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SHEARS ON THE FAREY TESSELATION AND CIRCLE MAPS

DRAGOMIR ŠARIĆ

1. Introduction

D = {z 2 C : |z| < 1} unit disk equipped with the hyperbolic metric ⇢(z) =
2|dz|
1�|z|2 ;

ideal boundary at infinity is S
1
= {|z| = 1}

Theorem 1.1. A quasiconformal map f : D ! D extends by continuity to a qua-
sisymmetric map h : S

1 ! S
1, and every quasisymmetric map h : S

1 ! S
1 has

many quasiconformal extensions f : D ! D.

Definition 1.2. The universal Teichmüller space T (D) is the space of all quasicon-

formal maps f : D ! D up to an equivalence: f1 ⇠ f2 if there exists � 2Möb(D) such

that � �f1 is homotopic to f2 modulo the ideal boundary S
1
(or bounded homotopy).

By Theorem 1.1,

T (D) = {h : S
1 ! S

1
: h quasisymmetric and fixes 1, i,�1}

Facts about T (D):

• complete metric space in the Teichmüller metric

dT ([f ], [g]) = inf
f12[f ],g12[g]

1

2
logK(g

�1
1 � f1)

• infinite-dimensional non-separable complex Banach manifold (Bers embed-

ding)

• contains multiple copies of Teichmüller space of any Riemann surface as closed

complex Banach submanifolds

• contains the Weil-Petersson qc maps and the closure in dT of the set of WP

maps is the submanifold T0(D) of asymptotically conformal qc maps or sym-

metric maps
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2 DRAGOMIR ŠARIĆ

When S is a closed surface of genus g � 2, the Teichmüller space

T (S) := {f : S ! S1 : quasiconformal }/ ⇠

Choose a pants decomposition of S with cu↵s {�}3g�3
j=1 , the lengths `(�j) of the cu↵s

of pairs of pants and the twists t(�) about the cu↵s uniquely determine a marked

hyperbolic surfaces-i.e., point in T (S)

The Fenchel-Nielsen parametrization of T (S) is given by:

[f, S1] 2 T (S) 7! {(`S1(f(�j)), tS1(f(�j)))}
3g�3
j=1

Theorem 1.3. T (S) is homeomorphic to (R
+
)
3g�3 ⇥ R

3g�3.'
Etf "
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SHEARS ON THE FAREY TESSELATION AND CIRCLE MAPS 3

If we do not want to use lengths for parametrization of T (S), Thurston intro-

duced cataclysm coordinates and its equivalent formulation is called shear coordinates
(Bonahon and Penner)

Fix a maximal geodesic lamination � on S (complementary regions are ideal hyper-

bolic triangles) and measure the relative position of the ideal hyperbolic triangles

(shears along the geodesic lamination �)

When S has punctures and � consists of finitely many infinite geodesics Penner gives

parametrization of T (S); when S is closed and � arbitrary (cross-sections Cantor sets)

Bonahon gives parametrization and further extensive study of analytic properties of

the shear coordinates
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4 DRAGOMIR ŠARIĆ

Definition 1.4. The Farey tesselation F of D is a triangulation of D by ideal hy-

perbolic triangles: A triangle �0 with vertices 1, i and �1 is a generation 0 triangle

of F . The generation 1 triangles are obtained by hyperbolic reflections of �0 in its

sides. The generation n+1 triangles are obtained by reflecting generation n triangles

in the sides not shared with generation n� 1. The tesselation F is the collection of

all these triangles.

Definition 1.5. The Farey tesselation on the upper half plane H is obtained by

inverting the hyperbolic triangle with vertices 0, 1 and 1. It is invariant under the

action of PSL2(Z) and the action is simply transitive on the oriented edges of F .
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SHEARS ON THE FAREY TESSELATION AND CIRCLE MAPS 5

Definition 1.6. Given two ideal hyperbolic triangles �1 and �2 sharing a common

boundary geodesic g, the shear s(g) is the signed distance along g between the foots

of the orthogonals from the third vertices of �1 and �2.

s(g) is the signed translation length of a hyperbolic translation with axis g that

moves the third vertex of the reflected triangle �
0
1 to the third vertex of �2

fix a horocycle C based at an endpoint of g such that the triangle �1 comes before

