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Abstract. We will prove that an increasing homeomorphism h in the Weil–Petersson class on

the real line must be locally absolutely continuous such that log h′ belongs to the Sobolev class H
1

2 .

We will also deal with the the pre-logarithmic derivative models of the little and Weil–Petersson

Teichmüller spaces in the half plane case.

1. Introduction

This is a continuous work of our previous papers [Sh] and [ST] (see also [HWS]),
where we were mainly concerned with the Weil–Petersson geometry theory of the
universal Teichmüller space. We first fix some basic notations. Let U = {z =
x + iy : y > 0} and U

∗ = {z = x + iy : y < 0} denote the upper and lower half
plane in the complex plane C, respectively. R = ∂U = ∂U∗ is the real line, and
R̂ = R ∪ {∞} is the extended real line in the Riemann sphere Ĉ = C ∪ {∞}. Let

∆ = {z : |z| < 1} denote the unit disk. ∆∗ = Ĉ − ∆ is the exterior of ∆, and
S1 = ∂∆ = ∂∆∗ is the unit circle. D will always denote the unit disk ∆ or the upper
half plane U so that S = ∂D is the unit circle S1 or the real line R. Similarly, D∗

will always denote the exterior ∆∗ of the unit disk or the lower half plane U
∗.

A sense-preserving homeomorphism of S onto itself is said to belong to the Weil–
Petersson class, which is denoted by WP(S), if it has a quasiconformal extension to
D whose Beltrami coefficient is square integrable in the Poincaré metric. In [Sh],
we gave the following intrinsic characterization of a quasisymmetric homeomorphism
in the Weil–Petersson class WP(S1) without using quasiconformal extensions, which
solves a problem proposed by Takhtajan–Teo in 2006 (see page 68 in [TT] and also
[Fi], [GR]). Recall that, for a function f defined on S, f ′ denotes the derivative of f ,
namely, for z ∈ S,

f ′(z)
.
= lim

S∋ζ→z

f(ζ)− f(z)

ζ − z

provided the limit exists, while f ′(z)
.
= 0 otherwise.
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Theorem 1.1. [Sh] A sense-preserving homeomorphism g on the unit circle S1

belongs to the Weil–Petersson class WP(S1) if and only if g is absolutely continuous

(with respect to the arc-length measure) such that log g′ belongs to the Sobolev class

H
1

2 (S1).

Recall that the Sobolev class H
1

2 (S) on S is the collection of all locally integrable
functions u with

(1.1) ‖u‖2
H

1

2

.
=

1

4π2

ˆ

S

ˆ

S

|u(ζ)− u(η)|2
|ζ − η|2 |dζ ||dη| < +∞.

Since the logarithmic derivative is not invariant under a Möbius transformation, we
can not deduce a similar result on the real line from Theorem 1.1 directly. Anyway,
by means of a construction due to Semmes (see [Se1-2]), we did prove the following
result in our joint work [ST].

Theorem 1.2. [ST] Let h be an increasing homeomorphism from the real line

R onto itself. If h is locally absolutely continuous with log h′ ∈ H
1

2 (R), then h ∈
WP(R).

In this note, we will show that the converse to Theorem 1.2 is also true, namely,
we have

Theorem 1.3. Let h be an increasing homeomorphism from the real line R

onto itself such that h ∈ WP(R). Then h is locally absolutely continuous with

log h′ ∈ H
1

2 (R).

To prove Theorem 1.3, we will deal with the pre-logarithmic derivative models of
the little and Weil–Petersson Teichmüller spaces in the half plane case. It should be
pointed out that, in the unit disk case, the pre-logarithmic derivative models of the
little and Weil–Petersson Teichmüller spaces were much investigated in recent years
(see Propositions 3.1 and 4.1 below).

2. Preliminaries

In this section, we give some basic definitions and results on the universal Te-
ichmüller space and its two subspaces, the little Teichmüller space and the Weil–
Petersson Teichmüller space. In particular, we will recall the Schwarzian derivative
models of these Teichmüller spaces.

