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Chapitre 1

Introduction

The general aim behind the following lectures is to understand deterministic
or probabilistic growth processes coming from physics. While of course these
processes naturally occur in the 3D space we will restrict to the planar case
where the rich theory of analytic functions is of great help. Already in this case
many things remain mysterious but at least there are some results, while the 3D
case is totally unknown. Let us start with one of the most famous but also still
mysterious DLA-model of stochastic growth. Let K1 be the closed unit disk. We
let a disk of radius 1 walk at random from infinity in the plane and we stop
it as soon as it touches K1. The union of the two disks then forms a compact
K2; we let them start another disk of radius one walk at random from infinity
and by induction we obtain in this manner a random sequence of compact sets
Kn. What can be said about this sequence; does it converge in law? This is far
from being known. How does the diameter scale as n goes to infinity. Numerical
simulations suggest that diam(Kn) ∼ n1/d for d = 1.71... Kesten has proved that
d ≥ 1.5 (if it exists). In mathematical terms the set Kn+1 is obtained from Kn by
first choosing a point on ∂Kn with the law given by harmonic measure and then
attaching a disk at this point. It may be argued that this is not always possible
so we modify the model by using conformal mapping. Define for θ ∈ [0,1[ and
δ > 0 the map hδ,θ as the conformal mapping from the complement of the unit
disk onto the complement of the unit disk minus the segment [e2iπθ,(1 + δ)e2iπθ]
with Laurent expansion az + .., a > 0 at ∞ (we say that the conformal mapping
is normalized): the growth process is then given by a starting cluster K0 and if
Kn id defined by a normalized conformal mapping ϕn then Kn+1 is defined by its
normalized mapping ϕn+1 = hδn,θn with some choice on the constants. For this
model to mimic a DLA one must adjust the constants so that the image by ϕn

of the segment [e2iπθ,(1+ δ)e2iπθ] has a fixed size: however the model makes sense
for any choice of the constants involved. We can write

ϕn+1(z)− ϕn(z) = z
ϕn(hn(z))− ϕn(z)

hn(z)− z

hn(z)− z

z
.
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If we assume that δn is infinitesimal then this formula reads (writing now t instead
of n),

∂ϕ(z)

∂t
= z

∂ϕ(z)

∂z
p(z,t)

where it is easily seen that p(.,t) is a holomorphic function with negative real part.
This equation is known as Löwner equation, which is the equation describing the
growth of connected clusters. The importance of Löwner equation lies in the
fact that it has a converse: one can start with an equation (1) where p(.,t) is a
one parameter family of holomorphic functions with negative real part and it is
true that, under some mild regularity conditions, its solutions actually describe a
growth process. This fact is going to be the heart of the matter of these notes. In
a first part we will develop all the necessary background in complex analysis that
is needed to develop the theory of Löwner differential equation and discuss all
its classical consequences. The second part (and the most important one will be
devoted to the most recent far reaching consequences of this theory. To start the
story we recall that Löwner equation is ”‘driven”’ by a one parameter family of
holomorphic functions with negative real parts. It is classical that these functions
can be described as Cauchy integrals of negative finite measures. An important
class of growth processes is the one for which the negative measure is minus a
Dirac measure at point ξt; this process is called the Löwner process driven by
the function ξ. The wonderful idea of Schramm was to take as driving functions
a function of the form

√
κBt where κ is a nonnegative real number and Bt is

a standard Brownian Motion (BM) on the real line. This introduces stochastic
calculus into the field and it appears that some knowledge of Itô calculus is
necessary to understand SLEκ (the name of these processes). The second part of
these notes will thus be devoted to an introduction to stochastic calculus, and this
will be achieved by a non-specialist who begs for indulgence! The third part of
these notes will be devoted to applications of the theory. It turns out that SLEκ

describes the scaling limit of many discrete models of statistical mechanics. The
most famous one is critical percolation: consider a half-plane tiled with hexagons.
Decide to color black the hexagons of the negative real axis and white those of
the positive one. We start to walk along the edges of the hexagon at zero, going
up: we meet an hexagon and we toss a coin to decide its colour. If it is black we
go right and left if it is right; we continue in this way, with the difference that
it may happen that the hexagon we arrive on is already coloured. But then we
simply use the same rule and it will work since it can be easily seen by induction
that the last piece of the path is always between two different colours. Moreover a
moment’s reflection shows that the path we obtain is simple and goes to infinity.
The question we adress is: what happens when the mesh of the lattice converges
to 0? The problem here is two fold (not speaking about the delicate problem of
what we exactly mean by convergence). It was known that if we let the mesh go to
0 then it must converge to a SLE process if it is conformally invariant; then it has
to be the trace of SLE6 because of the locality property (see below). It has also
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been shown that SLE2 is the scaling limit of LERW (loop-erased random walks)
and many other similar results of this kind were either proved or conjectured.
But perhaps the more spectacular achievment of this theory has been the proof
of Mandelbrot conjecture: if U stands for the unbounded component of C\B([0,1]
where B is a planar Brownian Motion then almost surely ∂U has dimension 4/3.
One of the tasks of these notes will be to provide a complete proof of this fact.
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Chapitre 2

Complements of Complex
Analysis

2.1 Simply connected plane domains

An arc in a metric space X is a continuous mapping γ from some interval
[a,b] ⊂ R in X. Such an arc is said to be closed if γ(a) = γ(b). Two arcs γ1,γ2

defined on the same interval [a,b] and such that γ1(a) = γ2(a),γ1(b) = γ2(b) are
said to be homotopic if there exists Γ : [a,b]× [0,1] → X continuous such that

Γ(a,t) = γ1(a)∀t ∈ [0,1],Γ(b,t) = γ1(b)∀t ∈ [0,1],

Γ(s,0) = γ1(s)∀s ∈ [a,b],Γ(s,1) = γ2(s)∀s ∈ [a,b].

Définition 2.1.1. : The space X is called simply connected if it is connected and
if every closed arc γ : [a,b] → X is homotopic to the constant arc γ0 : t ∈ [a,b] 7→
γ(a).

When X is a plane domain we have the following equivalent characterizations
of simply connected domains:

Théorème 2.1.1. : For a connected open subset Ω of C the following are equi-
valent:
(1) Ω is simply connected,
(2) C\Ω is connected,
(3) For any closed arc γ and any z /∈ Ω, Ind(z,γ)=0.

We recall that Ind(z,γ) stands for the variation of the argument (mesured in
number of turns) of γ(t)− z along [a,b]. When γ is piecewise C1 this quantity is
also equal to

1

2iπ

∫ b

a

γ′(s)ds

γ(s)− z
=

1

2iπ

∫
γ

dζ

ζ − z
.
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Let f be a holomorphic function defined on a simply connected subdomain Ω of
C. By global Cauchy theorem and (3)∫

γ

f(z)dz = 0. (2.1)

for every closed arc γ of Ω. Fix now z0 ∈ Ω. Since Ω is arcwise connected, for
every z ∈ Ω there exists an arc γ : [a,b] → Ω such that γ(a) = z0,γ(b) = z. We
define F (z) =

∫
γ
f(z)dz. By (3.3)this definition is independent of the choice of

the arc γ as soon as it joins z0 to z inside Ω. It is easy to check that F ′ = f . We
have thus proven that every holomorphic function in a simply connected domain
admits a holomorphic anti-derivative.

Théorème 2.1.2. : A domain Ω in C is simply-connected ⇐⇒ every holomor-
phic function in Ω has an anti-derivative.

Proof : : We have just proven the ⇒ part. To prove the converse let z0 ∈ C\Ω.
Then 1

z−z0
is holomorphic in Ω and so has an anti-derivative. Cauchy’s theorem

applied to this function implies that Ind(z0,γ) = 0 for every closed arc in Ω and
thus that Ω is simply-connected. Consider in particular a non-vanishing holo-
morphic function f and let w0 be any complex number such that ew0 = f(z0).
Define g on Ω as the unique antiderivative of f ′

f
such that g(z0) = w0. Then

(fe−g)′ = (f ′ − g′f)e−g = 0 and thus eg = f .We have thus proved that every
non-vanishing holomorphic function in a simply-connected domain admits a holo-
morphic logarithm and thus also a holomorphic determination of its square root.
This fact is a key point in the next theorem.

2.2 Riemann Mapping Theorem

Théorème 2.2.1. (Riemann): Let Ω be a simply-connected proper subdomain of
C and w ∈ C.Then there exists a unique biholomorphic map f : Ω → D such that
f(w) = 0,f ′(w) > 0. (Here and in the future D will stand for the unit disk).

Proof :
1) Uniqueness: Suppose f1,f2 do the job; then h = f2◦f−1

1 : D → D,0 7→ 0,h′(0) >
0 and the same is true for h−1: Schwarz lemma then implies that h(z) = z,z ∈ D.
2) Existence: Let E = {f : Ω → D holomorphic and injective withf(w) = 0,f ′(w) >
0}. Let us first prove that E is not empty. To do so, we consider z0 ∈ C\Ω. Then
z 7→ 1

z−z0
is a non vanishing holomorphic function in Ω and thus admits a square

root we denote g. Since g is open there exists ε > 0 such that B(g(w),ε) ⊂ g(Ω).
Then we must have B(−g(w),ε)∩g(Ω) = ∅ because if not then would exist ζ ∈ Ω
such that g(ζ) ∈ B(−g(w),ε). Let Ω1 = g−1(B(g(w),ε); ζ cannot belong to Ω1

because B(g(w),ε) ∩B(−g(w),ε) = ∅ but on the other hand there exists ζ ′ ∈ Ω1

such that g(ζ ′) = −g(ζ) ⇒ g(ζ)2 = g(ζ ′)2 thus contradicting the injectivity of g2.
We can then define

f(z) =
ε

g(z) + g(w)
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which sends Ω into D: precomposing with a judicious Möbius transformation, we
get an element of E. If f ∈ E we can consider

f ∗(z) = f(w + zd(w,∂Ω))

mapping the unit disk into itself and 0 to 0. Applying Schwarz lemma to f ∗ we
see that

f ′(w) ≤ 1

d(w,∂Ω)

if f ∈ E. Let then M = sup{f ′(w),f ∈ E} and (fn) a sequence of elements of E
such that f ′n(w) →M . It is a normal family so, taking if necessary a subsequence
we may assume that (fn) converges uniformly on compact sets to some map f
with f(w) = 0,f(Ω) ⊂ D. Moreover f ′(w) = M so that in particular f is not
constant. By Hurwitz theorem it must be injective and open and we have proven
that f ∈ E.
To finish the proof it suffices to show that f is onto D.
Suppose not: let z0 ∈ D\f(Ω). Let

h(z) =
z − z0

1− z0z

be an automorphism of the disk such that h(z0) = 0. The mapping hof is one
to one and non vanishing; there thus exists g holomorphic and injective in Ω
such that g2 = h ◦ f . If k is the automorphism of the disk such that k(g(w)) =
0,k′(g(w))g′(w) > 0 then f̃ = k ◦g ∈ E. We want to compute f̃ ′(w). We compute
|h′(0)| = 1− |z0|2 and |h(0)| = |z0|. Also

|k′(g(w)| = 1

1− |g(w)|2
=

1

1− |z0|
.

We have 2g(w)g′(w) = h′(0)f ′(w) and hence

f̃ ′(w) = |k′(g(w)||g′(w)| = (1 + |z0|)f ′(w)

2
√
|z0|

.

But 1+ |z0| > 2
√
|z0| ⇒ f̃ ′(w) > f ′(w) = M , contradicting the maximality of M .

2.3 Boundary Behaviour

We will be often interested by the reciprocal mapping g = f−1 and in parti-
cular in the behaviour of this function at the boundary, i.e. the unit circle. Our
next theorem characterises domains for which g has a continuous extention to
the closed disc. Before we study in details this problem let us first notice an easy
but useful result:
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Proposition 2.3.1. If U,V are two plane domains and if f : U → V is an
homeomorphism then, if zn ∈ U is a sequence converging to ∂U , every limit
value of the sequence f(zn) belongs to ∂V .

Proof : We may assume WLOG that the sequence (f(zn)) converges to v: if
v ∈ V then zn = f−1(f(zn)) converges to f−1(v), a contradiction.

Définition 2.3.1. A compact set X ⊂ C is said to be locally connected if

∀ε > 0∃δ > 0;∀x,y ∈ X,|x−y| < δ ⇒ ∃X1 ⊂ Xconnected;x,y ∈ X1,diam(X1) ≤ ε.

Théorème 2.3.1. (Caratheodory): The mapping g has a continuous extension
to D if and only if ∂Ω is locally connected.

Proof : It is easy to see that the continuous image of a locally connected compact
set is again compact and locally connected so the only if part will follow from
the fact that if g extends continuoulsly then ∂Ω = g(∂D). To prove this last
fact consider first z ∈ ∂Ω : this point is the limit of a sequence (zn) of points
in Ω . But zn = g(ωn) for a sequence (ωn ∈ D and wlog we may assume that
ωn → ω ∈ ∂D , from which it follows that z = g(ω). For the other inclusion
suppose that there exists x ∈ ∂D such that g(x) ∈ Ω ; then there must exist
ω ∈ D such that g(x) = g(ω) and , if we denote by γ the half-open segment
joining ω to x in D , g(γ) is a compact subset of Ω . But this is impossible since
then γ = f(g(γ)) must be compact in D.

The converse is much harder and will be achieved through a series of lem-
mas which have their own interest. The first one concerns the continuity at the
boundary of the function f itself:

Théorème 2.3.2. If f maps conformally the domain Ω onto the unit disk and
if γ : [0,1] → C is a curve such that γ(0) ∈ ∂Ω, γ(]0,1]) ⊂ Ω, then f ◦ γ,
which is defined on (0,1], has a continuous extention at 0 and f ◦ γ(0) ∈ ∂D.
Moreover if we consider two such curves γj,j = 1,2 such that γ1(0) 6= γ2(0) then
f ◦ γ1(0) 6= f ◦ γ2(0).

Proof : It undergoes the notion of crosscut:

Définition 2.3.2. A crosscut Γ in a domain Ω is an open Jordan arc such that
Γ = Γ ∪ {a,b}, a,b ∈ ∂Ω.

Proposition 2.3.2. If C is a crosscut of the simply connected domain Ω then
Ω\C has exactly two components.

Proof : Let H(z) = z/(1 − |z|) , so that H is an homeomorphism from D onto
C. Then H ◦ f is an homeomorphism from Ω onto C sending the crosscut C
onto a Jordan curve of the Riemann sphere containing the point at infinity by
proposition(2.3.1). The proposition then follows from the Jordan curve theorem.
We return to the proof. We put w = γ(0):

Lemme 2.3.1. There exists a sequence (rn) converging to 0 such that l(f(C(rn)∩
Ω) → 0 where l denotes length and C(r) = ∂D(w,r).
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Proof : Put l(r) = l(f(C(r) ∩ Ω)). By Cauchy-Schwarz,

l(r)2 ≤ 2πr

∫
t;w+reit∈Ω

|f ′(w + reit)|2rdt,

so that ∫ 1/4

0

l(r)2

r
dr ≤ 2π2.

The fact that this integral converges implies the lemma.
The lemma implies the existence of a sequence of crosscuts (Cn) separating γ(1)
from γ(t), t small, such that diam(Cn) → 0 and such that, if Un denotes the
component of Ω\Cn that does not contain γ(1), diam(f(Un)) → 0. The fact that
f is an homeomorphism then easily imply that f ◦γ has a limit at 0. To prove the
rest of the theorem we assume that Ω is bounded (the general case needs only a
small change): suppose that the images of the two curves have the same end point
ζ on the circle. Since Ω is bounded, we may apply a version of the lemma for g.
There exists arcs An = ∂D(ζ,rn) whose image under g have a length converging
to 0; this easily implies that the end-points of the two curves have to cöıncide.
This last reasonning implies that, whatever the mapping g is we can find for every
z ∈ ∂D a sequence rn converging to 0 such that γn = g(D∩∂D(z,rn) is a crosscut
in Ω of diameter converging to 0 and whose endpoints an,bn converge to a point
ω ∈ ∂Ω . By the local connectedness assumption there exists a connected subset of
∂Ω containing an,bn , say Ln, with diam(Ln) = εn → 0 . If w ∈ Ω , |w − an| > εn

and if the same is true for z0 then these two points are separated neither by
Cn ∪ Ln nor by C\Ω . We then invoke the following

Théorème 2.3.3. (Janiszewski) If A,B are closed sets of the complex plane such
that A∩B is connected then, if a,b are two points of the plane which are separated
neither by A nor B, then they are not separated by A ∪B.

and conclude that w and z0 are not separated by Cn∪Ln∪C\Ω = Cn∪C\Ω.
It follows that Un ⊂ {|w − an| ≤ εn} and consequently that diam(Un) → 0.
Continuity of g at the point z then easily follows.

For Jordan domains we can precise further the last theorem:

Théorème 2.3.4. : The domain Ω is a Jordan domain if and only if g extends
to a homeomorphism from D to Ω.

Proof :

Définition 2.3.3. A point ω ∈ ∂Ω is called a cut point if ∂Ω\{ω} is not connec-
ted.

Lemme 2.3.2. Assume ∂Ω is locally connected: then g assumes the value ω ∈ ∂Ω
exactly once if and only if ω is not a cut point of ∂Ω.

Proof : If a is the only preimage of ω then ∂Ω\{ω} = g(∂D\{a}) is connected.
Conversely assume that g(a) = g(a′) = ω. let l be a crosscut from a to a′ in D :
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then g(l) is a Jordan curve. By Jordan curve theorem its complement consists
of two open components U1,U2 and ∂Ω\{ω} = (∂Ω ∩ U1) ∪ (∂Ω ∩ U2) and thus
∂Ω\{ω} cannot be connected.

Corollaire 2.3.1. : If Ωj,j = 1,2 are two Jordan domains then every holomorphic
bijection between the two domains extends to a homeomorphism of the closures.
Moreover, fixing zj,j = 1,2,3 in this order in the trigonometric sense on ∂Ω1 and
simlarly z′j,j = 1,2,3 on ∂Ω2 there is a unique holomorphic bijection between Ω1

and Ω2 whose extention sends zj to z′j,j = 1,2,3.

Proof : Using Riemann mapping theorem and the last one it suffices to prove
the corollary for Ωj = D,j = 1,2 where the result follows from the fact that an
automorphism of the disk depends on three parameters.

2.4 Around Koebe Theorem

In this section we study the properties of the class

S = {f : D → C holomorphic, injective; f(0) = 0,f ′(0) = 1}

As an explicit example, we have the Koebe function

f(z) =
∞∑

n=1

nzn =
z

(1− z)2
=

1

4
(
1 + z

1− z
)2 − 1

4

which is the Riemann mapping of C\]−∞,− 1
4
].

We will also need to study functions defined on ∆ = C\D.

Définition 2.4.1. : A compact subset K of the plane is called full if C\K is
connected.

Théorème 2.4.1. : If the nonempty compact connected set K is full then there
exists a unique conformal mapping FK : ∆ → C\K sending ∞ to ∞ and such
that

lim
z→∞

FK(z)

z
> 0

.

Proof :
1) Uniqueness: Suppose F1,F2 are solutions: then F = F2 ◦F−1

1 : ∆ → ∆ satisfies

lim
z→∞

F (z)

z
> 0.

