split submersion from M(A*) onto
its image. Consequently, Ty, has a unique complex structure such that B : T, — B(A) is a
biholomorphic map from Ty, onto a domain in B(A). Under this complex structure, the natural
projection @ from M(A*) onto Ty is a holomorphic split submersion.

Proof. It is sufficient to show that S : M(A*) — B(A4) is a holomorphic split submersion
from M(A*) onto its image. We first show that § : M(A*) — B(A) is continuous. We
borrow some discussion from Astala—Zinsmeister [5]. By an integral representation of the
Schwarzian derivative by means of the representation theorem of quasiconformal mappings,
Astala—Zinsmeister [5] proved that for any two elements p and v in M (A*), there exists some
constant C(||i]lo0) such that

s Callil)
[SW)(z) — S(w)()]” < 1 — 222
X// (0 u(cn'; Ilv|4 Wlol O )y (5.4)
« —Z

By Lemma 2.1 we conclude that there exists some constant C (|| 4]l o0) such that

IS) — SGOI% < Callllloo) (1hy — A llZ + 1y — wllZe 12112
< Callilloe) A + el v = )2

Consequently, S : M(A*) — B(A) is continuous.

To prove that S : M(A*) — B(A) is a holomorphic map, we use a general result about
the infinite dimensional holomorphy (see [29,30]). It says that a continuous map f from a
domain U in a complex Banach space X into another complex Banach space Y is holomorphic
if for each pair (u, x) in U x X and each element y* from a total subset Y of the dual space
Y*, y*(f(u + tx)) is a holomorphic function in a neighborhood of zero in the complex plane.
Here a subset Y of Y* is total if y*(y) = O for all y* € Y implies that y = 0.

Now for each z € A, define I,(¢) = ¢(z) for ¢ € B(A). Lemma 4.1 says that
I (I(1 — [z1%)? < Cli¢llp, which implies that [II.]] < C(1 — |z|*)72. Thus, I, € B*(4).
Set A = {l, : z € A}. Clearly, A is a total subset of B*(A). Now for each z € A, each pair
(m,v) € M(A*) x L(A*) and small ¢ in the complex plane, by the well known holomorphic
dependence of quasiconformal mappings on parameters (see [1,29,30]), we conclude that
I;(S(u+tv)) = S(u+1tv)(z) is a holomorphic function of . Consequently, S : M(A*) — B(A)
is holomorphic.

Finally, we prove S : M(A*) — B(A4) is a split submersion onto its image, or equivalently,
S : M(A*) — B(A) has local holomorphic sections. Fix ¢ = S(u) and set D = f,,(4), D* =
S (A4%). Denote by pp the hyperbolic metric in D, that is, pp (f, (Z))|f[¢ (@) =1 -1z for
z € A. Consider U.(¢) = { € B(A) : ||y — ¢lip < €} for € > 0. Then for each ¢ € U, (¢)
there exists a unique locally univalent function fy in A with fy, (0) = fx/p o) —-1= ng O =0
such that Sy, = . Set gy = fy o f;'. Then Sg, = (¥ — &) o f7)(/7")", and
SUpP,ep sz(z)|Sgw (z)| = Il — ¢l . Since the inclusion map i : B(A) — B(A) is continuous,

v — @llp < Ce for ¥ € Uc(¢p). When € is small, Ahlfors [1] (see also Earle-Nag [21]) proved
that g, is univalent and can be extended to a quasiconformal mapping in the whole plane whose
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complex dilatation py has the form

Sgw r@)(rz) — Z)zgr(z)
2+ SgI/, (r(@)(r(z) — 2)%3r(z)’

where r : D* — D is a quasiconformal reflection which satisfies

My (2) = € D* (5.5)

C5 ' (Iilloo) < Ir(2) — 2P pp(r(@)[0r ()] < C3(llplloc),  z € D*. (5.6)

It should be pointed out that we may choose r = f, 0 jo f° 1'if we choose p appropriately
(see [1,21,5,16,22] for details). Then,

Iy @ < Calllilloo)|Sg, (r(@)pp (r(2)), 2z € D*. (5.7
Consequently, fy = gy o f, is univalent in A and has a quasiconformal extension to the whole

plane whose complex dilatation vy is

Lty o fr _
VT T By o fT 0fu
Now, it follows from (5.7) that

Iy (Fu@)] < Calllitlloo)|Se, r (fu@Nop (r (fu(2))
= Ca(lltlloo)|Se, (fu G @NIop* (fu(j (D))
= Gl ¥ (j () — ¢ @I — [ (@),
which implies that [|A,,0f,llc < CsUlullo) ¥ — @liB. Thus, py o f, € M(A*), and we

conclude by (5.8) that vy, € MZA*). On the other hand, from (5.5) and (5.8) it is easy to see
that vy depends holomorphically on . Since S(vy) = ¥, we conclude that v : Uc(¢p) —
B(A) is a local holomorphic section to § : M(A*) — B(A). This completes the proof of

Theorem 5.1. O

(5.8)

Examining the proof of Theorem 5.1, we may obtain the following

Theorem 5.2. S : My(4*) — Bo(AQ) is a holomorphic split submersion from My(A*) onto
its image. Consequently, T, has a unique complex structure such that B : T, — Bo(A) is a
biholomorphic map from T, onto a domain in By(A). Under this complex structure, the natural
projection ® from My(A*) onto Ty is a holomorphic split submersion.

