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On Univalent Functions, Bloch Functions and VMOA

Ch. Pommerenke
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1. Introduction

1.1. Let C be a (closed) Jordan curve in € and let C(w,, w,) denote the smaller arc
of C between the points w, and w, on C. We call C asymptotically conformal if

max w, —w|+|w—w,| R

1 as |w,--w,|—0. 1.1
weC(wi,w2) |W2—W1| | 2 i (1.1)

The curve C is called quasi-conformal if this quantity is bounded ; this holds if and
only if C is the image of a circle under a quasi-conformal mapping of C ([ 11, p. 105]
or [ 18, Theorem 9.14]).

Let # denote the space of functions f analytic in the unit disk ID for which
(1—1z|*)|f"(z)| is bounded (“Bloch functions” [17]) and let 8, denote the subspace
of functions with

A=z (2-0  (z|-1-0). (1.2)

Theorem 1. Let g be analytic and univalent in ID and let C=0g(ID) be a Jordan
curve. Then the following three conditions are equivalent :

1) logg'e 8,;
[ 9@ -90 -
i1) (—Z—_——Cm—»l ({£l=1-0)

uniformly in zeD,|z—{| S A1 —|{]) for each A;
i) C is asymptotically conformal.

Problems related, in particular, to ii) have be extensively studied, mostly as a
local problem. We mention only the papers of Visser [26] and Ostrowski [15] and
the survey arcticles of Gattegno and Ostrowski [7,8]; see also [16, Satz 3.15]. We
apply the method of variable domains to prove iii)=>1). This method was used in
this context by Lelong-Ferrand [6]; see also [22].

We discuss the existence of a tangent and related problems in Section 3. A
characterization of asymptotically conformal curves in terms of quasiconformal
mappings will be given in [2].
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1.2. We introduce now a geometric condition which is stronger than (1.1). Let C be
a rectifiable Jordan curve and let [(w , w,) denote the length of the shorter arc of C
between w, and w,. We call C asymptotically smooth if

Iw,,w
,—v(;—z—l:vzl—)lal as |w,—w,|—=0, w,,w,eC, (1.3)
and we call C quasi-smooth if this quantity is bounded on C. Quasi-smooth curves
were first studied by Lavrent’ev [10]; for further applications of this condition see
for instance [24,25].

Let BMOA (“bounded mean oscillation” [9]) denote the space of functions
feH? for which

1-1g?
Iz

1
1fel3= 5 a{DIf(Z)ﬂ”(C)I2 ldz| (1.4)

is bounded in {eID where we have set

()= f (;{—é) /@) (seD, (D). (L5)

Let VMOA (“vanishing mean oscillation” [20]) denote the subspace of functions
with

1fl,—0 as [{|-1-0. (1.6)

Fefferman and Stein [5] proved that BMOA is the dual space of H', and Neri
[14] proved that H' is the dual space of VMOA. These two results are equivalent
by Taylor’s [21] theory of conjugate norms for spaces of analytic functions
because VMOA is the closure of the polynomials in the BMOA-norm [20].

Theorem 2. Let g be analytic and univalent in ID and let C=0g(ID) be a Jordan
curve. Then

logg'e VMOA (1.7)

if and only if C is asymptotically smooth.

A well-known theorem of Lindelof [18, p. 295] states that argg’(z) is
continuous in D if and only if C is smooth, that is C has a continuously turning
tangent. Our Theorem 2 is a generalization because an analytic function whose
imaginary part is continuous in D belongs to VMOA.

Since (1—[{P)If"OI=IfOI=Zf, by (1.5), it follows that BMOACZ# and
VMOA C4,. This corresponds to the fact that a quasi-smooth curve is quasi-
conformal and an asymptotically smooth curve is asymptotically conformal.

Corollary 1. We consider representations of the form

f=alogg (aeC, a=+0),
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where g is a univalent function and C =0g(ID) is a Jordan curve with the property
specified below. Then

a) fe# < C is quasi-conformal,

b) fe%, <C is asymptotically conformal,

c) feBMOA «C is quasi-smooth,

d) feVMOA<C is asymptotically smooth

where < holds for all a while = holds for sufficiently large a.