We begin with the standard theory of the universal Teichmüller space (see [Ah],
[GL], [Le] and [Na] for more details). Let M(D∗) denote the open unit ball of
the Banach space L∞(D∗) of essentially bounded measurable functions on D

∗. For

µ ∈ M(D∗), let fµ be the quasiconformal mapping on the extended plane Ĉ with
complex dilatation equal to µ in D

∗, conformal in D, normalized by fµ(0) = 0,
fµ(1) = 1 and fµ(∞) = ∞. We say two elements µ and ν in M(D∗) are equivalent,
denoted by µ ∼ ν, if fµ|D = fν |D. Then T = M(D∗)/∼ is the Bers model of the
universal Teichmüller space. We let Φ denote the natural projection from M(D∗)
onto T so that Φ(µ) is the equivalence class [µ]. [0] is called the base point of T .

Let Ω be an arbitrary simply connected domain in the extended complex plane Ĉ
which is conformally equivalent to the upper half plane. Recall that the hyperbolic
metric λΩ (with curvature constantly equal to −4) in Ω can be defined by

(2.1) λΩ(f(z))|f ′(z)| = 1

2y
, z = x+ iy ∈ U,
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where f : U → Ω is any conformal mapping. Let B(Ω) denote the Banach space of
functions φ holomorphic in Ω with norm

(2.2) ‖φ‖B(Ω)
.
= sup

z∈Ω
|φ(z)|λ−2

Ω (z),

and B0(Ω) the closed subspace of B(Ω) which consists of those functions φ such that

inf

{

sup
z∈Ω\K

|φ(z)|λ−2
Ω (z) : K ⊂ Ω compact

}

= 0.

We also denote by B∗(Ω) the Banach space of functions φ holomorphic in Ω with
finite norm

(2.3) ‖φ‖B∗(Ω)
.
=

(

1

π

¨

Ω

|φ(z)|2λ−2
Ω dx dy

)
1

2

.

Then, B∗(Ω) ⊂ B0(Ω), and the inclusion map is continuous (see [Zh]). It is easy to
see that a conformal mapping g : Ω1 → Ω2 induces a map g∗ : φ 7→ (φ ◦ g)(g′)2, which
are isometric isomorphisms from B(Ω2) onto B(Ω1), from B0(Ω2) onto B0(Ω1), and
from B∗(Ω2) onto B∗(Ω1).

It is known that the universal Teichmüller space T is an infinite dimensional
complex Banach manifold. To make this precise, we consider the map S : M(D∗) →
B(D) which sends µ to the Schwarzian derivative of fµ|D. Recall that for any locally
univalent function f , its Schwarzian derivative Sf is defined by

(2.4) Sf
.
= N ′

f −
1

2
N2

f , Nf
.
= (log f ′)′.

S is a holomorphic split submersion onto its image, which descends down to a map
β : T → B(D) known as the Bers embedding. Via the Bers embedding, T carries a
natural complex Banach manifold structure so that Φ is a holomorphic split submer-
sion.

Let L0(D
∗) be the closed subspace of L∞(D∗) which consists of those functions

µ such that

inf{‖µ|D∗\K‖∞ : K ⊂ D
∗ compact} = 0.

Set M0(D
∗) = M(D∗)∩L0(D

∗). Then T0 = M0(D
∗)/∼ is called the little Teichmüller

space. Under the Bers embedding S : M(D∗) → B(D), S(M0(D
∗) = S(M(D∗)) ∩

B0(D) (see [GL], [GS], [Po]).
We proceed to define the Weil–Petersson Teichmüller space. We denote by

L∗(D∗) the Banach space of all essentially bounded measurable functions µ on D
∗

with norm

(2.5) ‖µ‖WP
.
= ‖µ‖∞ +

(

1

π

¨

D∗

|µ(z)|2λ2
D∗(z) dx dy

)
1

2

.

