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WEIL-PETERSSON TEICHMÜLLER SPACE

By YULIANG SHEN

Abstract. The paper presents some recent results on the Weil-Petersson geometry theory of the uni-
versal Teichmüller space, a topic which is important in Teichmüller theory and has wide applications
to various areas such as mathematical physics, differential equation and computer vision. (1) It is
shown that a sense-preserving homeomorphism h on the unit circle belongs to the Weil-Petersson
class, namely, h can be extended to a quasiconformal mapping to the unit disk whose Beltrami coef-
ficient is square integrable in the Poincaré metric if and only if h is absolutely continuous and logh′

belongs to the Sobolev class H
1
2 . This solves an open problem posed by Takhtajan-Teo in 2006 and

investigated later by Figalli, Gay-Balmaz-Marsden-Ratiu and others. The intrinsic characterization (1)
of the Weil-Petersson class has the following applications which are also explored in this paper: (2)
It is proved that there exists a quasisymmetric homeomorphism of the Weil-Petersson class which

belongs neither to the Sobolev class H
3
2 nor to the Lipschitz class Λ1, which was conjectured very

recently by Gay-Balmaz-Ratiu when studying the classical Euler-Poincaré equation in the new setting
that the involved sense-preserving homeomorphisms on the unit circle belong to the Weil-Petersson

class. (3) It is proved that the flows of the H
3
2 vector fields on the unit circle are contained in the

Weil-Petersson class, which was also conjectured by Gay-Balmaz-Ratiu in their above mentioned re-
search. (4) A new metric is introduced on the Weil-Petersson Teichmüller space. It is shown to be
topologically equivalent to the Weil-Petersson metric.

1. Introduction and statement of the main results. We begin with some
basic definitions and notations. Let Δ = {z : |z| < 1} denote the unit disk in the
extended complex plane Ĉ. Δ∗ = Ĉ−Δ is the exterior of Δ, S1 = ∂Δ = ∂Δ∗ is
the unit circle, and R is the real line. For any function f = f(z) defined on the
unit circle S1, we always denote by f̂ the function defined on the real line R by
f̂(θ) = f(eiθ).

Let Hom+(S1) denote the set of all sense-preserving homeomorphisms of S1

onto itself. A homeomorphism h ∈ Hom+(S1) is said to be quasisymmetric if

hQS
.
= sup

{

max
(

qh(θ,t),q
−1
h (θ,t)

)

: θ ∈ R, t > 0
}

<+∞,(1.1)

where

qh(θ,t)
.
=

∣

∣

∣

∣

∣

ĥ(θ+ t)− ĥ(θ)
ĥ(θ)− ĥ(θ− t)

∣

∣

∣

∣

∣

.(1.2)
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Beurling-Ahlfors [BA] proved that h ∈ Hom+(S1) is quasisymmetric if and only
if there exists some quasiconformal homeomorphism of Δ onto itself which has
boundary values h. Later Douady-Earle [DE] gave a quasiconformal extension of
h to the unit disk which is conformally invariant.

The universal Teichmüller space T is a universal parameter space for all
hyperbolic Riemann surfaces and can be defined as the right coset space
T = QS(S1)/Möb(S1), where QS(S1) denotes the group of all quasisym-
metric homeomorphisms of the unit circle, and Möb(S1) the subgroup of
Möbius transformations of the unit disk. The universal Teichmüller space T

plays a significant role in Teichmüller theory, and it is also a fundamental
object in mathematics and in mathematical physics. On the other hand, sev-
eral subclasses of quasisymmetric homeomorphisms and their Teichmüller
spaces were introduced and studied for various purposes in the literature. We
refer to the books [Ah, FM, Ga, GL, Hu, IT, Le, Na, Po2] and the papers
[AZ, Cu, GS, FH, FHS1, FHS2, HS, SW, TT2, TWS, WS] for an introduction
to the subject and more details. In this paper, we are mainly concerned with the
so-called Weil-Petersson Teichmüller space.

It is well known that the universal Teichmüller space T has a natural complex
Banach manifold structure under which the hyperbolic Kobayashi metric is the
classical Teichmüller metric (see [Ga, Le, Na, Ro]), and the tangent space to T
was identified by Reimann [Re] and later by Gardiner-Sullivan [GS]. Let Λ∗ denote
the Zygmund space in the usual sense (see [Zy]), which consists of all continuous
functions u on the unit circle such that

uΛ∗
.
= sup

{

|û(θ+ t)−2û(θ)+ û(θ− t)|
t

: θ ∈R, t > 0

}

<+∞.(1.3)

Then the tangent space to T at the identity map is the set of all functions u ∈ Λ∗

which in addition satisfy the normalized conditions

ℜη̄u(η) = 0, η ∈ S1(1.4)

and

u(1) = u(−1) = u(i) = 0.(1.5)

More generally, Reimann [Re] proved, given a continuous vector field u(t, ·) ∈
C0([0,M ],Λ∗) with the normalized condition (1.4), that the flow maps h(t,ζ) of
the differential equation

⎧

⎪

⎨

⎪

⎩

dh

dt
= u(t,h)

h(0, ζ) = ζ

(1.6)
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are quasisymmetric homeomorphisms, namely, h(t, ·) ∈ QS(S1) for each fixed t ∈
[0,M ].

It is also known that the Kobayashi-Teichmüller metric on any Teichmüller
space is only induced from a Finsler structure (see [Ob]) and is not a Riemann-
ian metric in general. On the other hand, there does exist a Riemannian metric
on a finite dimensional Teichmüller space, the Weil-Petersson metric, which has
attracted a good bit of attention (see [Hu, IT, Mi, TT2]). In order to extend the
definition of the Weil-Petersson metric to the universal Teichmüller space, Nag-
Verjovsky [NV] introduced a formal formula for the Weil-Petersson metric, which
converges only at those vectors on the unit circle that belong to the Sobolev space
H

3
2 , however. To overcome this difficulty, Takhtajan-Teo [TT2] endowed the uni-

versal Teichmüller space with a new complex Hilbert manifold structure, under
which the Weil-Petersson metric is a convergent Riemannian metric. But, under
this new complex Hilbert manifold structure, the universal Teichmüller space T is
not connected and has uncountably many connected components. Nowadays, the
component containing the identity map is usually called the Weil-Petersson (uni-
versal) Teichmüller space, which is denoted by T0 in this paper. Takhtajan-Teo
[TT2] proved that, under the Weil-Petersson metric, T0 is precisely the completion
of Diff+(S1)/Möb(S1), the space of all normalized C∞ diffeomorphisms on the
unit circle. Recall that the complex Fréchet manifold Diff+(S1)/Möb(S1) plays an
important role in one of the approaches to non-perturbative bosonic closed string
field theory based on Kähler geometry (see [BR1, BR2]), and also has an interpre-
tation as a coadjoint orbit of the Bott-Virasoro group (see [Ki, KY]).

We say a quasi-symmetric homeomorphism h belongs to the Weil-Petersson
class, which is denoted by WP(S1), if it represents a point in T0. Then T0 =

WP(S1)/Möb(S1). It is known that a quasi-symmetric homeomorphism h belongs
to WP(S1) if and only if h has a quasiconformal extension f to the unit disk whose
Beltrami coefficient μ satisfies the property that

∫∫

Δ |μ(z)|2(1−|z|2)−2dxdy < ∞
(see [Cu, TT2]). Due to their importance and wide applications to various areas
such as mathematical physics (see [BR1, BR2, Ki, KY, RSW1, RSW2, RSW3,
RSW4]), differential equation and computer vision (see [GMR, GR, Ku]), the Weil-
Petersson class and its Teichmüller space T0 have been much investigated in recent
years (see [Fi, GMR, GR, HS, Ku, TT1, TT2, Wu]). Recently, motivated by con-
formal field theory, Radnell-Schippers-Staubach [RSW1, RSW2, RSW3, RSW4]
have a programm to extend the Weil-Petersson theory of the universal Teichmüller
space to the case of Teichmüller spaces of bordered Riemann surfaces. Yanag-
ishita (see [Ya1, Ya2] and also [MY]) has even dealt with the Weil-Petersson Te-
ichmüller spaces of general Riemann surfaces with a mild geometric condition.
However, it is still an open problem how to characterize intrinsically the elements
in WP(S1) without using quasiconformal extensions. This problem was proposed
by Takhtajan-Teo in 2006 (see [TT2, p. 68]) and was investigated later by Figalli
[Fi], Gay-Balmaz-Marsden-Ratiu [GMR, GR] and some others. In this paper, we
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will study this problem and prove the following result, which gives an intrinsic
characterization of a quasisymmetric homeomorphism in the Weil-Petersson class.
Recall that, for a function f defined on a set Γ, f ′ denotes the derivative of f ,
namely, for z ∈ Γ,

f ′(z)
.
= lim

Γ�ζ→z

f(ζ)− f(z)
ζ− z(1.7)

provided the limit exists, while f ′(z)
.
= 0 otherwise.

THEOREM 1.1. A sense-preserving homeomorphism h on the unit circle be-
longs to the Weil-Petersson class WP(S1) if and only if h is absolutely continuous
(with respect to the arc-length measure) and logh′ belongs to the Sobolev class
H

1
2 .

Theorem 1.1 has several applications which we proceed to explore. It is known
that T0 is modeled on the Sobolev space H

3
2 , namely, the tangent space to T0 at

the identity consists of precisely the H
3
2 vector fields on the unit circle with the

normalized conditions (1.2) and (1.3) (see [NV, TT2]). Recall that when s > 3
2

the group Diffs+(S
1) of all orientation preserving Hs diffeomorphisms of the unit

circle and its model space Hs have the same Sobolev Hs regularity. An important
question is whether the same result holds in the critical case s= 3

2 , namely, whether

an element in WP(S1) also has H
3
2 -regularity (see [Fi, GMR, GR]). In fact, based

on the results by Figalli [Fi], Gay-Balmaz-Marsden-Ratiu [GMR, GR] were able
to prove that each homeomorphism in WP(S1) belongs to H

3
2−ε for each ε > 0.

However, we shall prove that the H
3
2 -regularity may fail for a quasisymmetric

homeomorphism in the Weil-Petersson class, which was conjectured very recently
by Gay-Balmaz-Ratiu during their study of the Euler-Weil-Petersson equation (see
[GR, Conjecture (2), p. 760]).

THEOREM 1.2. There exists a quasisymmetric homeomorphism in WP(S1)

which belongs neither to the Sobolev class H
3
2 nor to the Lipschitz class Λ1.

