CHARACTERIZATION OF SUBSETS OF RECTIFIABLE CURVES IN \mathbb{R}^n

KATE OKIKIOLU

1. Introduction

By a cube Q in \mathbb{R}^n we mean a closed cube with sides parallel to the axes. Let l_Q denote the sidelength of Q and for $\lambda > 0$ let λQ denote the cube concentric to Q with sidelength $l_{\lambda Q} = \lambda l_Q$. We say Q is a dyadic cube if

$$Q = \prod_{j=1}^{n} [m_j 2^{-k}, (m_j+1) 2^{-k}], \qquad k \in \mathbb{Z}, m_j \in \mathbb{Z}.$$

Let \mathscr{D} denote the set of all dyadic cubes. Given a set $\Gamma \subseteq \mathbb{R}^n$ define the cylinder radius of Γ in Q, $r_Q = r_Q(\Gamma)$, to be the minimum radius of a cylinder containing $\Gamma \cap Q$, that is, the maximal distance from points of $\Gamma \cap Q$ to a best approximating line. Write l(E) for the one-dimensional (outer) Hausdorff measure of a set E. In this paper we prove the following.

THEOREM. If Γ is a connected set in \mathbb{R}^n then

$$\sum_{Q \in \mathcal{D}} \frac{r_{3Q}^2}{l_Q} \leq Cl(\Gamma),$$

where C = C(n).

The special case of n = 2 was proved by Peter Jones using complex analysis (see [3], for applications see [1, 2]) and the converse of the theorem is included in the following result (see [3]).

If $\Delta \subseteq \mathbb{R}^n$ then there exists a connected set Γ such that $\Delta \subseteq \Gamma$ and

$$l(\Gamma) \leq (1+\delta)$$
 diameter $(\Delta) + C \sum_{Q \in \mathcal{D}} \frac{r_{3Q}^2(\Delta)}{l_Q}$

for $\delta > 0$, where $C = C(n, \delta)$.

It is well known that if Γ is a connected set in \mathbb{R}^n then there is a tour of length $2l(\Gamma)$ that hits every point of Γ . So if Δ is any set in \mathbb{R}^n , the minimal length of a tour that hits every point of Δ is comparable to the minimal value of $l(\Gamma)$, where the minimum is taken over connected sets Γ containing Δ . By the results stated above, this is comparable to the quantity

diameter (
$$\Delta$$
) + $\sum_{Q \in \mathscr{D}} \frac{r_{3Q}^2(\Delta)}{l_Q}$.

Received 14 September 1990; revised 15 April 1991.

¹⁹⁹¹ Mathematics Subject Classification 28A.

J. London Math. Soc. (2) 46 (1992) 336-348

I would like to thank John Garnett for a lot of very helpful advice.

Notation and outline of the proof of the theorem

We write

$$\begin{split} [x, y] &= \{\lambda x + (1 - \lambda) y : 0 \leq \lambda \leq 1\}, & x, y \in \mathbb{R}^n, \\ B_{\lambda}(x) &= \{y : |x - y| \leq \lambda\}, & x \in \mathbb{R}^n, \lambda \in \mathbb{R}, \\ E + x &= \{e + x : e \in E\}, & x \in \mathbb{R}^n, E \subseteq \mathbb{R}^n, \\ x \cdot E &= \{x \cdot e : e \in E\}, & x \in \mathbb{R}^n, E \subseteq \mathbb{R}^n, \\ x_j \text{ for the } j \text{th coordinate of } x, & x \in \mathbb{R}^n, \\ E_j &= \{e_j : e \in E\}, & E \subseteq \mathbb{R}^n, \\ \partial E \text{ for the boundary of } E, & E \subseteq \mathbb{R}^n. \end{split}$$

For $k \in \mathbb{Z}$, \mathcal{D}_k is the set of dyadic cubes of sidelength 2^{-k} .