Remark 5.1. Let w : A* — A* be a quasiconformal mapping with complex dilatation p. Then
w induces a biholomorphic isomorphism R, : M(A*) — M(A*) as

R, (v) = ( VTR 8:“’) ow ! (5.9)
I — v ow

Ry, descends down a biholomorphic isomorphism w* : T — T by w* o & = @ o Ry,.

Suppose w is quasi-isometric under the Poincaré such that © € M (A*). Examining the proof
of Lemma 10 in [16], we find that R,,(v) € M(A*) with |Ry(W)|lc < Ci(llloc) v — e
whenever v € M(A*). It is easy to see that Ry, : M(A*) — M (A*) is biholomorphic. It
follows from Theorem 5.1 that w* : T, — T, is biholomorphic.
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6. On pre-logarithmic derivative model

Recall that the pre-logarithmic derivative model 7 of the universal Teichmiiller space consists
of all functions log f’, where f belongs to the well known class S¢ of all univalent analytic
functions f in the unit disk A with the normalized condition f(0) = f/(0) — 1 = O that can
be extended to a quasiconformal mapping in the whole plane (see [4,45]). Under the topology of
Bloch norm (see [33,43]), 7 is a disconnected open set. Precisely, 7 = 7 Ugc[o,27) 79, Where
T = {logf' : f € Sp isbounded} and 7y = {log f’ : f € Sgsatisfiesf (e'?) = 00},0 €
[0, 27), are the all connected components of T (see [45]). Each 7y is a copy of the Bers model
T, while 7 is a fiber space over T. In fact, 7 is a model of the universal Teichmiiller curve
(see [9,41]).

We come back to our situation. Under the topology of the BMOA norm, 7 N BMOA(A)
is a disconnected open subset of BMOA(0) = {¢ € BMOA(A), ¢(0) = O0}. Precisely,
7: N BMOA(4) and 79 N BMOA(A),6 € [0,2x), are the all connected components of
7 N BMOA(A) (see [5]). We will show that each 79 N BMOA(A) is biholomorphic to the
BMOA-Teichmiiller space T, while 7 N BMOA(A) is a holomorphic fiber space over Tj.

We recall some basic results on BMOA (see [23,24,33,42]). For any ¢ € BMOA(0), we set
X (2) = |’ (z)|*(1 — |z|?). Then Xx¢ € CM(A), and BMOA(0) is a Banach space with norm

olls = lixglle- (6.1)

For any ¢ € BMOA(0), it is well known that ¢” € B(A), (¢))> € B(A), and |¢"|g <
Cillglls. (@)l < C2||¢||;3,- More generally,

IWH? = (@)l < 2C2(IV 12 + 1911 — b (6.2)
Set

1
A(p) = ¢" — §(¢/)2, ¢ € BMOA(0). (6.3)
Then A(¢) € B(A), and A : BMOA(0) — B(A) is continuous.

Lemma 6.1. A : BMOA(0) — B(A) is holomorphic.

Proof. Since A is continuous, it needs to show that for any ¢, v in BMOA(0), the Frechet
derivative

A —A
d¢A(¢) = }E}l’(l) ¢+ twt) (¢) _ 1//// + ¢/1/f,

exists in the norm || - || 3. This can be done as follows:

A !
i 1 A8 ED 1D gy = i

t—0 t

I]

N2 _
7|I(1ﬁ) Ilr=0. U

Fix zg € A*. For u € M(A*), let gu be the quasiconformal mapping on the extended plane ¢
with complex dilatation equal to x in A*, conformal in A, normalized by g, (0) = gl’L 0 —-1=
0, g.(z0) = oo. Consider the map L., on M (A*) by setting L, (1) = log gl’t. Then Theorem A
implies that L o (M(A*)) = 79 N BMOA(A), and U p+ Ly, (M(A*)) = T N BMOA(4),
Theorem 4.1 implies that Uy e A+ L (Mo(A¥)) = T N VMOA(A). We have the following
result.
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Theorem 6.1. For each zg € A*, Ly, : M(A*) — BMOA(0) is holomorphic.