�2 for the natural orientation on C

s(g) = log
�2

�1
,

where �i is the length of C \�i

if a, b, d are vertices of �1, b, c, d are vertices of �2 and g the geodesic with endpoints

b, d, then

s(g) = log
(a� d)(b� c)

(a� b)(c� d)
= log

TM

LR
.
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To parametrize T (D), start with Farey tesselation F of the unit disk; shears on

adjacent triangles are equal to 0

Given a homeomorphism h : S
1 ! S

1
we get a new tesselation h(F) with new

shears sh : E(F) ! R. The homeomorphism h (up to post-composition by Mobius

maps) is uniquely determined by the shears sh because there is a developing map

corresponding to any s : E(F) ! R.

Given a map s : E(F) ! R is there a homeomorphism h : S
1 ! S

1
which induces

s? Not always! There is s such that the developing map hs : V (F) ( S
1 ! S

1
does

not extend to S
1
.

Example:

I
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SHEARS ON THE FAREY TESSELATION AND CIRCLE MAPS 7

Problem (Penner): Find necessary and su�cient conditions on the shears such

that the developing map extends to a homeomorphism, quasisymmetric map, sym-

metric map, C
k+↵

-map, WP map, ...

Definition 1.7. A decoration on a tesselation is a choice of a horocycle at each

vertex of the tesselation. A lambda length of an edge of a decorated tesselation is the

distance between along the geodesic between the intersections with the horocycles.

An assignment of lambda lengths � : E(F) ! R develops into a map from V (F)

into S
1
.

Theorem 1.8 (Penner-Sullivan). A shear function s : E(F) ! R induces a qua-
sisymmetric map of S1 if there is a choice of a horocycle at each vertex of hs(F)

such that the lambda lengths are pinched between two positive constants.

Remark 1.9. Su�cient condition which is not explicit in terms of the shear function.

Remark 1.10. Not every quasisymmetric map has such a choice of horocycles.

2- e-
2 -l (red)
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2. Main results

Definition 2.1. A fan of edges Fp
with the tip p consists of all edges of F with

one endpoint p.

Theorem 2.2. A function s : F ! R is induced by shears of h(F) of a quasisym-
metric map of h : S

1 ! S
1 if and only if there exists a constant M � 1 such that for

each fan of geodesics Fp of F and for all m 2 Z and k 2 N [ {0}, we have

(1)
1

M
 e

s(fp
m) 1 + e

s(fp
m+1) + · · ·+ e

s(fp
m+1)+s(fp

m+2)+···+s(fp
m+k)

1 + e
�s(fp

m�1) + · · ·+ e
�s(fp

m�1)�s(fp
m�2)�···�s(fp

m�k)
 M.

where �
p
n is the length of the arc of Cp between f

p
n and f

p
n+1.

Geometric interpretation: choose a horocycle Cp based at the tip p; �
p
n is the length

of the arc of Cp between f
p
n and f

p
n+1

Then (1) is equivalent to

1

M


�
p
m + �

p
m+1 + · · ·+ �

p
m+k

�
p
m�1 + �

p
m�2 + · · ·+ �

p
m�k�1

 M.

The condition is only in the fans!
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Definition 2.3. A homeomorphism h : S
1 ! S

1
is symmetric if

|h(I)/h(J)| ! 1

when |I| ! 0 for all I, J ⇢ S
1
adjacent arcs with |I| = |J |.

Fact: A homeomorphism h : S
1 ! S

1
is symmetric if and only if it extends to

asymptotically conformal quasiconformal map of the unit disk D.

Definition 2.4. A generation of an edge f of F is the number of edges between f

and closests edge of the initial ideal hyperbolic triangle plus one.

Thus large generation of an edge implies that the endpoints on S
1
are close to

each other.

Theorem 2.5. A function s : E(F) ! R corresponds to a symmetric homeomor-
phism of S1 if and only if

�
p
m + �

p
m+1 + · · ·+ �

p
m+k

�
p
m�1 + �

p
m�2 + · · ·+ �

p
m�k�1

◆ 1

as the generations of fm+k and fm�k converge to infinity.
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Definition 2.6. A chain of geodesics of F is a sequence {en}n in E(F) such that en

and en+1 are adjacent and the geodesics are not repeating.