Let Q^0 be a cube in \mathbb{R}^n . Choose a new origin and coordinate axes in which $Q^0 = [0, 1]^n$. We define the *dyadic decomposition of* Q^0 to be the set of dyadic cubes (with respect to the new coordinates) contained in Q^0 and we denote this set by $\langle Q^0 \rangle$. We define the *k*th generation of Q^0 to be set of cubes in \mathcal{D}_k contained in Q^0 and we denote this set by $\langle Q^0 \rangle_k$.

Let $\lambda > 1$. In Lemma 1 part (b) we show how to associate to a cube Q^0 a finite number of larger cubes containing Q^0 such that if Q is a cube in the *k*th generation of Q^0 , then λQ is contained in some cube Q^* in the *k*th generation of one of these larger cubes. Furthermore, the number of cubes Q in the dyadic decomposition of Q^0 giving rise to the same cube Q^* under this association, is bounded. This association will be used several times during the proof. First we use it to reduce the theorem to proving the following:

If Γ is a connected set in \mathbb{R}^n and Q^0 is a cube in \mathbb{R}^n then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_Q^2}{l_Q} \leq Cl(\Gamma),$$

where C = C(n).

To prove this result we write

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_Q^2}{l_Q} = \sum_{Q \in \mathcal{A}} \frac{r_Q^2}{l_Q} + \sum_{Q \in \mathcal{B}} \frac{r_Q^2}{l_Q},$$

where \mathscr{A} is the set of cubes $Q \in \langle Q^0 \rangle$ such that $\Gamma \cap Q^*$ is 'almost' a union of two or more straight line segments with endpoints in ∂Q^* (where $Q^* = Q^*(Q, Q^0, \lambda)$, $\lambda = \lambda(n)$) and \mathscr{B} is the set of cubes in $\langle Q^0 \rangle$ which are not in \mathscr{A} . We now describe \mathscr{A} precisely.

We may assume that Γ is closed. There exists an arclength preserving map $\gamma: T \to \Gamma$, where T is a circle with $l(T) = 2l(\Gamma)$, such that $\gamma(T) = \Gamma$ and γ hits almost every point of Γ twice. Let Q be a cube in \mathbb{R}^n . Let $\{T^{\alpha}: \alpha \in \Lambda_Q\}$ be the set of connected components of $\gamma^{-1}(Q)$, where Λ_Q is an indexing set.

Write

$$\Gamma^{\alpha} = \gamma(T^{\alpha}).$$

We have that $\Gamma \cap Q = \bigcup_{\alpha \in \Lambda_Q} \Gamma^{\alpha}$. Write

$$L^{\alpha} = \begin{cases} [\gamma(x), \gamma(y)] & \text{if } T^{\alpha} \neq T, \text{ where } x, y \text{ are the endpoints of the arc } T^{\alpha}, \\ \emptyset & \text{if } T^{\alpha} = T. \end{cases}$$

If $T^{\alpha} \neq T$ then Γ^{α} is (the image of) a curve with endpoints in ∂Q and L^{α} is the line segment joining these endpoints. Write

$$s_{\alpha} = \begin{cases} \sup \operatorname{dist} (z, L^{\alpha}) & \text{if } T^{\alpha} \neq T, \\ r_{Q} & \text{if } T^{\alpha} = T \end{cases}$$

and

Notice that s_q depends on our choice of γ . Also notice that if s_q is very small then $\Gamma \cap Q$ is 'almost' a union of straight line segments with endpoints in ∂Q . We shall set