Proof. It is sufficient to show L = L., : M(A*) — BMOA(0) is continuous. On proving this,
we can prove L : M(A*) — BMOA(0) is holomorphic by the same reasoning as the proof of
the holomorphy of S : M(A*) — B(A). Recall that L is continuous on M (A*) in the topology
of the Bloch norm (see [29]), namely,

Sug INg, () = Ng, (211 = 121*) < Clllloo)lv — ptlloo, s v € M(A®). (6.4)

Foreach { € A, set y; asin (4.1), and set g, ; = g, © yg_l. Then, it follows from (3.4) and
(6.4) that

/ fA Iy, @I(1 = 1z1))|Ng, (2) = N, (2)|*dxdy
- / /A (1= 1y (Ng, . 07 — Neyo © 7)) Pdxdy
=//A(1 — [w[*)|Ng, (W) = N, , (w)|*dudv

< (|Ngv,;(0)—Ng,L,g<0)|2+ f /A (1- |w|2>3|N;V.{<w>—N;M,;(wnzdudv)
= C1|Ng, (§) = Ng, ()17 (1 = g *)?
c 1 23S S L vz N2 2dud
FCu{ ] A= 10l (0) = Sg, 0 (W) + SN, (@) = Ny, (w))Pdud

= Ci(lpello) v = pelloo

+G / /A (1= 2P’ @IS @) = SW @I + INg (2) = Ng ()P)dxdy

< Ca(ltlloo) v = sl + IISW) = SGII% + NLMIZ + L@ I3 v — pllZ)-
Consequently, it follows from (3.4) again that

ILO) — L) < Calllielloo) (v — illoo + 1S() — S(w) 1%
+UILOIE+ LD — wllZ)-

By the continuity of § : M(A*) — B(A), we conclude that L : M(A*) — BMOA(0) is
continuous. [

Theorem 6.2. For each 6 € [0, 2m), A is a biholomorphic isomorphism from Tg N BMOA(A)
onto B(Tp).

Proof. By Lemma 6.1, A is holomorphic on 73 N BMOA(A). When restricted on 7y N
BMOA(A), A sends log f' to Sy. By normalization, A is one-to-one on 75 N BMOA(A).
Noting that § = A o L, we conclude that A : 79 N BMOA(A) — B(T}) is surjective, and
A= B(T,) — Ty N BMOAC(A) is holomorphic since L s : M(A*) — Ty N BMOA(A) is
holomorphic, and § : M(A*) — B(T}) is a holomorphic split submersion. [
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Similarly, we can prove the following

Theorem 6.3. A is a holomorphic split submersion from T N BMOA(A) onto B(Tp).

Proof. Lemma 6.1 implies that A is holomorphic on 7 N BMOA(A). Fix zo € A*. Since
S = Ao L, we conclude that A : 7 N BMOA(A) — B(Tp) is a holomorphic split submersion
since Lz, : M(A*) — 7 N BMOA(A) is holomorphic, and § : M(A*) — B(Tp) is a
holomorphic split submersion. [

An analogous result holds for the VMOA-Teichmiiller space. We say ¢ € VMOA(O) if
¢ € VMOA(A) and ¢ (0) = 0. First note the following

Theorem 6.4. For each zo € A*, Ly, : Mo(A*) — VMOA(0) is holomorphic.

Theorem 6.5. 7 N VMOA(A) is a connected open subset of VMOA (0).

Proof. Clearly, 7 N VMOA(A) is an open subset of VMOA(0). It remains to show that each
point of 7 N VMOA(A) can be connected to 0 by a path in 7 N VMOA(A).

Letlog f/ € TNVMOA(A). Theorem 4.1 implies that f can be extended to a quasiconformal
mapping in the whole plane whose Beltrami coefficient u belongs to My(A*), and z9 =
f~!(c0) € A*. Foreacht € [0, 1], let f; € So be the unique mapping whose quasiconformal
extension to the whole plane has Beltrami coefficient 7, and f;(z9) = 0o. Theorem 6.4 implies
that log f/, ¢ € [0, 1], is a path in 7 N VMOA(A) joining log f; to log f”. Now, if zg = oo, then
fo(z) = z, and we are done. If zg 3 oo, then fo(z) = z0z/(z0 —2), and log fj(r-),r € [0,1],isa
curve in 7 N'VMOA(A) connecting 0 and log f;;. This completes the proof of Theorem 6.5. [

Theorem 6.6. A is a holomorphic split submersion from T N VMOA(A) onto B(Ty).