Relation a) is well-known (for details see [19]), while c¢) was proved in [19]. In a
recent letter, Professor Coifman and Rochberg pointed out to me that implication
“<="1n ¢) is a consequence of results of Lavrent’ev [10] on conformal mapping and
results of Coifman and Fefferman [4] on the Muckenhoupt condition. Finally b)
follows from a) and Theorem 1, and d) follows from c) and Theorem 2.

I want to thank Professor Warschawski and the referee for their kind advice and for pointing out
several mistakes in the first version of this paper.

2. Proof of Theorem 1

i)=1i). Let A=2, |{]=0<1 and ze D, |z—{| £ A(1 —[{]). It follows from i) and (1.2)
that, for 0 <¢ <1, there exists g, =g,(¢, 4) <1 such that
/ z PA
g'(2) i it
L

AR ’ <eglogl/|1—
70| = | g Y| =eloe / ( )

for g, <@ <1. With s=(z—{)/(1 —{z), we deduce that

z—(
1-{z

g'(t)

|10g

g'(z) g'(z) 1
log 2 1< ——
lg’(@) o8 g'(o‘ = (1= sy

Since |dz/ds|=|1—Cz|?/(1 —0?*)<A*(1—0?) we obtain by integration that, if
QO<Q<19

9(z)—g(0) 1'<12(1—92)'j‘( 1 —l)da

—ll <exp

(z—0g'(0) 2= o \(I—o)
_ A1 —-_Qz) (1 ) 3 1) < 24%¢
[1—{z| (I —¢)ls| T 1—¢

for ze D, |z—{| < A(1 — o). Hence ii) holds.

ii)=iii). Given w;=g(z;) (j=1,2) with |z;/=1, we determine (e ID such that
|z;— ] =2(1 —{]). It follows from ii) that, uniformly in |z—{] =2(1—|C]),

g(2)=g)+@z-0g' Ol +o(1) as [{[-1-0.

If we C(w,,w,) then z=g ™ '(w) lies on 0D between z, and z,. Hence we obtain that

lw—w,|=lg'(Ollz~zl +o(z,—z,)  (=12).
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It follows that, for we C(w,,w,),
Wy —wl+w—w,| |z, —z|+]z—z;|+0(lz; —z,))

= -1
lw, —w,| |z, —z4|+0(z, —24])

as |{|—1—0, hence as |w, —w,|—0. Thus iii) holds.

iii)=>1). Let iii) be satisfied. We set {=ge'® (0<p<1) and ¢(s, {)=e" (s +0)/
(1+0s). We prove below that, for each r< 1, there exists R(r)<1 with

g"(o(r,0)) 2
(1 =lo(r, Q1) [ F0r.0) =K,1-r%)

for R(r)<¢ <1 where the constant K, is independent of r. This implies

g'(2)
g'(z)
and it follows that 1) holds.

Suppose that (2.1) is false. Then, for each 4> 0, there exists r <1 and a sequence
(¢,) such that

(2.1)

<K,1-r?* for Rtr <zl <1

1— 2
(1= lzP) R S

g"(e(r,
g'(o(r,(, ))

We have d({)=dist(g({),C)—0 as |[{|>1—0. We may assume, after taking a
subsequence if necessary, that nd({,)—0 as n— occ. We define C, as the minimal arc
of C with {weC:lw—g({,)=nd(,)}CC,. Then the endpoints w, and w, of C,
satisfy |w,—w;,| =2nd({,)—0 as n—oo. By (1.1) we may therefore assume that

>l (n=23,..). (2.2)