ThenG(z) = 1
F ( 1

z
)
extends to a holomorphic function from D to itself withG′(0) =

1 by Schwarz lemma. Schwarz lemma again implies that G(z) ≡ z and thus that
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F1 = F2.
2) Existence: Let z0 ∈ K and Ω0 the image of C\K under M : z 7→ 1

z−z0
. This is

a simply connected domain containing 0 so that, by Riemann mapping theorem,
there exists a unique f0 : D → Ω0 holomorphic bijective with f0(0) = 0,f ′0(0) > 0.
Put then M0(z) = 1

z
: then FK = M−1 ◦ f0 ◦M0 has the desired properties with

lim
z→∞

FK(z)

z
=

1

f ′0(0)
.

Définition 2.4.2. : The logarithmic capacity of the compact set K is

cap(K) = lim
z→∞

FK(z)

z
.

We will use several notions of capacity along this course and an important
feature is how they behave under different scalings. We will study more specifi-
cally logarithmic capacity in a next paragraph.

Définition 2.4.3. : We will denote by K the set of full compact subsets of the
plane and by K(0) the subset of those compacts containing 0. The same symbols
with index 1 will denote the same compacts but with the further property of having
capacity 1.

If K ∈ K1 then for |z| > 1,

FK(z) = z + b0 +
∑
n≥1

bn
zn
.

Théorème 2.4.2. (Area Theorem): If K ∈ H∗
1 then (|.| stands for Lebesgue

measure)

|K| = π(1−
∑
n≥1

n|bn|2).

Proof : If γ is a smooth curve surrounding a region A then an immediate appli-
cation of Stokes formula shows that

|A| = 1

2i

∫
γ

zdz.

We apply this to γ = FK(r∂D) with r > 1:

1

2i

∫
γ

zdz =
1

2i

∫ 2π

0

FK(reiθ)ireiθF ′
K(reiθ)dθ = π(r2 −

∞∑
n=1

n|bn|2)

and the result follows by letting r decreasing to 1.

Lemme 2.4.1. : If f ∈ S then there exists an odd function h ∈ S such that for
z ∈ D

h(z)2 = f(z2).
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As an example, if f is the Koebe function then h is the Riemann mapping
onto the plane minus the two slits [i,+ i∞[, [−i,− i∞[.

Proof : The function z 7→ f(z)
z

does not vanish in D and thus possesses a square
root g. Put h(z) = zg(z2). it is clearly odd and h(z)2 = f(z2). If h(z1) = h(z2)
then z2

1 = z2
2 and thus z1 = z2 since h is odd. Finally g(z2) = 1+..⇒ h(z) = z+...

Théorème 2.4.3. (Koebe): If f ∈ S then, if f(z) = z+a2z
2 + .. we have |a2| ≤ 2

Proof : Let h be as above and

g(z) =
1

h(1
z
)

= z − a2

2z
+ ...

An application of the area theorem finishes the proof.

Théorème 2.4.4. (Koebe): If f ∈ S then f(D) ⊃ B(0,1
4
).

Proof : Let z0 /∈ f(D). The function

f̃(z) =
z0f(z)

z0 − f(z)
= z + (a2 +

1

z0

)z2 + ..

is in S; by the preceeding theorem |a2 + 1
z0
| ≤ 2 which in turn implies, since

already |a2| ≤ 2, that 1
|z0| ≤ 4.

Corollaire 2.4.1. : If f : Ω → Ω′ is holomorphic and bijective and if f(z) =
z′,d = d(z,∂Ω),d′ = d(z,∂Ω′) then

1

4
d′ ≤ d|f ′(z)| ≤ 4d′.

Proof : We may assume z = z′ = 0. The function f̃(w) = f(dw)
df ′(0)

belongs to the

class S; an application of the preceeding theorem shows that f̃(D) ⊃ B(0,1/4) ⇒
d′ ≥ 1

4
|f ′(0)|d.

Théorème 2.4.5. (Koebe): If f is holomorphic and injective in the unit disk
then for every z ∈ D

|zf
′′(z)

f ′(z)
− 2|z|2

1− |z|2
| ≤ 4|z|

1− |z|2
. (2.2)

Proof : Put Tz(w) = w+z
1+zw

. It is an automorphism of D satisfying Tz(0) =
w, T ′z(0) = 1− |z|2. Then

f̃(w) =
f(Tz(w))− f(z)

f ′(z)(1− |z|2)
= w + (

f ′′(z)(1− |z|2)
2f ′(z)

− z)w2 + ..
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so that f̃ ∈ S. By Koebe’s theorem

|f
′′(z)(1− |z|2)

2f ′(z)
− z| ≤ 2

and the result follows by multiplication by 2z
1−|z|2 .

Théorème 2.4.6. (Distortion Theorem): If f ∈ S then, for z ∈ D
1− |z|

(1 + |z|)3
≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3
(2.3)

Proof : Put h = log f ′. It suffices to prove the theorem for z = x ∈ (0,1). We
can write

x<(h′(x)) = <(
xf ′′(x)

f ′(x
)

from which it follows, using the preceeding theorem, that

2x− 4

1− x2
≤ <(h′(x)) ≤ 4 + 2x

1− x2

and the result follows by integration.

Théorème 2.4.7. (Second distortion theorem): If f ∈ S z ∈ D then

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

(2.4)

Proof : The upper bound follows easily from the preceeding theorem:

∀x ∈ (0,1) |f(x)| ≤
∫ x

0

1 + t

(1− t)3
dt =

x

(1− x)3
.

The lower bound is obvious if |f(z)| ≥ 1/4 since r
(1+r)2

is always less than 1
4
.

Assume now that f(z) = x ∈ (0,1/4): then by Koebe theorem [0,x] ⊂ Ω. Let
C = f−1([0,x]) ⊂ D then

f(z) =

∫
C

f ′(ζ)dζ =

∫
C

|f ′(ζ)||dζ| ≥
∫

C

1− |ζ|
(1 + |ζ|)3

|dζ| ≥
∫ x

0

1− r

(1 + r)3
dr =

r

(1 + r)2
.

2.5 Harmonic measure and Beurling theorem

If Ω is a bounded plane domain then , under some mild regularity conditions,
one can solve Dirichlet problem in Ω: for every function f continuous on ∂Ω one
can find a function u continuous on Ω such that u|Ω is harmonic and such that
u|∂Ω = f . The maximum principle implies that, if z ∈ Ω the application f 7→ u(z)
is a continuous linear form on the space C(∂Ω). By the Riesz representation
theorem, there exists a unique probability measure µ on ∂Ω such that for any
f ∈ C(∂Ω),u(z) =

∫
∂Ω
fdµ.

Définition 2.5.1. This measure is called the harmonic measure at point z in Ω,
and written as ω(z,Ω,.).

12



There is an equivalent probalistic definition of harmonic measure. Let Bz
t be

a standard Brownian motion started at point z and let τΩ = inf{t ≥ 0;Bt /∈ Ω}.
Then, for a Borel subset E of ∂Ω,

ω(z,Ω;E) = P [Bz
τΩ
∈ E]

and this formula implies the more general, and useful following one:

∀f ∈ C(∂Ω),u(z) = E[f(Bz
τΩ

].

We now investigate the size of the harmonic measure of a set E, in terms of its
diameter and distance to z.

Théorème 2.5.1. Let λ be a full continuum joining 0 and the boundary of the
unit disk. Then if z ∈ D\λ then the probability that a Brownian motion starting
from z will hit the boundary of the circle before hitting λ is smaller than c

√
|z|

In other terms,
ω(z,D\λ; ∂D) ≤ c

√
|z|.

Here is an intuitive proof of this result: if |z| = r then this probability is ≥
than the same probability in the case z = −r,λ = [0,1] where the result follows
by an explicit computation.

Corollaire 2.5.1. : Let Ω be a simply connected domain with ∞ ∈ ∂Ω , z0 ∈ ∂Ω
and z ∈ Ω; d(z,∂Ω) > r: then the probability that a Brownian motion starting

from z will hit ∂B(z0,r) before ∂Ω\B(z0,r) is smaller than c
√

r
|z−z0| .

The corollary follows from the theorem by an inversion about z0.
To prove then (3.5) we apply the preceeding corollary with the help of (2.7.1).

2.6 Capacity

If K ∈ K(′) we have defined in the last section the mapping FK : ∆ → C\K
and defined the logarithmic capacity of K as

lim
z→∞

FK(z)

z

. We have also used the mapping fK : D → C defined by fK(w) = 1
FK( 1

w
)

and

satisfying f ′K(0) = 1
cap(K)

. For any closed E ⊂ C we define rad(E) as the radius
of the smallest disk centered at 0 and containing E. We can restrict the study of
logarithmic capacity to compact sets containing 0 because of the obvious

Proposition 2.6.1. : The logarithmic capacity is translation and rotation inva-
riant. If h is an homotethy of amplitude λ then cap(h(K)) = λcap(K).

13



As a consequence we observe that the (logarithmic) capacity of a disc of radius
r is equal to r and since the map z 7→ z+1/z sends ∆ onto C\[−2,2] we see that
the capacity of a line segment of length l is l/4.

Proposition 2.6.2. : If K,K ′ ∈ K(0)K ⊂ K ′ then cap(K) ⊂ cap(K ′) with
equality if and only if K = K ′.

Proof : Put h = f−1
K ◦ fK′ taking D into D and sending 0 to 0. The proposition

follows by applying Schwarz lemma to h.

Proposition 2.6.3. : If K ⊂ K(0)1 then 1 ≤ rad(K) ≤ 4

If K ∈ K(0)1 we have FK(w) = w+ b0 + b1
w

+ .. and fK(z) = z+ a2z
2 + .. and

an easy computation shows that b0 = −a2. We have thus proven the

Proposition 2.6.4. : If K ⊂ K1 then |b0| ≤ 2.

Proposition 2.6.5. There exists a constant c > 0 such that if K ⊂ K(0)1 then
for |z| > 1,

|FK(z)− z| ≤ c (2.5)

Proof : It obviously suffices to find c such that the inequality is satisfied for
|z| ≥ 2 since then |F (z)| ≤ c + 2 if |z| ≤ 2. Suppose thus that |z| ≥ 2 and put
w = 1

z
. We have

|FK(z)− z| = |w − fK(w)|
|w||fK(w)|

(2.6)

Lemme 2.6.1. : For r < 1 there exists cr > 0 such that if f ∈ S and |z| ≤ r
then

|f(z)− z| ≤ cr|z|2

Proof : By (2.2)

|f ′′(z)| ≤ (
4

1− r2
+

2r

1− r2
)

1 + r

(1− r)3
= Ar

if |z| ≤ r.We deduce from this that |f ′(z) − 1| ≤ Ar|z| if |z| ≤ r and the result
by integration.
We return to the proof of the proposition. By the distortion theorem |fK(w)| ≥
4
9
|w| if |w| ≤ 1

2
. The result then follows by combining this inequality with the

lemma and (2.6).
The Green Function associated with the full compact K is the function ΦK(z) =
ln |gK(z)| (we recall that gK = f−1

K ). The Green function is the unique harmonic
function outside K with boundary values 0 on ∂K such that ΦK(z) ∼ ln |z| at
infinity.

Proposition 2.6.6. : There exists a constant c > 0 such that if K ∈ K(0) and
|z| > 4cap(K) then

|ΦK(z)− log |z|+ ln(cap(K))| ≤ cap(K)
1

|z|
(2.7)
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Proof : By scaling, it suffices to prove the proposition for K ∈ K(0)1. If |z| >
4 then automatically z ∈ C\K and the preceeding proposition implies that
|gK(z) − z| ≤ C ′. The result follows then by observing that |ΦK(z) − log |z|| =

| log (1 + |gK(z)|−|z|
|z| )|

The rest of this paragraph consists in a probabilistic interpretation of the pre-
ceeding notions. This point of view has the advantage to allow a generalization
of the notion of logarithmic capacity to not necessarily connected compact sets
K. The non-specialist reader may postpone its reading until he has read chapter 3.

Corollaire 2.6.1. : There exists a constant c > 0 such that if K ∈ H,if B is a
Brownian motion and τ is the first time B reaches K and |z| > 4cap(K) then

|Ez(log |Bτ |)− ln(cap(K))| ≤ c
cap(K)

|z|
. (2.8)

Proof : h(z) = log |z| − ΦK(z) is a bounded harmonic function; by the optional
sampling theorem h(z) = Ez(h(Bτ )) and the corollary follows by application of
the last proposition.

Corollaire 2.6.2. : Let K ∈ K and r > cap(K). If B is a Brownian motion
whose starting point follows a uniform law on ∂B(0,r) then

E(log |Bτ |) = cap(K) (2.9)

Proof : Let |z| > r and τ1 the first time that Bz reaches the circle of radius r.
Then

Ez(log |Bτ |) =

∫
∂B(0,r)

Eζ(log |Bτ |)ωz(|dζ|)

where ωz stands for harmonic measure at point z in C\B(0,r). Since∫
∂B(0,r)

ωz(|dζ|) = |dζ|

it follows that M(r), the average of Ez(log |Bτ |) over the circle centered at 0 and
of radius r is independent of r: the result then follows from last corollary.

2.7 Half-plane capacity

We denote by H the upper-half plane {y > 0}.
Définition 2.7.1. A bounded set A ⊂ H is called a compact H-hull if A = A∩H
and H\ A is simply connected.
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We will denote by Q the set of compact hulls: if A ∈ Q we define A∗ =
{z ∈ A or z ∈ A}. If A is connected then A∗ ∈ K (the set of full compacts).

Proposition 2.7.1. : If A ∈ Q there exists a unique holomorphic and bijective
map gA : H\A→ H such that

lim
z→∞

gA(z)− z = 0 (2.10)

Proof : By Riemann mapping theorem there is a holomorphic and injective
mapping g : H\A → H such that limz→∞ g(z) = ∞. By compactness of the
hull, this map g is holomorphic and injective in H ∩ C\D(0,R) for some R > 0
and thus extends to a holomorphic injective map on C\D(0,R). We thus have
g(z) = az + b0 + b1

z
+ ..,z →∞ and a,b0,b1 ∈ R. Replacing g by gA = λg+ b with

some λ > 0,b ∈ R we may assume that limz→∞ gA(z)− z = 0.
This proposition allows us to state the

Définition 2.7.2. hcap(A) = limz→∞ z(gA(z)− z).

As for the logarithmic capacity let us investigate how hcap scales. First of
all it is obviously invariant by real translation. Concerning homotheties let r be
a positive real number: we have grA(z) = rgA(z/r), from which it follows easily
that

hcap(rA) = r2hcap(A) (2.11)

.
Exemples :
1) A = D ∩H. In this case gA(z) = z + 1

z
⇒ hcap(A) = 1.

2) A = (0,i], then gA(z) =
√
z2 + 1 = z + 1

2z
+ ..⇒ hcap(A) = 1

2
.

3) We leave as an exercise to the reader to show that hcap(A) = α(1−α)
2

if
A = (0,αα(1− α)(1−α)eiαπ].

An important property of this new capacity is that it is positive. The fact
that it is real follows by symetry: positivity follows from the observation that the
function v(z) = =(z−gA(z)) is bounded in H and tends to 0 at ∞. By maximum
principle, it is nonnegative since it is so on the boundary. Positivity of hcap then
follows by the definition: hcap(A) = limy→+∞ iy.iv(iy).

The next proposition is the probabilistic translation of this, allowing gene-
ralization of the definition to sets A for which H\A is still a domain, but not
necessarily simply connected:

Proposition 2.7.2. : Suppose A ∈ Q, B is a Brownian motion and τ is the
smallest time such that Bτ ∈ R ∪ A. Then for every z ∈ H\A

=z = =gA(z) + Ez(=Bτ ) (2.12)
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and
hcap(A) = lim

y→∞
yEiy[=Bτ ]. (2.13)

Moreover, if rad(A) < 1,

hcap(A) =
2

π

∫ π

0

Eeiθ

(=Bτ ) sin θdθ (2.14)

The next proposition shows monotonicity:

Proposition 2.7.3. : If A,A′ ∈ Q,A ⊂ A′ then

hcap(A′) = hcap(A) + hcap(gA(A′\A) (2.15)

Proof : We have the equality

gA′ = ggA(A′\A) ◦ gA

from which me may deduce

gA′(z) = ggA(A′\A)(gA(z)−z+z) ∼ ggA(A′\A)(z+
hcap(A)

z
) ∼ z+

hcap(A)

z
+

hcap(gA(A′\A))

z
.

This monotonicity happens to be strict:

Proposition 2.7.4. If A is a hull such that hcap(A) = 0, then A = ∅.
Proof : By the preceeding proposition, we may assume that A is connected.
Recall that A∗ is the symmetrized compact around the real axis. Let us call F
the Riemann mapping F : ∆ → C\A∗: we have

F (z) = cap(A∗) [z + b0 + b1/z + ..]

and |b1| ≤ 1 by area theorem. On the other hand, if we denote by ϕ the map
ϕ : z 7→ z + 1/z then GA = ϕ ◦ F−1 : H\A→ H is an holomorphic bijection. But

GA(z) =
z

cap(A∗)
− b0

cap(A∗)
+

cap(A∗)− b1cap(A∗)

z

and we easily deduce the next proposition, which has its own interest:

Proposition 2.7.5. hcap(A) = cap(A∗)2(1− b1).

The conclusion now follows from Area theorem: if hcap(A) = 0 then either
A∗ = ∅ or hcap(A∗) = 1, in which case F (z) = cap(A∗) [z + b0 + 1/z] and A = ∅.
Proposition 2.7.6. : If A1,A2 ∈ Q then

hcap(A1) + hcap(A2) ≥ hcap(A1 ∪ A2) + hcap(A1 ∩ A2).

17



Proof : Write τj = τH\Aj
, j = 1,2 (hitting time), τ = τH\A1∪A2 , η = τH\A1∩A2 .

We have τ = τ1 ∧ τ2 = τ1χ{τ1≤τ2} + τ2χ{τ2<τ1} so that

Eiy[=(Bτ1)] + Eiy[=(Bτ2)] = Eiy[=(Bτ )] +

∫
{τ2<τ1}

=(Bτ1) +

∫
{τ1≤τ2}

=(Bτ2)

and we conclude by noticing that Bτj
≥ Bη so that∫

{τ2<τ1}
=(Bτ1) +

∫
{τ1≤τ2}

=(Bτ2) ≥ Eiy[=(Bη)].

Proposition 2.7.7. : If x > rad(A),

gA(x) = lim
y→∞

πy[
1

2
− ω(iy,H; [x,+∞))] (2.16)

while if x < −rad(A),

gA(x) = lim
y→∞

πy[−1

2
+ ω(iy,H; (−∞,x])]; (2.17)

Proof : (in the case x > rad(A)): we consider first the case A = ∅. Then

lim
y→∞

πy[
1

2
−ω(iy,H; [x,+∞))] = lim

y→∞
πyω(iy,H; [0,x]) = lim

y→∞
πy

∫ ∞

0

1

π(1 + s2)
ds = x.

In the case A 6= ∅ we write gA = uA + ivA and we use conformal invariance of the
Brownian:

= ω(iy,H\A; [x,+∞)) = ω(gA(iy),H; [gA(x),+∞)) = ω(vA(iy),H; [gA(x)−uA(iy),+∞)).
(2.18)

But as y →∞, uA(iy) → 0 vA(iy) ∼ y and the result follows.

Corollaire 2.7.1. : For any A ∈ Q,|gA(z)− z| ≤ 3rad(A).