Set M∗(D∗) = M(D∗) ∩ L∗(D∗). Then T ∗ = M∗(D∗)/∼ is known as the Weil–
Petersson Teichmüller space. Actually, T ∗ is the base point component of the univer-
sal Teichmüller space under the complex Hilbert manifold structure introduced by
Takhtajan–Teo [TT]. Under the Bers projection S : M(D∗) → B(D), S(M∗(D∗)) =
S(M(D∗)) ∩ B∗(D) (see [Cu], [TT]).
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3. Pre-logarithmic derivative model of the little Teichmüller space

The universal Teichmüller space has another important model, the pre-logarithmic
derivative model (see [AG], [Zhu]). In the unit disk case, the pre-logarithmic deriv-
ative models of the little and Weil–Petersson Teichmüller spaces were much investi-
gated in recent years (see Propositions 3.1 and 4.1 below, and see [Cu], [GL], [GS],
[Po], [Sh], [TT] for more details). Contrary to the Schwarzian derivative model, the
logarithmic derivative is not invariant under a Möbius transformation. Therefore, we
can not transfer Propositions 3.1 and 4.1 directly to the half plane case. In this and
next sections, we will deal with the pre-logarithmic derivative models of the little and
Weil–Petersson Teichmüller spaces in the half plane case. The results will be used to
prove Theorem 1.3 and have independent interests of their own.

Let B(D) denote the Bloch space of functions φ holomorphic in D with semi-norm

(3.1) ‖φ‖B(D)
.
= sup

z∈D
|φ′(z)|λ−1

D
(z),

and B0(D) the subspace of B(D) which consists of those functions φ such that

inf

{

sup
z∈D\K

|φ′(z)|λ−1
D
(z) : K ⊂ D compact

}

= 0.

It is known that, for each holomorphic function φ on D, φ ∈ B(D) if and only if
φ′′ ∈ B(D) (see [Zh]).

Koebe distortion theorem implies that log f ′
µ|D ∈ B(D) for µ ∈ M(D∗). Further-

more, the map L induced by the correspondence µ 7→ log f ′
µ|D is a continuous map

from M(D∗) into B(D) (see [Le]). Actually, L : M(D∗) → B(D) is even holomorphic
(see [Ha]).

We recall the following known result (see [GL], [GS], [Po]).

Proposition 3.1. Given µ ∈ M(∆∗), the following statements are all equivalent:

(1) There exists some ν ∈ M0(∆
∗) such that [ν] = [µ];

(2) L(µ) ∈ B0(∆);
(3) S(µ) ∈ B0(∆).

Now we show a similar result in the half plane case.

Theorem 3.2. Given µ ∈ M(U∗), the following statements are all equivalent:

(1) There exists some ν ∈ M0(U
∗) such that [ν] = [µ];

(2) L(µ) ∈ B0(U);
(3) S(µ) ∈ B0(U).

Proof. As stated in section 2, (1) ⇔ (3) is known (see [GL], [GS], [Po]). We need
to show that (1) ⇒ (2) ⇒ (3).

To show (1) ⇒ (2), we use the continuity of the map L : M(D∗) → B(D). Let
µ ∈ M0(U

∗) be given. Set U
∗
n = {x + iy : − n < x < n,−n < y < −1/n} for each

positive integer n, and consider

µn(z) =

{

µ(z), z ∈ U
∗
n,

0, z ∈ U
∗ \U∗

n.

Then ‖µn−µ‖∞ → 0 as n → ∞. By the continuity of L : M(U∗) → B(U) we obtain
‖L(µn) − L(µ)‖B(U) → 0 as n → ∞. On the other hand, since fµn

is conformal
outside U

∗
n, it is obvious that L(µn) ∈ B0(U). Since B0(U) is closed in B(U), we

conclude that L(µ) ∈ B0(U) as desired.
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Noting that

(3.2) S(µ) = L′′(µ)− 1

2
(L′(µ))2,

we conclude that (2) ⇒ (3) follows immediately from the following lemma. Here and
in what follows, we use L′(µ) and L′′(µ) respectively to denote the first and second
order derivatives of L(µ). �

Lemma 3.3. Let φ be a holomorphic function on the upper half plane U such

that φ ∈ B0(U). Then φ′′ ∈ B0(U).