 $s_Q = \sup_{\alpha \in \Lambda_Q} s_\alpha.$

$$\begin{aligned} \mathscr{A} &= \{ Q \in \langle Q^0 \rangle : s_{Q^*} < \delta r_Q \}, \\ \mathscr{B} &= \{ Q \in \langle Q^0 \rangle : s_{Q^*} \ge \delta r_Q \}, \end{aligned}$$

where $\delta = \delta(n) > 0$, $Q^* = Q^*(Q, Q^0, \lambda)$ and $\lambda = \lambda(n) > 0$. Lemmas 1 and 2 enable us to bound

$$\sum_{Q \in \mathscr{B}} \frac{r_Q^2}{l_Q}$$

while Lemmas 1 and 3 enable us to bound

$$\sum_{Q \in \mathscr{A}} \frac{r_Q^2}{l_Q}.$$

Lemma 2 states that if Γ is connected and $l(\Gamma) < \infty$ then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{s_Q^2}{l_Q} \leq Cl(\Gamma \cap Q^0),$$

where C = C(n). The main ingredient in the proof (which follows Peter Jones [3]) is the Pythagorean theorem.

Lemma 3 states that

$$\sum_{Q \in \mathscr{A}} r_Q \leqslant Cl(\Gamma \cap 2Q^0)$$

where C = C(n).

In Section 2 we prove Lemmas 1 and 2 and put together Lemmas 1, 2 and 3 to prove the theorem. The proof of Lemma 3 is lengthy and is given in Section 3. To illustrate the proof consider the case where $\Gamma \cap \lambda Q^0$ is just a union of two straight segments with endpoints in $\partial \lambda Q^0$. Then for each cube $Q \in \langle Q^0 \rangle$ we can choose an interval $E_o \subseteq \Gamma \cap 2Q$ such that

$$r_{Q} \leq cl(E_{Q})$$

and such that any point of Γ is contained in E_q for at most C cubes $Q \in \langle Q^0 \rangle$. Then

$$\sum_{Q \in \langle Q^0 \rangle} r_Q \leqslant c \sum_{Q \in \langle Q^0 \rangle} l(E_Q) \leqslant cCl(\Gamma \cap 2Q^0)$$

REMARK. The theorem is equivalent to the following result. If $\lambda' > \lambda > 0$, if $\Gamma \subseteq \mathbb{R}^n$ is a connected set and if $Q^0 \subseteq \mathbb{R}^n$ is a cube, then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_{\lambda Q}^2}{l_Q} \leq Cl(\Gamma \cap \lambda' Q),$$

where $C = C(n, \lambda, \lambda')$. We do not prove this here.

2. Proof of the theorem

LEMMA 1. (a) Let $\lambda > 0$. If $F \subseteq \mathbb{R}^n$ then for k = 0, 1, 2, ...,

$$#(\{Q \in \mathcal{D}_k : F \cap \lambda Q \neq \emptyset\}) \leq \left(\frac{\text{diameter}(F)}{2^{-k}} + \lambda + 1\right)^n.$$

(b) Let $\lambda > 1$. If Q^0 is a cube in \mathbb{R}^n then for k = 0, 1, 2, ... and each cube $Q \in \langle Q^0 \rangle_k$ there exists a cube which we denote by $Q^* = Q^*(Q, Q^0, \lambda)$ such that

$$\lambda Q \subseteq Q^* \in \bigcup_{e \in V} \langle Q^0(\lambda, e) \rangle_k,$$

where V is the set of the 2^n vertices of the cube $[0, 1]^n$ and

$$Q^{0}(\lambda, e) = 4\lambda Q^{0} + \frac{4\lambda l_{Q^{0}}}{3}e.$$

If

$$\hat{Q} \in \bigcup_{e \in V} \left\langle Q^{0}(\lambda, e) \right\rangle_{k}$$

then

$$\#(\{Q \in \langle Q^0 \rangle : Q^* = \hat{Q}\}) \leq (4N)^n$$

Proof. (a) Now F is contained in a cube, Q^F , of sidelength diameter (F). If $Q \in \mathcal{D}_k$ and $F \cap \lambda Q = \emptyset$ then Q is contained in the cube concentric to Q^F with sidelength equal to diameter $(F) + (\lambda + 1)2^{-k}$.