Proof : The preceeding proposition implies in particular that gA is increasing as
a function of A. By the example above we deduce that if rad(A) ≤ 1 we have, for
x > 1, x ≤ gA(x) ≤ x + 1

x
. If then rad(A) = 1 then −2 ≤ gA(−1) ≤ gA(1) ≤ 2

and it follows that |gA(z) − z| ≤ 3 for z ∈ ∂(H\A) and thus everywhere by
maximum principle. The general case follows by scaling.

Théorème 2.7.1. : There exists a constant c > 0 such that ∀A ∈ Q ∀z; |z| ≥
rad(A)

|z − gA(z) +
hcap(A)

z
| ≤ c

rad(A)hcap(A)

|z|2
(2.19)

Proof : By scaling it suffices to prove it for rad(A) = 1. For this purpose we

introduce h(z) = z − gA(z) + hcap(A)
z

. Then

v(z) = =(h(z) = =(z − gA(z))− =z
|z|2

hcap(A).
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We can write

Im(z − gA(z)) =

∫
D∩H

=(u)ω(z,H\A; du) =

∫ π

0

sin(θ)p(z,eiθ)dθ

where

p(z,eiθ) =
=z
|z|2

2

π
sin θ[1 +O(

1

|z|
].

We can already deduce from this that

|v(z)| ≤ =z
|z|3

hcap(A)

for |z| ≥ 2. From this it follows that |∂xv(z)| ≤ chcap(A)
|z|3 , |∂yv(z)| ≤ chcap(A)

|z|3 and

thus that |h′(z)| ≤ chcap(A)
|z|3 . Integrating from iy to ∞ we deduce that |h(iy)| ≤

chcap(A)
|z|2 and finally we get the result, using integration over the circle of radius r:

|h(reiθ| ≤ |h(ir)|+ c
hcap(A)

r2

2.8 Caratheodory convergence

Définition 2.8.1. : Let (Ωn) be a sequence of domains in A and fn : D →
Ωn; fn(0) = 0, f ′n(0) > 0 the corresponding Riemann mappings. We say that:

– Ωn
(Cara)
−−−−→ C if f ′n(0) →∞,

– Ωn
(Cara)
−−−−→ {0} if f ′n(0) → 0,

– Ωn
(Cara)
−−−−→ Ω if fn → f uniformly on compact sets, where f : D → Ω is

holomorphic, bijective and satisfies f(0) = 0, f ′(0) > 0.

We will say more generally, if (Ωn) is a sequence of domains containing
points zn, that (Ωn,zn) converges in the sense of Caratheodory to (Ω,z) if (Ωn −
zn)

(Cara)
−−−−→ (Ω− z) in the sense of the preceeding definition.

Définition 2.8.2. The kernel of a sequence (Ωn) in A is the largest domain U
containing 0 such that for all compact set K ⊂ U we have K ⊂ Ωn for n large
enough.

Théorème 2.8.1. Ωn
(Cara)
−−−−→ Ω if and only if the kernel of every subsequence

is Ω.

Proof : Suppose first that Ωn
(Cara)
−−−−→ Ω. Then the sequence of Riemann map-

pings fn converges to the Riemann mapping f . Let K be a compact subset of Ω.
Then K ⊂ f((1− 2r)D) for r > 0 small enough and thus K ⊂ fn((1− r)D) ⊂ Ωn

for n large enough. It follows that the kernel of every subsequence contains Ω. Let
Ω̃ be the kernel of some subsequence: we consider an increasing sequence of com-
pact sets Kn such that Ω̃ = ∪Kn. By hypothesis, ∀m,∃Nm;Km ⊂ Ωn ,n ≥ Nm.
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Then (f−1
n ),n ≥ Nm is a uniformly bounded sequence of univalent functions on

Km. By diagonal process we can extract a subsequence converging to g̃ converging
uniformly on compact sets of Ω̃ and necessarily g̃ = f−1 on Ω and is univalent by
Hurwitz theorem. But g̃(Ω̃) = D = f−1(Ω) and necessarily Ω̃ = Ω.
Suppose conversely that the kernel of every subsequence is Ω ∈ A. Choose
rj, j = 1,2; 0 < r1 < d(0,∂Ω) < r2. By Koebe theorem, f ′n(0) cannot converge
to 0 or ∞, nor any subsequence. So there exists a subsequence converging uni-
formly on compact sets to f : D → f(D). Arguing as in the first part we see that
necessarily f(D) = Ω.
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Chapitre 3

Löwner Differential Equation

3.1 Radial Löwner Processes

3.1.1 Definition and first properties

Let (Kt)t≥0 be a (strictly) increasing family of compact sets in K(0), i.e. a
growing family of full compact sets containing 0. We denote by (Ωt) the com-
plement of Kt and by ft the Riemann map of Ωt, i.e. the unique holomorphic
bijection from ∆ onto Ωt such that

ft(∞) = ∞ and lim
z→∞

ft(z)

z
> 0.

We may then write ft(z) = c(t)z + ... where c(t) =capKt is the logarithmic ca-
pacity.
We make the following assumptions:
1) The family (Ωt) is continuous in the sense of Caratheodory convergence.
This property implies in particular that the function t 7→ c(t) is continuous and
stricly increasing.
2) limt→∞ c(t) = +∞ and c(0) = 1.
Frequently we will assume that K0 = D.
If these conditions are satisfied one may perform a time-change and assume that
c(t) = et.

We start the study of such growth processes by observing that if s ≤ t ,ft(∆) ⊂
fs(∆) so that hs,t(z) = f−1

s ◦ ft is a well-defined map from ∆ into itself fixing ∞.

Définition 3.1.1. If f,g : ∆ → C, are two holomorphic functions we say that
f is subordinate to g (and denote this by f ≺ g) if there exists ϕ : ∆ → ∆
holomorphic and fixing ∞ such that f = g ◦ ϕ.

Notice that, by Schwarz lemma, |ϕ(z)| ≥ |z| so that not only f(∆) ⊂ ∆ but
also, for every r > 1, f({|z| > r}) ⊂ g({|z| > r}).
Définition 3.1.2. The family (ft)t≥0 of holomorphic and injective mappings from
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∆ into C is called a Löwner chain if
1) ft(z) = etz + ...,
2) ft ≺ fs if 0 ≤ s ≤ t.

We have seen a way to produce Löwner chains. The next proposition shows
that this is the only way to produce such chains. It shows indeed that a Löwner
chain has to be continuous for the topology of convergence on compact sets: by
Caratheodory kernel theorem this implies that the family (Ωt) is continuous for
Caratheodory topology.

Proposition 3.1.1. If (ft) is a Löwner chain then for 0 ≤ s ≤ t,

∀z ∈ ∆, |ft(z)− fs(z)| ≤ 212(et−s − 1)e4t (|z|+ 1)5

(|z| − 1)3
.

Proof : Writing ft(z) = fs(hs,t(z)) we have the inequality

|ft(z)− fs(z)| ≤ |hs,t(z)− z| sup
u∈[hs,t(z),z]

|f ′s(u)|.

Lemme 3.1.1. Let Φ : ∆ → C be a Riemann mapping of a domain not containing
0, Φ(z) = cz + ..,c > 0, then |Φ(z)| ≤ 4c|z| ,z ∈ ∆.

Proof : It merely consists in applying the second distortion theorem to the map
ϕ(ω) = c/Φ(1/ω) which belongs to the class S.
If Φ = fs we write Fs for the corresponding ϕ we get, for u ∈ ∆ ,|f ′s(u)| ≤
|F ′

s(1/u)||fs(u)|2. Applying the lemma together with the first distortion theorem
for Fs we obtain

|f ′s(u)| ≤ 16es (|u|+ 1)3

(|u| − 1)2
.

Similarly, a direct application of the lemma to the function hs,t gives |hs,t(z)| ≤
4et−s|z|.
We now come to the estimation of |hs,t(z) − z|. First of all, by Schwarz lemma,
|hs,t(z)| ≥ |z|, z ∈ ∆. It follows that the function defined by

pt(z) =
et−s + 1

et−s − 1

hs,t(z)− z

hs,t(z) + z

belongs to the class P(∆) of holomorphic functions in ∆ with value 1 at ∞ and
with positive real part.

Lemme 3.1.2. If p ∈ P(∆) then

|z| − 1

|z|+ 1
≤ |p(z)| ≤ |z|+ 1

|z| − 1

and this shows in particular that P(∆) is a normal family.
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Proof : The mapping

ζ 7→ ζ + 1

ζ − 1

maps {x > 0} onto ∆. Thus the map

z 7→ p(z) + 1

p(z)− 1

sends ∆ into itself and fixes ∞. By Schwarz lemma

p(z) + 1

p(z)− 1
= u

with |u| ≥ |z|. Since then

p(z) =
1 + u

u− 1

we must have

|z| − 1

|z|+ 1
= inf

|u|≥|z|
|u+ 1

u− 1
| ≤ |p(z)| ≤ sup

|u|≥|z|
|u+ 1

u− 1
| = |z|+ 1

|z| − 1
.

Applying the last lemma we get

|hs,t(z)− z| ≤ (et−s − 1)|hs,t(z) + z| |z|+ 1

|z| − 1
≤ (et−s − 1)2|hs,t(z)|

|z|+ 1

|z| − 1
.

Combining all the estimates we can conclude the proof of the proposition.
For further purposes let us notice that we have actually proved, on the way, the
following

Corollaire 3.1.1. limt→s hs,t(z) = z and the convergence is uniform on compact
sets.

3.1.2 Löwner differential Equation.

We come to the heart of the matter:

Théorème 3.1.1. The family (ft) is a Löwner chain if and only if
(1) For each t , ft is holomorphic in ∆ and for each z ∈ ∆ ,t 7→ ft(z) is absolutely
continuous. Moreover, f0 is injective in ∆ and ∀t ≥ 0, ft(z) = etz + .. at ∞.
(2) There exists a family (pt) of functions in P(∆), measurable in t, such that
for almost t ∈ [0,+∞[,

∀z ∈ ∆ ,
∂ft(z)

∂t
= z

∂ft(z)

∂z
pt(z). (3.1)
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Suppose first that (ft) is a Löwner chain: We can then write ft(z) = fs(hs,t(z))
and thus

ft(z)− fs(z)

t− s
=
fs(hs,t(z))− fs(z)

hs,t(z)− z
=
hs,t(z)− z

hs,t(z) + z

et−s + 1

et−s − 1

et−s − 1

t− s

hs,t(z) + z

et−s + 1
.

Lemme 3.1.3. There exists a negligible subset E of R such that if s /∈ E then
t 7→ ft(z) is differentiable at s for every z ∈ ∆.

Proof : it is a direct consequence of the theorem of Vitali.
Take s ∈ E: since P(∆) is a normal family we may choose a sequence (tn)
converging to s such that ps,tn → ps ∈ P(∆) where

ps,t(z) =
hs,t(z)− z

hs,t(z) + z

et−s + 1

et−s − 1
.

Letting n → ∞ we then obtain (3.1). The absolute continuity of ft in t follows
from proposition (3.1.1).

We come to the converse. Before starting the proof let us first notice that if
(ft) is a Löwner chain then the function hs,t(z) = f−1

s ◦ ft(z), as a fuction of s, is
a solution of the differential equation

dw

dt
= −wpt(w), w(t) = z. (3.2)

We reverse the point of view and consider the differential equation (3.2). Since

d|w|2

dt
= −2|w|2<pt(w)

the modulus of a solution is decreasing. It follows that the equation (3.2) has a
solution s 7→ w(s; t,z) defined on [0,t]. By Cauchy-Lipschitz theorem, this function
is injective in z. Moreover

∂

∂s
(fs(w(s; t,z))) = f ′s(w)

∂w

∂s
(s; t,z) +

∂f

∂s
(w(s; t,z)) = 0.

Since w(t; t,z) = z, it implies that ∀s ≤ t, fs(w(s; t,z)) = ft. Taking s = 0
shows that all the f ′ts are injective and morover ft ≺ fs. Since the Löwner partial
differential equation obviously imply that c(t) = et, the proof is complete.

3.1.3 The Case of Slit Domains

We start with a very specific growing family, historically the one that Löwner
has considered in his work in 1923. In consists in taking Kt = D ∪ γ([0,t]) where
γ : [0, +∞[→ ∆ is continuous and injective with |γ(0)| = 1 ,γ(t) ∈ ∆, t > 0 and
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γ(t) →∞, t→ +∞.
The complement of a simple arc being connected, it is obvious that the corres-
ponding family of domains

Ωt = C\Kt

is continuous in the Caratheodory topology.
It follows that t 7→ c(t) increases continuously from 1 to +∞ and we may as well
assume that c(t) = et , so that the process is well described by a Löwner chain
(ft)t≥0.

We wish to identify the family (pt) of functions in P(∆) characterizing this
process. To this end we define gt = f−1

t : since γ(t) is not a cut point of γ([0,t])∪R
, the function gt extends continuously to the point γ(t) and we can define, for
t ≥ 0 ,

λ(t) = gt(γ(t)) ∈ ∂∆.

Théorème 3.1.2. The function λ is continuous on [0,+∞[ and

∀t ≥ 0 , pt(z) =
z + λ(t)

z − λ(t)
.

In other words pt is for all t ≥ 0 the Poisson integral of the Dirac mass at λ(t).

Proof : For 0 ≤ s ≤ t we may define δ(s,t) = gt(γ([s,t])) ⊂ ∂∆ and Ss,t =
gs(γ([s,t])) ⊂ ∆. The map hs,t = gs ◦ ft can be extended, by Schwarz reflection,
to a conformal isomorphism between the sphere minus δ(s,t) onto the sphere
minus Ss,t∪S∗s,t, the reflection of Ss,t into the unit circle. Notice that, by Beurling
estimate, diamδ(s,t) → 0 as s increases to t while diamSs,t → 0 as t decreases to
s by Caratheodory theorem.
Let us prove first that Ss,t approaches λ(t) as s ↗ t. We now that for every
ε > 0, δ(s,t) lies inside the disk Cε of center λ(t) and radius ε for s close enough
to t. We know that hs,t converges uniformly on compact subsets of ∆ to the
identity. Using Cauchy formula with the contour consisting of the circle centered
at 0 and radius 2 and Cε′ we actually see, letting ε′ → 0 , that this convergence
occur on the compacts of the sphere minus λ(t), and in particular on Cε. The
claim easily follows.
Using the same type of arguments with h−1

s,t (which also converges uniformly on
compact subsets of ∆ towards identity) one can see that δ(s,t) approaches λ(s)
as t↘ s. The continuity of λ follows.
The previous proof, which is due to Ahlfors, has the advantage of being concise
and elegant. Here is an alternative one, more quantitative, based on the following
lemma that we will need for different puposes:

Proposition 3.1.2. Let K be a compact set such that D ⊂ K ⊂ D ∪ D(1,ε),Ω
its complementary domain and gK : Ω → ∆ its Riemann map. Then

∀z ∈ ∂∆ ∩ ∂Ω , |gK(z)− z| ≤ Cε
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for a universal constant C.

Proof : We write as usual fK = g−1
K which maps ∆ into itself so that |fK(z) ≥ |z|

by Schwarz lemma, which in turn implies that

p(z) =
et + 1

et − 1

fK(z)− z

fK(z) + z

where et =cap(K) , defines a function in P . It follows that

|p(z)| ≤ |z|+ 1

|z| − 1

and, together with Koebe theorem we obtain that

|fK(z)− z| ≤ Ct

on |z| = 2. By using the same argument as in the first proof we also obtain

|fK(−1) + 1| ≤ Ct.

We now define ∆ε as being the image of the upper half plane intersected with
|z| > ε under the homography (sending the whole upper half plane onto ∆)

ζ 7→ 1− iζ

1 + iζ

and gε its Riemann map which can be computed explicitely: in particular

gε(z) =
1− ε2

1 + ε2
z + ..,

showing that cap(K) ≤ 1 + Cε2. Let now fix θ ∈ [ε,π[ and define eiθ′ = gK(eiθ).
Then the harmonic measure seen from ∞ in Ω of the arc from eiθ to fK(−1) is

π − θ′

2
;

comparing this harmonic measure with the harmonic measure of the same arc in
the domains ∆,∆ε we get the desired result.

Corollaire 3.1.2. Aternative proof of the continuity of λ.

We keep the notations of the first proof. We may write

|gt(γ(t))− gs(γ(s)| ≤ |gt(γ(t))− gs(γ(t))|+ |gs(γ(t))− gs(γ(s))|.

The second term in this sum is clearly bounded from above by Cd where d =diam(Ss,t).
The first term may be written as

|λ(t)− hs,t(λ(t))|
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which is also bounded from above by Cd. But d is comparable with the harmonic
measure seen from ∞ in ∆\Ss,t of Ss,t which is also equal to the harmonic mea-
sure seen from ∞ in Ωt of γ([s,t]). By Beurling theorem, this is bounded from
above by C

√
diamγ([s,t]). Continuity follows.

To derive the Löwner equation we make use of the following formula which is
a variant of Cauchy’s

log(
hs,t(z)

z
) =

1

2π

∫
δs,t

z + eiθ

z − eiθ
log |hs,t(e

iθ)|dθ (3.3)

If we let z →∞ in this equality we get

t− s =
1

2π

∫
δs,t

log |hs,t(e
iθ)|dθ

and we put z = gt(ω) to obtain

log(
gt(ω)

gs(ω)
) =

1

2π

∫
δs,t

gt(ω) + eiθ

gt(ω)− eiθ
log |hs,t(e

iθ)|dθ.

Putting everything together we get

∂

∂t
(log(gt(ω))) =

gt(ω) + λ(t)

gt(ω)− λ(t)

from which the equation for ft follows as in the general case.

3.1.4 Löwner Proof of the Bieberbach conjecture for n =
3.

In this paragraph we develop the result for which Löwner has invented (or
discovered) his equation. Let us recall the Bieberbach conjecture: if f(z) = z +
a2z

2 + a3z
3 + .. belongs to the class S then ∀n ≥ 2, |an| ≤ n. The case n = 2

is of course covered by Koebe theorem and generally it sufffices to prove that
|an| ≤ Ia1| for any map f : D → C injective with f(z) = a1z + a2z

2 + ....
Moreover we may as well, replacing f(z) by f(rz) , assume that f is analytic
across the unit disc. So in order to prove Bieberbach conjecture for n = 3 we
may assume that ∂f(D) is a Jordan curve Γ lying inside the unit disc. using
Caratheodory convergence theorem we approximate f by the Löwner chain ft

obtained from the slit starting at 1 along the radius towards 0 until it reaches Γ
and then following Γ until it reaches its starting point.
To be more precise we need here a modification of the radial processes we have
introduced in the last paragraph, because we work in the disc instead of ∆. But
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we pass from one process to the other by the rule Ft(z) = 1/ft(1/z). To be
concrete, if Ft is a Löwner chain in ∆ with equation

∂Ft

∂t
= z

∂Ft

∂z
pt(z)

then ft satisfies the equation

∂ft

∂t
= −z∂ft

∂z
pt(1/z).

In our case we must then have

∂ft

∂t
= −z∂ft

∂z

λ(t) + z

λ(t)− z

for some continuous function λ : [0,t0] → ∂D.
Now we can write, developping at 0 these expressions starting from ft(z) =
e−t(z + a2z

2 + a3z
3 + ..),

∂ft

∂t
(z) = −e−t(z + (a2 − a′2)z

2 + (a3 − a′3)z
3 + ..),

∂ft

∂z
(z) = e−t(1 + 2a2z + 3a3z

2 + ..),

λ(t) + z

λ(t)− z
= 1 + 2

z

λ
+ 2

z2

λ2
+ ..

from which it follows by identification that

d

dt
(a2e

t) = −2
et

λ

(notice that gives a new proof of Koebe theorem), and

d

dt
(a3e

2t) = e2t(−4
a2

λ
− 2

λ2
)

from which we easily deduce that

a3e
2t = 4

(∫ t

0

es

λ(s)
ds

)2

− 2

∫ t

0

e2s

λ(s)2
ds.