Proof. For z = x+ iy ∈ U, it follows from the Cauchy integral formula that

(3.3) |φ′′(z)| =
∣

∣

∣

∣

1

2πi

ˆ

|ζ−z|=y/4

φ′(ζ)

(ζ − z)2
dζ

∣

∣

∣

∣

≤ 4/y sup
|ζ−z|<y/4

|φ′(ζ)|.

Noting that the function |φ′|2 is subharmonic in U, we have

(3.4) |φ′(ζ)|2 ≤ 16

πy2

¨

|w−ζ|<y/4

|φ′(w)|2 du dv, |ζ − z| < y/4.

Combing (3.3) with (3.4) we obtain

(3.5) y4|φ′′(z)|2 ≤ 256

π

ˆ

y/2<v<2y

ˆ

|u−x|<y

|φ′(w)|2 du dv.

Here and in what follows, we will always denote

(3.6) U(t) = {x+ iy : − 1/t < x < 1/t, t < y < 1/t}, 0 < t < 1.

Since φ ∈ B0(U), we conclude that for every ǫ > 0, there is some t0 > 0 such that

(3.7) v|φ′(w)| <
√
πǫ

16
√
3
, w = u+ iv ∈ U \U(t0).

Now we let z = x + iy ∈ U\U(t0/5). It is easy to see that w = u + iv ∈ U\U(t0)
whenever y/2 < v < 2y and |u− x| < y. Thus it follows from (3.5) and (3.7) that

y4|φ′′(z)|2 ≤ ǫ

3

ˆ

y/2<v<2y

ˆ

|u−x|<y

v−2 du dv = ǫ,

which implies that φ′′ ∈ B0(U). �

4. Pre-logarithmic derivative model of

the Weil–Petersson Teichmüller space

We now consider the pre-logarithmic derivative model of the Weil–Petersson Te-
ichmüller space. Let D(D) denote the Dirichlet space of functions φ holomorphic in
D with semi-norm

(4.1) ‖φ‖D(D)
.
=

(

1

π

¨

D

|φ′(z)|2 dx dy
)

1

2

.

It is known that, for each holomorphic function φ on D, φ ∈ D(D) if and only
if φ′′ ∈ B∗(D). It is also known that D(D) ⊂ B0(D), and the inclusion map is
continuous (see [Zh]).

We have the following known result (see [Cu], [Sh], [TT]).

Proposition 4.1. Given µ ∈ M(∆∗), the following statements are all equivalent:

(1) There exists some ν ∈ M∗(∆∗) such that [ν] = [µ];
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(2) L(µ) ∈ D(∆);
(3) S(µ) ∈ B∗(∆).

To obtain a similar result in the half plane case, we need two lemmas. The first
is a Hardy-type inequality (see [KP]).

Lemma 4.2. Let 1 < p ≤ q < ∞, and u(s), v(s) be two positive measurable

functions in the interval (a, b). If

(4.2) A
.
= sup

a<x<b

(
ˆ x

a

u(s) ds

)1/q (ˆ b

x

v(s)1−p′ ds

)1/p′

< ∞,

where p′ = p/(p − 1). Then there is constant C(p, q) > 0 such that for all positive

measurable functions f in the interval (a, b), the following inequality holds

(4.3)

(

ˆ b

a

(
ˆ b

x

f(s) ds

)q

u(x) dx

)1/q

≤ C(p, q)A

(
ˆ b

a

f(x)pv(x) dx

)1/p

.