_ _ i
L ol W"|<1+;F. 2.3)

weCn Iw;l—wnl

We set o, =arg(w, —w,) and consider the transformations

t=y,w)=e "(w—g()yd(,) (n=12.). (2.4)
The definition of w, and w, shows that

w,w,)=a,+ib,, p,(w)=—a,+ib,(b,>0), a;+b;=n’ (2.5)
and furthermore together with (2.3) that

w(C\C)C{lt|zn}, w(C,)C{lImt—b,|<2a,n"?}. (2.6)

Since dist(0,y,(C))=1 we see that b,—2a,n"?<1<b,+2a,n"%. Hence we easily
obtain from (2.5) that, for n=2,

<a,=<n, 1—g§bn§1+g. 2.7
n n

NS

We apply now the Carathéodory kernel theorem to the univalent functions

g(o(s, ) —g(C,) '

9.8 =v,(9(e(s,(,) = Fd(D)

(2.8)
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It follows from (2.6), (2.7), and (2.5) that {teC : Imt < 1} is the kernel of the domain
sequence g,(ID) with respect to ¢,(0)=0. Taking again a subsequence we may
assume that f=Ilimargg/(0) exists. We conclude that, with b=ie',

2ibs
1—bs

g.(8)— — as n—oo locally uniformly in ID. (2.9

Since C is a quasi-conformal curve, the normalized function g,(s)/g,(0) has, in
the terminology of [16, Definition 3.2], uniformly well-accessible boundary
behaviour (see [16, Lemma 3.3] or [16, Satz 3.8]). It follows from [16, Folgerung
3.6] that g,(s)/g,(0) is uniformly bounded in 0 <s<1. Thus (2.9) shows that

' | <k, (2.10)

s 1—-bs| —

0=<s<1

for some constant K,. Hence we obtain from (2.8) and (2.9) that, as n— oo,

I_ g”(cp,C|IZQ,,+ )||2+2b[
g(tp(r N 1+o,r g,.r)l 1+r ~ 1—br|

This quantity is less than 442K, by (2.10), which contradicts (2.2) for large A.

3. Tangents of Asymptotically Conformal Curves

Let g be analytic and univalent in ID and let g(ID) be bounded by the Jordan curve
C. The next result is closely related to a result of Warschawski [23, Satz I1] and
also to Ostrowski’s “I. Faltensatz” [15].

Corollary 2. If C is asymptotically conformal then, as o—1—0,

g(z)— g(e™®) N g(e'*)—glee™)
z—e" e(1—p)

~g'(ge™) 3.1)
uniformly in 3€[0,2n] and, for each 2> 1, uniformly in

zelD, A7 (1-@)=|z—€®|= A1 ~0). (3.2)
Proof. It follows from Theorem lii) that, with { = ge®®,

9(z) —g(0) gle ’9) g9(©)
z—( —(

uniformly in 9 and in ze D, |z—¢€"®| £ A(1 — ¢). We conclude that

g(z)—g(e™) _ g(e?)— g(C)(

z—e® | ed—(

=(1+o(1) (e—~1-0)

i (1))

Hence the first relation (3.1) holds uniformly in z satisfying (3.2). The second
relation (3.1) follows at once from Theorem 1ii).
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Corollary 3. Let C be asymptotically conformal and let {edD. If the limit

: g9(z)—g({) . g(z2)—g({)
\ AN AL lim>¥———=>2 33
lim arg -, or lim p— (3.3)
exists with z restricted to some arcCID ending at {, then it also exists as an
unrestricted limit.

Proof. A first application of (3.1) shows that the radial limit exists, and a second
application of (3.1) then shows that the unrestricted limit exists.

Let T be the set of points on the Jordan curve C where C has a tangent. A
theorem of Lindelof [18, p.302] states that, for |{|=1,

- 9(z)—g(@) .
z_)lzl;gleﬁarg—z_—c——emsts < g(eT. (3.4)
There are quasi-conformal curves with T=@ [18, p. 304]. We call a set uncountably
dense on C if every arc of C contains uncountably many points of that set.

Corollary 4. If C is asymptotically conformal then T is uncountably dense on C.
There exist asymptotically conformal curves such that T has zero linear Hausdorff
measure.