Writing λ(s) = eiθ(s) and taking the real part of the last expression we get

<(a3e
2t) = 4

(∫ t

0

es cos(θ(s))ds

)2

−4

(∫ t

0

es sin(θ(s))ds

)2

−2

∫ t

0

e2s cos(2θ(s))ds.

By Cauchy-Schwarz inequality,(∫ t

0

es cos(θ(s))ds

)2

≤ et

∫ t

0

es cos(θ(s))2ds

and

<(a3e
2t) ≤ 4

∫ t

0

es(et − es)ds+ e2t − 1 < 3e2t.
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3.1.5 Chains generated by Curves

We have studied so far the case of a growth process of the form Kt = γ([0,t])
where γ is a Jordan arc, and shown that this Löwner process is driven by a
continuous function Ut with values in the unit circle; we will call such a function
a driving function. Conversely, if t 7→ Ut is a driving function, what can be said
about the corresponding Löwner process? The next theorem precisely describe
those Löwner processes starting at D that are driven by a continuous function:

Théorème 3.1.3. The process (Ωt)t≥0 has a driving function if and only if for
every T ≥ 0 , ε > 0 there exists δ > 0 such that for every t ≤ T there exists a
connected subset S of Ωt of diameter less than ε disconnecting Kt+δ from ∞.

The if part follows by reasonning exactly as in the case of a simple curve.
To prove the converse we observe that it suffices to prove that the diameter of
gt(Kt+δ\Kt) goes to 0 with δ. This set thus corresponds to an interval δs,t = I of
the unit disk which is small. Let zI be the point in ∆ whose distance to ∂∆ is
|I|/2 and is attained at the middle of the interval I. Then it is known that there
exits a crosscut of ∆ passing through zI and separating I from ∞ such that its
image has length ≤ Cdist(ft+δ(zI ,Kt+δ). This completes the proof. It remains to
prove the initial claim: to do so we may assume t = 0 ,λ(0) = 1 and we must
prove that diam(Ks) → 0 with s. Define

Mt = max(
√

(t) , sup
s≤t

|λ(s)− 1|

and consider z ∈ ∆ such that z−1| ≥ 10Mt and σ = inf{s > 0 ; gs(z)−1| = Mt}.
Then either σ > t or σ ≤ t : in the second case, if Mt < 3/4 we must have

Mt = |gσ(z)− z| ≤ σ

Mt

→ σ ≥ t.

In both cases gs(z) is defined at least up to time t, which means that z /∈ Kt. It
follows that diam(Kt) ≤ 10Mt.
Notice that the uniformity in the theorem is needed to ensure the continuity of
the driving function. Indeed consider the following situation: let us consider the
curve consisting in going from 1 to 3, then going around the circle of center 3 + i
and radius 1 and then continuing up along the real axis. Denote by at < bt the
two images by gt of 3 : then λ(t) comes close to at while the point turns around
the circle, but suddenly jumps after bt when the curve crosses itself.

Assume now that the process (Kt) has a driving function. The preceeding
theorem shows that we cannot hope to prove that Kt = γ([0,t]) for some simple
curve γ. However we may hope that the process is generated by a curve in the
following sense:

Définition 3.1.3. We say that the Löwner process (Ωt) is generated by the curve
γ : [0,+∞[→ ∆ if for all t ≥ 0 , Ωt is the unbounded component of ∆\γ([0,t]).
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Unfortunately this is also false as the following counterexample shows: Let γ1

be a curve that starts at 1 and spirals towards the circle of center 3 and radius 1
as t varies in [0,1[ and γ2 a similar function from ]1, +∞[ such that γ2(t) → ∞
as t → +∞ and spirals towards the same circle as t decreases to 1 but without
cutting γ1. We then define Kt = γ1([0,t]) if t < 1, K1 = γ1([0,1[) ∪D(3,1), Kt =
K1 ∪ γ2(]1,t]) if t > 1. A moment’s reflection shows that the condition in the
preceeding theorem is satisfied; this process has thus a driving function but is
not generated by a curve. The point is here that Kt is not locally connected. In
fact we have the following theorem:

Théorème 3.1.4. Let (Ωt) be a Löwner process with driving function U . Then
the following three conditions are equivalent:
1) this process is generated by a curve,
2) Kt is locally connected for t ≥ 0,
3) limy→0 ft(U(t) + iy) = γ(t) exists for all t ≥ 0 and defines a continuous
function.

Proof : We already know that 1) → 2) → the first part of 3). It remains to
show the continuity of the function γ. But we know that for every Löwner chain
diam(gs(Kt\Ks) is small uniformly in s,t ≤ M and this, combined with the
continuity of the f ′ts implies the continuity of γ.
Let us prove now that 3) → 1) (of course the generating curve will be γ): for
t ≥ 0 let S(t) denote the set of limit points of ft(z) as z approaches U(t). Let
z0 ∈ S(t0).

Lemme 3.1.4. z0 ∈ γ([0,t0]).
Proof : Let

t′ = sup{t ∈ [0,t0] ; Kt ∩D(z0,ε) = ∅},

where ε is a small real number. Let us show that γ(t′) ∈ D(z0,ε). To do so let us
consider p ∈ D(z0,ε)∩Ωt0 and let p′ ∈ Kt′∩D(z0,ε). let p′′ be the first point on the
line segment from p to p′ which is in Kt′ . Then L = [p,p′′[⊂ Ωt′ , and this implies
that gt′(L) terminates at a point x ∈ R. If x(t) 6= U(t′) then gt(L) terminates at
points 6= U(t) for t < t′ close enough. But p′′ ∈ Kt′ and this combined with the
preceeding reasonning forces p′′ ∈ Kt for t < t′ close to t′, in contradiction with
the definition of t′. Thus x = U(t′) and necessarily U(t′) = p′′. The preceeding
being true for all ε > 0, the lemma follows.
We conclude that S(t) ⊂ γ([0,t]),t ≥ 0. Now let z ∈ ∂Ωt ∩ H: we start as above
and define t′ as the supremum of s′s such that Ks ∩ D(z,ε) = ∅. Arguing as
before we see that γ(t′) ∈ D(z,ε) . It follows that ∂Ωt ⊂ γ([0,t]) and the theorem
follows.
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3.2 Chordal Löwner equation

Let us start with the following simple situation: γ : [0,∞) → H is a simple
curve with γ((0,∞)) ⊂ H , γ(0) = 0 and limt→∞ γ(t) = ∞. For t ≥ 0 we
write Ht = H\γ([0,t]) so that the sequence Ht is a decreasing sequence of simply
connected subdomains of H. By the preceeding chapter there exists a unique
holomorphic and bijective mapping gt : Ht → H such that gt(z) − z → 0 as
z →∞. We want to prove that t 7→ gt(z) is the flow of a remarkable differential
equation, the Löwner Differential Equation.
First of all

gt(z) = z +
b(t)

z
+O(

1

|z|2
) (3.4)

where b(t) = hcap(γ([0,t])). Notice that t 7→ b(t) is an increasing function.

Proposition 3.2.1. The function b is continuous and increasing on R+.

Proof : We already know that b is increasing. The continuity will be an immediate
consequence of the following lemma:

Lemme 3.2.1. If A1 ⊂ A2 are two hulls such that ∀z ∈ ∂A2,d(z,A1) < ε, then

hcap(A2)− hcap(A1) ≤ Cε1/3diam(A2)

for some constant C.

Proof : An immediate consequence of Beurling lemma is that, for M > 1,z ∈
∂A2,

ω(z,B(z,Md(z,∂(A1))) ∩H\A1; ∂B(z,Md(z,∂(A1)))) ≤ CM−1/2.

On the other hand, if we put

vj(z) = =(z)− gAj
(z),j = 1,2

we can write

v2(z)− v1(z) =

∫
∂A2

(∫
∂A1

(=(u)−=(v))ω(u,H\A1; dv)

)
ω(z,H\A2; du).

If we split the integral on ∂A1 into two parts whether |v−u| is smaller or greater
than Md(u,∂A1), the just mentionned consequence of Beurling theorem allows us
to bound this integral from above by Mε+CM−1/2. We now choose M = ε−2/3. A
trivial estimate involving harmonic measure for the half-plane then implies that

=(z)(v2(z)− v1(z)) ≤ Cε1/3diam(A2).

We now come to the more difficult derivation of the differential equation.
We first introduce some notation. We put ft = g−1

t ; by theorem(2.3.2), limt→s+0 gs(γ(t)) =
Us exists and by Caratheodory theorem, since ft can be continuously extended
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to H ,ft(Ut) = γ(t). Let 0 ≤ s ≤ t: then gt = gt,s ◦ gs where gs,t = ggs(γ([s,t]).
Furthermore we have b(t) = b(s)+hcap(gs(γ([s,t])).

Proposition 3.2.2. : There is a constant c(γ,t0) > 0 such that if 0 ≤ s ≤ t ≤
t0 ≤ +∞ then

diam(gs(γ([s,t])) ≤ C
√

diam(γ([0,t0]))ωγ(t− s) (3.5)

where ωγ is the modulus of continuity defined as

ωγ(δ) = sup
0≤s≤t≤t0,t−s≤δ

(|γ(t)− γ(s)|)

Proof : It will follow from Beurling thorem (2.5.1). let D denote the diameter
of γ([0,t0]) and w = γ(t0) + 10iD. By corollary (2.7.1),13D ≥ =(gs(w) ≥ 7D.
Morover, we can write, by conformal invariance of harmonic measure,

ω1 = ω(w,Ht; γ([s,t])) = ω2 = ω(gs(w),gs(Ht); gs(γ([s,t]))).

By Beurling theorem we have

ω1 ≤ C

√
ωt−s

D
.

A slightly more tricky application of the same Beurling theorem shows that

ω2 ≥ c
diam(gs(γ([s,t]))

D
.

The proposition follows.

Corollaire 3.2.1. : The function t 7→ Ut is continuous on R+.

Proof : gt(z) − gs(z) = gs,t(ζ) − ζ, ζ = gs(z). By corollary(2.7.1, 3.5) it follows
that gs converges uniformly on R towards gt as s → t, a fact that implies the
corollary.
The fact that b is increasing and continuous implies the useful result that we
can always perform a time change to ensure that b is actually C1. Assuming this
we can prove the following theorem, due to Löwner, which shows that (gt) is a
remarkable flow:

Théorème 3.2.1. : Suppose γ is a simple curve as above and that b is C1,b(t) →
+∞ as t→ +∞. Then t 7→ gt(z) is the solution of the differential equation

y′ =
b′(t)

y − Ut

, y(0) = z. (3.6)

We can precise the theorem by adding that if z = γ(t0) for some t0 ∈ R+ then
the solution is defined up to time t0 while it is defined in R+ if z /∈ γ((0,+∞)).
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In this last case =(gt(z)) decreases to 0 as t→∞.
Proof : We write

gs+ε(z)− gs(z) = gs,s+ε(ζ + Us)− Us − ζ

where ζ = gs(z) − Us. We then observe that gs+ε(ζ + Us) − Us = gA(ζ), A =
gs(γ([s,s+ ε]))− Us. By (2.19) we can then write

gs+ε(z)−gs(z) =
b(s+ ε)− b(s)

gs(z)− Us

+diam(γ([s,s+ε]))[b(s+ε)−b(s)]O(
1

|gs(z)− Us|2
),

(3.7)
from which the result follows.
Let us come to the remark that follows the statement of the theorem. First of all, if
x ∈ R, x > U0 then gt(x) is defined for all t ≥ 0. It follows that ∀t ≥ 0,gt(x) > 0
and thus that t 7→ gt(x) is increasing: classical theory of differential equations
then implies that it must go to +∞ as t grows. If now z ∈ H\γ([0, +∞)) then
a simple computation shows that t 7→ =gt(z) is decreasing. Moreover the limit
as t → ∞ must be 0. To see this we first change time so that b(t) = 2t: then if
=gt converges to c > 0 we would have that the derivative of the function stays
≤ −c′ < 0, a fact which obviously leads to a contradiction.

In what we have just seen we have produced a continuous function from a curve
inside the upper-half plane. For later purposes we prefer to see this function
t 7→ Ut as a function from R+ in the space of positive measures on R, namely
t 7→ δUt , the Dirac mass at point Ut. Using this language, we have the following
converse to the last theorem:

Théorème 3.2.2. : Suppose (µt), t ≥ 0 is a one parameter family of positive
finite Borel measures on R such that t 7→ µt is continuous in the weak topology
and such that ∀t ≥ 0∃Mt ≥ 0 such that s ≤ t ⇒ µs(R) ≤ Mt and supp(µs) ⊂
[−Mt,Mt]. For each z ∈ H let t 7→ gt(z) be the unique solution of the differential
equation

y′ =

∫
R

dµt(u)

y − u
(3.8)

with initial data y(0) = z. For z ∈ H let Tz be the life-time of the solution and
let Ht = {z ∈ H;Tz > t}. Then gt is the unique conformal mapping from Ht into
H such that gt(z)− z → 0,z →∞ and moreover

gt(z) = z +

∫ t

0
µs(R)ds

z
+O(

1

|z|2
), z →∞. (3.9)

Proof : As before we see that =(gt(z)) decreases with t and that Tz = sup{t;=(gt(z)) ≥
0}. It follows that gt maps in H. Cauchy-Lipschitz theorm implies that gt is injec-
tive and the analyticity (in z) of the equation proves that gt is holomorphic. To
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finish the proof one just needs to prove that gt(Ht) = H. To this end we introduce
the ”backward flow” defined as the solution of the equation

ḣs(w) = −
∫

R

dµt−su

hs(w)− u
,h0(w) = w. (3.10)

Since =(hs) is now increasing this function is defined for all w ∈ H and 0 ≤ s ≤ t.
Now if hs is such that h0(w) = w then g̃s := ht−s satisfies (3.6) and g̃0(w) = ht(w).
This implies g̃s(w) = gs(ht(w)). In particular g̃t(w) = gt(ht(w)) = w. The rest of
the proof is easy and left to the reader.
As we have already pointed out the case µt = 2δUt leads to the important case

ġt =
2

gt − Ut

, g0(z) = z. (3.11)

A flow (gt) satisfying such an equation is called a Löwner chain. A generalized
Löwner chain will denote a flow satisfying the more general equation

ġt =
ḃ(t)

gt − Ut

, g0(z) = z (3.12)

where b is an increasing function from R+ onto itself. This equation corresponds
to the case µt = ḃ(t)δUt . We pass from the last to the former with just a time
change as we have already seen.

We have just shown that if γ is a simple closed curve with hcap(γ([0,t]) = 2t
then the corresponding conformal maps with the right hydrodynamical normali-
zation form a Löwner chain. But the converse is not true: if (gt) is a Löwner chain
then the corresponding domains do not generally come from a simple curve. The
following theorem actually characterizes Löwner chains:

Définition 3.2.1. An increasing family of hulls Kt in Q is called right-continuous
at t if ∩δ>0gt+δ(Kt+δ\Kt) is a single point which we denote by Ut.

If (Kt) is right continuous and if b is right differentiable at t then the above
proof goes through to show that

lim
δ→0

gt+δ(z)− gt(z)

δ
=

ḃ(t)

gt(z)− Ut

∀z ∈ H\Kt. (3.13)

Théorème 3.2.3. : Let (Kt)t≥0 be an increasing sequence of compact H−hulls
and (gt) the corresponding normalized conformal mappings. Then (gt) is a gene-
ralized Löwner chain if and only if (Kt) is right continuous everywhere, b is C1

and U is continuous.
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Proof : The if part is proved the same way as (3.2.2). For the only if part we
start with a flow of type (3.11) and we only need to prove right continuity of the
compact hulls. But this follows immediately from the following

Lemme 3.2.2. : Suppose U0 = 0 and let, for t ≥ 0,Rt = max {
√
t, sups≤t(|Us|)}

.Then, for t ≥ 0,Kt ⊂ B(0,4Rt).

Proof : Suppose |z| > 4Rt and let σ be the first time that |gs(z)− z| ≥ Rt. Then
|ġs(z)| ≤ 1/Rt, s ≤ min (t,σ) ⇒ |z − gs(z)| ≤ s/Rt, s ≤ min (t,σ). Hence either
σ > t or σ > R2

t ≥ t, so σ ≥ t.

3.3 Chains generated by curves

In this section we continue to consider curves γ with γ(0) ∈ R but we ge-
neralize the situation by allowing γ to come back on R or to self intersect. So
γ : R+ → H is a continuous function with γ(0) ∈ R. For t ≥ 0 we define Ht as the
unbounded component of H\γ([0,t]) and Kt = H\Ht. The new phenomenon is
that Kt may be much larger than ∪s<tKs. This happens at times t when γ(t) ∈ R
or when the curve self-intersects. Consider for example γ(t) = e2iπt,0 ≤ t ≤ 1: if
t < 1, Kt is a piece of a circle while K1 is a half-disk. However, if ∂t = ∂Ht ∩ H
then

Proposition 3.3.1. : ∂t ∩H ⊂ ∪s<tKs

Proof : It is clear that ∪s<tKs ⊃ γ([0,t]): so, if z ∈ H\∪s<tKs there exists ε > 0
such that B(z,ε) is included in a component of H\γ([0,t]) and thus cannot inter-
sect ∂t.

Définition 3.3.1. A Löwner chain (3.11) is said to be generated by the curve γ
if for every t > 0 the domain of gt is the unbounded component of H\γ([0,t]).

As we have seen, simple curves generate Löwner chains. But not all curves do
so. Even if hcap is continuous it may be that it stays constant on some interval
(if γ(t) ∈ Ks for t ∈ [a,b] with a > s for instance. This implies that we cannot
reparametrize the curve so that hcap(γ[0,t]) = 2t. This gives a first example of
a curve not giving rise to a Löwner chain. Another example is a curve with a
double point: the function Ut would be discontinuous.

On the other hand there are non-simple curves that generate Löwner chains.
Our next task will be precisely to characterize those Löwner chains that are ge-
nerated by curves.
We consider a Löwner chain gt with driving function Ut. As before we set Ht as
to be the set of points z ∈ H such that Löwner flow started from z lives at least
up to time t. We also recall that Kt = H\Ht and that ∂t = ∂Ht ∩ H. With the
above notations let us define

Jt = Kt\ ∪s<t Ks. (3.14)
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We say that z is t−accessible if z ∈ Jt and if there exists a curve η : [0,1] → C
such that η(0) = z, η((0,1]) ⊂ Ht.

Lemme 3.3.1. if t > 0 and z is a t−accessible point then there exists a strictly
increasing sequence sj → t and a sequence (zj) of sj−accessible points converging
to z.

Proof : Consider z t−accessible. Since z ∈ ∂Ht, z ∈ ∪s<tKs. For every ε > 0
there thus exists sε = s, ζ ∈ Ks ∩ B(z,ε). Drawing the line segment from z to ζ
we then find an s− accessible point in the same ball. We get the lemma by letting
ε→ 0 since for every s < t z ∈ Hs.