(b) We prove (b) for

$$Q^{0} = \left[\frac{1}{2} - \frac{1}{8N}, \frac{1}{2} + \frac{1}{8N}\right]^{n}$$

(so $4NQ^0 = [0, 1]^n$). The result follows for any other cube by dilation and translation.

Suppose that $k \in \{0, 1, 2, ...\}$ and $J \subseteq [\frac{1}{3}, 1]$ is an interval of length $l_J \leq 2^{-k}/3$. Then there exists an interval $I^* \in \langle [0, 1] \rangle_k$ such that

$$J \subseteq I^* + e/3 \tag{2.1}$$

where either e = 0 or e = 1. To see this, suppose that there is no interval $I^* \in \langle [0, 1] \rangle_k$ with $J \subseteq I^*$. Then there is an interval in $\langle [0, 1] \rangle_k$ with an endpoint $x \in J$. Since $J \subseteq [0, 1] + \frac{1}{3}$, there is an interval $I^* \in \langle [0, 1] \rangle_k$ with $x \in I^* + \frac{1}{3}$. Let y be an endpoint of $I^* + \frac{1}{3}$. Write $x = 2^{-k}p$, $y = 2^{-k}q + \frac{1}{3}$ with $p, q \in \mathbb{Z}$. Then

$$|y-x| = 2^{-k} \left| q - p + \frac{2^k}{3} \right| \ge \frac{2^{-k}}{3}.$$

Since $l_J \leq 2^{-k}/3$ we conclude that $J \subseteq I^* + \frac{1}{3}$. This proves (2.1).

Next, let $I^0 = [\frac{1}{2} - 1/8N, \frac{1}{2} + 1/8N]$ (so $4NI^0 = [0, 1]$). If $k \in \{0, 1, 2, ...\}$ and $I \in \langle I^0 \rangle_k$ then $NI \subseteq [\frac{1}{3}, 1]$ and $I_{NI} = 2^{-k}/4 < 2^{-k}/3$. By writing J = NI in (2.1), we see that there exists $I^* \in \langle [0, 1] \rangle_k$ and e = 0 or 1 such that

$$NI \subseteq I^* + e/3. \tag{2.2}$$

Let $Q^0 = [\frac{1}{2} - 1/8N, \frac{1}{2} + 1/8N]^n$ and $Q \in \langle Q^0 \rangle_k$. By writing $I = Q_j$ in equation (2.2) for $1 \leq j \leq n$, we see that there exists $I_j^* \in \langle [0, 1] \rangle_k$ and $e_j = 0$ or 1 such that

$$(NQ)_j = NQ_j \subseteq I_j^* + e_j/3$$

Thus

$$NQ \subseteq \prod_{j=1}^{n} \left(I_{j}^{*} + \frac{e_{j}}{3} \right) = \prod_{j=1}^{n} I_{j}^{*} + \frac{(e_{1} \dots e_{n})}{3} = Q^{*} \in \left\langle [0, 1]^{n} + \frac{e_{j}}{3} \right\rangle_{k},$$

where $e = (e_1, \dots, e_n) \in V$.

Finally, if

$$\hat{Q} \in \bigcup_{e \in V} \left\langle [0,1]^n + \frac{e}{3} \right\rangle$$

and $Q \in \langle Q^0 \rangle$ is such that $Q^* = \hat{Q}$ then $Q \subseteq \hat{Q}$ and $l_q = l_{\hat{Q}}/4N$. There are at most $(4N)^n$ such cubes $Q \in \langle Q^0 \rangle$.

Proving the Theorem is now reduced to proving the following.

If Γ is a connected set in \mathbb{R}^n and Q^0 is a cube in \mathbb{R}^n then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_Q^2}{l_Q} \leq Cl(\Gamma)$$

where C = C(n).

To see this let Q^0 be a cube in \mathbb{R}^n . Then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_{3Q}^2}{l_Q} \leq 12 \sum_{Q \in \langle Q^0 \rangle} \frac{r_{Q^\star}^2}{l_{Q^\star}} \leq (12)^{n+1} \sum_{e \in V} \sum_{Q \in \langle Q^0(3, e) \rangle} \frac{r_Q^2}{l_Q},$$

where $Q^* = Q^*(Q, Q^0, 3)$, by Lemma 1.