Lemma 4.3. Let φ be a holomorphic function on the upper half plane U such

that φ′ ∈ B(U) and limy→∞ φ(x + iy) = 0 uniformly for x ∈ R. Then there exists

some universal constant C > 0 such that

(4.4)

¨

Ut

|φ(x+ iy)|2 dx dy ≤ C

(
¨

Ut

|φ′(x+ iy)|2y2 dx dy + ‖φ′‖2B(U)

)

.

Proof. By assumption we have

φ(x+ iy) = −i

ˆ ∞

y

φ′(x+ iv) dv,

which implies that

|φ(x+ iy)| ≤
ˆ ∞

y

|φ′(x+ iv)| dv ≤
ˆ 1/t

y

|φ′(x+ iv)| dv + ‖φ′‖B(U)

4
t.

Then
ˆ 1/t

t

|φ(x+ iy)|2 dy ≤ 2

ˆ 1/t

t

(

ˆ 1/t

y

|φ′(x+ iv)|dv
)2

dy +
‖φ′‖2B(U)

8
t.

By Lemma 4.2 with u(s) = 1, v(s) = s2, and p = q = 2, we conclude that there is a
universal constant C > 0 such that

ˆ 1/t

t

(

ˆ 1/t

y

|φ′(x+ iv)| dv
)2

dy ≤ CA(t)

ˆ 1/t

t

|φ′(x+ iy)|2y2 dy,

where
A(t) = sup

t<x<1/t

|x− t|1/2|1/x− t|1/2 = 1− t ≤ 1.

So we have
ˆ 1/t

t

|φ(x+ iy)|2 dy ≤ 2C

ˆ 1/t

t

|φ′(x+ iy)|2y2 dy +
‖φ′‖2B(U)

8
t.

Integrating both sides of the above inequality with respect to x from −1/t to 1/t, we
get

¨

Ut

|φ(x+ iy)|2 dx dy ≤ 2C

¨

Ut

|φ′(x+ iy)|2y2 dx dy +
‖φ′‖2B(U)

4
.
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This completes the proof of the lemma. �

Now we can prove the main result of this section.

Theorem 4.4. Given µ ∈ M(U∗), the following statements are all equivalent:

(1) There exists some ν ∈ M∗(U∗) such that [ν] = [µ];
(2) L(µ) ∈ D(U);
(3) S(µ) ∈ B∗(U).

Proof. As stated in Section 2, (1) ⇔ (3) is known (see [Cu], [TT]). Recall that,
for each holomorphic function φ on U, φ ∈ D(U) if and only if φ′′ ∈ B∗(U), and
D(U) ⊂ B0(U), we find out that (2) ⇒ (3) follows immediately from (3.2). Precisely,
¨

U

|S(µ)(x+ iy)|2y2 dx dy ≤ 2

¨

U

|L′′(µ)(x+ iy)|2y2 dx dy

+

¨

U

|L′(µ)(x+ iy)|4y2 dx dy

≤ π‖L′′(µ)‖2B∗(U) + π‖L(µ)‖2B(U)‖L(µ)‖2D(U) < ∞.

It remains to show that (3) ⇒ (2). We assume that S(µ) ∈ B∗(U) so that
S(µ) ∈ B0(U), which implies by Theorem 3.2 that L(µ) ∈ B0(U). Fix some ǫ > 0 so
small such that ǫ < 1/C, where C > 0 is the constant in Lemma 4.3. Then there is
a positive constant t0 < 1 such that for all z = x+ iy ∈ U\U(t0),

(4.5) y2|L′(µ)(x+ iy)|2 < ǫ.