Theorem 2.7. A function s : E(F) ! R is induced by a homeomorphism of S1 if
and only if

1X

n=1

e
sn1+sn2+···+snn = 1

where s
n
i = ±s(fi).

The choice of the sign is combinatorial: f < f
0
depends on horocycle C

s
n
i = s(fi) if fi < fi+1 and the number of times we change the fans going from fi

to fn is even, or if fi > fi+1 and the number of times we change the fans going from

fi to fn is odd;

otherwise s
n
i = �s(fi)

0€
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consider a di↵erentiable path t 7! ht, for t 2 (�✏, ✏), of quasisymmetric maps with

h0 = id

the tangent vector field V :=
d
dtht|t=0 on S

1
is identified with a real valued function

V (e
i✓
) which is Zygmund:

sup
t

kV (e
i(x+t)

+ V (e
i(x�t)

)� 2V (e
ix
)k1

t
< 1

Fact: V is a Zygmund function i↵ there exists a di↵erentiable path of qs maps ht

with h0 = id and
d
dtht|t=0 = V

st(f) = log
(ht(a)�ht(c))(ht(b)�ht(d))
(ht(a)�ht(d))(ht(b)�ht(c))

is the shear at f 2 E(F) of ht

Definition 2.8. The shear of V at f 2 E(F) is

ṡ(f) :=
d

dt
st(f)|t=0 =

V (a)� V (c)

a� c
� V (a)� V (d)

a� d
+

V (b)� V (d)

b� d
� V (b)� V (c)

b� c
.

Given ṡ : E(F) ! R, there is a developing vector field defined on V (F) ⇢ S
1
.

Question: Find a necessary and su�cient condition on ṡ to be induced by a Zyg-

mund function.

=
-T
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Theorem 2.9. A function ṡ : E(F) ! R induces a Zygmund function on S
1 if and

only if there is a constant C > 0 such that for every fan of geodesics {fn}n2Z and
for every n 2 Z and k � 0 we have

|ṡ(fn) +
k

k + 1
[ṡ(fn+1) + ṡ(fn�1)] +

k � 1

k + 1
[ṡ(fn+2) + ṡ(fn�2)]

+ · · ·+ 1

k + 1
[ṡ(fn+k) + ṡ(fn�k)]|  C.

Remark 2.10. There is no explicit necessary and su�cient condition on the Fourier

coe�cients to guarantee that the function is Zygmund. The above theorem gives

explicit condition on the shears.

If Fp
is the fan of geodesic with tip p, denote by Vp the Zygmund function whose

shears ṡp are zero everywhere except at Fp and equal to (one-half of) ṡ on Fp

Denote by H(V ) the Hilbert transform of the Zygmund function V (it gives the

almost complex structure at the identity in T (D))

Theorem 2.11. Let V be Zygmund and ṡ : E(F) ! R its shear function. Then

V =

X

p2E(F)

Vp

where the convergence is uniform and absolute on S
1. In addition,

H(V ) =

X

p2E(F)

H(Vp)

and

H(Vp)(z) =
1

2

X

fn=(an,bn)2E(Fp)

ṡ(fn)
|z � an|
|z � bn|

log
|z � an|
|z � bn|

.

f)
→R

g:
El

;
'

p
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3. Proof for quasisymmetric maps

Theorem 3.1. A function s : F ! R is induced by shears of h(F) of a quasisym-
metric map of h : S

1 ! S
1 if and only if there exists a constant M � 1 such that for

each fan of geodesics Fp of F and for all m 2 Z and k 2 N [ {0}, we have

(2)
1

M
 e

s(fp
m) 1 + e

s(fp
m+1) + · · ·+ e

s(fp
m+1)+s(fp

m+2)+···+s(fp
m+k)

1 + e
�s(fp

m�1) + · · ·+ e
�s(fp

m�1)�s(fp
m�2)�···�s(fp

m�k)
 M.

where �
p
n is the length of the arc of Cp between f

p
n and f

p
n+1.