LEMMA 2. If Γ is a connected set in \mathbb{R}^n with $l(\Gamma) < \infty$ and Q^0 is a cube in \mathbb{R}^n then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{s_Q^2}{l_Q} \leq l(\Gamma \cap Q^0),$$

where C = C(n).

Proof. Let Q be a cube in \mathbb{R}^n and let $\alpha \in \Lambda_q$. Write

$$\begin{split} \Lambda_{\alpha,\,k} &= \{\beta \colon T^{\beta} \subseteq T^{\alpha}, \beta \in \Lambda_{Q'} \text{ for some } Q' \in \langle Q \rangle_k\}, \qquad k = 0, 1, 2, \dots, \\ t_{\alpha} &= \begin{cases} \sup_{\substack{x \in L^{\beta} \\ \beta \in \Lambda_{\alpha,1}}} \operatorname{dist}(x, L^{\alpha}), & T^{\alpha} \neq T, \\ & & \\ \sum_{\substack{\beta \in \Lambda_{\alpha,1}}} l(L^{\beta}), & T^{\alpha} = T. \end{cases} \end{split}$$

Let $\alpha(k) \in \Lambda_{\alpha, k}$ be an index such that

$$t_{\alpha(k)} = \sup_{\beta \in \Lambda_{\alpha,k}} t_{\beta}, \qquad k = 0, 1, 2, \dots$$

Then

 $s_{\alpha} \leq \sum_{k=0}^{\infty} t_{\alpha(k)}.$ (2.3)

To see this, suppose that α_k is a sequence such that $\alpha_0 = \alpha, \alpha_{k+1} \in \Lambda_{\alpha_k, 1}$. Then the sequence s_{α_k} is eventually non-increasing and $s_{\alpha_k} \to 0$, so

$$s_{\alpha} = \sum_{k=0}^{\infty} (s_{\alpha_k} - s_{\alpha_{k+1}}).$$

Let α_k be such that

$$s_{\alpha_{k+1}} = \sup_{\beta \in \Lambda_{\alpha_{k}, 1}} s_{\beta}.$$

Then $s_{\alpha_k} - s_{\alpha_{k+1}} \leq t_{\alpha(k)}$, so we get equation (2.3). We also have

$$\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle}} \frac{t_{\alpha}^2}{l_Q} \leq Cl(\Gamma \cup Q^0),$$

where C = C(n).

To see this, let $\alpha \in \Lambda_{\rho}$. By the Pythagorean theorem,

$$\frac{t_{\alpha}^2}{l_Q} \leq 2\sqrt{n} \bigg(\sum_{\beta \in \Lambda_{\alpha,1}} l(L^{\beta}) - l(L^{\alpha}) \bigg).$$

Hence

$$\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle_k}} \frac{t_{\alpha}^2}{l_Q} \leqslant C \bigg(\sum_{\substack{\beta \in \Lambda_Q \\ Q \in \langle Q^0 \rangle_{k+1}}} l(L^{\beta}) - \sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle_k}} l(L^{\alpha}) \bigg)$$

for k = 0, 1, 2, ..., where C = C(n). Hence

$$\sum_{\substack{\alpha \in \Lambda_{Q} \\ Q \in \langle Q^{0} \rangle}} \frac{l_{\alpha}^{2}}{l_{Q}} \leq C \sup_{k} \sum_{\substack{\alpha \in \Lambda_{Q} \\ Q \in \langle Q^{0} \rangle_{k}}} l(L^{\alpha}) \leq C \sup_{k} \sum_{\substack{\alpha \in \Lambda_{Q} \\ Q \in \langle Q^{0} \rangle_{k}}} l(T^{\alpha})$$
$$= C \sup_{k} \int_{\gamma^{-1}(Q^{0})} \sum_{Q \in \langle Q^{0} \rangle_{k}} \chi_{Q}(\gamma(x)) dl(x)$$
$$\leq 2^{n} C l(\gamma^{-1}(Q^{0})) = 2^{n+1} C l(\Gamma \cap Q^{0}),$$