Proposition 3.3.2. : For each t > 0 there is at most one t−accessible point and
∂t is included in the closure of the set of s−accessible points for s ≤ t.

Proof : The key of the proof is theorem(2.3.2). Let z be t−accessible: then there
exists a access to z inside Ht and this access can be extended by last lemma to
an access to a s−accessible point very close to z, s being also very close to t.
Altogether this path can be made as small as we wish: using then (3.5) it follows
that the limit of gt(ζ) along the access in Ht must be equal to lims→t− gs(z) = Ut.
By the theorem we have just proven, z must be unique. The rest of the proposition
is easy and left to the reader.

Proposition 3.3.3. : Let V (y,t) = g−1
t (iy + Ut). If γ(t) = limy→0 V (y,t) exists

for t ≥ 0 and this function is continuous on [0,+∞) then gt is the Löwner chain
generated by the curve γ.

Proof : By proposition (3.3.2) the point γ(t) is the only possible t−accessible
point. Therefore the set of s−accessible points for s ≤ t is contained in γ([0,t]).
By the second part of proposition (3.3.2) the Löwner chain (gt) is generated by
γ.
We can now state the characterization:

Théorème 3.3.1. : The Löwner chain (gt) is generated by a curve if and only if
for each t ≥ 0, Kt is locally connected.

Proof : The ⇒ part is obvious. Suppose conversely that t ≥ 0, Kt is locally
connected. Then, using Caratheodory theorem, g−1

t extends contnuously to the
closed half-plane and the function γ is well-defined. It remains to prove that γ
is continuous. But γ(t),γ(t+ δ) ∈ Kt+δ\Kt and this set has small diameter since
first Kt,t+δ has small diameter because (gt) is a Löwner chain and secondly g−1

t

is continuous up to the boundary.

We give an example of a Löwner chain which is not generated by a curve. We
start with the logarithmic spiral

λ(t) = (t− 1)ei ln |t−1|, 0 ≤ t ≤ 2, (3.15)

and we define

γ(t) = F (λ(t)),F (z) = i[
|z|+ 1

|z|
z + 2] (3.16)
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for t ∈ [0,2]\{1}, γ(t) = (t−2)i, t ≥ 2. We then define the hulls Kt = γ((0,t]), t <
1, K1 = γ((0,1)) ∪ |z| = 1, Kt = K1 ∪ γ((1,t]), t > 1. It is easy to see that if t < s
we can find a cross-cut c(t,s) separating Ks\Kt from∞ in Ht and whose diameter
tend to 0 as t − s → 0. By Beurling lemma, this imples that we have a Löwner
chain. It is not generated by a curve since K1 is not locally connected.
In fact it can be proven in this example that the driving function is Hölder with
exponent 1/2.
We end this section with the

Proposition 3.3.4. Suppose (gt) is a Löwner chain generated by a curve γ such
that the driving function satisfies

∃r <
√

2 ∀s < t |Ut − Us| ≤ r
√
t− s, (3.17)

then the curve γ is simple.

Proof : It starts with a very simple but very useful characterization of simple
paths. Let gt be a Löwner chain generated by γ. For s > 0 the Löwner chain
gt(s) = gs+t ◦ g−1

s is generated by the path γs(t) = gs(γ(s + t)) and has driving

function U
(s)
t = Us+t. If γ(s) = γ(s+ t) for some s,t > 0 then γ(s)(t) = gs(γ(s)) =

Us ∈ R. Hence γ is a simple path if and only if for all s > 0 ,γ(s)((0,+∞))∩R = ∅.
To prove the proposition it suffices thus to show that (3.17) implies ∀x > U0,∀t >
0, gt(x) 6= Ut.
Since r <

√
2 we can choose ρ ∈ (0,1) such that 2ρ3r−2−ρ > ρ−1−1. Let t1 be the

first time that |Ut| ≥ ρx and t2 the first time that gt−Ut > x/ρ. Since t 7→ gt(x)
is increasing it suffices to show that t2 ≤ t1. By (3.17), t1 ≥ (ρx

r
)2. On the other

hand, Löwner equation gives ġt(x) ≥ 2ρ/x, t ≤ t2. If then min t1,t2 ≥ (ρx
r
)2

g( ρx
r

)2(x) ≥ x+ (2ρ3/r2)x ≥ x[1 + 2ρ3/r2 − ρ] + U( ρx
r

)2 > x/ρ+ U( ρx
r

)2 (3.18)

which implies min (t1,t2) = t2, what we wanted.
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Chapitre 4

Stochastic Processes and
Brownian Motion

4.1 Construction of Brownian Motion

We consider a probability space (Ω,F ,P ), a measurable set E,E and a set T .

Définition 4.1.1. : A stochastic process indexed by T and with values in E is a
family (Xt) of measurable functions Ω → E.

The space E is the state space while T represents time. Most of the time
T = N or Z (discrete case) or R+,R (continuous case).
We now proceed to construct the most important stochastic process, i.e. Brownian
Motion (BM). To this end we start with the

Proposition 4.1.1. :Let H be a separable Hilbert space. There exists a probability
space (Ω,F ,P ) and a family (Xh), h ∈ H of real random variables such that

– (i) h 7→ Xh is linear,

– (ii) Xh is for h ∈ H a centered Gaussian variable with

E(Xh)
2 = ‖h‖2.

Proof : Consider an orthonormal basis (en)n∈N. We know that there exists a
probability space and a sequence of independent reduced Gaussian variables. It
then suffices to define Xh =

∑
n≥0 < h,en > gn.

Définition 4.1.2. :When H = L2(A,A,µ) then the mapping h 7→ Xh is a Gaus-
sian measure with intensity µ.

The reason for this definition is that we can define for F ∈ A ; µ(F ) <
∞, X(F ) = X1F

. Since in a Gaussian space L2 convergence and almost sure
convergence are equivalent it is true that if µ(F ) <∞, F = ∪Fn then

X(F ) =
∞∑

n=0

X(Fn)
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a.s. It is not true though that for almost all ω, F 7→ X(F )(ω) is a measure. Let
us also notice that if F,G ∈ A, µ(F ), µ(G) <∞, then

E(X(F )X(G)) = µ(F ∩G).

Let us start the construction of BM. We put (A,A,µ) = (R+,B(R+),Lebesgue measure)
and for each t ≥ 0 we choose an element Bt in the class X([0,t]). Let us study
the properties of this stochastic process:
1) By the last remark above this process has independent increments, i.e. if
t0 < t1 < ... < tn the variables Bti+1

−Bti are independent for i = 0,...,n− 1.
2) With the same notations the (vectorial) variable (Bt0 ,Bt1 ,...,Btn) is Gaussian.
3) For each t, E(B2

t ) = t.
To have a good definition of Brownian motion we need further the paths t 7→
Xt(ω) to be a.s. continuous. But in order for this statement to be meaningful we
need that the set of ω′s for which the path is continuous to be measurable, and
there is no reason for that. To overcome this difficulty we will use the following
notions:

Définition 4.1.3. : Two processes X,X ′ (not necessarilly defined on the same
probability space but with the same state space) are said to be a version of each
other if for every sequence of times t1,..,tn, the variables (Xt1 ,..,Xtn) and (X ′

t1
,..,X ′

tn)
have the same law.

Définition 4.1.4. : Two processes X,X ′ defined on the same probability space
and with the same state space are said to be a modification of each other if for
every t, a.s. Xt = X ′

t. They are called indistinguishable if a.s. ∀t,Xt(ω) = X ′
t(ω).

If two processes are modifications of each other then they are versions of each
other. Also, since a continuous function on R is determined by its values on Q
two processes that are a.s. continuous and that are modifications of each other
are indistinguishable.

Théorème 4.1.1. (Kolmogorov’s criterium) A real-valued process for which there
exists α ≥ 1, β, C > 0 such that for every t,h

E[|Xt+h −Xt|α] ≤ Ch1+β

has a modification which is almost-surely continuous.

Proof : We put, for j ∈ N, Kj = sup{|Xt −Xs|, t, s dyadic of order j, |t− s| =
2−j}.
Then E(Kα

j ) ≤
∑

allpossible s,tE[|Xt − Xs|α] ≤ 2jc2−j(1+β) = c2−jβ. Let now s,t

be two dyadic number in [0,1] such that |s − t| ∈ [2−m−1,2−m]. Let sj,tj be the
biggest dyadic numbers of order j which are ≤ s,t. Then

Xs −Xt =
∞∑
m

(Xsj+1
−Xsj

) + (Xsm −Xtm) +
∞∑
m

(Xtj+1
−Xtj)
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from which it follows that

|Xt −Xs| ≤ 2
∞∑
m

Kj.

Let us then define

Mγ = sup{|Xt −Xs|
|t− s|γ

,s 6= t dyadic}.

Then

Mγ ≤ C sup
m∈N

(2mγ

∞∑
m

Kj) ≤ C

∞∑
0

2jγKj.

Now (
E(Mα

γ )1/α
)
≤ C

∑
2jγ

(
E(Kα

j )1/α
)
≤ C

∑
2j(γα−β) <∞

if γ < β/α. It follows that a.s. t 7→ Xt(ω) is uniformly continuous on the dyadics
and thus has a unique extension X̃t continuous on R. By Fatou’s lemma X̃t is
the desired modification. The theorem applies in our situation since Bt+h−Bt is
Gaussian centered with variance h because then

E(Bt+h −Bt)
2p = Cph

p.

We more precisely get that a.s. t 7→ Bt is γ−Hölder ∀γ < 1/2.

4.2 Canonical processes

If X is a stochastic process then for each ω we may view t 7→ Xt(ω) as a
map from T in E, i.e. an element of F(T,E) = ET . thus if w ∈ ET we think
of w(t),t ∈ T as the coordinates of w that we denote Yt(Yt(w) = w(t)). Now
we can endow ET with the product σ-algebra (ET ), i.e. the smallest σ-algebra
making all the coordiante mappings Yt measurable. It can also be described as
the σ-algebra generated by the products

∏
At where At = E for all t ∈ T except

a finite number for which At ∈ E . We now return to our process X and define a
map from Ω in ET by

Φ(ω)(t) = Xt(ω).

This mapping is measurable by definition of (ET ). Let us call PX the image of P
by Φ; the processes Xt, P and Yt, PX are then versions of each other.

Définition 4.2.1. We call Y the canonical version of X and PX the law of X.

If the process X has continuous paths with T = R+ we can proceed as before
on the space C(R+,E). Doing this with BM we then get

Théorème 4.2.1. There exists a unique probability measure W on C(R+,R)
for which the coordinate process is a Brownian motion. It si called the Wiener
measure on the Wiener space C(R+,R).
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4.3 Filtrations and stopping times

Définition 4.3.1. : A filtration on a measurable space (Ω,F) is an increasing fa-
mily (Ft)t≥0 of sub-σ-algebras of F . A measurable space endowed with a filtration
is called a filtered space.

Définition 4.3.2. : A process (Xt) on a filtered space is called adapted to the
filtration if ∀t ≥ 0, Xt is Ft measurable.

Any process is adapted to its natural filtration F0
t = σ(Xs,s ≤ t) which is the

smallest filtration to which X is adapted. We define for any filtration

F−
t =

∨
s<t

Fs,F+
t =

⋂
s>t

Fs,F∞ =
∨
s≥0

Fs.

Définition 4.3.3. A stopping time relative to a filtration (Ft)t≥0 is a map T :
Ω → [0,+∞] such that for every t ≥ 0,{T ≤ t} ∈ Ft.

If T is a stopping time we define FT as the σ-algebra of sets A such that
A ∩ {T ≤ t} ⊂ Ft,t ≥ 0.

Proposition 4.3.1. : If E is a metric space and if X is the coordinate process
on C(R+,E) then if A ⊂ E is closed then

DA(ω) = inf{t ≥ 0;Xt(ω) ∈ A}

is a stopping time for its natural filtration.

Proof : {DA ≤ t} = {ω; inf{d(Xs(ω),A),s ∈ Q,s ≤ t} = 0}.

4.4 Martingales

In what follows we always have a probability space (Ω,F ,P ), an interval T of
N or R+ and a filtration (Ft)t∈T of sub σ − algebras of F .

Définition 4.4.1. A real-valued process (Xt), t ∈ T such that ∀t ∈ T,E(|Xt|) <
+∞ which is Ft−adapted is called a sub-martingale (resp. a super-martingale,
resp. a martingale) if
∀s < t ∈ T,Xs ≤ E[Xt|Fs] (resp. Xs ≥ E[Xt|Fs], resp. Xs = E[Xt|Fs]).

The two following propositions are versions, valid for essentially finite mar-
tingales, of the very general optional stopping theorem to be stated below.

Proposition 4.4.1. If (Xn) is a martingale and (Hn) is a positive bouded process
such that for n ≥ 1,Hn is Fn−1−measurable. Then the process

Y0 = X0, Yn = Yn−1 +Hn(Xn −Xn−1)

is a martingale.
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Proof : Obvious.
We denote by H ·X the process defined in this proposition. As will become clear
later, this is a discrete version of Ito’s stochastic integral.

Corollaire 4.4.1. With the same notations, if T is a stopping time, then the
stopped process XT = XT∧t is a martingale.

Proof : it suffices to apply the preceeding proposition to Hn = 1T≥n.
We come now to a first version of the optional stopping theorem:

Théorème 4.4.1. If S ≤ T are two bounded stopping times and (Xn) is a mar-
tingale then XS = E(XT |FS).

Proof : If M ∈ R is such that S ≤ T ≤M then, putting Hn = 1T≥n − 1S≥n, we
have

(H ·X)n −X0 = XT −XS

if n > M and it follows that E(XS) = E(XT ).If we apply this equality to the
stopping times S̃ = S1B +M1cB, T̃ = T1B +M1cB with B ∈ FS we get that

E[XT 1B] = E[XS1B]

i.e. the desired result.

4.4.1 Maximal inequalities

Théorème 4.4.2. Let X be a (sub-)martingale indexed by T = {1,...,N} then
for every p ≥ 1, λ > 0,

λP ({sup
t∈T

|Xt| ≥ λ}) ≤
∫

supn(|Xn|)≥λ

|XN |dP ).

Proof : The process (|Xn|) is a submartingale: λ being fixed we intoduce the
stopping time T = inf{n;Xn ≥ λ} if this set is not empty, and T = N otherwise.
By the previous results

E(|XN |) ≥ E(|XT |) =

∫
supn(|Xn|)≥λ

sup
n

(|Xn|)dP +

∫
supn(|Xn|)<λ

|XN |dP

≥ λP (sup(|Xn|) > λ) +

∫
supn(|Xn|)<λ

|XN |dP.

Substracting
∫
{ supn(|Xn|) < λ}|XN |dP from the first and last term we get what

we want.

Corollaire 4.4.2. With the hypothesises of the preceeding theorem, denoting
X∗ = supt |Xt|, we have, for p > 1,

E(X∗p) ≤ (
p

p− 1
) sup

t
E(|Xt|p).
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Proof : Let µ be the law of X∗; then E(X∗p) =
∫∞

0
λpdµ and by an integra-

tion by parts we get by theorem (4.4.2), E(X∗p) =
∫∞

0
pλp−1P (X∗ ≥ λ)dλ ≤∫∞

0
pλp−1 1

λ
(
∫
|XN |≥λ

|XN |dP )dλ. To estimate the last integral we interchange the

order of integration to get

E(X∗p) ≤ pE(|XN |
∫ |XN |

0

λp−2dλ) ≤ (
p

p− 1
)E(|XN |p).

4.4.2 Law of the iterated logarithm

Théorème 4.4.3. Let B denote the standard real Brownian motion. Then, a.s.,

limt→0
Bt√

2t ln(ln 1
t
)

= 1 (4.1)

Proof : It starts with the

Lemme 4.4.1. The process Yt,α = exp (αBt − α2t/2) is a martingale.

Proof : E[Yt,α|Fs] = E[Ys,α exp (α(Bt −Bs)− α2(t− s)/2|Ft] = Ys,α)E[Zt,s|Fs]
and the result follows from the fact that Z is independent of Fs and that E[Z] = 1.
We define now St = sup{Bs, s ≤ t}:
Lemme 4.4.2. For a > 0, P [St > at] ≤ exp(−a2t/2).

Proof : We have exp(αSt − α2t/2) = sups≤t Ys,α hence

P [St ≥ at] ≤ P [sup
s≤t

Ys,α ≥ exp(αat− α2t/2)] ≤ exp(−αat+ α2t/2)E[Yt,α]

by the maximal inequality. But E[Yt,α] = E[Y0,α] = 1 and infα>0(−αat+α2t/2) =
−a2t/2 and the result follows.

We now come to the proof of the theorem: let h(t) =
√

2t ln(ln 1
t
) and θ, δ ∈ (0,1).

We define
αn = (1 + δ)θ−nh(θn) βn = h(θn)/2.

Using the same reasonning as in the previous lemmas, we get

P [sup
s≤1

(Bs − αns/2) ≥ βn] ≤ e−αnβn = Kn−(1+δ)

for some constant K. By Borel-Cantelli lemma, for almost every ω there exists
n0(ω) such that for n ≥ n0(ω),s ∈ [θn,θn−1),

Bs(ω) ≤ αnθ
n−1

2
+ βn = [

1 + δ

2θ
+

1

2
]h(θn) ≤ [

1 + δ

2θ
+

1

2
]h(s).

As a result

lims→0
Bs

h(s)
≤ 1 + δ

2θ
+

1

2
a.s.
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and we get the ≤ inequality in the theorem by letting θ → 1, δ → 0.
For the proof of the opposite inequality we consider the events

An = {Bθn −Bθn+1 ≥ (1−
√
θ)h(θn)}.

These events are independent and a striaightforward computation shows that

P (An) ≥ a

1 + a2
e−a2/2

with a = (1−
√
θ)

√
2 ln ln θ−n

1−θ
which makes P (An) greater than n−γ,γ = (1−2

√
θ+

θ)/(1− θ) < 1. By Borel-Cantelli lemma again we have that a.s.

Bθn > (1−
√
θ)h(θn) +Bθn+1 .

Since −B is also a Brownian motion we know that −Bθn+1(ω) < 2h(θn+1) from
n0(ω) on. it follows that Bθn > h(θn)(1− 5

√
θ) infinitely often, and the theorem

is proven.

4.4.3 Optional Stopping Theorem

We recall that a family (Xt)t∈T of random variables is said to be uniformly
integrable if

∀ε > 0∃δ > 0; ∀t ∈ T∀E ∈ Ft, P (E) < δ ⇒
∫

E

|Xt|dP < ε.

An important example of uniformly integrable family is that of a bounded
family in Lp for some p > 1.

Théorème 4.4.4. For a martingale (Xt)t∈R+ the following three conditions are
equivalent:
1) (Xt) converges in L1.
2) There exists a random variable X∞ ∈ L1 such that ∀t ≥ 0,Xt = E(X∞|Ft,
3) The family Xt is uniformly integrable.

Proof : The fact that 2) ⇒ 3) is obvious. If 3) holds then in particular suptE(|Xt|) <
+∞. Let us then show that a martingale satisfying this last property is conver-
ging a.s. Let f be a function T → R+, t1 < t2 < .. < td a finite subset F of T : if
a < b are two reals we define s1 = inf{ti; f(ti) > b}, s2 = inf{ti > s1; f(ti) < a}
and inductively s2k+1 = inf{ti > s2k; f(ti) > b}, s2k+2 = inf{ti > s2k+1; f(ti) <
a}(inf(∅) = td). We then put

D(f,F,[a,b]) = sup{n; s2n < td}

and define the downcrossing of [a,b] by f as

D(f,[a,b]) = sup
F⊂T, finite

D(f,F,[a,b]).
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Lemme 4.4.3. If X is a martingale then

∀a < b, (b− a)E(D(X,[a,b]) ≤ sup
t∈T

E
[
(Xt − b)+

]
.