By Lemma 4.3 we have for 0 < t < t0 that

1/C

¨

U(t)

|L′(µ)(x+ iy)|2 dx dy

≤
¨

U(t)

|L′′(µ)(x+ iy)|2y2 dx dy + ‖L′′(µ)‖2B(U)

≤ 2

¨

U(t)

|S(µ)(x+ iy)|2y2 dx dy + 1/2

¨

U(t)

|L′(µ)(x+ iy)|4y2 dx dy + ‖L′′(µ)‖2B(U)

≤ 2π‖S(µ)‖2B∗(U) + 1/2

¨

U(t0)

|L′(µ)(x+ iy)|4y2 dx dy

+ 1/2

¨

U(t)\U(t0)

|L′(µ)(x+ iy)|4y2 dx dy + ‖L′′(µ)‖2B(U)

≤ 1/2

¨

U(t0)

|L′(µ)(x+ iy)|4y2 dx dy + ǫ/2

¨

U(t)

|L′(µ)(x+ iy)|2 dx dy

+ 2π‖S(µ)‖2B∗(U) + ‖L′′(µ)‖2B(U),

which implies that

(1/C − ǫ/2)

¨

U(t)

|L′(µ)(x+ iy)|2 dx dy

≤ 1/2

¨

U(t0)

|L′(µ)(x+ iy)|4y2 dx dy + 2π‖S(µ)‖2B∗(U) + ‖L′′(µ)‖2B(U) < ∞.

Letting t → 0 we obtain L(µ) ∈ D(U) as desired. �
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5. Proof of Theorem 1.3

To prove Theorem 1.3, we need a basic result concerning the pull-back operator
on the Sobolev space H

1

2 (S) by a quasisymmetric homeomorphism. Recall that a
sense-preserving homeomorphism h from S onto itself is said to be quasisymmetric if
there exists a positive constant C such that |h(I1)| ≤ C|h(I2)| for all pairs of adjacent
intervals I1 and I2 on S with the same length |I1| = |I2|. Beurling–Ahlfors [BA]
proved that a sense-preserving homeomorphism h from S onto itself is quasisymmetric
if and only if there exists some quasiconformal homeomorphism of D onto itself which
has boundary values h. We have the following well-known result (see [BA], [NS]).

Proposition 5.1. Let h be a sense-preserving homeomorphism from S onto

itself. Then the pull-back operator Ph defined by Phu = u ◦ h is a bounded operator

from H
1

2 (S) into itself if and only if h is quasisymmetric.

Proof of Theorem 1.3. Let h be an increasing homeomorphism from the real line
R onto itself such that h ∈ WP(R). Then h can be extended to a quasiconformal
mapping of the lower half plane onto itself whose Beltrami coefficient µ is square
integrable in the Poincaré metric, namely, µ ∈ M(U∗). Without loss of generality,
we may assume that h(0) = 0, h(1) = 1. By the well-known conformal sewing
principle (see [Ah], [Le], [Na]), there exists a pair of quasiconformal mappings f1, f2
on the whole sphere Ĉ which satisfies the following properties:

(1) Both f1 and f2 fixes the points 0, 1, and ∞;
(2) f1 = f2 ◦ h on the real line;
(3) f1 is conformal in U, with Beltrami coefficient µ1 in U

∗ being square inte-
grable in the Poincaré metric, that is, µ1 ∈ M(U∗);

(4) f2 is conformal in U
∗, with Beltrami coefficient µ2 in U being square inte-

grable in the Poincaré metric, that is, µ2 ∈ M(U)1.

By conjugating to the unit disk case, we conclude that both f1 and f2 are abso-
lutely continuous on the real line. Consequently, h = f−1

2 ◦f1 is absolutely continuous
on the real line.

By Theorem 4.4 we conclude that log f ′
1|U ∈ D(U). On the other hand, it is

well known that each element φ ∈ D(U) has boundary values almost everywhere on

the real line, and the boundary function φ|R belongs to the Sobolev class H
1

2 (R)
(see [Zy]). We use log f ′

1 to denote the boundary function of log f ′
1|U. Then log f ′

1 ∈
H

1

2 (R). Similarly, log f ′
2|U∗ has boundary value function on the real line, denoted by

log f ′
2, also being in the Sobolev class H

1

2 (R).
Now from f1 = f2 ◦ h we obtain

log h′ = log f ′
1 − log f ′

2 ◦ h,
which implies by Proposition 5.1 that log h′ ∈ H

1

2 (R) as required. �
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