where χ_Q denotes the characteristic function of the set Q and C = C(n). Putting equations (2.3) and (2.4) together, we get

$$\left(\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle}} \frac{s_{\alpha}^2}{l_Q}\right)^{\frac{1}{2}} \leq \left(\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle}} \frac{\left(\sum_{\substack{k=0 \\ Q \in \langle Q^0 \rangle}} t_{\alpha(k)}\right)^2}{l_Q}\right)^{\frac{1}{2}} \leq \sum_{k=0}^{\infty} \left(\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle}} \frac{t_{\alpha(k)}^2}{l_Q}\right)^{\frac{1}{2}}$$
$$= \sum_{k=0}^{\infty} 2^{-k/2} \left(\sum_{\substack{\alpha \in \Lambda_Q \\ Q \in \langle Q^0 \rangle}} \frac{t_{\alpha(k)}^2}{2^{-k}l_Q}\right)^{\frac{1}{2}} \leq C(l(\Gamma \cap Q^0))^{\frac{1}{2}},$$

where C = C(n). From this, we get Lemma 2.

KATE OKIKIOLU

REMARK. Suppose that Γ is the image of a closed, rectifiable, chordarc Jordan curve with chordarc constant k. That is, suppose that there is a circle T and a length preserving bijection $\gamma: T \to \Gamma$ and if x and y are in Γ then the (shorter) arc between x and y has length bounded by k|x-y|. Let Q^0 be a cube in \mathbb{R}^n . If $Q \in \langle Q^0 \rangle$ and $Q^* = Q^*(Q, Q^0, \lambda)$, where $\lambda = k \sqrt{n+1}$, then at most one component of $\Gamma \cap Q^*$ meets Q and there is one arc in T mapped onto this component. Hence $r_0 \leq s_{0^*} = s_{0^*}(y)$ and

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_Q^2}{l_Q} \leq \sum_{Q \in \langle Q^0 \rangle} \frac{S_{Q^*}^2}{l_Q} \leq Cl(\Gamma \cap Q^0),$$

where C = C(n, K), by Lemmas 1 and 2. This proves the theorem for closed, chordarc, Jordan curves.

LEMMA 3. If $\Gamma \subseteq \mathbb{R}^n$ is a connected set with $l(\Gamma) < \infty$ and $Q^0 \subset \mathbb{R}^n$ is a cube then

$$\sum_{Q \in \mathscr{A}} r_Q \leqslant Cl(\Gamma \cap 2Q^0),$$

where $\mathscr{A} = \{Q \in \langle Q^0 \rangle : s_{Q^*} < \delta r_Q\}, Q^* = Q^*(Q, Q^0, \lambda), \lambda = \lambda(n), \delta = \delta(n) \text{ and } C = C(n).$

Before proving Lemma 3 we shall now complete the proof of the theorem.

Proof. Let δ , λ be the constants in Lemma 3. Let

$$\mathcal{A} = \{ Q \in \langle Q^0 \rangle : s_{Q^*} < \delta r_Q \}, \\ \mathcal{B} = \{ Q \in \langle Q^0 \rangle : s_{Q^*} \ge \delta r_Q \}.$$

Then

$$\sum_{Q \in \langle Q^0 \rangle} \frac{r_Q^2}{l_Q} \leqslant \sum_{Q \in \mathscr{A}} \frac{r_Q^2}{l_Q} + \sum_{Q \in \mathscr{A}} \frac{r_Q^2}{l_Q}.$$