Proof. a) The function f=logg’ belongs to %, by Theorem 1. By the method used
to prove [13, Theorem 3] together with [1, Theorems 4.1, 4.2] (or [18, Theorem
10.7] and [18, Theorem 9.5]), it can be shown that Imf=argg’ has a radial limit
on an uncountably dense subset of dID. Hence the first assertion follows from
Corollary 2 and from (3.4).

b) We sketch another, geometric, proof of the first assertion. Let G =¢(ID) and
let p(w) (we G) be a point on C of minimal distance from w. Then the disk of radius
|@(w)—w| around w lies in G and touches C at @(w). It can be deduced from (1.1)
that @(w)e T. If C is not a circle we can find, given ze G, a small line segment S with
endpoint z that does not lie on the normal to C at ¢(z). Then ¢ is one-to-one on S.
It follows that T is uncountably dense on C because |p(w)—w|—0 as w—C.

c) We construct now examples to prove the second assertion. Let b, »0(k— o0)
but ) |b,|* = 0. The Hadamard gap series

fl2)= i bz¥ (zeDD)

belongs to %4, because b, -0 [17]. According to Corollary 1b) there is a univalent
function g with f=alogg’ such that C is asymptotically conformal.

Since Y |b|*= o0 it follows from Zygmund’s gap series theorem [26, p.203]
that logg’ has a finite radial limit at almost no point of ¢ID. Hence the McMillan
twist point theorem ([12, Theorem 1] or [18, Theorem 10.15]) shows that g~ (7))
has zero measure, and it follows from another result of McMillan [ 12, Theorem 2]
that T has zero linear Hausdorff measure.
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4. Proof of Theorem 2

4.1. The following lemma is proved at once by integration by parts.

Lemma 1. Let p, @, y be real absolutely continuous functions in [a,b]. If @(t) Zy(t)
and p(t)=0, p'(t)<0 for a<t=<bh, then

Fo'(typ(vydt < [/ (6)p(t)de + (w(a) — p(a)p(a).

We turn now to the proof of Theorem 2. Let f=logg’ where g is univalent in ID
and C = 0g(ID) is asymptotically smooth. Then fe BMOA C H! by Corollary 1. Let
{=0e®(0< o<1). We set

o(t)=Re[f(e"* ")~ f(()] =loglg'(e"**")/g' (0l (4.1)
p(t)= 21—71_ '?lit_jeg'f (the Poisson kernel). 4.2)

Since e =1+ x+x2/2 for x=0 and e*=1+x for x <0, we see that

;[1 v(t)? p(t)dt, (4.3)

Do =

j e"Op(t)de = f (1+v(t))p(t)dt +

where 4 ={te[ —n, 7] :v(t)=0}. Since

T

[ v(0)p(e)dt =

-Tn

by (4.1) and the Poisson integral formula, we conclude from (4.3) by the Schwarz
inequality that

n 2 2
(_f Iv(t)lp(t)dt) =(2 /{ v(t)p(t)dt) <4 iv(t)zp(t)dt

§8< j eV p(t)dt — 1). 4.4)

-n

We proceed now to estimate the last integral. Since C is, in particular,
asymptotically conformal, we have fe #, by Theorem 11). Hence there exists r <1
such that

1—-9*

llogg'({)—logg'({¥)| = f(é)dZ —log - (4.5)
for (*=p*e"®, r<o*<o. If /L>7r/(1 —r) we set, for o >1—m/4,
=il—g), (= (1 — (l;r)t> ¢* (@<t<m). (4.6)

Since r<|{,| <o we obtain from (4.5) that, for a <t =m,

L—\2, (A=)
S e R e @)
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Let K,,K,, ... denote constants depending only on f. We deduce from (1.1)
that, for O0<t<m,

S+t

g lg'(€")ldt <K lg(e"®* ") — g(e™)| <K ,tlg'C )l ;

the last inequality is proved as in [19, Lemma 2b] using (1.1) and [18, Corollary
10.3]. Hence we conclude from (4.1) and (4.7) that

t
Je'Pdi<Ky(1—0) V7  (a=t=m),

and it follows from Lemma 1 that
T 3 n 1/2 3/2

K,
feOp(e)dt <3K, | iy (T gy POAL+ (———%,—2 p().