We will also deal with the flows of H
3
2 vector fields on the unit circle. It is

easy to see that the Weil-Petersson class WP(S1) can be generated by the flows
of the H

3
2 vector fields on the unit circle (see [GMR, GR]). However, it is still

an open problem whether or not the flows of the H
3
2 vector fields are contained

in WP(S1), although it is hoped to be so (see [Fi]). Actually, in the recent paper
[GR] by Gay-Balmaz-Ratiu, the authors conjectured that the flows of theH

3
2 vector

fields are contained in WP(S1) (see [GR, p. 760, Conjecture], and also Conjecture
9.2 below). The following result provides an affirmative answer to this problem. A
more precise statement will be given in Theorem 7.3 below.

THEOREM 1.3. The flows of the H
3
2 vector fields on the unit circle are always

contained in WP(S1).
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Theorem 1.1 is also hoped to be useful to the further study of the geometry and
structure of T0. As we shall see later (see Remark 5.1 below), WP(S1)/Rot(S1)

has a very simple model, namely, it can be identified as the real Hilbert space

H
1
2
R
/R under the bijection h �→ log |h′|. Here and in what follows, Rot(S1) denotes

the group of all rotations about the circle S1. Based on this observation, we will
introduce a new metric on T0, which can be defined roughly as follows:

d
(

h1,h2
) .
= ‖ log |h′1|− log |h′2|‖H 1

2
, h1,h2 ∈ T0.(1.8)

A precise formula will be given below during the proof of Theorem 1.4 (see (8.5)
below). The advantage of this metric is that, as being a global metric, it gives di-
rectly the distances between two points in T0. This is in contrast to the case for
the Weil-Petersson metric, which is an infinitesimal Riemann metric on the tangent
bundle of T0. Anyhow, we shall prove

THEOREM 1.4. The metric d and the Weil-Petersson metric induce the same
topology on T0.

We end this Introduction section with the organization of the paper. In Section
2, we give some basic definitions and results on the universal Teichmüller space
and the Weil-Petersson Teichmüller space. In particular, we establish the complex
analytic theory of the pre-logarithmic derivative model of the Weil-Petersson Te-
ichmüller space, which plays an important role in the proof of Theorem 1.4. As we
shall see later, our results and their proofs involve much use of the theory of func-
tion spaces, in particular, of Sobolev spaces of fractional order. Therefore, in Sec-
tions 3 and 4, we recall some basic definitions on Sobolev spaces, the BMO space
and establish some lemmas that will be frequently used in the proof of Theorems
1.1 and 1.2; we also deal with the pull-back operator on H

1
2 by a quasisymmet-

ric homeomorphism and establish several basic results which are needed to prove
Theorems 1.1 and 1.3. In Sections 5–8, we give the proofs of Theorems 1.1–1.4. In
Section 9, we list several open problems related to this work. In the final Appendix
section, we prove Propositions 4.1 and 4.3 stated in Section 4.

Acknowledgments. The author would like to thank the referee for a very care-
ful reading of the manuscript and for several corrections.

2. Preliminary results on the Weil-Petersson Teichmüller space. In
this section, we give some basic definitions and results on the Weil-Petersson
Teichmüller space. The results turn out to be essential in the proof of Theorem
1.4. We follow the lines in our recent paper [SW], where the BMO theory of the
universal Teichmüller space was investigated.

We begin with the standard theory of the universal Teichmüller space (see [Ah,
Le, Na]). Let M(Δ∗) denote the open unit ball of the Banach space L∞(Δ∗) of
essentially bounded measurable functions on Δ∗. For μ ∈M(Δ∗), let fμ be the
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quasiconformal mapping on the extended plane Ĉ with complex dilatation equal to
μ in Δ∗, conformal in Δ, normalized by fμ(0) = f ′μ(0)− 1 = f ′′μ(0) = 0. We say
two elements μ and ν in M(Δ∗) are equivalent, denoted by μ∼ ν, if fμ|Δ = fν|Δ.
Then T =M(Δ∗)/∼ is the Bers model of the universal Teichmüller space. We let
Φ denote the natural projection fromM(Δ∗) onto T so that Φ(μ) is the equivalence
class [μ]. [0] is called the base point of T . The Teichmüller distance between two
points [μ1] and [μ2] in T is defined as

τ([μ1], [μ2])
.
= inf

{

1
2

log
1+‖ ν1−ν2

1−ν1ν2
‖∞

1−‖ ν1−ν2
1−ν1ν2

‖∞
: [ν1] = [μ1], [ν2] = [μ2]

}

.(2.1)

Let B2(Δ) denote the Banach space of functions φ holomorphic in Δ with
norm

‖φ‖B2

.
= sup
z∈Δ

(1−|z|2)2|φ(z)|.(2.2)

Consider the map S :M(Δ∗)→B2(Δ) which sends μ to the Schwarzian derivative
of fμ|Δ. Recall that for any locally univalent function f , its Schwarzian derivative
Sf is defined by

Sf =N ′f −
1
2
N 2
f , Nf = (logf ′)′.(2.3)

It is known that S is a holomorphic split submersion onto its image, which de-
scends down to a map β : T →B2(Δ) known as the Bers embedding. Via the Bers
embedding, T carries a natural complex Banach manifold structure so that Φ is a
holomorphic split submersion.

We proceed to define the Weil-Petersson Teichmüller space (For details, see
[TT2] and also [Cu]). We denote by L(Δ∗) the Banach space of all essentially
bounded measurable functions μ with norm

‖μ‖WP
.
= ‖μ‖∞ +

(

1
π

∫∫

Δ∗

|μ(z)|2
(|z|2−1)2 dxdy

)
1
2

.(2.4)

Set M(Δ∗) = M(Δ∗)∩L(Δ∗). Then T0 =M(Δ∗)/∼ is one of the models of
the Weil-Petersson Teichmüller space. Actually, T0 is the base point component
of the universal Teichmüller space under the complex Hilbert manifold structure
introduced by Takhtajan-Teo [TT2].

We denote by B(Δ) the Banach space of functions φ holomorphic in Δ with
norm

‖φ‖B
.
=

(

1
π

∫∫

Δ
|φ(z)|2(1−|z|2)2dxdy

) 1
2

.(2.5)
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Then, B(Δ) ⊂ B2(Δ), and the inclusion map is continuous. Under the Bers pro-
jection S : M(Δ∗)→ B2(Δ), S(M(Δ∗)) = S(M(Δ∗))∩B(Δ) (see [Cu, TT2]).
Moreover, we have

PROPOSITION 2.1. [TT2] S :M(Δ∗)→B(Δ) is a holomorphic split submer-
sion fromM(Δ∗) onto its image. Consequently, T0 has a unique complex Hilbert
manifold structure such that β : T0→B(Δ) is a bi-holomorphic map from T0 onto
a domain in B(Δ). Under this complex Hilbert manifold structure, the natural pro-
jection Φ fromM(Δ∗) onto T0 is a holomorphic split submersion.

It is well known that a quasiconformal self-mapping of Δ∗ induces a bi-
holomorphic automorphism of the universal Teichmüller space (see [Le, Na]).
Precisely, let w : Δ∗ →Δ∗ be a quasiconformal mapping with complex dilatation
μ. Then w induces an bi-holomorphic isomorphism Rw :M(Δ∗)→M(Δ∗) as

Rw(ν) =

(

ν−μ
1− μ̄ν

∂w

∂w

)

◦w−1.(2.6)

Rw descends down a bi-holomorphic isomorphism w∗ :T →T byw∗ ◦Φ=Φ◦Rw.

PROPOSITION 2.2. Suppose w is quasi-isometric under the Poincaré metric
with Beltrami coefficient μ ∈M(Δ∗). Then w∗ : T0→ T0 is bi-holomorphic.

Proof. Clearly, Rw maps M(Δ∗) into itself, and Rw : M(Δ∗) →M(Δ∗)
is bi-holomorphic. It follows from Proposition 2.1 that w∗ : T0 → T0 is bi-
holomorphic. �

We continue to consider the pre-logarithmic derivative model of the Weil-
Petersson Teichmüller space. Let B(Δ) denote the space of functions φ holomor-
phic in Δ with semi-norm

‖φ‖B .
= sup
z∈Δ

(1−|z|2)|φ′(z)|,(2.7)

and B0(Δ) the subspace of B(Δ) which consists of those functions φ satisfying
the condition lim|z|→1(1− |z|2)φ′(z) = 0. Recall that the pre-logarithmic deriva-
tive model T̂ of the universal Teichmüller space consists of all functions logf ′ (in
B(Δ)), where f belongs to the well-known class SQ of all univalent analytic func-
tions f in the unit disk Δ with the normalized condition f(0) = f ′(0)−1 = 0 that
can be extended to a quasiconformal mapping in the whole plane (see [AG, Zhu]).
Under the topology of Bloch norm (2.7), T̂ is a disconnected open set. Precisely,
T̂ = T̂b ∪θ∈[0,2π) T̂θ, where T̂b = {logf ′ : f ∈ SQ is bounded} and T̂θ = {logf ′ :
f ∈ SQ satisfies f(eiθ) = ∞}, θ ∈ [0,2π), are the all connected components of T̂
(see [Zhu]). Each T̂θ is a copy of the Bers model T , while T̂b is a fiber space over
T . In fact, T̂b is a model of the universal Teichmüller curve (see [Ber, Te]).
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Let AD(Δ) denote the space of all functions φ holomorphic in Δ with semi-
norm

‖φ‖AD
.
=

(

1
π

∫∫

Δ
|φ′(z)|2dxdy

) 1
2

,(2.8)

and AD0(Δ) = {φ ∈ AD(Δ) : φ(0) = 0}. Then AD(Δ)⊂B0(Δ), and the inclu-
sion map is continuous. We may define AD(Δ∗) similarly. Define

Λ(φ) = φ′′ − 1
2
(φ′)2, φ ∈ AD(Δ).(2.9)

Then the following basic result holds.

LEMMA 2.3. [TT2] Λ :AD(Δ)→B(Δ) is holomorphic.

We come back our situation. Fix z0 ∈ Δ∗. For μ ∈M(Δ∗), let gz0
μ (abbre-

viated to be gμ) be the quasiconformal mapping on the extended plane Ĉ with
complex dilatation equal to μ in Δ∗, conformal in Δ, normalized by gμ(0) =
g′μ(0)− 1 = 0, gμ(z0) = ∞. Then μ ∼ ν if and only if gμ|Δ = gν |Δ. Consider the
map Lz0 on M(Δ∗) by setting Lz0(μ) = logg′μ. Then ∪z0∈Δ∗Lz0(M(Δ∗)) = T̂b,
and ∪z0∈Δ∗Lz0(M(Δ∗)) = T̂b∩AD0(Δ) (see [Cu, TT2]). We have the following
result.