Now

$$\sum_{Q \in \mathscr{A}} \frac{r_Q^2}{l_Q} \leq \frac{\sqrt{(n-1)}}{2} \sum_{Q \in \mathscr{A}} r_Q \leq Cl(\Gamma \cap 2Q^0),$$

where C = C(n), by Lemma 3, and

$$\sum_{Q \in \mathscr{B}} \frac{r_Q^2}{l_Q} \leq \frac{1}{\delta^2} \sum_{Q \in \mathscr{B}} \frac{s_{Q^*}^2}{l_Q} \leq \frac{4\lambda}{\delta^2} \sum_{Q \in \langle Q^0 \rangle} \frac{s_{Q^*}^2}{l_{Q^*}}$$
$$\leq \frac{(4\lambda)^{n+1}}{\delta^2} \sum_{e \in V} \sum_{Q \in \langle Q^0 \langle \lambda, e \rangle \rangle} \frac{s_Q^2}{l_Q} \leq Cl(\Gamma \cap \lambda Q^0),$$

where C = C(n), by Lemmas 1 and 2.

3. Proof of Lemma 3

First we give a brief outline of the proof beginning with some simple Euclidean geometry. Let $Q \subseteq \mathbb{R}^n$ be a cube and let \mathscr{L}^{α} and \mathscr{L}^{β} be lines meeting $\frac{3}{2}Q$. We define two line segments

$$I^{\alpha} \subseteq \mathscr{L}^{\alpha} \cap \lambda Q \setminus \operatorname{interior}(2Q)$$
$$I^{\beta} \subseteq \mathscr{L}^{\beta} \cap 2Q$$

having the same length, comparable to the maximum distance of points of $\mathscr{L}^{\beta} \cap 2Q$ to \mathscr{L}^{α} .

In Lemma 4 part (a) we will show that there exists a unit vector w^0 such that the length of the interval $w \cdot I^{\alpha} \cap w \cdot I^{\beta}$ is comparable to this maximum distance for all unit vectors w close to w^0 .

In Lemma 4 parts (b) and (c) we use this to show that if Γ is a connected set, Q^0 is a cube, Q is in the dyadic decomposition of Q^0 and s_{Q^*} is small (that is $\Gamma \cap Q^*$ is 'almost' a union of straight line segments), then we can find sets \hat{I}^* and \hat{I}^p which are 'almost' straight line segments with

$$\hat{I}^{\alpha} \subseteq \Gamma \cap \lambda Q \setminus \text{interior}(2Q)$$
$$\hat{I}^{\beta} \subseteq \Gamma \cap 2Q$$

and a unit vector w^0 such that the length of the interval $w \cdot \hat{I}^{\alpha} \cap w \cdot \hat{I}^{\beta}$ bounds (up to a constant) r_q for all unit vectors w close to w^0 . Hence for such cubes Q, r_q is bounded by the length of the interval

$$(w \cdot \Gamma \cap \lambda Q \setminus 2Q) \cap (w \cdot \Gamma \cap 2Q).$$

To complete the proof of Lemma 3, we show in Lemma 5 that we can sum the lengths of the above intervals over all cubes Q in the dyadic decomposition of Q^0 , and the result will be bounded by a constant multiple of $l(\Gamma \cap 2Q^0)$. This is a slightly subtle fact which would be false if the number 2 were replaced by the number 3. The main ingredient in the proof (see in Lemma 5 part (a)) is the fact that if I is a dyadic interval (that is, a dyadic cube in \mathbb{R}^1) then the right endpoint of 2I is the *midpoint* of a dyadic interval longer than I, then the right endpoint of 2J is an *endpoint* of a dyadic interval of the same length as I. Hence these two right endpoints are separated by a distance at least half as long as I.

We now embark upon the full proof.