Proof. ( =) ) Change coordinates such that D is the upper half-plane H and the tip

p = 1. Then the condition (2) is simply the definition of qs maps.

((=) (Step 1.) The developing map h of s is a homeomorphism of S
1
. If not then

h(V (F)) is not dense in S
1
which is prevented by (2) as illustrated by the figure

below.

1(a) 1(b)

�1

�2

�3

g si

hs(fki)

Figure 1. The continuity of a developing map.
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(Step 2.) The developing map h is quasisymmetric.

Lemma 3.2. Let s : F ! R be a shear function that is equal to zero everywhere
except on a single fan Fp

= {f p
n}n2Z with tip p. If there exists M � 1 such that for

all m 2 Z and k 2 N [ {0},
1

M


�
p
m + �

p
m+1 + · · ·+ �

p
m+k

�
p
m�1 + �

p
m�2 + · · ·+ �

p
m�k�1

 M

then s is induced by an M
0-quasisymmetric map hs : S

1 ! S
1, where M

0 depends
only on M .

Proof of lemma. Consider H and tip p = 1. For symmetric triples x � t, x, x + t

the qs condition holds uniformly when t is bounded because the relative slopes are

bounded over R independent of x. When t is large, we approximate the intervals

[x� t, x] and [x, x+ t] by the intervals of with integer endpoints and the qs condition

is satisfied there. So it is satisfied for [x� t, x] and [x, x+ t]. End of proof of lemma.

Figure 2. The graph of the developing map h1.

Let ex(h) : D ! D be the barycentric extension of h introduced by Douady and

Earle. The extension satisfies:

• ex(h) is real analytic

• conformally natural: if ↵, � 2 Mob(D) then ↵ � ex(h) � � = ex(↵ � h � �)
• if h qs then ex(h) qc

• if hn ! h pointwise then ex(hn) ! ex(h) in C
1

topology uniformly on

compact subsets of D
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Assume that h satisfies the condition (2) but is not quasisymmetric. Then there

exists zn 2 D such that

(3) D(ex(h))(zn) :=
|ex(h)z|+ |ex(h)z̄|
|ex(h)z|� |ex(h)z̄|

(zn) ! 1.

Then |zn| ! 1 as n ! 1 and wee seek a contradiction.

Let zn 2 �n and ↵n, �n 2 Mob(D) such that ↵n(�0) = �n and �n � ex(h) � ↵n

fixes 1, i and �1. Let �0 3 z
0
n := ↵

�1
n (zn).

Two cases: z
0
n stays in a compact subset of �0 or it leaves towards one vertex on

S
1

Case 1. After taking a subsequence, z
0
n ! z

⇤
because it stays in a compact subset.

We have that the discrete triangulation ↵
�1
n (F) converge to a discrete triangulation

F⇤
and the shears converge as well. Then �n �h �↵n converges to a homeomorphism

h
⇤
corresponding to F⇤

and the limiting shears. This contradicts (3) by the conformal

naturallity:

D(ex(h))(zn) = D(ex(�n � h � ↵n))(z
0
n) ! D(ex(h

⇤
))(z

⇤
) < 1

which gives a contradiction.
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Case 2. z0n ! S
1
. Let ↵n 2 Mob(D) be such that ↵

0
n(0) = z

0
n.

Then F 0
n := (↵n �↵0

n)
�1
(F) is a tesselation that converges to a foliation of D but it

satisfies the condition (2) with the same constant in each fan and for each n. Let h
0
n

be the map with shears in a single fan F 0
pn of F 0

n that accumulates to the foliation,

then the above Lemma guaranties the convergence of

�
0
n � hn ! h1

where h1 is a quasisymmetric map and �
0
n � hn fixes 1, i and �1.

Since the endpoints of Fpn
0
are dividing the unit circle S

1
onto smaller and smaller

intervals, we have that the map �
0
n�h�↵n�↵0

n converges to the same quasisymmetric

map h1. Then the conformal naturality of the barycentric extension implies that

D(ex(�n � h � ↵n))(z
0
n) = D(ex(�

0
n � h � ↵n � ↵0

n))(0) ! D(ex(h1))(zn) < 1
which is again a contradiction

⇤