THEOREM 2.4. For each z0 ∈Δ∗, Lz0 :M(Δ∗)→AD0(Δ) is holomorphic.

Proof. We first show L= Lz0 :M(Δ∗)→AD0(Δ) is continuous. Recall that
L is continuous on M(Δ∗) in the topology of Bloch norm (2.7) (see [Le]), namely,

sup
z∈Δ
|Ngν (z)−Ngμ(z)|(1−|z|2)≤ C(‖μ‖∞)‖ν−μ‖∞, μ,ν ∈M(Δ∗).(2.10)

Then,

‖L(ν)−L(μ)‖2
AD

=
1
π

∫∫

Δ
|Ngν (z)−Ngμ(z)|2dxdy

≤C1

(

|Ngν (0)−Ngμ(0)|2 +
∫∫

Δ
(1−|z|2)2|N ′gν (z)−N

′
gμ(z)|

2dxdy

)

≤C2

(

‖ν−μ‖2
∞+

∫∫

Δ

(

1−|z|2
)2
∣

∣

∣

∣

(

Sν(z)−Sμ(z)
)

+
1
2

(

N 2
gν (z)−N

2
gμ(z)

)

∣

∣

∣

∣

2

dxdy

)

≤C3(‖ν−μ‖2
∞ +‖S(ν)−S(μ)‖2

B+(‖L(ν)‖2
AD+‖L(μ)‖2

AD)‖ν−μ‖2
∞).

By the holomorphy of S : M(Δ∗) → B(Δ), we conclude that L : M(Δ∗) →
AD0(Δ) is continuous.
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Since L : M(Δ∗) → AD0(Δ) is continuous, we conclude that L is holo-
morphic by the infinite dimensional holomorphy (see [Le, Na]). For complete-
ness, we write down the standard proof. For each z ∈Δ, define lz(φ) = φ(z) for
φ ∈ AD0(Δ). Then, lz ∈ AD∗0(Δ), that is, lz is a continuous linear functional on
the Banach space AD0(Δ). Set A = {lz : z ∈Δ}. A is a total subset of AD∗0(Δ)

in the sense that lz(φ) = 0 for all z ∈Δ implies that φ = 0. Now for each z ∈Δ,
each pair (μ,ν) ∈M(Δ∗)×L(Δ∗) and small t in the complex plane, by the well-
known holomorphic dependence of quasiconformal mappings on parameters (see
[Ah, Le, Na]), we conclude that lz(L(μ+ tν)) = L(μ+ tν)(z) is a holomorphic
function of t. By a general result about the infinite dimensional holomorphy (see
[Le, Na]), it follows that L :M(Δ∗)→AD0(Δ) is holomorphic. �

THEOREM 2.5. T̂b∩AD0(Δ) is a connected open subset of AD0(Δ), and Λ

is a holomorphic split submersion from T̂b∩AD0(Δ) onto β(T0).

Proof. Clearly, T̂b∩AD0(Δ) is an open subset of AD0(Δ). We need to show
that each point of T̂b∩AD0(Δ) can be connected to 0 by a path in T̂b∩AD0(Δ).

Let logf ′ ∈ T̂b∩AD0(Δ). Then f can be extended to a quasiconformal map-
ping in the whole plane whose Beltrami coefficient μ belongs toM(Δ∗), and z0 =

f−1(∞) ∈Δ∗. For each t ∈ [0,1], let ft ∈ SQ be the unique mapping whose quasi-
conformal extension to the whole plane has Beltrami coefficient tμ, and ft(z0) =

∞. Theorem 2.4 implies that logf ′t, t ∈ [0,1], is a path in T̂b ∩AD0(Δ) joining
logf ′0 to logf ′. Now, if z0 = ∞, then f0(z) = z, and we are done. If z0 �= ∞, then
f0(z) = z0z/(z0−z), and logf ′0(r·), r ∈ [0,1], is a curve in T̂b∩AD0(Δ) connect-
ing 0 and logf ′0.

Clearly, Lemma 2.3 implies that Λ is holomorphic on T̂b ∩AD0(Δ). Choose
z0 ∈Δ∗. Since S =Λ◦Lz0 , we conclude that Λ is a holomorphic split submersion
from T̂b ∩AD0(Δ) onto β(T0) since Lz0 :M(Δ∗)→ T̂b ∩AD0(Δ) is holomor-
phic, and S :M(Δ∗)→ β(T0) is a holomorphic split submersion. �

3. Some lemmas. In this section, we give some lemmas needed to prove
Theorems 1.1 and 1.2. First we recall some basic definitions and results on Sobolev
spaces, the harmonic Dirichlet space and the BMO space that will be frequently
used in the rest of the paper (see [Gar, RS, Tr]).

For any s > 0, the Sobolev space Hs consists of all integrable functions u ∈
L1(S1) on the unit circle with semi-norm

‖u‖Hs
.
=

(

+∞
∑

n=−∞
|n|2s|an(u)|2

)
1
2

,(3.1)

where, as usual, an(u) is the n-th Fourier coefficient of u, namely,

an(u) =
1

2π

∫ 2π

0
û(θ)e−inθdθ.(3.2)
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In this paper, the two cases we are concerned are s = 3
2 and s = 1

2 . Recall that

u ∈ H 3
2 if and only if u is absolutely continuous with u′ ∈ H 1

2 . It is also known
that an integrable function u on the unit circle belongs to H

1
2 if and only if

∫ 2π

0

∫ 2π

0

|û(s)− û(t)|2
|sin((s− t)/2)|2 dsdt <+∞.(3.3)

We need another description of the space H
1
2 . Let D(Δ) denote the space of

all harmonic functions u in the unit disk Δ with semi-norm

‖u‖D .
=

(

1
π

∫∫

Δ
(|∂zu|2 + |∂z̄u|2)dxdy

) 1
2

.(3.4)

Then, D(Δ) = AD(Δ)⊕AD(Δ), or precisely, for each u ∈ D(Δ), there exists
a unique pair of holomorphic functions φ and ψ in AD(Δ) with φ(0)− u(0) =
ψ(0) = 0 such that u= φ+ψ. Here it is a convenient place to introduce two basic
operators on the Dirichlet space D(Δ). They are P+ and P−, defined respectively
by P+u=φ and P−u=ψ(z̄) for u= φ+ψ. It is well known that each function u∈
D(Δ) has boundary values almost everywhere on the unit circle, and the boundary
function, still denoted by u, belongs to H

1
2 , and conversely each function in H

1
2

is obtained in this way (see [Zy]). In fact, the usual Poisson integral operator P
establishes a one-to-one map from H

1
2 onto D(Δ) with ‖Pu‖D = ‖u‖

H
1
2
.

Let I0 be a connected (closed) arc on the unit circle S1. An integrable function
u ∈ L1(I0) is said to have bounded mean oscillation if

‖u‖BMO(I0)
.
= sup

1
|I|

∫

I
|u(z)−uI ||dz|<+∞,(3.5)

where the supremum is taken over all sub-intervals I of I0, while uI is the average
of u on the interval I , namely,

uI =
1
|I|

∫

I
u(z)|dz|.(3.6)

In particular, uS1 = a0(u). If u also satisfies the condition

lim
|I|→0

1
|I|

∫

I
|u(z)−uI ||dz|= 0,(3.7)

we say u has vanishing mean oscillation. These functions are denoted by BMO(I0)

and VMO(I0), respectively. In the following, we are mostly concerned with the
case I0 = S1. Then it is well known that H

1
2 ⊂ VMO(S1), and the inclusion map

is continuous (see [Zh]).
We need some basic results on BMO functions. By the well-known theorem of

John-Nirenberg for BMO functions (see [Gar]), there exist two universal positive
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constants C1 and C2 such that for any BMO(I0) function u, any subinterval I of I0

and any λ > 0, it holds that

|{z ∈ I : |u(z)−uI | ≥ λ}|
|I| ≤ C1 exp

(

−C2λ

‖u‖BMO(I0)

)

.(3.8)

For any p≥ 1, by Chebychev’s inequality, we have

1
|I|

∫

I

(

e|u(z)−uI | −1
)p|dz| = 1

|I|

∫ ∞

0
|{z ∈ I : |u(z)−uI | ≥ λ}|d

(

(eλ−1)p
)

≤ pC1

∫ ∞

0
(eλ−1)p−1eλ exp

(

−C2λ

‖u‖BMO(I0)

)

dλ.

When p‖u‖BMO(I0) < C2, we obtain

1
|I|

∫

I

(

e|u(z)−uI | −1
)p|dz| ≤

pC1‖u‖BMO(I0)

C2−p‖u‖BMO(I0)
.(3.9)

We will repeatedly use the following basic result:

LEMMA 3.1. Let u∈BMO(I0) and p≥ 1. Then eu ∈Lp(I0)when p‖u‖BMO(I0)

is small. In particular, if u∈VMO(I0), then eu ∈Lp(I0) for any real number p≥ 1.

Proof. When p‖u‖BMO(I0) < C2, it follows from (3.9) that

1
|I0|

∥

∥eu−uI0 −1
∥

∥

p

p
=

1
|I0|

∫

I0

|eu(z)−uI0 −1|p|dz| ≤
pC1‖u‖BMO(I0)

C2−p‖u‖BMO(I0)
.(3.10)

Consequently,

‖eu‖p ≤ e‖u‖1(‖eu−uI0 −1‖p+ |I0|
1
p )<+∞.

Now suppose u ∈ VMO(I0), and p ≥ 1 is any real number. By (3.7), for any
sufficiently small subinterval I of I0, u has small BMO norm on I so that eu ∈
Lp(I). Decompose I0 as the union of finitely many small subintervals Ij so that
eu ∈ Lp(Ij), we conclude that eu ∈ Lp(I0) as required. �

LEMMA 3.2. Let u ∈ VMO(S1) and un ∈ BMO(S1) on the unit circle. Sup-
pose that ‖un−u‖BMO(S1) → 0 and a0(un−u)→ 0 when n→ ∞, then for any
p≥ 1, we have ‖eun − eu‖p→ 0 as n→ ∞.