Proof : We may assume that T = F is finite. The s′ks are now stopping times
and Ak = {sk < td} ∈ Fsk

. Moreover Ak ⊃ Ak+1, Xs2n−1 > b onA2n−1, Xs2n <
a onA2n. Therefore, by corollary (4.4.1)

0 ≤
∫

A2n−1

(Xs2n−1−b)dP ≤
∫

A2n−1

(Xs2n−b)dP ≤ (a−b)P (A2n)+

∫
A2n−1\As2n

(X2n−b)dP.

Consequently, since s2n = td on the complement of A2n,

(b− a)P (A2n) ≤
∫

A2n−1\A2n

(Xtd − b)+dP.

But A2n = {D(X,T,[a,b]) > n} and the sets A2n−1\A2n are disjoint: the result
then follows by adding these inequalities.
Recall that we want to prove that if suptE(|Xt|) < +∞ then Xt is a.s. converging
as t → ∞. If this were not the case then there would exist a < b such that
limt→∞(Xt) < a < b < limt→∞(Xt) on a set of positive probability. But this would
imply that D(X,[a,b]) = +∞ on this set, which is impossible by the preceeding
lemma. With the use of classical measure theory, the implication 3)⇒ 1) is thus
proven. The fact that 1)⇒ 2) follows by passing to the limit as s → ∞ in the
equality

Xt = E(Xt+s|Ft).

Théorème 4.4.5. (Optional stopping theorem) If X is a martingale and if S,T
are two bounded stopping times with S ≤ T then

XS = E[XT |FS]. (4.2)

If X is uniformly integrable, the family (XS) where S runs through the set of all
stopping times is uniformly integrable and if S ≤ T ,

XS = E[XT |FS] = E[X∞|FS]. (4.3)

Proof : It suffices to prove (4.3) because a matingale defined on a closed interval
is uniformly integrable. It is true if S,T are bounded by (4.4.1) and the result
follows by approximation.

The preceeding theorem is false if the martingale is not assumed to be uniformly
integrable. To see this, consider a positive martingale going to 0, (for example
Xt = exp (Bt − t/2) where Bt is a usual Brownian, X0 = 1): if T = inf{t ≥
0; Xt ≤ α} then E[XT ] = α 6= E[X0] = 1.
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4.5 Stochastic Integration.

4.5.1 Quadratic Variations.

Définition 4.5.1. A process A is called of finite variation if it is adapted and if
the paths t 7→ At(ω) are right-continuous and of bounded variation.

If X is a progressively measurable process (i.e. if for every t the map (s,ω) 7→
Xs(ω) is measurable on [0,t] × Ω) and bounded on every interval [0,t] then one
can define

(X · A)t =

∫ t

0

Xs(ω)dAs(ω).

We aim to define a similar integral for martingales A. This cannot be defined as
before because of the

Proposition 4.5.1. If M is a continuous martingale of bounded variation then
M is constant.

Proof : Let t1,...,tn be a subdivision of [0,t]. Then if we assume that M0 = 0 we
have

E[M2
t ] ≤ E

[
n−1∑
i=0

(M2
ti+1

−M2
ti
)

]
= E

[
n−1∑
i=0

(Mti+1
−Mti)

2

]
≤ V sup

i
|Mti+1

−Mti| → 0

as the mesh goes to 0. This means that one cannot proceed to a path by path
integration. Instead we are going to use a more global method and the notion of
quadratic variation.
If ∆ = {t0 < ... < tk < ..} is a subdivision of R+ we define its modulus as
sup{tk+1 − tk, k ≥ 0} and, if M is a process, we define, for t ≥ 0,

T∆
t =

n−1∑
i=0

(Mti+1
−Mti)

2 + (Mt −Mtn)2

where n is such that tn ≤ t < tn+1.

Définition 4.5.2. We say that a process M is of finite quadratic variation if
there exists a process denoted by < M,M > such that T∆

t converges in probability
towards < M,M > as the modulus of ∆ goes to 0.

Théorème 4.5.1. A continuous and bounded martingale M is of finite quadra-
tic variation. Moreover, < M,M > is the unique continuous increasing adapted
process vanishing at 0 such that M2− < M,M > is a martingale.

Proof : We only outline it. We first easily see that if ∆ is a subdivision then
M2 − T∆ is a continuous martingale. It thus remains only to show that if ∆n

is a sequence of subdivisions of the interval [0,a] whose modulus converges to 0
then T∆n

a converges in L2. We have thus to show that if |∆| + |∆′| → 0 then
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E[|T∆
a − T∆′

a |2] → 0. We complete the proof in the case ∆′ is ∆ completed by a
point si in each interval [ti,ti+1]: then

|T∆
a − T∆′

a | = 2(Mti −Msi
)(Mti+1

−Msi
)

and thus E[|T∆
a − T∆′

a |2] ≤ 4E[sup |Mti+1
−Msi

|4]1/2E[(T∆′
a )2]1/2 and it is suffi-

cient to prove that E[(T∆′
a )2] remains bounded as the modulus goes to 0.

In order to prove this we write

(T∆
a )2 = (

n−1∑
i=0

(Mti+1
−Mti)

2)2

= 2
n−1∑
k=0

(T∆
a − T∆

tk
)(T∆

tk+1
− T∆

tk
) +

n−1∑
k=0

(Mti+1
−Mti)

4.

But
E[T∆

a − T∆
tk
|Fk] = E[(Ma −Mtk)

2|Fk]

and thus

E[(T∆
a )2] = 2

n−1∑
k=0

E[(Ma −Mtk)
2(T∆

tk+1
− T∆

tk
) +

n−1∑
k=0

E[(Mti+1
−Mti)

4]

≤ 12C2E[T∆
a ] ≤ 48C4

where C is a bound for the martingale M .

This theorem is very interesting but its hypothesises are very strong. It does
not cover for instance the case of the Brownian motion (a non-uniformly inte-
grable martingale) though Brownian motion has a quadratic variation, namely
B2

t − t is a martingale. In order to cover this case we need the notion of local
martingale.

Définition 4.5.3. An adapted right continuous process X is called a local mar-
tingale if there exists stopping times Tn, n ≥ 0 increasing to +∞ a.s. such that
for every n the process XTn1[Tn>0] is a uniformly integrable martingale.

In this statement we have used the notation XT = XT∧t. If the process X
is continuous we can further use the stopping time Sn = inf{t > 0; |Xt| = n}
and replace Tn by Tn ∧ Sn, meanning that we can assume that the martingale
XTn1[Tn>0] is bounded.
We may now state the general

Théorème 4.5.2. If M is a continuous local martingale there exists a unique
continuous increasing process < M,M > such that M2− < M,M > is a conti-
nuous local martingale.
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To prove this thorem we use a sequence Tn of stopping times increasing to ∞
such that for all n, Xn = XTn1[Tn>0] is a bounded martingale. By the theorem for
bounded martingales there exists an increasing process An such that X2

n −An is
a bounded martingale. It is easy to see that ATn

n+1 = An on [Tn > 0] and we can
thus define unambiguously < M,M > by setting it to be equal to An on [Tn > 0].
This process is the one we were looking for.
The next theorem generalizes the preceeding in the sense that it polarizes it:

Théorème 4.5.3. If M,N are two continuous local martingales there exists a
unique process < M,N > with bounded variation, vanishing at 0, such that
MN− < M,N > is a local martingale.

Proof : < M,N >= 1
4
[< M +N,M +N > − < M −N,M −N >].

Remark: It is an easy exercise to show that if σ(Ms,s ≤ t) is independent of
σ(Ns,s ≤ t) then MN is still a martingale, showing that < M,N >= 0 in this
case.

Théorème 4.5.4. If M,N are two local martingales and H,K are two measurable
processes then, a.s. for all t ≤ ∞, ∫ t

0

|Hs||Ks||d < M,N >s |

≤ (

∫ t

0

|Hs|2|d < M,M >s |)1/2(

∫ t

0

|Ks|2|d < N,N >s |)1/2 (4.4)

Proof : It suffices to prove the theorem for processes of the form

K = K010 +K11]0,t1] + ...+Kn1]tn−1,tn].

We now define < M,N >t
s=< M,N >t − < M,N >s. Since almost surely for

every r ∈ Q we have

< M,M >t
s +2r < M,N >t

s +r2 < N,N >t
s=< M + rN,M + rN >t

s≥ 0,

we must have

| < M,N >t
s | ≤ (< M,M >t

s)
1/2(< N,N >t

s)
1/2a.s.

As a result,

|
∫ t

0

HsKsd < M,N >s | ≤
∑

i

|HiKi|| < M,N >
ti+1

ti |

≤
∑

i

|HiKi||(< M,M >
ti+1

ti )1/2(< N,N >
ti+1

ti )1/2
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and the result follows by application of Cauchy-Schwarz inequality.

Corollaire 4.5.1. (Kunita Watanabe inequality) If 1/p+ 1/q = 1, p ≥ 1, then

E[

∫ ∞

0

|Hs||Ks||d < M,N >s]

≤ ‖(
∫ ∞

0

|Hs|2|d < M,M >s |)1/2‖p‖(
∫ ∞

0

|Ks|2|d < N,N >s |)1/2‖q (4.5)

We now introduce the important (Hardy) space H2, the space of L2 martin-
gales. We have already seen that this space is in a natural one to one correspon-
dance with L2. Thus H2 is a Hilbert space for the norm

‖M‖H2 = E[M2
∞]1/2.

The subspace H2
0 consists of those martingales in H2 such that M0 = 0.

Théorème 4.5.5. A continuous local martingale M is in H2 if and only if M0 ∈
L2 and E[< M,M >∞] <∞.

Proof : Let Tn be a sequence of stopping times such that MTn1[Tn>0] is bounded.
We can write

E[M2
Tn∧t1[Tn>0]]− E[< M,M >Tn∧t 1[Tn>0]] = E[M2

0 1[Tn>0]]

and the result follows by passing to the limit as n→∞.

4.6 Stochastic Integration

For reasons that will appear clearly later we need a notion of integration along
brownian paths. But this cannot be done naively since Brownian motion is not of
bounded variation: Riemann sums do not converge pathwise but will be shown to
converge in probability. Before we come to this point we define integration with
respect to the elements of H2.

Définition 4.6.1. if M ∈ H2 we define L2(M) the space of progressively measu-
rable processes K such that

‖K‖2
M = E[

∫ ∞

0

K2
sd < M,M >s] < +∞.

We can define a bounded measure on B(R+)⊗F by putting

PM(Γ) = E[

∫ ∞

0

1Γ(s,ω)d < M,M >s (ω)
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and L2(M) appears as the space of PM−square integrable, progressively measu-
rable functions and we can then define as usual the Hilbert space L2(M).

Théorème 4.6.1. Let M ∈ H2: for each K ∈ H2 there exists a unique element
of H2

0 , denoted by K ·M such that for every N ∈ H2

< K ·M,N >= K· < M,N >

(notice that the two · have a different meanning). Moreover the map K 7→ K ·M
is an isometry between L2(M) and H2

0 .

Proof : Uniqueness is obvious. To prove existence we observe, by Kunita-Watanabe
inequality, that for every N ∈ H2

0 we have

|E[

∫ ∞

0

Ksd < M,N >s]| ≤ ‖N‖H2‖K‖M

which implies that the map N 7→ E[(K· < M,N >)∞] is a continuous linear form
on the Hilbert space H2

0 . There is thus an element K ·M ∈ H2
0 such that

∀N ∈ H2
0 , E[(K ·M)∞N∞] = E[(K· < M,N >)∞].

Let T be a stopping time; me may write

E[(K ·M)TNT ] = E[E[(K ·M)∞|FT ]NT ] = E[(K ·M)∞NT ]

= E[(K ·M)∞N
T
∞] = E[(K· < M,NT >)∞]

= E[(K· < M,N >T )∞] = E[(K· < M,N >)T ]

which proves that (K ·M)N −K· < M,N > is a martingale and thus the first
result. The fact that K 7→ K ·M is an isometry is obvious. Finally in the general
case M ∈ H2 we simply set K ·M = K · (M −M0) and all the properties are
easily checked.

Définition 4.6.2. The martingale K ·M is the Ito integral or stochastic integral
of K wrt M and is also denoted by

(K ·M)t =

∫ t

0

KsdMs.

Let E be the space of elementary processes, i.e. processes of the form

K = K−110 +
∑

i

Ki1]ti,ti+1]

where (ti) is a sequence increasing to +∞. In this case it is not hard to see that

(K ·M)t =
n−1∑
i=0

Ki(Mti+1
−Mti) +Kn(Mt −Mtn)

whenever t ∈ [tn,tn+1[. the following theorem is left as an exercise to the reader:

Théorème 4.6.2. If K ∈ L2(M),H ∈ L2(K ·M),then HK ∈ L2(M) and

(HK) ·M = H · (K ·M).
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Now we want to define a stochastic integral wrt general local martingales, the
main purpose being integration wrt the Brownian. For this purpose we introduce
the

Définition 4.6.3. If M is a continuous local martingale we call L2
loc(M) the

space of progressively measurable processes K for which there exists a sequence of
stopping times Tn increasing to ∞ such that

E[

∫ Tn

0

K2
sd < M,M >s] < +∞.

Contrarily as it may seem at a first glance, this notion is very general. It
englobes for instance all locally bounded processes and thus, in particular, all
continuous processes.

Théorème 4.6.3. For any K ∈ L2
loc(M) there exists a unique continuous local

martingale denoted K ·M such that for any continuous local martingale N ,

< K ·M,N >= K· < M,N > .

Proof : One can choose a sequence of stopping times T n such that MTn ∈ H2

and KTn ∈ L2(MTn) and thus define X(n) = KTn ·MTn .

Lemme 4.6.1. If T is a stopping time,

K ·MT = K1[0,T ] ·M = (K ·M)T .

The proof is left to the reader.
This lemma implies that X(n+1) = X(n) on [0,Tn]. This defines unambiguously a
process K ·M and all the properties are easily derived.

4.7 Itô’s formula

From now on we will call semimartingale any process that can be expressed as
a sum of a local martingale and a process of finite variation. If X is a continuous
semimartingale, for which functions F of a real variable is it true that F (X)
is still a semimartingale? Itô’s formula will in particular give an answer to this
question. We start with the special case F (x) = x2.

Proposition 4.7.1. If X,Y are continuous semimartingales then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs+ < X,Y >t .

Proof : The case X = Y follows almost immediately from the obvious formula:∑
i

(Xti+1
−Xti)

2 = X2
t −X2

0 − 2
∑

i

Xti(Xti+1
−Xti).
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The general case is obtained by the usual polarization.

Notice that in the case where X is a local martingale, we already know that
X2− < X,X > is a local martingale: Itô’s formula gives a formula for this
local martingale. In the case X is of finite variation, Itô’s formula reduces to the
ordinary integration by parts. In the case of Brownian motion, Itô’s formula reads

B2
t − t = 2

∫ t

0

BsdBs.

We now come to the famous Itô formula. In order to state it in a sufficient ge-
nerality we introduce the notion of d-dimensional vector local (continuous semi)
martingale. It is a Rd valued process X = (X1,...,Xd) such that each of its com-
ponents is a local (continuous semi) martingale.

Théorème 4.7.1. (Itô’s formula) Let F : Rd → R be a C2 function and X
a continuous vector semimartingale; then F (X) is a continuous semimartingale
and

F (Xt) = F (X0) +
∑

i

∫ t

0

∂F

∂xi

(Xs)dXs +
1

2

∑
i,j

∫ t

0

∂2F

∂xixj

(Xs)d < Xi,Xj >s .

Proof : We outline it in the case d = 1.Suppose that Itô’s formula is valid for
the function F and let us consider the function G = xF . Then by (??) we have

G = G(X0) +X · F (X) + F (X) ·X+ < X,F (X) > .

On the other hand, since F satisfies Itô’s formula

F (X) = F (X0) + F ′(X) ·X + F (X) ·X +
1

2
F ′′(X)· < X,X > .

If we replace F (X) by this expression we obtain

X·F (X) = X·(F ′(X)·X)+
1

2
X·(F ′′(X)· < X,X >= (XF ′(X))·X+

1

2
XF ′′(X)· < X,X >

Similarly,

< X,F (X) >=< X,F ′(X) ·X > +
1

2
< X,F ′′(X)· < X,X >>

= F ′(X) < X,X > +
1

2
F ′′(X) < X, < X,X >>= F ′(X) < X,X > .

On the other hand

G(X0) +G′(X) ·X +
1

2
G′′(X)· < X,X >

52



= G(X0) +XF ′(X) ·X + F ′(X)· < X,X > +
1

2
XF ′′(X)· < X,X > ,

and we get that Itô’s formula is valid for G. It follows that its is valid for all
polynômials; an easy approximation argument then implies that it is valid for
any C2 function.
We state an first important consequence of this formula:

Théorème 4.7.2. If f is a complex function defined on R×R+ of class C2 and
satisfying the heat equation

∂f

∂y
+

1

2

∂2f

∂x2
= 0,

then for any continuous local martingale M the process f(M, < M,M >) is a
local martingale. In particular the process

Eλ(M) = exp{λMt −
λ2

2
< M,M >t}

is a local martingale. If λ = 1 we speak of this process as the exponential of M .

Proof : Itô’s formula gives, writing N =< M,M >, that

f(M,N)t = f(M,N)0+

∫ t

0

∂f

∂x
dMs+

∫ t

0

∂f

∂y
dNs+

1

2

∫ t

0

∂2f

∂x2
d < M,M >s=

∫ t

0

∂f

∂x
dMs

4.8 Martingales as Time-changed Brownian Mo-

tion

Théorème 4.8.1. (Paul Lévy) For a continuous adapted d-dimensional process
X vanishing at 0 the following three conditions are equivalent:

– (i) X is a Brownian Motion.

– (ii) X is a continuous local martingale and < X i,Xj >t= δijt, 1 ≤ i,j ≤ d.

– (iii) X is a continuous local martingale and for any d-uple f1,...,fd of
L2(R+) functions the process

E if
t = exp

{
i
∑

k

∫ t

0

fk(s)dX
k
s +

1

2

∑
k

∫ t

0

fk(s)
2ds

}

is a complex local martingale.

Proof : (in the case d = 1).(i)⇒(ii) is known already. The fact that (ii)⇒ (iii)
follows from theorem (4.7.2) applied with λ = i,dM = fdX. Suppose finally that
(iii) holds: we apply it with f = ξ1[0,T ] and it gives that the process

E if
t = exp

{
iξXt∧T +

1

2
ξ2t ∧ T

}
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is a martingale. For A ∈ Fs, s < t < T we get

E[1A exp {iξ(Xt −Xs)}] = P (A) exp

{(
−ξ

2

2
(t− s)

)}
,

which implies that Xt−Xs is independent of Fs and has a Gaussian distribution
with variance (t− s); hence (i) holds.
We now come to the fundamental characterization of martingales. For this pur-
pose we need the notion of time-change. Consider a right continuous increa-
sing adapted process A; we can associate to this process the stopping times
Cs = inf{t;As > t}. The reader is encouraged to check that (Cs) is a right-
continuous process and that the filtration FCs is also right continuous. Moreover,
for any t, the random variable At is a (FCs)-stopping time.