Proof. The proof of Lemma 6.1 implies that 4 : VMOA() — By(4) is holomorphic.
Thus, A is holomorphic on 7 N VMOA(A). Choose z9 € A*. Since S = A o L, we
conclude that A : 7 N VMOA(A) — B(T,) is a holomorphic split submersion since L, :
Mo(A*) — T N VMOA(A) is holomorphic, and S : My(A*) — B(T,) is a holomorphic split

submersion. [
7. On the quasisymmetric homeomorphism model

Recall that the universal Teichmiiller space 7' has another model (see [1,29,30]). Precisely,
let QS be the set of all normalized quasisymmetric homeomorphisms of the unit circle
keeping 1, i and —i fixed. Then there exists a homeomorphism ¥ between 7" and QS (with
Teichmiiller metric) which takes a point @(u) to the normalized quasisymmetric conformal
welding corresponding to f,.

Let SOS be the set of all normalized strongly quasisymmetric homeomorphisms on the unit
circle. Theorem A implies that ¥ establishes a bijective map between T and SQS. Recall that
each i € SQS is absolutely continuous, and logh’ € BMO(S'). A natural metric assigned to
SQS is the following BMO metric:

d(h1, h2) = || logh) —loghllsmo,  hi1, ha € SOS. (1.1)

Let h € SQOS be given. Consider the map R;, defined by Rj (k) = k o h=Ll. Then R, is a
bijective map from SQOS onto itself. Noting that

d(Rp(k1), Ry (h2)) = ||(log kb — logk}) o K71,
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we conclude by Jones’ result [27] that R, is a quasi-isometric map from SQS onto itself under
the BMO topology.

Let wy, be a quasiconformal extension of i to A* such that wj, is quasi-isometric under
the Poincaré with Beltrami coefficient u, € M(A*). As stated in the Introduction, the
existence of such an extension was first proved by Fefferman—Kenig—Pipher [22] by means of
a Beurling—Ahlfors [10] type extension (see also [16] or Lemmas 2.1 and 2.2). We remarked in
Section 5 that wy, induces a biholomorphic isomorphism w; from T}, onto itself. It should be
pointed out that w; depends only on £, not on the extension wy. In fact, it is related to Ry, by
Vowy = WoRy.

Theorem 7.1. ¥ : T, — SQOS is a homeomorphism. Consequently, SQS possesses a complex
structure such that W : Ty, — SQS is a biholomorphic isomorphism.

Proof. Recall the holomorphic map L, : M(A*) — 7 NBMOA(A) defined in the last section.
It is known that || log 7’ ||gmo is small if and only if ||Leo(in)llp is small (see [5,18,38]). By
Theorems 5.1 and 6.3, we conclude that both ¥ : T, — SQOS and its inverse are continuous
at the base point id = W([0]). By using the translations w;1k and Ry, we conclude that both
¥ : Tp — SOS and its inverse are continuous at a general point 4 = ¥ ([u,]). U

8. Completing the proof of Theorem 4.1

Let i be the quasisymmetric conformal welding corresponding to a bounded conformal
mapping f on the unit disk. Suppose that & is absolutely continuous, and logh’ € VMO(S").
Then, by Theorem 2 in [35], & must be strongly quasisymmetric. We need to prove log f/ €
VMOA(A).

We use an approximation process. Without loss of generality, we may assume % keeps the
point 1 fixed. Under the arclength parameterization of the unit circle, 2 may be regarded as
a continuous and strictly increasing function on [0, 27r] with A(0) = 0, h(2r) = 2n. Recall
that VMO(S?) is the closed subspace of BMO(S!) which is the closure of the space of all
continuous functions in S! under the BMO norm (see [24,35,43]). So there exists a sequence
of (real) analytic functions v, on [0, 27] such that ||v,, — log &’|lsMo — 0 as n — oo. Set

.[09 e‘ﬁn(l)dt

hp(0) =270 ——
n®) JE e dy

8.1

Then h,, is an analytic and strictly increasing function from [0, 277] onto itself, and || log &), —
log7'|lBMo — 0asn — oo. Now, by Theorem 7.1, each h,, may be represented as the conformal
welding of a bounded conformal mapping f, on the unit disk such that || log f, —log f’|l, — 0 as
n — oo. Since h,, is analytic, it is obvious that log f, € VMOA(A). Thus, log f' € VMOA(A)
due to the closedness of VMOA(A) in BMOA (A). This completes the proof of Theorem 4.1.

We say a quasisymmetric homeomorphism /4 is strongly symmetric if it is absolutely
continuous with logh’ € VMO(S!). Let SS be the set of all normalized strongly symmetric
homeomorphisms on the unit circle. It is a metric space under the BMO norm (7.1). Theorem 4.1
implies that ¥ establishes a bijective map between T, and SS. By Theorem 7.1, we have the
following

Theorem 8.1. ¥ : T, — SS is a homeomorphism. Consequently, SS possesses a complex
structure such that ¥ : T, — SS is a biholomorphic isomorphism.
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