Proof. By (3.10),

∥

∥

∥e(un−u)−a0(un−u)−1
∥

∥

∥

2p

2p
≤

2pC1‖un−u‖BMO(S1)

C2−2p‖un−u‖BMO(S1)
−→ 0, n−→ ∞.
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On the other hand, since u ∈ VMO(S1), Lemma 3.1 implies that eu ∈ L2p(S1).
Consequently,

‖eun − eu‖p ≤
∥

∥eun−u−1
∥

∥

2p ‖e
u‖2p

≤ ‖eu‖2p

(

ea0(un−u)‖e(un−u)−a0(un−u)−1‖2p+‖ea0(un−u)−1‖2p

)

,

which implies ‖eun − eu‖p→ 0 as n→ ∞. �

Recall that for each sense-preserving homeomorphisms h of the unit circle
onto itself, there exists some strictly increasing continuous function φ on the real
line with φ(θ+2π)−φ(θ)≡ 2π such that h(eiθ) = eiφ(θ). Then

h′(eiθ) = ei(φ(θ)−θ)φ′(θ).(3.11)

Furthermore, h is absolutely continuous on the unit circle if and only if φ is abso-
lutely continuous on the real line.

Note that in the statement of Theorem 1.1, the quasi-symmetry of the home-
omorphism h is not assumed. The following result gives a sufficient condition for
an absolutely continuous sense-preserving homeomorphism to be quasisymmetric,
which will be used in the proof of Theorem 1.1.

LEMMA 3.3. Let h be an absolutely continuous sense-preserving homeomor-
phism on the unit circle such that logh′ ∈ VMO(S1). Then h is a quasisymmetric
homeomorphism.

Proof. Partyka (see [Pa1, Theorem 3.4.7]) asserted that h is actually a sym-
metric homeomorphism in the sense of Gardiner-Sullivan [GS], namely, for any
pair of adjacent subintervals I1 and I2 in S1 with |I1|= |I2|, it holds that

|h(I1)|
|h(I2)|

= 1+ o(1), |I1|= |I2| → 0+ .(3.12)

A detailed proof of this fact was given in [Pa2]. Here we give a fast proof for
completeness.

Set v = log |h′| for simplicity. Then v ∈ VMO(S1). For any small subinterval
I in S1 such that the BMO-norm of v on I is small, we conclude by (3.9) (with
p= 1) that

∫

I
e|v(z)−vI ||dz| ≤ |I|

(

1+
C1‖v‖BMO(I)

C2−‖v‖BMO(I)

)

= |I|(1+ o(1)), |I| −→ 0.

(3.13)

Noting that

|h(I)|=
∫

I
|h′(z)||dz| =

∫

I
ev(z)|dz|= evI

∫

I
ev(z)−vI |dz|,
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we obtain from (3.13) that, as |I| → 0,

|h(I)| ≤ evI
∫

I
e|v(z)−vI ||dz| ≤ |I|evI (1+ o(1)),

|h(I)| ≥ evI
∫

I
e−|v(z)−vI ||dz| ≥ |I|2evI

∫

I e
|v(z)−vI ||dz|

≥ |I|evI (1+ o(1)),

and so

|h(I)| = |I|evI (1+ o(1)), |I| −→ 0.(3.14)

Now let I1 and I2 be two adjacent subintervals in [0,2π] with |I1| = |I2| = l

being small such that the BMO-norm of v on I1 ∪ I2 is small. It holds that (see
[Gar, (1.3) in Chapter VI])

|vI1− vI2|= 2|vI1− vI1∪I2 | ≤ 4‖v‖BMO(I1∪I2) = o(1), l −→ 0+ .(3.15)

Then (3.12) follows from (3.14)–(3.15) immediately. �

LEMMA 3.4. Let h be an absolutely continuous sense-preserving homeomor-
phism on the unit circle. Then logh′ ∈H 1

2 if and only if log |h′| ∈H 1
2 .

Proof. Let h(eiθ) = eiφ(θ) as before. Without loss of generality, we assume that
h(1) = 1 so that φ(0) = 0, φ(2π) = 2π. Then |h′(eiθ)|= φ′(θ), and

logh′(eiθ) = log |h′(eiθ)|+ i(φ(θ)− θ).(3.16)

It is clear that log |h′| ∈H 1
2 if logh′ ∈H 1

2 .
Conversely, we suppose that log |h′| ∈ H 1

2 . Set u = ℑ logh′ so that û(θ) =
φ(θ)− θ. We will show that u ∈ H1, which implies that logh′ ∈ H 1

2 . In fact, the
n-th (n �= 0) Fourier coefficient of u is

an =
1

2π

∫ 2π

0
û(θ)e−inθdθ =

1
2π

∫ 2π

0
(φ(θ)− θ)e−inθdθ

=
1

2nπi

∫ 2π

0
(φ′(θ)−1)e−inθdθ =

1
2nπi

∫ 2π

0
(|h′(eiθ)|−1)e−inθdθ.

Thus, by Parseval’s equality, we conclude by Lemma 3.1 that

∑

n �=0

n2|an|2 =
1

4π2

∑

n �=0

∣

∣

∣

∣

∫ 2π

0

(

|h′(eiθ)|−1
)

e−inθdθ

∣

∣

∣

∣

2

= ‖|h′|−1‖2
2 <+∞.

This completes the proof. �
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4. Pull-back operator revisited. In this section, we deal with the pull-
back operator on the Sobolev space H

1
2 (and also on the Dirichlet space D(Δ))

by a quasisymmetric homeomorphism. The results will be used in the following
sections to prove Theorems 1.1 and 1.3 and have independent interests of their
own.

Let h be a quasisymmetric homeomorphism. Then h induces a pull-back oper-
ator by

Phu= u◦h, u ∈H 1
2 .(4.1)

Ph is a bounded isomorphism from H
1
2 onto itself with P−1

h = Ph−1 . By the well-
known quasi-invariance of Dirichlet integral under quasiconformal mappings, we
have

‖Ph‖
.
= sup{‖Phu‖

H
1
2

: ‖u‖
H

1
2
= 1} ≤ eτ(0,h).(4.2)

This operator has played an important role in the study of Teichmüller the-
ory (see [HS, NS, Pa1, SW, TT2]). As stated in the introduction, the univer-
sal Teichmüller space has a quasisymmetric homeomorphism model, namely,
T = QS(S1)/Möb(S1). Nag-Sullivan [NS] proved that the universal Teichmüller
space T can be embedded in the universal Siegel period matrix space by means
of the operator Ph (see also [TT2]). Notice that Ph (or more precisely, P ◦Ph,
the composition of Ph with the Poisson integral operator P ) is also a bounded
isomorphism from D(Δ) onto itself, and P−1

h = Ph−1 .
We will need the following result.

PROPOSITION 4.1. Let h and h0 be quasisymmetric homeomorphisms which
keep the points 1, −1 and i fixed. Then for each fixed u∈H 1

2 , ‖Phu−Ph0u‖H 1
2
→

0 when τ(h,h0)→ 0.

As far as the author know, Proposition 4.1 is not available in the literature. We
will prove it in the final Appendix section. A natural question to ask is:

QUESTION 4.2. Under the assumption of Proposition 4.1, is it true that ‖Ph−
Ph0‖→ 0 when τ(h,h0)→ 0?

We proceed to investigate the pull back operator Ph induced by a quasisym-
metric homeomorphism. When restricted to AD(Δ), Ph (more precisely, P ◦Ph)
is a bounded operator from AD(Δ) into D(Δ). So we may define two further op-
erators P+

h = P+ ◦Ph and P−h = P−◦Ph. Both P+
h and P−h are bounded operators

fromAD(Δ) into itself. For completeness, we recall that P−h is a compact operator
if and only if h is symmetric, while P−h is a Hilbert-Schmidt operator if and only
if h belongs to the Weil-Petersson class WP(S1) (see [HS]). We will not use this
result in this paper.

The following result will play an important role in the proof of Theorem 1.1.
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PROPOSITION 4.3. P+
h is a bounded isomorphism from AD(Δ) onto itself.

Moreover, it holds that

‖P+
h φ‖

2
AD = ‖φ‖2

AD +‖P−h φ‖
2
AD, φ ∈ AD(Δ).(4.3)

Proposition 4.3 may be a known result, but, to the best of the author’s knowl-
edge, a proof does not appear in the literature. We will give the proof in the final
Appendix section.

We now establish a technical result used to prove Theorem 1.1. We consider
the harmonic conjugation operator H in the usual sense. Precisely, for a real valued
integrable function u on the unit circle, there exists a unique harmonic function v
on the unit disk with v(0) = 0 such that Pu+ iv is analytic. Then Hu = v|S1 .
When u is complex valued, set Hu=Hℜu+ iHℑu. Then, Hu=Hu, and Hφ=

−i(φ−φ(0)) when φ is holomorphic. We have the following basic result:

LEMMA 4.4. For each φ ∈ AD(Δ), it holds that

(

HPh+PhH
)

φ=−i
(

2P+
h φ−P

+
h φ(0)−φ(0)

)

.

Proof. The proof goes as follows:
(

HPh+PhH
)

φ(z) =H
(

P+
h φ(z)+P

−
h φ(z̄)

)

− iPh
(

φ(z)−φ(0)
)

=−i
(

P+
h φ(z)−P

+
h φ(0)

)

+ iP−h φ(z̄)

− i
(

P+
h φ(z)+P

−
h φ(z̄)−φ(0)

)

=−i
(

2P+
h φ(z)−P

+
h φ(0)−φ(0)

)

. �

COROLLARY 4.5. Let v ∈H 1
2 be real valued. Then there exists some u ∈H 1

2

such that ‖(HPh+PhH)u− v‖
H

1
2
= 0. Furthermore, 2‖u‖

H
1
2
≤ ‖v‖

H
1
2
.

Proof. Set ψ = i(v+ iHv)/2. Then Pψ ∈ AD(Δ). By Proposition 4.3, there
exists φ ∈ AD(Δ) such that P+

h φ = Pψ. Letting u = ℜφ, we obtain by Lemma
4.4 that

(

HPh+PhH
)

u= ℜ
(

HPh+PhH
)

φ= ℑ
(

2P+
h φ−

(

P+
h φ(0)−φ(0)

))

= v−ℑ
(

P+
h φ(0)−φ(0)

)

.

Consequently, ‖(HPh+PhH)u− v‖
H

1
2
= 0, and by (4.3),

4‖u‖2

H
1
2
= 2‖φ‖2

AD ≤ 2‖Pψ‖2
AD = ‖v‖2

H
1
2
. �

5. Proof of Theorem 1.1. In this section, we will give the proof of Theo-
rem 1.1. We first recall the normalized decomposition of a quasisymmetric home-
omorphism. For any quasisymmetric homeomorphism h, there exists a unique
pair of conformal mappings f ∈ SQ and g on Δ and Δ∗, respectively, such that
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f(0) = f ′(0)− 1 = 0, g(∞) = ∞, h = f−1 ◦ g on S1. We call this a normalized
decomposition of h. Conversely, for each f ∈ SQ which maps the unit disk onto a
bounded Jordan domain, there exists a quasisymmetric h with the normalized de-
composition h= f−1 ◦g. It is clear that h is uniquely determined if h(1) = 1, and
in this case we say h is the normalized conformal sewing mapping of f .