Définition 4.8.1. A time-change is a family of stopping times (Cs),s ≥ 0 such
that a.s. s 7→ Cs is increasing and riht-continuous.

If C is a time-change and X is a progressive process we define X̂t = XCt ,F̂t =
FCt . The process X̂ is called the time-changed process of X.
We want to prove that the class of semimartingales is stable under this operation.
We formally prove that X̂ is a local martingale if X, from which the result follows.
So let X be a local martingale and T a stopping time such that XT is bounded.
The time T̂ = inf{t;Ct ≥ T} is a F̂t-stopping time and X̂ T̂

t = XT
Ct

. By the

optional stopping theorem X̂ T̂ is a martingale. Considering sequences of such
stopping times we obtain that X̂ is a local martingale.

Théorème 4.8.2. (Dambis,Dubins-Schwarz). If M is a continuous local martin-
gale vanishing at 0 and such that < M,M >∞= ∞ then, if we set

Tt = inf{s :< M,M >s> t},

Bt = MTt is a FTt-Brownian motion and Mt = B<M,M>t.

Proof : By the result outlined before the theorem B is a continuous local (FTt)-
martingale and < B,B >t=< M,M >Tt= t. it is thus a Brownian motion by Paul
Lévy’s characterization.
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Chapitre 5

Stochastic Löwner Evolution

5.1 Bessel Processes

We start by considering standard Brownian motion in Rd, i.e. B = (B1,...,Bd).
We denote by R the process R = ‖B‖ =

√
B2

1 + ...+B2
d . If we apply Itô’s formula

we get

dR =
d−1
2

R
dt+

j=1∑
d

Bj

R
dBj

But M =
∑j=1

d
Bj

R
dBj is a local martingale with < M,M >t= t so that it is a

Brownian motion. This motivates the

Définition 5.1.1. For x > 0 we define a Bessel d−process as a solution of the
stochastic differential equation (SDE)

dXx
t =

a

Xx
t

dt+ dBt,X
x
0 = x

where a=(d-1)/2.

If we solve the above SDE, it is understood that we take the same ω for
different values of x. It follows that if x < y then Xx

t < Xy
t (by uniqueness of

solution) for all values of t less than Tx, the life-time of Xx
t , that is

Tx = sup {t > 0 ; Xx
t > 0}

This implies in particular that Tx ≤ Ty.
It will be useful to notice the scaling law of Bessel processes 1

x
Xx

x2t ≈ Xx
t , ≈

meanning having the same law.
The following theorem shows the different phases of Bessel processes that will
reflect in the different phases of SLE later on:

Théorème 5.1.1. According to the value of a, we have:

1. If a ≥ 1/2, then for all x > 0,Tx = +∞ a.s. and limt→∞X
x
t = +∞a.s.
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2. If a = 1/2 then inft>0X
x
t = 0 a.s.

3. If a > 1/2 then for all x > 0,Xx
t −→∞ a.s.

4. If a < 1/2 then for all x > 0,Tx <∞ a.s.

5. If 1/4 < a < 1/2, x < y then P (Tx = Ty) > 0.

6. If a ≤ 1/4 ,x < y, then Tx < Ty a.s.

Proof : Let 0 < x1 < x2 be fixed numbers and consider x ∈ [x1,x2]. We define
σ = inf {t > 0 ; X t

x ∈ {x1,x2}} and Φ(x;x1,x2) = P (Xx
σ = x2). It is obvious that

Φ(Xx
t∧σ) = E [Φ(Xx

σ )|Ft]

and hence that Φ(Xx
t∧σ) is a martingale. It follows that the drift term in Itô

formula must vanish and this reads

1

2
Φ′′(x) +

a

x
Φ′(x) = 0.

Knowing that Φ(x1) = 0,Φ(x2) = 1 we have the formulas

Φ(x) =
x1−2a − x1−2a

1

x1−2a
2 − x1−2a

1

, a 6= 1

2
,

Φ(x) =
ln(x)− ln(x1)

ln(x2)− ln(x1)
, a =

1

2
.

We start with the properties of the case a ≥ 1/2:
First of all

lim
x1→1

Φ(x;x1,x2) = 1

in this case. It follows immediately that for all x2 > 0, Xx
t will reach x2 before

0. The second part of the fist point follows. To prove the first it suffices to see
that Xx

t cannot reach ∞ in finite time. To see this last point consider Tn the first
arrival at 2n and Sn the greatest t ≤ Tn+1 such that Xx

t = 2n. Then it is easy to
see that the expectation of Tn+1 − Sn is greater than c4n and an easy argument
using Borel-Cantelli lemma allows to conclude.
The second point follows from the fact that

lim
x2→+∞

Φ(x;x1,x2) = 0

if a = 1/2, from which it follows that for every x1 > 0 there exists M > 0 such
that Xx

t will reach x1 before M with probability 1. The second point follows.
We come to the third point: we already know that limXx

t = +∞. Let Tn the first
passage to 2n. We have

lim
x2→+∞

Φ(x;x1,x2) = 1− (
x1

x
)2a−1 = l.
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More precisely

|Φ(x;x1,x2)− l| ≤ (x1−2a − x1−2a
2 )(

x1

x2

)2a−1

and we deduce from this inequality that the probability that between Tn and
Tn+1 the process reaches 2n/Mn is less than C/M2a−1

n . Taking

Mn = n
2

2a−1

we conclude with Borel-Cantelli.
For the rest of the proof we assume a < 1/2: we have

Φ(x; 0,x2) = (
x

x2

)1−2a → 0, x1 → 0,

and thus a.s. there exists x2 > 0 such that Xx
t reaches 0 before x2. This proves

the forth point.
We come to the proof of the 5th point: we already know that Tx ≤ Ty < +∞.
Put q(x,y) = P (Tx = Ty): by scaling, it is obvious that q(x,y) = q(1,y/x).

Lemme 5.1.1. For all fixed t > 0, limr−→∞ P (Tr < t) = 0.

Proof : A small computation using Itô shows that

Xr
t − r = (2a+ 1)t+

∫ t

0

2Xr
sdBs

so that

−r = (2a+ 1)Tr +

∫ Tr

0

2XsdBs

and the result follows by Tchebychev inequality.
As a corollary, limr−→∞ q(1,r) = 0.

Lemme 5.1.2. The event {T1 = Ty} is equal (up to a set of probability 0) to the
set {

sup
t<T1

Xy
t −X1

t

X1
t

< +∞
}
.

Proof : It is obvious that the last statement implies that T1 = Ty. Conversely,
by the strong Markov property,

P

{
Ty = T1 ; sup

t>0

{
Xy

t −X1
t

X1
t

}
≥ r

}
≤ q(1,1 + r),

which goes to 0 as r goes to ∞.

Let Zt = ln(
Xy

t −X1
t

X1
t

). By Itô’s formula,

dZt =

[
(
1

2
− 2a)

1

X2
t

+ a
Xy

t −Xx
t

Xy
t X

x2
t

]
dt− 1

X1
t

dBt.

Define a time-change r(t) by
∫ r(t)

0
ds

X1 2
s

= t:

Lemme 5.1.3. I = r−1(Tx) = +∞.
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Proof : It suffices to show that ∫ Tx

0

= +∞.

to do so we assume that x = 1 and denote by Tj the first arrival at 2−j. We also
put

Yj =

∫ Tj

Tj−1

ds

X2
s

:

Then I =
∑
Yj = +∞ a.s. because the variables Yj are independent with the

same distribution (by scaling) and with positive expectation.
Let Z̃(t) = Zr(t). Then Z̃t satisfies

dZ̃t =

[
(
1

2
− 2a) + a

Xy
r(t) −X1

r(t)

X1
r(t)

]
dt+ dB̃t,

where B̃t = −
∫ r(t)

0
X1−1

s dBs is a standard Brownian motion. After integration,
we obtain

Z̃t = Z̃0B̃t + (
1

2
− 2a)t+ a

∫ t

0

Xy
r(s) −X1

r(s)

X1
r(s)

ds.

If a ≤ 1/4 then Z̃t takes arbitrarily large values; by the preceeding discussion, we
get point 5).
Suppose finally that 1/4 < a < 1/2: choose b ∈ (1/4,a) and let ε = 2(a − b)/a.
Suppose x = 1,y = 1+ ε/2 and let σ be the first time that Xy

r(s)−X1
r(s) = εX1

r(s).

For 0 ≤ T1 ∧ σ,Z̃t ≤ Z̃∗
t where

dZ̃∗
t = (

1

2
− 2b)dt+ dB̃t

Since 1/2 − 2b < 0 there is a positive probability that Z̃∗
t never reaches ln ε

starting at ln ε
2
. On this event the same occurs for Z̃t, which implies (5.1.2). We

have thus shown that q(1,1 + ε/2) > 0; since Xy
r(s) − X1

r(s) decreases with t, it

follows easily that q(x,y) > 0 for all 0 < x < y.

5.2 Definitions for SLE

We want to define a Löwner process having certain properties. This process
will be define by a driving function Ut,t ≥ 0 which is a continuous real random
process. We recall that this means that we consider the differential equation

ġt(z) =
2

gt(z)− Ut

,g0(z) = z

58



and the growing family of sets Kt is then defined as the set of initial values having
a life-time ≤ t.The mapping gt can then be seen as the Riemann mapping from
H\Kt with the hydrodynamic normalization gt(z) = z + .. at ∞. If s < t we
define gs,t = gt ◦ g−1

s and gs,t(z) = gs,t(z + Us) − Us. The choice of the driving
function will be done in order that:

1. the distribution of gs,t depends only on t− s,

2. Markovian property:gs,t is independent of gr, r ≤ s.

3. the distribution of Kt is symmetric wrt the imaginary axis.

It is an exercise to see that the only possibility for the driving function is Ut = λBt

for some positive constant λ, Bt being a standard 1D Brownian motion. For
reasons that will become clear later we set λ =

√
κ and set the

Définition 5.2.1. The chordal stochastic Löwner evolution with parameter κ ≥
0(SLEκ) is the random collection of conformal maps gt solving the ODE

ġt(z) =
2

gt(z)−
√
κBt

, g0(z) = z.

An easy but important property of SLE is its scaling:

Proposition 5.2.1. If gt is a SLEκ then it is the same for g̃(z) = r−1gr2t(rz)
and if γ is a SLE− path, the same is true for γ̃(t) = r−1γ(r2t).

5.3 SLE paths.

We recall that, since Ut is continuous, the corresponding increasing family of
sets Kt is continuously growing. However the sole continuity does not warranty
that this family is generated by a curve, i.e. that there exists a path γ such that
for t ≥ 0,Kt is the unbounded component of H\γ([0,t]). However, in the case of
SLE:

Théorème 5.3.1. For every κ ≥ 0 SLEκ is generated by a curve.

We are going to give a proof of this theorem for κ 6= 8. But this proof is long
and difficult: we thus prefer to insist more on the scheme of the proof than on
the technical details for which we invite the reader to consult the original proof
[RS]. We begin by extending gt to negative values of t by considering a two-sided
Brownian motion thus defined on R. We recall that ft = g−1

t : it is immediate that
g−t(z) has the same law as ft(z + ξ(t)) − ξ(t) where we have put ξ(t) =

√
κBt.

We also define
f̂t(z) = ft(z + ξ(t)).

We also notice that =gt(z) is deacreasing in time, allowing the time change

Tu(z) = sup{t ∈ R ; =gt(z) ≥ eu}.

Lemme 5.3.1. ∀z ∈ H , u ∈ R, Tu 6= ±∞.
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In other words lim=gt(z) → +∞ as t→ −∞ and converges to 0 as t reaches
the life-time of z.
Proof : Define ξ(t) = sup{|ξ(s)| , s ≤ t} and let U = {s ≤ t ; |gs(z)| > ξ(t)}
which is a union of disjoint intervals. Put y = |gs| − ξ(t) so that yy′ ≤ 2. Inte-
grating this equation over a component of U we see that (taking in account the
fact that the left element of the interval may be equal to 0,

|gt(z)| ≤ ξ(t) + 2
√
t+ |z|.

Putting yt = =gt(z) we then deduce that

− ∂

∂t
log yt ≥

2

(ξ(t) + 2
√
t+ |z|)2

.

By the law of the iterated logarithm, the right-hand side is not integrable over
[0,+∞[ , a fact that implies the lemma.
The following theorem is the fondamental estimate: it gives the derivative esti-
mates that go beyond the theorem we are proving. We wish to estimate E[|g′t(z)|a].
As we will see we will be able to approach only a related quantity which happens
to be as useful. Let us first fix some notations:
We fix ẑ = x̂+ iŷ ∈ H and if u ∈ R we set z(u) = gTu(ẑ)(ẑ)− ξ(Tu) = x(u)+ iy(u)
and

ψ(u) =
ŷ

y(u)
|g′Tu(ẑ)(ẑ)|.

Notice that y(u) = eu.

Théorème 5.3.2. Assume ŷ 6= 1 and put ν = −sign(log ŷ). Let b ∈ R and define
a,λ by

a = 2b+ νκb(1− b)/2, λ = 4b+ νκb(1− 2b)/2.

Then

F (ẑ) = ŷaE[(1 + x(0)2)b|g′T0(ẑ)(ẑ)|a] = (1 + (
x̂

ŷ
)2)ŷλ.

Proof : We consider the function

F (ẑ) = ŷaE[|g′T0(ẑ)(ẑ)|a] = E[ψ(0)a].

the strategy consists in finding a PDE satisfied by F and to solve it. We achieve
the proof in the case ŷ > 1: we run u between 0 and û = log(ŷ) and we define
Fu =< ξ(v) ; v ≤ Tu >.Then an immediate application of the chain rule and
Markov property shows that

E[ψ(0)a|Fu] = ψ(u)aF (z(u)),

i.e. the right-hand side is a martingale. Using Itô formula (taking x,y, logψ as
variables) we find that

4ay2

(x2 + y2)2
F +

2x

x2 + y2

∂F

∂x
− 2y

x2 + y2

∂F

∂y
+
κ

2

∂2F

∂x2
= 0
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and it is not difficult to check that

F̂ (x+ iy) = (1 + (
x

y
)2)byλ

is a solution of this equation. But this solution does not satisfy the initial condition
F̂ = 1 for y = 1. It follows that we get a formula for F rather than for F . Assuming
then that F is C2 the above reasonning remains true for F , and the theorem is
thus proven after admitting that F is smooth.
We now put to use this theorem to give bounds for f̂ ′t :

Théorème 5.3.3. Let b ∈ [0,1 + 4
κ
]: there is a constant c(κ,b) such that

P (| ˆf ′t(x+ iy)| ≥ δ

y
) ≤ c(κ,b)(1 + (

x

y
)2)b(

y

δ
)λθ(δ,a− λ)

with

θ(δ,s) =


δ−s if s > 0
1 + | log δ| if s = 0
1 if s < 0

Proof : We know that f̂ ′t has the same distribution as g′−t. Now if u1 = log=(g−t(x+
iy)) we can write, since

| ∂
∂u

(log |g′t|)| =
<((gt − ξ(t))2

|gt − ξ(t)|2
≤ 1

,
|fracg′−t(z)g

′
Tu

(z)| ≤ e|u−u1 |.
It follows that

P (|g′−t(z)| ≥ δ/y) ≤ C
0∑

j=[log y]

P (|g′Tj
(z)| ≥ δ/y).

Now by scaling
E[yae−ja|g′Tj

(z)|a] ≤ F (e−jz)

and the result follows by application of Tchebychev inequality.
We are now about to conclude the proof of the theorem: defineH(y,t) = f̂t(iy) ,y >
0 ,t ≥ 0.

Théorème 5.3.4. If κ 6= 8 then H extends continuously to [0,+∞[×[0,+∞[.

This theorem will follow from the next proposition, which needs some nota-
tion. Let j,k ∈ N,k < 22j and Rj,k = [2−j−1,2−j] × [k2−2j,(k + 1)2−2j]. We also
define

d(j,k) = diam(H(Rj,k)).

Proposition 5.3.1. Let b = κ+8
4κ

and a,λ as before with ν = 1. If κ 6= 8, λ > 2
and we choose 0 < σ < λ−2

max(a,λ)
. Then∑

j≥0,0≤k≤22j−1

P (d(j,k) ≥ 2−jσ) <∞.
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The proof of this proposition is rather technical and we will not give it here.
We prefer to give the main ideas behind it. Assuming that d(j,k) ∼ 2−j|f̂ ′t(i2−j)|
(the main technical part consists in showing that this is indeed the case), the last
theorem shows that

P (d(j,k) ≥ 2−jσ) ≤
{

2jσa−jλ ,a > λ
2jσλ−jλ ,a < λ

and we get the result if we can show that λ > 2. But λ is precisely maximal for
b = (κ+ 8)/4κ: its value is then (8 + κ)2/16κ which is minimal for κ = 8, where
it is equal to 2. This explains in particular why the method does not allow to
reach κ = 8.

Définition 5.3.1. A chordal SLE path is a random curve γ that generates chor-
dal SLEκ.

In particular, if γ is a SLE path then

gt(γ(t)) =
√
κBt

This value of gt has of course to be interpreted as a proper limit.

5.4 Phases for SLE.

An important remark is that (5.2.1) remains valid if z ∈ R and that the
solution is then real (and may stop to exists after time Tz as for all starting
points). The importance of this remark will be clear after we reinterpretate the
following calculation in the case z ∈ R. Put

ĝt(z) =
gt(z)−

√
κBt√

κ
:

then ĝt(γ(t)) = 0 and ĝt(z) satisfies the following SDE:

dXt =
2/κ

Xt

dt− dBt

which is Bessel equation. This remark is the key to the following theorem which
gives a description of the phase transitions of the family of SLE’s:

Théorème 5.4.1. According to the different values of κ we have the following
phases:

1. If 0 ≤ κ ≤ 4 γ is a single curve such that γ(0,+∞) ⊂ H and limt→∞ γ(t) =
∞.

2. If 4 < κ < 8 then with probability 1,
⋃

t>0Kt = H but γ([0,∞[) ∩ H 6= H.
Also,limt→∞ γ(t) = ∞.
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3. If κ ≥ 8 then γ is a space filling curve, i.e. γ[0,+∞) = H.
Proof : It starts with the

Lemme 5.4.1. For x > 0 we recall that Tx stands for the life-time of gt(x) which
is the same as the first time ĝt(z) = 0. We then have

1. If κ ≤ 4 then a.s.Tx = ∞,∀x > 0.

2. If κ > 4 then a.s. Tx <∞,∀x > 0.

3. If κ ≥ 8 then a.s. Tx < Ty,∀0 < x < y.

4. If 4 < κ < 8 then a.s. P ({Tx = Ty}) > 0,∀0 < x < y.

Proof : It is just a rephrasement of theorem(5.1.1) with a = 2/κ.
We now come back to the proof of the theorem. We will need the following
notation: if s ≥ 0,γs(t) = gs(γ(t+ s))−

√
κBs which has the same distribution as

γ. To prove 1) we notice that if γ(t) ∈ (0,+∞) then Tγ(t) <∞. Also if ∃t1 < t2
with γ(t1) = γ(t2) then for every q ∈ [t1,t2[,γ

q(0,∞) ∩ R 6= ∅ ,which contradicts
the first part of the proof.
Let us prove now that limt→∞|γ(t)| = +∞ if κ ≤ 4. Let δ ∈ (0,1/4),x > 1 and
let tδ = inf{t > 0; d(γ(t),[1,x]) ≤ δ}. Now, obviously,

gtδ(1/2)−
√
κBtδ = lim

y→∞
ω(iy,H; [

√
κBtδ ,gtδ(1/2)])

= lim
y→∞

ω(iy,Htδ ; the part of ∂Htδ between 1/2 and gtδ(tδ)) ≤ Cδ.