a

Let ¢>0 be given. Since p(t)<n(1 — @)t~ ? and since a=A(1 — @), we deduce that
fe'p(t)dt <K, (1—0)'?a " 2=K, A" 2 < (4.3)

if A=A(¢) is chosen sufficiently large.
Furthermore it follows from (4.1) and (1.3) that

3+t it)
v(t)d — |g (e I 1
56 = l7ol"<wo

if 0<t<ty(e). Thus we obtain from Theorem 1 ii) that

Clge ) —g(e)

ie”(”dr <(1+2)t+e(l—p) O=t=w)
if 9>9,(¢), and it follows from Lemma 1 and from (4.2) that
z e"Dp(t)dt <(1 + 2¢) Z p(t)dt +e(1 — 9)p(0) <1 + 3e.
Adding this inequality to (4.8) we see that
_}t e"Opt)dt <1+8c  (oo(e)<o<1)

because the integral over [ — 7, 0] can be estimated in an analogous way. Hence we
obtain from (4.4) that

T 0lp(0de <815 (@) <o<1). “9)

Since p(t)=[2n(1 —g)] ! for |t| £1—p, it follows from (4.1) that
1 1=

2(1-9) —(1f )

Hence Re f(e") belongs to VMO, and since fe H! we conclude that fe VMOA.

|IRe f(e'**)—Re f()\dt <87r|/—
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4.2. For the proof of the converse we need the following lemma which is related to
results of John and Nirenberg [9] and of Cima and Schober [3] on BMOA.

Lemma 2. If fe VMOA and { =ge", then

! S it+idy _ = 1 —
Ao ) 1Pl =[O1 =110 (-1-0). (4.10)

Proof. Let || - ||, denote the H?*-norm and ||- ||, the BMOA-norm. It was shown in
[19, Lemma 1] that

=Ko, llv@ll,, (4.11)

2

g @'(s)y(s)ds

where K is an absolute constant.
Let 0 <e <1/(2K). Since fe VMOA there exists r <1 [20, Theorem 1] such that
I f(z)—f(rz)|| , <e. We write

f=q+h, q@)=f2)—f(rz), hz)=f(rz) (4.12)

and use the notation (1.5). Since ||q,| =<l ql, <& for |{|<1 it foliows from (4.11)

that
le®s =11, = Kllqel , lle® ]l , <eK([[e* — 1], +1).

Since ¢K < 1/2 we see that ||e%— 1|, <2¢K for |{| <1 and therefore from (4.12) that
le’s=1]l, = ll(e® — 1)e" +(e" — 1),

|«

<2eK exp (max IhC(z)I) + e —1],.
lz|=1

Since h is analytic in ID we deduce from (1.5) that h(z) remains uniformly
bounded in |z|£1 and that ||k, ,—0 as |{|—>1—0. Hence

1 _ 1-1{?

[ e/ @ s _ )2 dz|=|le’s— 1|20

27_[6];')' ' IZ_C|2| I ” 2
as 90— 1—0, and the assertion (4.10) of the lemma easily follows.

We can now conclude the proof of Theorem 2. Let f=logg'e VMOA. For
given w,,w,eC we choose {=ge'® such that g~ '(w, ,)=€®** where a=1—p.
Then it follows from Lemma 2 that

a

w,wy)= | |g'(eMdt <201 +¢)lg'(0)|

for 9,(e) <|{] < 1. Since VMOA C %, we obtain from Theorem 1 ii) that
lw, —w, | =@+ —i®=0 4 o(le’— g])||g'()|
>20(1—¢)lg" (Ol

for 9>g,(¢)>0,(e). Hence (1.3) holds because |w, —w,|—>0 is equivalent to
0—1-0, and C is therefore asymptotically smooth.
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