Proof of “only if” part. Suppose h∈WP(S1). Consider the above normalized
decomposition h= f−1 ◦g. Then, logf ′ ∈ AD(Δ), logg′ ∈ AD(Δ∗). For details,
see [TT2] and also [Cu]. Then, h is absolutely continuous on S1, and from f ◦h= g

we obtain (f ′ ◦h)h′ = g′. Thus,

logh′ = logg′ − logf ′ ◦h= logg′ −Ph logf ′.(5.1)

Consequently, logh′ ∈H 1
2 . �

Proof of “if” part. The proof of this direction is more difficult. Suppose h is
an absolutely continuous homeomorphism on the unit circle such that logh′ ∈H 1

2 .
Lemma 3.3 implies that h is a quasisymmetric homeomorphism so that Corollary
4.5 may be used. Without loss of generality, we assume h(1) = 1. Then h(eiθ) =
eiφ(θ), where φ is a strictly increasing and absolutely continuous function on the
real line R such that φ(0) = 0, φ(θ+2π)−φ(θ)≡ 2π.

We first assume ‖ logh′‖
H

1
2

is small. By Corollary 4.5, there exists some u ∈
H

1
2 and a real constant c1 such that

(HPh+PhH)u=−H log |h′|−ℑ logh′+ c1,(5.2)

and 2‖u‖
H

1
2
≤ ‖H log |h′|+ℑ logh′‖

H
1
2

is small. Then there exists a locally uni-

valent analytic function f on the unit disk with f(0) = f ′(0)−1 = 0 such that for
some constant c2,

logf ′(z) = P (u+ iHu)(z)+ c2.(5.3)

Since ‖ logf ′‖AD = ‖u+ iHu‖
H

1
2

is small, by the continuity of the inclusion of

AD(Δ) into B(Δ), ‖ logf ′‖B is also small. It is well known that f is univalent in
Δ and can be extended to a quasiconformal mapping in the whole plane (see [Be]
and also [AG]). Consequently, logf ′ ∈ T̂b∩AD0(Δ).

Now we set v=Phu+ log |h′|. Then ‖v‖
H

1
2

is small. In fact, when ‖ logh′‖
H

1
2

is small, ‖ logh′‖BMO(S1) is also small by the continuity of the inclusion H
1
2 into

VMO(S1) ⊂ BMO(S1). Then h can be extended to a quasiconformal mapping in
the unit disk whose Beltrami coefficient μ has small norm ‖μ‖∞ (see [AZ, Be]),
which in turn implies by (4.2) that ‖Phu‖

H
1
2

is small and so ‖v‖
H

1
2

is also small.
By the same reasoning as above, there exists a quasiconformal mapping g on the
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whole plane with g(∞) = ∞ such that g is conformal in Δ∗ with logg′ ∈ AD(Δ∗)
and

logg′ = v− iHv+
(

c2 + ic1
)

= Phu+ log |h′|− iHPhu− iH log |h′|+ c2 + ic1.
(5.4)

Now it follows from (5.2)–(5.4) that

Ph logf ′ − logg′ =
(

Phu+ iPhHu+ c2
)

−
(

Phu+ log |h′|− iHPhu− iH log |h′|+ c2 + ic1
)

= i
(

PhHu+HPhu
)

− log |h′|+ iH log |h′|− ic1

=−i
(

H log |h′|+ℑ logh′
)

− log |h′|+ iH log |h′|
=− logh′.

Consequently, adding some constant to g if necessary, it holds that g = f ◦h. Since
logf ′ ∈ T̂b ∩AD0(Δ), we conclude that h belongs to the Weil-Petersson class
under the assumption that ‖ logh′‖

H
1
2

is small. It should be pointed out that the
above reasoning was inspired by David [Da] in an other setting of BMO theory of
the universal Teichmüller space.

When ‖ logh′‖
H

1
2

is not necessarily small, we use an approximation pro-

cess. Since logh′ ∈ H 1
2 , there exists a sequence (un) of real valued (real)

analytic functions such that ‖un − log |h′|‖
H

1
2
→ 0 as n→ ∞. Replacing un by

un−a0(un)+a0(log |h′|) if necessary, we may assume that a0(un) = a0(log |h′|).
Define hn(eiθ) = eiφn(θ) by

φn(θ) =
2π

∫ 2π
0 eûn(t)dt

∫ θ

0
eûn(t)dt, θ ∈ R.(5.5)

Then, hn ∈WP(S1) since φn is a real analytic diffeomorphism.
We first show that ‖ logh′n − logh′‖

H
1
2
→ 0 as n → ∞. By our construc-

tion, ‖ log |h′n| − log |h′|‖
H

1
2
→ 0 as n→ ∞. We need to show that ‖ℑ logh′n −

ℑ logh′‖
H

1
2
→ 0 as n→ ∞. For simplicity, we set λn = ℑ logh′n−ℑ logh′ so that

λ̂n = φn−φ. Recall that H
1
2 ⊂ VMO(S1), and the inclusion map is continuous.

Noting that

|a0(e
un)−1|= 1

2π

∣

∣

∣

∣

∫ 2π

0
(eûn(t)− elogφ′(t))dt

∣

∣

∣

∣

≤ ‖eun − elog |h′|‖1,

we conclude by Lemma 3.2 that a0(e
un)→ 1 as n→ ∞. Now (5.5) implies that

log |h′n|= un− loga0(e
un), which implies a0(log |h′n|) = a0(un)− loga0(e

un)→
a0(log |h′|) as n → ∞. By Lemma 3.2 again, we conclude that, for any p ≥ 1,
‖|h′n|− |h′|‖p→ 0 as n→ ∞. Now since the m−th (m �= 0) Fourier coefficient of
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λn is

am =
1

2π

∫ 2π

0
λ̂n(θ)e

−imθdθ

=
1

2π

∫ 2π

0
(φn(θ)−φ(θ))e−imθdθ

=
1

2mπi

∫ 2π

0
(φ′n(θ)−φ′(θ))e−imθdθ

=
1

2mπi

∫ 2π

0
(|h′n|(eiθ)−|h′|(eiθ))e−imθdθ,

we conclude by Parseval’s equality that

‖λn‖H1 =
∑

m�=0

m2|am|2 =
1

4π2

∑

m�=0

∣

∣

∣

∣

∫ 2π

0

(∣

∣h′n
∣

∣

(

eiθ
)

−|h′|
(

eiθ
))

e−imθdθ

∣

∣

∣

∣

2

=
∥

∥|h′n|− |h′|
∥

∥

2
2,

which implies ‖λn‖
H

1
2
≤ ‖λn‖H1 → 0 as n→ ∞. Thus, ‖ logh′n− logh′‖

H
1
2
→ 0

as n→ ∞.
Now we consider h̃n = hn◦h−1. Then h̃n is absolutely continuous. Noting that

log h̃′n =
(

logh′n− logh′
)

◦h−1 = P−1
h

(

logh′n− logh′
)

,

we find that ‖ log h̃′n‖H 1
2
→ 0 as n→∞. By what we have proved in the small norm

case, h̃n ∈WP(S1). Since WP(S1) is a group (see [Cu, TT2]), we conclude that
h ∈WP(S1). Now the proof of Theorem 1.1 is completed. �

Remark 5.1. By means of Theorem 1.1, we can give a new model of the Weil-

Petersson Teichmüller space. More precisely, let H
1
2
R

denote the subspace of all

real-valued functions in H
1
2 . By Theorem 1.1, log |h′| ∈H

1
2
R

for h ∈WP(S1). Con-

versely, suppose u ∈H
1
2
R

. Adding to a constant if necessary, we may assume that
∫ 2π

0 eû(t)dt= 2π. Set h(eiθ) = eiφ(θ) by

φ(θ) =

∫ θ

0
eû(t)dt, θ ∈R.(5.6)

Then h is an absolutely continuous sense-preserving homeomorphism of the unit
circle with log |h′| = u. By Lemma 3.4 and Theorem 1.1, we get h ∈ WP(S1).
Consequently, the correspondence h �→ log |h′| establishes a one-to-one map from

WP(S1)/Rot(S1) onto H
1
2
R
/R. By means of the H

1
2 metric, a metric can be as-

signed to WP(S1)/Rot(S1). This will be done in Section 8.
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6. A counterexample: Proof of Theorem 1.2. Combining Theorem 1.1
with the following result gives the proof of Theorem 1.2.

THEOREM 6.1. Fix α > 1. Define h(eiθ) = eiϕ(θ)

ϕ(θ) = cα

∫ θ

0

(

(

logα− logsin
t

2

)2

+
(π− t)2

4

)

dt, θ ∈ [0,2π],(6.1)

where cα > 0 is a constant so that ϕ(2π) = 2π. Then h is a sense-preserving home-
omorphism which is absolutely continuous such that logh′ ∈H 1

2 , but h is neither
in H

3
2 nor Lipschitz.

Proof. We first point out that ϕ can be extended to the whole real line R by
means of ϕ(θ+2π)−ϕ(θ)≡ 2π. Consider

g(z) = log log
2α

1− z .(6.2)

g is holomorphic in Δ, and except for eiθ = 1, limz→eiθ g(z) exists and equals

g(eiθ) = log

(

logα− logsin
θ

2
+ i

π− θ
2

)

.

We first show that g ∈ AD(Δ). Noting that

g′(z) =
1

(1− z) log 2α
1−z

,

it is sufficient to show that
∫∫

{|z−1|<1}
|g′(z)|2dxdy <+∞.

This can be be done as follows:
∫∫

{|z−1|<1}
|g′(z)|2dxdy =

∫

{|w|<1}

1

|w log 2α
w |2

dudv

=

∫ 1

0
ρdρ

∫ 2π

0

dθ

ρ2(log2 2α
ρ + θ2)

=

∫ 1

0

1

ρ log 2α
ρ

arctan
2π

log 2α
ρ

dρ

=

∫ +∞

log2α

arctan 2π
x

x
dx

< 2π
∫ +∞

log2α

1
x2dx=

2π
log2α

.
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Thus, g ∈ H 1
2 , which implies that ℜg ∈ H 1

2 . By Lemma 3.1, we obtain that
exp(2ℜg) ∈ L1(S1). Noting that

ℜg(eiθ) = log

∣

∣

∣

∣

logα− logsin
θ

2
+ i

π− θ
2

∣

∣

∣

∣

=
1
2

log

(

(

logα− logsin
θ

2

)2

+
(π− θ)2

4

)

when θ ∈ (0,2π), we conclude that our function ϕ defined in (6.1) is well defined,
strictly increasing and absolutely continuous with

ϕ′(θ) = cα

(

(

logα− logsin
θ

2

)2

+
(π− θ)2

4

)

, θ ∈ (0,2π).(6.3)

Thus, h is an absolutely continuous sense-preserving homeomorphism of the unit
circle onto itself. Since ‖ϕ′‖∞ = ∞, h is not Lipschitz. On the other hand, since
log |h′|= logcα+2ℜg ∈H 1

2 , we conclude by Lemma 3.4 that logh′ ∈H 1
2 .