Now assume first that κ < 4. Then we know that

lim
t→∞

(gt(1/2)−
√
κBt) = ∞,

from which it follows first that d(γ([0,∞[),[1,x]) > 0 and then, by scaling, that

∀0 < x1 < x2,d(γ([0,∞[),[x1,x2]) > 0.

To finish the proof we now consider τ , the hitting time of the unit circle for γ
(by scaling if necessary, we may assume it is finite). For all ε > 0 there exists
0 < x1 < x2 such that with probability ≥ 1 − ε the two images of 0 under gτ

are in [
√
κBτ − x2,

√
κBτ − x1] ∪ [

√
κBτ + x1,

√
κBτ + x2]. It follows from what

we have just seen and the strong Markov property that with probability at least
1− ε,

d(gτ (γ([τ,+∞[)−
√
κBτ ,[−x2,− x1] ∪ [x1,x2]) > 0,

and finally that d(0,γ([τ,+∞[) > 0. By scaling, the property follows.
Case κ = 4: Assume 0 < y < x and consider the domain Dt whose complement
is the union of the half-line ] − ∞,y], the curve γ([0,t]) and its relexion across
the real axis. The map gt extends by Schwarz reflection to a conformal mapping
from Dt onto C\]−∞,gt(y)]. By Koebe theorem,

d(x,∂Dt) ≥
gt(x)− gt(y)

4g′t(x)
,
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and it suffices to prove that

sup
t≥0

g′t(x)

gt(x)− gt(y)
< +∞.

To this end we denote ξ(t) =
√
κBt, Yx(y)(t) = gt(x(y))− ξ(t) and

Q(t) = log(g′t(x))− log(gt(x)− gt(y)).

Then
∂

∂t
Q(t) = −2Yx(t)

2 + 2Yx(t)
−1Yy(t)

−1

which shows in particular that Q(t) is nondecreasing. We define now the function

G(s) = log(s) log(1 + s)− 1

2
log2(1 + s) +

∫ 0

−s

log(1− u)

u
:

this function is a solution of the differential equation

s(1 + s)2G′′(s) + s(1 + s)G′(s) = 1

and also happens to be bounded on ]0,+∞[. By Itô formula

Q(t)−G(
gt(x)− gt(y)

gt(y)− ξ(t)
)

is a local martingale. There thus exists a sequence (tn) of stopping times increasing
to +∞ such that

E[Q(tn)] = E[G(tn)] +Q(0)−G0.

Since G is bounded, this implies that

limn→+∞E[Q(tn] < +∞.

Using then the fact that Q is nondecreasing and the monotone convergence theo-
rem we get successively that E[suptQ(t)] < +∞ and suptQ(t) < +∞ a.s. Case
4 < κ < 8: We will say that a point z ∈ H is swallowed if Tz < ∞ but
z /∈

⋃
t<Tz

Kt. Swallowed points form an open set and lifetime is constant in
each connected component. By lemma(5.4.1) there is a positive probability that
for some x > 1,Tx = T1. In fact, by an easy scaling argument, this probability is
equal to 1 and γ(T1) is the largest real x with Tx = T1. Let ε = d(1,γ([0,T1]).Then
all points in H ∩ B(1,ε) are swallowed:this shows that the curve γ does not fill
the half-plane. Also let T be the first time that both 1, − 1 are swallowed; then
there exists a disk centered at 0 whose intersection with the half-plane is inclu-
ded in KT . Thus for every u there exists ε,t = t(ε,u) such that with probability
≥ 1 − u, B(0,ε) ∩ H ⊂ Kt. y scaling this must hold for all ε. This implies that
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d(0,H\Kt) →∞ and in particular that γ(t) →∞ as t→∞.
Case κ ≥ 8. Notice first that lemma(5.4.1) shows that every real point belongs to
the curve γ. Let us now prove the same for every point of the half-plane. First of
all there cannot be any swallowed point in this case since there cannot be any real
swallowed point from the fact that Tx < Ty if x < y. It follows that Kt = γ([0,t]).
The result will then follow if we can prove that the random variable

∆(x) = d(x+ i,γ([0,+∞[)

is identically equal to 0. To this end we change a little the notations. Writing
a = 2/κ, ht(z) = gt(

√
κz)/

√
κ, then ht satisfies the Löwner equation

ḣt(z) =
a

ht(z) +Bt

and Zt = ht +Bt satisfies the Bessel type equation

dZt =
a

Zt

dt+ dBt.

We write Zt = Xt + iYt and we consider the time-change defined by

t =

∫ σ(t)

0

ds

x2
s + Y s

2

,

which really means that time becomes a function of Y . If then At is any process
linked with the problem we put Ãt = Aσ(t). Suppose now that the curve does
not fill the half-plane. Then by scaling we may assume that there exists x ∈
R,∆(x) 6= 0 and T (x + i) = +∞ by the above discussion. By Koebe theorem,
∆(x) is comparable to exp−D(x) where

D(x) = lim
t→∞

ln
|h′t(x+ i)|
=(ht(x+ i))

.

Put

Dt(z) = ln
h′t(z)

=(ht(z)
.

An easy computation shows that

∂t(ln |h′t)| = a
Y 2

t −X2
t

(X2
t + Y 2

t )2

while

∂t(ln=(ht)) = −a 1

X2
t + Y 2

t

.

Finally

∂t(Dt) =
2aY 2

t

(X2
t + Y 2

t )2
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and thus

D(x) = 2a

∫ +∞

0

Y 2
t

(X2
t + Y 2

t )2
dt.

Let Dt(x) be the integral from 0 to t and putting Kt = ln(Xt/Yt), we see with
the help of Itô’s formula, that

dC̃t = [2a− 1

2
− 1

2
e−2C̃t ]dt+

√
1 + e−2C̃tdB̃t

and
˙̃Dt =

2a

1 + e−2C̃t
⇒ D(x) =

∫ ∞

0

2a

1 + e−2C̃t
dt.

The fact that κ ≥ 8 corresponds to the fact that a ≤ 1/4, in which case the drift
term is negative. This last fact implies that whatever large is T > 0 there exists
t > T such that C̃s ≤ 0,s ∈ [t,t + 1]. But this implies that D(x) = +∞ and the
proof is complete.

5.5 Transience

Théorème 5.5.1. Let κ 6= 8 and γ be the generating curve. Then

lim
t→+∞

|γ(t)| = +∞.

Proof : We have already seen this property for κ < 8. We assume κ > 8: it
suffices to show, using some 0,1 law that there exists a positive t such that with
positive probability 0 6= Ωt. Arguing by contadiction, we assume that for all t > 0,
a.s. 0 ∈ Ωt. By Markov property and the fact that γ fills H it then follows that
the same is true for all z ∈ H and consequently that ∂Kt has positive area. But
this contradicts the

Théorème 5.5.2. For every κ 6= 4 and every t > 0 the mapping ft is Hölder
continuous on H.

It is well known that this implies that ∂Ωt has dimension < 2 and in particular
0-area.
Proof : Put

zj,n = (j + i)2−n, 0 ≤ n < +∞, − 2n < j < 2n,

and let us try to estimate |f̂t(zj,n)| : we use to this end theorem(5.3.3) with δ =
2−nh to get

P [|f̂t(zj,n)| ≥ 2n(1−h) ≤ C(κ,b)(1 + 22n)b2−n(1−h)λθ(2−nh,a− λ).

Hence ∑
n,j

P [|f̂t(zj,n)| ≥ 2n(1−h) <∞
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provided that
1 + 2b− (1− h)λ < 0 and a− λ ≤ 0

or that
1 + 2b− λ+ ah < 0 and a− λ ≥ 0.

If 0 < κ ≤ 12 and b = 1/4+1/κ, h < (κ−4)2/((κ+4)(κ+12)) the first condition
is satisfied. For κ > 12, b = 4/κ, h < 1/2− 4/κ the second condition is satisfied.
An application of Borel-Cantelli lemma and of Koebe theorem then shows the
theorem.

5.6 dimension of SLE paths

In this section we will try to convince the reader that the box-dimension of
SLEkappa−paths is 1+ κ

8
if κ < 8. This will follow from the following theorem, in

which the notations are those of the last paragraph:

Théorème 5.6.1. P (∆(x) ≤ ε) ∼ ε1−κ
8 if κ < 8.

Proof : We use the notations of section 5.4. To estimate this probability one
computes explicitely the characteristic function

E
[
eibD(x)

]
.

To do so we putKt = Xt/Yt: we performed a change of variable in the last section,
leading to K̃t. One here perform a second one, namely σ̂′(t) = (K̃2

σ̂(t) + 1)−1,
leading to

dK̂t =
2aK̂t

1 + K̂2
t

dt+ dB̂t,dDt(x) =
2aK̂t

(1 + K̂2
t )2

.

We now seek for a function ψ such that ψ(K̂t)e
ibDt(x) is a local martingale. An

application of Itô’s formula shows that the function ψ must be solution of the
ODE

1

2
y′′ +

2ax

1 + x2
y′ +

ib

(1 + x2)2
y = 0.

To solve this equation we change the variable and look for a solution of the form

H(
x2

x2 + 1
)

and it happens that H must be a solution of the hypergeometric equation

u(1− u)H ′′(u) + [
1

2
+ 2(a− 1)u]H ′(u) +

1

2
abiH(u) = 0.

There exists a solution to this equation which is bounded and such that H(1) = 1:

H(u) = cF (α+,α−,
1

2
,u)
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where

F (α,β,γ,z) = 1 +
∞∑

k=1

(α)k(β)k

(γ)kk!
zk

((α)k = α(α+ 1)...(α+ k − 1)) and

c =
Γ(a+

√
(a− 1/2)2 − iab)Γ(a−

√
(a− 1/2)2 − iab)

Γ(1/2)Γ(2a− 1/2)
.

The idea is now tu use the optional stopping theorem for the martingale

Mt = ψ(Yte
ibDt)

in the form
E[M0] = E[M∞]

. Using the fact that K̂t → +∞ a.s. and limx→∞ ψ(x) = 1 we get

E[eibD(x)] = H(
x2

x2 + 1
).

Using properties of the function Γ we get that

E[eibD(0)] =
c

1− κ
8
− ib

+ v(b)

where v is analytic in {|z| < 1−κ/8+ε} for some ε > 0. The proof of the theorem
will be achieved (for x = 0, the general case being similar) by application of the
following analysis lemma, whose proof is left to the reader:

Lemme 5.6.1. Suppose X is a random variable with characteristic function Φ
satisfying for some u,λ,ε > 0

Φ(t) =
uλ

λ− it
+ v(t),

where v is analytic on {|z| < λ+ ε}, then

P [X ≥ x] = ue−λx + o(e−λx).

5.7 Locality for SLE6

In this section we consider Kt,t ≥ 0 a chordal SLEκ.For convenience we will
write Wt =

√
κBt. We also consider a hull A which is at positive distance from

0. Let Φ be the normalized conformal mapping from H\A onto H. Let T be the
first time that Kt intersects A. For t ≤ T we can define K̃t = Φ(Kt). The goal of
this section is to compare the growth of Kt and K̃t.

68



Let Φt be the normalized Riemmann mapping from H\gt(A) onto H where gt is
the Löwner process describing Kt (notice that Φ = Φ0). Then, if g̃t is the Löwner
process describing K̃t, we have

Φt ◦ gt = g̃t ◦ Φ0.

Write W̃t = Φt(Wt) so that the differential equation satisfied by g̃t reads

∂tg̃t(z) =
2∂t(hcap(K̃t))

g̃t(z)− W̃t

.

It remains to understand the evolution of hcap(K̃t)) and W̃t.
For the first quantity we write, for 0 < s < t, gt = gs,t◦gs and parallely g̃t = g̃s,t◦g̃s.
Then we can write hcap(K̃t) = hcap(K̃s) + hcap(K̃s,t) where K̃s,t = g̃s(K̃t) and

lim
t→s

hcap(K̃s,t)

t− s
= Φ′2

s (Ws)

because of the scaling property of hcap.
In order to evaluate the second quantity we start with the identity

Φt = g̃t ◦ Φ ◦ g−1
t

that we differentiate wrt t. Using the inverse Löwner equation

∂t(g
−1
t (z)) = −2

(g−1
t )′(z)

z −Wt

from which it is easy to deduce that

∂tΦt(z) =
2Φ′

t(Wt)
2

Φt(z)− W̃t

− 2Φ′
t(z)

z −Wt

.

By Schwarz reflection the time derivative of Φt(z) exists for z = Wt and we must
have

(∂tΦt)(Wt) = lim
z→Wt

[
2Φ′

t(Wt)
2

Φt(z)− W̃t

− 2Φ′
t(z)

z −Wt

] = −3Φ′′
t (Wt).

We finally make use of Itô’s formula which gives:

dW̃t = (∂tΦt)(Wt)dt+ Φ′
t(Wt)dWt +

κ

2
Φ′′

t (Wt)dt

hence,

dW̃t = Φ′
t(Wt)dWt + [

κ

2
− 3]Φ′′

t (Wt)dt.

We can now state the main result of this section:

Théorème 5.7.1. If κ = 6 then, modulo time-change, the process K̃t−Φ(0),t < T
has the same law as Kt.
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Proof : The time-change is of course hcap(Kt) =
∫ t

0
Φ′

s(Ws)
2ds =< W̃ >t. Hence

if we define W̃t = Ŵhcap(Kt) then Ŵ − Ŵ0 and W have the same law. Moreover,
if we define ĝ by g̃t = ĝhcap(Kt) we have

∂tĝt(z) =
2

ĝt(z)− Ŵt

.

5.8 Restriction Property for SLE8/3

In this section we keep the same notations as in the preceeding one; we would
like to understand the evolution of Φ′

t(Wt). To this end we differentiate the equa-
tion (5.7):

∂tΦ
′
t(z) = −2Φ′

t(Wt)
2Φ′

t(z)

(Φt(z)− W̃t)2
+

2Φ′
t(z)

(z −Wt)2
− 2Φ′′

t (z)

z −Wt

.

Taking the limit as z → Wt we obtain:

∂tΦ
′
t(Wt) =

Φ′′
t (Wt)

2

2Φ′
t(Wt)

− 4

3
Φ′′′

t (Wt).

If we then apply Itô’s formula, we get

d[Φ′
t(Wt)] = Φ′′

t (Wt)dWt +

[
Φ′′

t (Wt)
2

2Φ′
t(Wt)

+ (κ/2− 4/3)Φ′′′
t (Wt)

]
dt.

From now on in this section we specialize κ = 8/3. Put Xt = Φ′
t(Wt). We look

for an index α such that Xα
t is a local martingale (in fact a bounded martingale

in this case since Xt ≤ 1). Applying Itô’s formula we see that α = 5/8 does the
job and that

d
[
Φ′

t(Wt)
5/8

]
=

5Φ′′
t (Wt)

8Φ′
t(Wt)3/8

dWt.

We can now state

Proposition 5.8.1. For chordal SLE8/3 and any hull A not containing 0,

P (∀t ≥ 0,Kt ∩ A = ∅) = Φ′
A(0)5/8.

Proof : Let us denote by Mt the local martingale Φ′
t(Wt)

5/8,t ≤ T . First of all
notice that this is actually a martingale bounded by 1. Indeed, if we denote by
u,v the real and imaginary parts of Φt, then by parity ∂u/∂y is equal to 0 on
the real line while ∂v/∂y ∈ [0,1] also on the real line since one easily sees by
maximum principle that v(z) ≤ y on H. It is not difficult to see that if T = ∞
then, if τR stands for the hitting time of the circle centered at 0 with radius R,

lim
R→∞

Φ′
τR

(WτR
) = 1.
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On the other hand, if T < +∞ then limt→T Φ′
t(Wt) = 0. It follows that

P (T = ∞) = E[MT ] = E[M0] = Φ′
A(0)5/8.

We can now state the theorem about the restriction property:

Théorème 5.8.1. Suppose that A0 is a hull; tyhen the conditionnal law of K∞ =
∪t>0Kt given K∞∩A0 = ∅ is identical to the law of ΨA0(K∞), where ΨA is a ΦA

translated so that ΨA(0) = 0.

Proof : The law of K∞ is characterized by the knowledge of P (K∞ ∩A = ∅) for
all hulls A not containing 0. Let A be such a hull:

P (ΨA0(K∞) ∩ A = ∅|K∞ ∩ A0 = ∅)

=
P (K∞ ∩H\Ψ−1

A0
◦Ψ−1

A (H) = ∅)
P (K∞ ∩ A0 = ∅)

=

(
Ψ′

A0
(0)Ψ′

A(0)

Ψ′
A0

(0)

)5/8

= P (K∞ ∩ A = ∅).

5.9 The Mandelbrot conjecture: outline of a proof

The Brownian frontier is the boundary of the unbounded component of C\B[0,1],
where Bt is a planar Brownian motion. Mandelbrot conjectured that this set has
Hausdorff dimension 4/3. This conjectured has been proved by Lawler, Schramm,
Werner using SLE. More precisely they proved it by connecting it with SLE8/3

whose dimension is precisely 4/3 by what we have seen preceedingly.
The proof undergoes the notion of Brownian excursion from 0 to ∞ in H. This
process can be seen as a Brownian motion conditionned to stay in H. It is defined
as W = X + iY where X,Y are independent real processes, X being a standard
Brownian motion, and Y being a 3−dimensional Bessel process. If Tr denotes the
first passage of W at height r then the law of W ([Tr,TR])−W (Tr) is the law of a
Brownian motion started at ir stopped when it hits R + iR and conditionned to
stay in the upper-half-plane up to this time. Note that this event has probability
r/R.

Théorème 5.9.1. Suppose A is a hull not at positive distance from 0 and let W
be a Brownian excursion from 0 to ∞ in H. Then

P [W ([0,+∞[) ∩ A = ∅] = Φ′
A(0).

Proof : Let W,Z be respectively an Brownian excursion and a planar Brownian
motion starting at z ∈ Φ−1(H). Since =(Φ(z))−=(z) → 0 as =(z) →∞ we may
write

P [Φ(Z)([0,TR(Z)]) ⊂ H) ∼ P [Φ(Z)([0,TR(Φ(Z))]) ⊂ H).

71



But by conformal invariance of Brownian motion the right-hand side is equal to
=(Φ(z))/R so that

P [W ([0,TR(W )]) ⊂ Φ−1(H)) =
P [Z([0,TR(Z)]) ⊂ Φ−1(H)]

P [Z([0,TR(Z)]) ⊂ H)]
=
=(Φ(z))

=(z)
+ o(1)

as R→∞. Letting z → 0 we then get the result, since Φ(z) = zΦ′(0)+o(|z|) at 0.

Théorème 5.9.2. Let F8 denotes the ”‘filling”’ of 8 independent chordal SLE8/3

and F5 the filling of 5 independent Brownian excursions. The F8 and F5 have the
same law.

Notice that this theorem proves Mandelbrot conjecture.
Proof : The law of both processes is characterized by the probabilities P [F ∩A =
∅] but in both cases they are equal to Φ′

A(0)5.
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