It remains to show that h is not in H
3
2 , or equivalently, h′ is not in H

1
2 . By

means of (3.3), it is sufficient to show that |h′| is not in H
1
2 . To do so, we consider

the function

f(z) = log(1− z)(6.4)

which is analytic in the unit disk. Then, except for eiθ = 1, limz→eiθ f(z) exists and
is equal to

f(eiθ) = log(1− eiθ) = log2+ logsin
θ

2
− iπ− θ

2
.(6.5)

It is easy to see that f does not belong to AD(Δ), which implies that ℜf is not in
H

1
2 . By (3.3) we have

∫ π

0

∫ π

0

| log sins− logsin t|2
|sin(s− t)|2 dsdt=+∞.(6.6)

Fix 0 < ε < π/4, and set Iε = [π/2− ε,π/2+ ε], (Iε× Iε)c = [0,π]× [0,π]−
Iε× Iε. Noting that log(1+x)< x when x > 0, we find that

| logx− logy| ≤ |x−y|
min(x,y)

, x > 0, y > 0.

On the other hand, since sinx≥ (2/π)x when 0 < x < π/2, we conclude that

| log sins− logsin t|2
|sin(s− t)|2 ≤ π2

4
|sins− sint|2

|s− t|2 min(sin2 s,sin2 t)
≤ π2

4cos2 ε
≤ π2

2
, s, t ∈ Iε.
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Thus,
∫

Iε

∫

Iε

| log sins− logsin t|2
|sin(s− t)|2 dsdt <+∞.

It follows from (6.6) that
∫∫

(Iε×Iε)c

| log sins− logsin t|2
|sin(s− t)|2 dsdt=+∞.

Noting that log sins < logcosε < 0 when s ∈ Icε , we conclude from the above
equality that

∫∫

(Iε×Iε)c

|(logα− logsins)2− (logα− logsin t)2|2
|sin(s− t)|2 dsdt

≥ log2(α2 cosε)
∫∫

(Iε×Iε)c

| log sins− logsin t|2
|sin(s− t)|2 dsdt=+∞,

which implies that
∫ π

0

∫ π

0

|(logα− logsins)2− (logα− logsin t)2|2
|sin(s− t)|2 dsdt=+∞.(6.7)

On the other hand, consider the function u on the unit circle defined by
u(eiθ) = (π− θ)2, θ ∈ [0,2π]. Then, u ∈H 1

2 . Actually, a direct computation will
show that the n-th (n �= 0) Fourier coefficient of u is

an =
1

2π

∫ 2π

0
û(θ)e−inθdθ =

1
2π

∫ 2π

0
(π− θ)2e−inθdθ =

2
n2 .

Combining this with (3.3) and (6.7), we conclude that |h′| is not in H
1
2 . This com-

pletes the proof of Theorem 6.1. �

7. Proof of Theorem 1.3. We first prove two general results.

LEMMA 7.1. Given a continuous vector field u(t, ·) ∈ C0([0,M ],Λ∗) with the
normalized conditions (1.4) and (1.5), the flow maps h(t,ζ) of the differential equa-
tion

{

dh
dt = u(t,h)

h(0, ζ) = ζ
(7.1)

are quasisymmetric homeomorphisms, and h(t, ·) : [0,M ]→ T is continuous.

Proof. As stated in Section 1, Reimann [Re] proved that, for each fixed t ∈
[0,M ], h(t, ·) is a quasisymmetric homeomorphism. In fact, Agard-Kelingos (see
[AK, Theorems 1 and 2]) already proved that h(t, ·) : [0,M ]→ T is continuous
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under the assumption that u(t, ·) can be extended to a so-called quasiconformal
deformation U(t, ·) to the unit disk with ∂U(t, ·) ∈C0([0,M ],L∞(Δ)), which was
proved to be true by Gardiner-Sullivan (see [GS, Section 8]) and Reich-Chen (see
[RC, Theorem 2.2]) independently. A detailed proof of Lemma 7.1 can be found in
our paper [HWS]. �

LEMMA 7.2. Let ht, t ∈ [0,M ] be quasisymmetric homeomorphisms which
keep the points 1, −1 and i fixed. Suppose ut : [0,M ]→H

1
2 and ht : [0,M ]→ T

are continuous. Then Phtut : [0,M ]→H
1
2 is continuous.

Proof. Fix t0 ∈ [0,M ]. By (4.2) we have

‖Phtut−Pht0
ut0‖H 1

2
≤ ‖Phtut−Phtut0‖H 1

2
+‖Phtut0 −Pht0

ut0‖H 1
2

≤ eτ(0,ht)‖ut−ut0‖H 1
2
+‖Phtut0−Pht0

ut0‖H 1
2
.

We conclude that Phtut : [0,M ]→ H
1
2 is continuous by Proposition 4.1 and the

continuity of ut and ht. �

Now we begin to prove Theorem 1.3. It is contained in

THEOREM 7.3. Given a continuous vector field u(t, ·) ∈ C0([0,M ],H
3
2 ) with

the normalized condition (1.4), the flow maps h(t, ·) of the differential equation
(7.1) belong to the Weil-Petersson class, namely, h(t, ·) ∈WP(S1) for each fixed
t ∈ [0,M ]; Furthermore, the mapping t �→ logh′(t, ·) from [0,M ] into H

1
2 is con-

tinuously differentiable such that

d

dt
logh′(t, ·) = u′(t,h(t, ·)).(7.2)

Proof. Without loss of the generality, we assume that the vector field u(t, ·)
also satisfies the normalized condition (1.5) so that the the flow maps h(t, ·) keep
the points 1, −1 and i fixed. We first point out that by Figalli’s result (see [Fi]),
for each fixed t ∈ [0,M ], h(t, ·) is absolutely continuous. As done by Figalli [Fi],
differentiating both sides of the equation

d

dt
h(t,ζ) = u

(

t,h(t,ζ)
)

(7.3)

with respect to ζ yields

d

dt
h′(t,ζ) = u′

(

t,h(t,ζ)
)

h′(t,ζ),

that is,

d

dt
logh′(t,ζ) = u′

(

t,h(t,ζ)
)

.
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Noting that h(0, ζ) = ζ , we obtain

logh′(t,ζ) =
∫ t

0
u′
(

s,h(s,ζ)
)

ds.(7.4)

Recalling that the inclusion of H
3
2 into Λ∗ is continuous, we conclude that

u′(t,h(t, ·)) : [0,M ]→H
1
2 is continuous by Lemmas 7.1 and 7.2. Now Theorem

7.3 follows from the following Lemma 7.4 immediately. �

LEMMA 7.4. Suppose u(t, ·) : [0,M ]→H
1
2 is continuous, and

U(t,ζ) =

∫ t

0
u(s,ζ)ds, ζ ∈ S1.(7.5)

Then for each fixed t ∈ [0,M ], U(t, ·) ∈H 1
2 , and U(t, ·) : [0,M ]→H

1
2 is contin-

uously differentiable with

d

dt
U(t, ·) = u(t, ·).(7.6)

Proof. For simplicity, we set U(t, ·) = Ut, u(t, ·) = ut. By definition we have

an(Ut) =
1

2π

∫ 2π

0

(∫ t

0
us(e

iθ)ds

)

e−inθdθ

=

∫ t

0

(

1
2π

∫ 2π

0
us(e

iθ)e−inθdθ

)

ds

=

∫ t

0
an(us)ds.

Then,

|an(Ut)|2 ≤ t
∫ t

0
|an(us)|2ds,

‖Ut‖2

H
1
2
=

+∞
∑

n=−∞
|n||an(Ut)|2

≤ t
+∞
∑

n=−∞
|n|
∫ t

0
|an(us)|2ds

= t

∫ t

0

+∞
∑

n=−∞
|n||an(us)|2ds

= t

∫ t

0
‖us‖2

H
1
2
ds

≤ t2 max
s∈[0,t]

‖us‖2

H
1
2
.
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Consequently, for each fixed t ∈ [0,M ], U(t, ·) ∈H 1
2 .

It remains to show (7.6). Fix t0 ∈ [0,M ]. Noting that

Ut0+t(ζ)−Ut0(ζ)− tut0(ζ) =
∫ t0+t

t0

(us(ζ)−ut0(ζ))ds,

we conclude by the reasoning as above that

‖Ut0+t−Ut0− tut0‖H 1
2
≤ |t| max

|s−t0|≤|t|
‖us−ut0‖H 1

2
,

which implies that

lim
t→0

∥

∥

∥

∥

Ut0+t−Ut0
t

−ut0
∥

∥

∥

∥

H
1
2

≤ lim
t→0

(

max
|s−t0|≤|t|

‖us−ut0‖H 1
2

)

= 0,

that is, Ut is differentiable at t0, and (7.6) holds. �

Remark 7.5. Here it is an appropriate place to relate a result of Figalli [Fi].
In an attempt to study the regularity of the elements in WP(S1), Figalli [Fi] in-
vestigated the smoothness of the flows of the H

3
2 vector fields and showed that

there exists some H
3
2 vector field whose flow is neither Lipschitz nor H

3
2 . Now

our Theorem 7.3 says that the the flow maps of the H
3
2 vector field in Figalli’s ex-

ample must also belong to WP(S1), which in turn implies (Theorem 1.2) that there
exists some quasisymmetric homeomorphism which is in WP(S1) but is neither
H

3
2 nor Lipschitz. Our proof of Theorem 1.2 relies neither on Theorem 7.3 nor

on Figalli’s result. Moreover, it gives an explicit expression of a quasisymmetric
homeomorphism of the Weil-Petersson class being neither H

3
2 nor Lipschitz.

8. Proof of Theorem 1.4. Recall that the universal Teichmüller space has
a quasisymmetric homeomorphism model, namely, T = QS(S1)/Möb(S1). Now
T = QS(S1)/Rot(S1) is a fiber space over T and in fact is a model of the universal
Teichmüller curve (see [Ber, Te, TT2]). Each point in T can be considered as a
quasisymmetric homeomorphism which keeps 1 fixed. There exists a one-to-one
map Ψ from T onto T̂b (another model of the universal Teichmüller curve) which
sends h to logf ′ under the normalized decomposition h−1 = f−1 ◦ g. Via Ψ, T is
endowed with a standard complex Banach manifold structure such that Ψ : T → T̂b
is a bi-holomorphic isomorphism (see [TT2] for more details).

Now we consider the Weil-Petersson class. Set T0 = WP(S1)/Rot(S1). Then
Ψ establishes a bijective map between T0 and T̂b∩AD0(Δ). As stated in Remark
5.1, a natural metric assigned to T0 is the following H

1
2 metric:

d(h1,h2) = ‖ log |h′2|− log |h′1|‖H 1
2
, h1, h2 ∈ T0.(8.1)
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Examining the last step in the proof of Theorem 1.1, we see that the metric is
topologically equivalent to the following metric:

d′(h1,h2) = ‖ logh′2− logh′1‖H 1
2
, h1, h2 ∈ T0.(8.2)

Then we have the following result.

THEOREM 8.1. Ψ : (T0,d)→ T̂b∩AD0(Δ) is a homeomorphism.

Proof. We first recall the fact that ‖ logh′‖
H

1
2

is small if and only if

‖ log(h−1)′‖
H

1
2

is small. Examining the proof of Theorem 1.1, we find out

that ‖Ψ(h)‖AD is small if ‖ logh′‖
H

1
2

is small. Thus, Ψ is continuous at the

base point id. Conversely, suppose logf ′ ∈ T̂b ∩AD0(Δ) has small norm. Let
h−1 = f−1 ◦ g be the normalized conformal sewing mapping of f . We need to
show that ‖ logh′‖

H
1
2

is small, or equivalently, ‖ log(h−1)′‖
H

1
2

is small.

Since Sf = Λ(logf ′) has small norm (2.5), by means of the well-known
Ahlfors-Weil section (see [AW]), f can be extended to a quasiconformal mapping
in the whole plane whose complex dilatation μ has the form

μ(z) =−1
2
(|z|2−1)2Sf (z̄

−1)z̄−4, z ∈Δ∗.(8.3)

Thus, μ ∈M(Δ∗) with small norm ‖μ‖WP. By means of Lemma 1.5 in [TT2], we
have fμ(∞) = ∞.

We first consider the special case that f = fμ|Δ. Let wμ be the unique quasi-
conformal mapping of Δ∗ onto itself with Beltrami coefficient μ and keeping the
points 1 and ∞ fixed. Extending wμ to the unit disk by symmetry, we obtain a quasi-
conformal mapping wμ in the whole plane with wμ(0) = 0. Then g = fμ ◦w−1

μ |Δ∗ ,
and h=wμ|S1 . Now Lemma 2.5 in [TT2] implies that the Beltrami coefficient ν of
w−1
μ has small norm ‖ν‖WP. On the other hand, it is easy to see that h= g−1 ◦f is

the quasisymmetric conformal sewing mapping corresponding to rj ◦g ◦ j, where
j(z) = z̄−1 is the standard reflection of the unit circle, and r is a constant such that
r(j ◦ g ◦ j)′(0) = 1. Now rj ◦ g ◦ j = rj ◦ fμ ◦w−1

μ ◦ j|Δ has the quasiconformal
extension rj ◦fμ ◦w−1

μ ◦ j|Δ∗ which keeps the point at infinity fixed, we conclude
that log(rj ◦g ◦ j)′ has small norm in AD0(Δ) since the Beltrami coefficient ν of
w−1
μ has small norm ‖ν‖WP . Thus, logg′ has small norm in AD(Δ∗). It follows

from (5.1) that ‖ log(h−1)′‖
H

1
2

is small.
In the general case, since f and fμ have the same complex dilatation μ, we

conclude by the normalized conditions f(0) = fμ(0) = 0, f ′(0) = f ′μ(0) = 1
and f ′′μ(0) = 0 that f = γ1 ◦ fμ, where γ1(z) =

z
1−λz with λ = f ′′(0)/2. Since

logf ′ ∈ T̂b∩AD0(Δ) has small norm, we conclude that λ= f ′′(0)/2 is small (see
[Te]). To find the normalized conformal sewing map of fμ, we set z1 = g−1(− 1

λ),
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z2 =− 1−z1
z1(1−z1)

, and

γ2(z) =
1− z2

1− z2

z− z2

1− z2z
.

A direct computation yields that γ2(1) = 1, γ2(∞) = z1. Noting that g(∞) = ∞,
we conclude that z1 tends to infinity and z2 is small when λ is small. Consider
ĝ= γ−1

1 ◦g ◦γ2. Then ĝ is a conformal mapping from Δ∗ onto fμ(Δ∗), and ĝ(1) =
fμ(1), ĝ(∞) = ∞. Consequently, the normalized conformal sewing map of fμ is

ĥ−1 = f−1
μ ◦ ĝ = f−1

μ ◦γ−1
1 ◦g ◦γ2 = f−1 ◦g ◦γ2 = h−1 ◦γ2,

which implies that h= γ2◦ ĥ. By what we have proved in the first (special) case, we
conclude that ‖ log ĥ′‖

H
1
2

is small when ‖ logf ′‖AD is small. On the other hand,

when ‖ logf ′‖AD is small, z2 is small, which implies that

‖ logγ′2‖2
AD =

1
π

∫∫

Δ

4|z2|2
|1− z2z|2

dxdy = 4log
1

1−|z2|2

is also small. Therefore, we conclude by logh′ = logγ′2 ◦ ĥ+ log ĥ′ that ‖ logh′‖
H

1
2

is small when ‖ logf ′‖AD is small. This completes the proof that Ψ−1 is continuous
at the base point 0.

We now handle the general case by changing a general point to the base point.
We only sketch the standard procedure by using the so-called allowable mappings
(see [Ber, Na, TT2] for more details). Let h ∈ T0 be fixed. Consider the map Rh
defined by Rh(k) = k◦h−1. ThenRh is a bijective map from T0 onto itself. Noting
that

d′(Rh(k1),Rh(h2)) = ‖(logk′2− logk′1)◦h−1‖
H

1
2
,(8.4)

we conclude that Rh is a quasi-isometric map from T0 onto itself under the d′-
metric. Now let w be a quasiconformal extension of h to Δ∗ such that w is quasi-
isometric under the Poincaré metric with Beltrami coefficient μ ∈ M(Δ∗). The
existence of such a quasiconformal extension is guaranteed by means of the well-
known Douady-Earle [DE] extension of a quasisymmetric homeomorphism (see
[Cu]). As stated in Proposition 2.2, Rw induces a bi-holomorphic isomorphism
w∗ from T0 onto itself with w∗ ◦Φ = Φ ◦Rw. In fact, it is known that Rw also
induces a bi-holomorphic isomorphism w̃∗ from T̂b∩AD0(Δ) onto itself which is
related to Rh by w̃∗ ◦Ψ = Ψ ◦Rh. By using the allowable mappings w̃∗ and Rh,
we conclude that both Ψ : (T0,d)→ T̂b ∩AD0(Δ) and its inverse are continuous
at a general point h (or Ψ(h)). �

Proof of Theorem 1.4. Let Λ̃ denote the natural projection from T0 =

WP(S1)/Rot(S1) onto T0 = WP(S1)/Möb(S1). The metric d on T0 descends
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down to a metric on T0, still denoted by d, as follows:

d(h1,h2) = inf{d(h̃1, h̃2) : Λ̃(h̃1) = h1, Λ̃(h̃2) = h2}, h1, h2 ∈ T0.(8.5)

By Theorem 8.1, Ψ establishes a homeomorphism from (T0,d) onto T̂b∩AD0(Δ).
On the other hand, Theorem 2.5 says that Λ : T̂b∩AD0(Δ)→ β(T0) is a holomor-
phic split submersion. This already implies that Ψ : (T0,d)→ T̂b∩AD0(Δ) induces
a homeomorphism from Ψ̃ : (T0,d) onto β(T0), which implies that the metric d and
the Weil-Petersson metric induce the same topology on T0 = WP(S1)/Möb(S1).

�

9. Open problems. It is known that T0 = WP(S1)/Rot(S1) inherits a stan-
dard complex Hilbert manifold structure from AD0(Δ) by the bijection Ψ : T0→
T̂b∩AD0(Δ) (see [TT2]). Meanwhile, H

1
2
R
/R provides T0 with a real Hilbert man-

ifold structure by the correspondence h �→ log |h′| (see Remark 5.1). Now Theorem
8.1 says that theses two Hilbert manifold structures induce the same topology on
T0. It is not clear whether these two manifold structures are compatible with each
other. We believe this is the case and propose the following:

CONJECTURE 9.1. Under the normalized decomposition h−1 = f−1 ◦g, both
the bijective map logf ′ �→ log |h′| and its inverse are real analytic.

In the recent paper [GR], Gay-Balmaz-Ratiu made the following:

CONJECTURE 9.2. [GR] Given a continuous vector field u(t, ·) ∈ C0([0,M ],

H
3
2 ) with the normalized condition (1.4), the flow maps h(t,ζ) of the differential

equation
⎧

⎨

⎩

dh

dt
= u(t,h)

h(0, ζ) = ζ

(9.1)

belong to the Weil-Petersson class, namely, h(t, ·) ∈WP(S1) for each fixed t ∈
[0,M ]; Furthermore, the mapping t �→ h(t, ·) from [0,M ] into WP(S1) is contin-
uously differentiable under the standard Hilbert manifold structure introduced by
Takhtajan-Teo [TT2].

The first assertion in Conjecture 9.2 is true by our Theorem 7.3. Furthermore,

Theorem 7.3 implies that the mapping t �→ log |h′(t, ·)| from [0,M ] into H
1
2
R

is con-
tinuously differentiable. It is clear that if Conjecture 9.1 were true, then Conjecture
9.2 would also be true.

Based on Lemma 7.1, it is natural to propose the following:

Problem 9.3. Given a continuous vector field u(t, ·) ∈C0([0,M ],Λ∗) with the
normalized condition (1.4) and (1.5), let h(t, ·) be the flow maps of the differential
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equation (9.1). Determine whether or not the flow h(t, ·) : [0,M ]→ T is continu-
ously differentiable.

10. Appendix: proof of Propositions 4.1 and 4.3. In this section, we will
prove Propositions 4.1 and 4.3 as we promised in Section 4. We restate them as
follows.

PROPOSITION 10.1. Let h and h0 be quasisymmetric homeomorphisms which
keep the points 1, −1 and i fixed. Then for each fixed u∈H 1

2 , ‖Phu−Ph0u‖H 1
2
→

0 when τ(h,h0)→ 0.

PROPOSITION 10.2. P+
h is a bounded isomorphism from AD(Δ) onto itself.

Moreover, it holds that

‖P+
h φ‖

2
AD = ‖φ‖2

AD +‖P−h φ‖
2
AD, φ ∈ AD(Δ).(10.1)

Here it is an appropriate place to point out that, though not stated in this form,
Proposition 10.1 has appeared in the unpublished Master thesis [Li] of Q. Liu.
To prove Propositions 10.1 and 10.2, we need two related operators. Let A2(Δ)

denote the complex Hilbert space of all holomorphic functions ψ on the unit disk
with norm

‖ψ‖A2 =

(

1
π

∫∫

Δ
|ψ(ζ)|2dξdη

) 1
2

.(10.2)

Then Dφ(z) = φ′(z) determines an isometric isomorphism from AD0(Δ) onto
A2(Δ).

For a quasisymmetric homeomorphism h, two kernel functions were intro-
duced in the previous paper [HS] by Hu and the author. They are

φh(ζ,z) =
1

2πi

∫

S1

h(w)

(1− ζw)2(1− zh(w))dw, (ζ,z) ∈Δ×Δ,(10.3)

ψh(ζ,z) =
1

2πi

∫

S1

h(w)

(ζ−w)2(1− zh(w))dw, (ζ,z) ∈Δ×Δ.(10.4)

The two kernels φh and ψh induce two bounded operators on A2(Δ) as follows:

T−h ψ(ζ) =
1
π

∫∫

Δ
φh(ζ, z̄)ψ(z)dxdy, ψ ∈ A2(Δ), ζ ∈Δ,(10.5)

and

T+
h ψ(ζ) =

1
π

∫∫

Δ
ψh(ζ, z̄)ψ(z)dxdy, ψ ∈ A2(Δ), ζ ∈Δ.(10.6)
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Then, Theorem 3.1 in [HS] says that on AD(Δ),

D ◦P−h = T−h ◦D, D ◦P+
h = T+

h ◦D,(10.7)

while Lemma 2.3 in [SW] says that

‖T+
h ψ‖

2
A2 = ‖ψ‖2

A2 +‖T−h ψ‖
2
A2 , ψ ∈ A2(Δ).(10.8)

We first prove

LEMMA 10.3. Let h be a quasisymmetric homeomorphism which keep the
points 1, −1 and i fixed. Then

(1) ‖P−h ‖ → 0 when τ(0,h)→ 0.
(2) For each fixed φ ∈ AD, ‖P+

h φ−φ‖AD→ 0 as τ(0,h)→ 0.

Proof. By the definition (2.1) of the Teichmüller metric, there exists a so-called
extremal quasiconformal extension f of h so that its complex dilatation μ satisfies

‖μ‖∞ =
e2τ(0,h)−1

e2τ(0,h) +1
.

Thus, as τ(0,h)→ 0, ‖μ‖∞ → 0. Since h keeps the points 1, −1 and i fixed, we
conclude by Strebel’s approximation theorem (see [St]) that ∂f(z)→ 1 for a.e.
z ∈Δ, and f(z)→ z locally uniformly in Δ.

(1) Proposition 3.1 in [HS] says that

‖T−h ‖ ≤
‖μ‖∞

√

1−‖μ‖2
∞
,(10.9)

which implies that, when τ(0,h)→ 0, ‖T−h ‖→ 0 and consequently that ‖P−h ‖→ 0
by (10.7).

(2) By (10.7) we need to show that for each fixed ψ ∈ A2, ‖T+
h ψ−ψ‖A2 → 0

as τ(0,h)→ 0. Clearly,

‖T+
h ψ−ψ‖

2
A2 = ‖T+

h ψ‖
2
A2 +‖ψ‖2

A2 −
2
π

ℜ
∫∫

Δ
T+
h ψ(ζ)ψ(ζ)dξdη.(10.10)

Proposition 3.2 in [HS] says that

T+
h ψ(ζ) =

1
π

∫∫

Δ

∂f(w)ψ(f(w))

(1− ζw̄)2 dudv,(10.11)

and

‖T+
h ‖ ≤

1
√

1−‖μ‖2
∞
.(10.12)
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Then,
∫∫

Δ
T+
h ψ(ζ)ψ(ζ)dξdη

=
1
π

∫∫

Δ

(∫∫

Δ

∂f(w)ψ(f(w))

(1− ζw̄)2 dudv

)

ψ(ζ)dξdη

=
1
π

∫∫

Δ

(

∫∫

Δ

ψ(ζ)

(1− ζw̄)2dξdη

)

∂f(w)ψ(f(w))dudv

=

∫∫

Δ
∂f(w)ψ(f(w))ψ(w)dudv.

(10.13)

By (10.10)–(10.13), we only need to show that

lim
‖μ‖∞→0

∫∫

Δ

(

|ψ|2−ℜ(∂fψ(f)ψ)
)

= 0.(10.14)

Noting that

0≤ ||ψ|2−∂fψ(f)ψ|+ |ψ|2−|∂fψ(f)ψ| ≤ 2|ψ|2,

we conclude by Lesbegue’s dominated convergence theorem that

lim
‖μ‖∞→0

∫∫

Δ
(||ψ|2−∂fψ(f)ψ|+ |ψ|2−|∂fψ(f)ψ|)

=

∫∫

Δ
lim
‖μ‖∞→0

(||ψ|2−∂fψ(f)ψ|+ |ψ|2−|∂fψ(f)ψ|) = 0.

On the other hand,

(∫∫

Δ
|∂fψ(f)ψ|

)2

≤
∫∫

Δ
|ψ|2

∫∫

Δ
|ψ(f)|2|∂f |2

=

∫∫

Δ
|ψ|2

∫∫

Δ

|ψ|2
1−|μ(f−1)|2

≤ 1
1−‖μ‖2

∞

(∫∫

Δ
|ψ|2

)2

.

Combining these two inequalities together we obtain

lim
‖μ‖∞→0

∫∫

Δ
||ψ|2−∂fψ(f)ψ|= 0.(10.15)

Now (10.14) follows from (10.15) by noting

||ψ|2−ℜ(∂fψ(f)ψ)| ≤ ||ψ|2−∂fψ(f)ψ|. �
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Proof of Proposition 10.1. Let u= φ+ψ be given. Noting that

Phu(z)−u(z) = Phφ(z)+Phψ(z)−φ(z)−ψ(z)

= P+
h φ(z)−φ(z)+P+

h ψ(z)−ψ(z)+P
−
h φ(z̄)+P

−
h ψ(z̄),

we conclude by Lemma 10.3 that ‖Phu− u‖
H

1
2
→ 0 when τ(0,h)→ 0. Conse-

quently,

‖Phu−Ph0u‖H 1
2
= ‖Ph0(Ph◦h−1

0
u−u)‖

H
1
2
≤ ‖Ph0‖‖Ph◦h−1

0
u−u‖

H
1
2
−→ 0

when τ(0,h◦h−1
0 ) = τ(h,h0)→ 0. �

To prove Proposition 10.2, we also need the so-called Grunsky operator. Con-
sider the normalized decomposition h= f−1 ◦g as before. Set

U(f,ζ,z) =
f ′(ζ)f ′(z)

[f(ζ)− f(z)]2 −
1

(ζ− z)2 , (ζ,z) ∈Δ×Δ.(10.16)

Then Sf (z) = −6U(f,z,z) is the Schwarzian derivative of f . f determines the
so-called Grunsky operator on A2(Δ), defined as

Gfψ(ζ) =
1
π

∫∫

Δ
U(f,ζ, z̄)ψ(z)dxdy.(10.17)

It is known that Gf is a bounded operator from A2(Δ) into itself with ‖Gf‖ < 1
(see [Po1, Sh, TT2]). The following relation was proved by the author and Wei
[SW]:

T+
h ◦Gf = J ◦T−h ◦J,(10.18)

where J is the operator defined by Jφ(z) = φ(z̄) so that J2 =id, and J ◦D=D◦J .

Proof of Proposition 10.2. (10.1) follows directly from (10.7) and (10.8). Now
let ψ ∈ AD(Δ) be given. Choose ω ∈ AD0(Δ) so that Dω = −GfJDψ. By
(10.18) it holds that

JT−h Dψ+T+
h Dω = JT−h Dψ−T

+
h GfJDψ = 0.

By (10.7) we obtain

D(P+
h ω+JP−h ψ) = T+

h Dω+JT−h Dψ = 0.

Then,

PPh(ψ+ω) = P+
h ψ+JP−h ψ+P+

h ω+JP−h ω = P+
h ψ+JP−h ω+P+

h ω(0).
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Set φ = P+
h ψ+ JP−h ω+P+

h ω(0). Then φ ∈ AD(Δ), and Ph−1φ = ψ+ω. Con-
sequently, P+

h−1φ = ψ, and P+
h−1 is surjective. Replacing h−1 with h, we conclude

that P+
h is surjective. �
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no. 3, 227–239.
[DE] A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta

Math. 157 (1986), no. 1-2, 23–48.
[FH] J. Fan and J. Hu, Holomorphic contractibility and other properties of the Weil-Petersson and VMOA

Teichmüller spaces, Ann. Acad. Sci. Fenn. Math. 41 (2016), no. 2, 587–600.
[FHS1] Y. Fan, Y. Hu, and Y. Shen, A note on a BMO map induced by strongly quasisymmetric homeomor-

phism, Proc. Amer. Math. Soc. 145 (2017), no. 6, 2505–2512.
[FHS2] , On strongly quasisymmetric homeomorphisms, Ann. Acad. Sci. Fenn. Math. 42 (2017),

no. 2, 921–930.
[Fi] A. Figalli, On flows of H3/2-vector fields on the circle, Math. Ann. 347 (2010), no. 1, 43–57.
[FM] A. Fletcher and V. Markovic, Quasiconformal maps and Teichmüller theory, Oxf. Grad. Texts Math.,

vol. 11, Oxford University Press, Oxford, 2007.
[Ga] F. P. Gardiner, Teichmüller Theory and Quadratic Differentials, Pure Appl. Math. (New York), John

Wiley & Sons, New York, 1987.
[GL] F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Math. Surveys Monogr., vol. 76,

American Mathematical Society, Providence, RI, 2000.
[GS] F. P. Gardiner and D. P. Sullivan, Symmetric structures on a closed curve, Amer. J. Math. 114 (1992),

no. 4, 683–736.
[Gar] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math., vol. 96, Academic Press, New York,

1981.



WEIL-PETERSSON TEICHMÜLLER SPACE 1073
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