Let $Q \subseteq \mathbb{R}^n$ be a cube and let \mathscr{L}^{α} and \mathscr{L}^{β} be lines meeting $\frac{3}{2}Q$. We define points $x^{\alpha}, y^{\alpha} \in \mathscr{L}^{\alpha}$ and $x^{\beta}, x^{\beta} \in \mathscr{L}^{\beta}$ as follows. Let $u^{\alpha}, v^{\alpha}, u^{\beta}, v^{\beta} \in \mathbb{R}^n$ be such that

$$\mathcal{L}^{\alpha} = \{ u^{\alpha} + tv^{\alpha} \colon t \in \mathbb{R} \},$$

$$\mathcal{L}^{\beta} = \{ u^{\beta} + tv^{\beta} \colon t \in \mathbb{R} \},$$

$$|v^{\alpha}| = |v^{\beta}| = 1, \quad v^{\alpha} \cdot v^{\beta} \ge 0,$$

$$(u^{\alpha} - u^{\beta}) \cdot v^{\alpha} = (u^{\beta} - u^{\alpha}) \cdot v^{\beta}.$$

By replacing (v^{α}, v^{β}) by $(-v^{\alpha}, -v^{\beta})$ if necessary we can assume that

$$\mathcal{L}^{\alpha} \cap 2Q = [u^{\alpha} + s^{\alpha}v^{\alpha}, u^{\alpha} + t^{\alpha}v^{\alpha}],$$

$$\mathcal{L}^{\beta} \cap 2Q = [u^{\beta} + s^{\beta}v^{\beta}, u^{\beta} + t^{\beta}v^{\beta}],$$

$$(3.1)$$

where $s^{\alpha} \leq t^{\alpha}$, $s^{\beta} \leq t^{\beta}$ and $\max\{|s^{\alpha}|, |s^{\beta}|\} \leq \max\{t^{\alpha}, t^{\beta}\}$. Relabel \mathcal{L}^{α} and \mathcal{L}^{β} if necessary so that $t^{\alpha} \leq t^{\beta}$. Write

$$x^{\alpha} = u^{\alpha} + t^{\beta}v^{\alpha}, \qquad x^{\beta} = u^{\beta} + t^{\beta}v^{\beta},$$

$$y^{\alpha} = u^{\alpha} + \left(t^{\beta} + \frac{l_{Q}}{2}\right)v^{\alpha}, \qquad y^{\beta} = u^{\beta} + \left(t^{\beta} - \frac{l_{Q}}{2}\right)v^{\beta},$$

$$I^{\alpha} = [x^{\alpha}, y^{\alpha}], \qquad I^{\beta} = [x^{\beta}, y^{\beta}].$$
(3.2)

Then

$$\operatorname{dist}(x^{\beta},\mathscr{L}^{\alpha}) = \sup_{x \in \mathscr{L}^{\beta} \cap 2Q} \operatorname{dist}(x,\mathscr{L}^{\alpha})$$
(3.3)

and

$$|x^{\alpha}-x^{\beta}| \leq \sqrt{2} \operatorname{dist} (x^{\beta}, \mathscr{L}^{\alpha}) \leq 2 \sqrt{(2n)} l_{\varrho}.$$

 $I^{\beta} \subseteq 2Q$

So

$$I^{\alpha} \subseteq \lambda Q \setminus \text{interior} (2Q), \tag{3.4}$$

where $\lambda = 4\sqrt{(2n)} + 3$,

and

$$l(I^{\alpha}) = l(I^{\beta}) \ge \frac{1}{4\sqrt{(2n)}} |x^{\alpha} - x^{\beta}|.$$
(3.5)

At this point we need two auxiliary lemmas.

LEMMA 4. (a) Let $Q \subseteq \mathbb{R}^n$ be a cube and let \mathscr{L}^{α} and \mathscr{L}^{β} be lines meeting $\frac{3}{2}Q$. Define $x^{\alpha}, x^{\beta}, I^{\alpha}, I^{\beta}$ as in equations (3.2). Then there exists a unit vector $w^0 \in \mathbb{R}^n$ such that

 $|x^{\alpha} - x^{\beta}| \leq Cl(w \cdot I^{\alpha} \cap w \cdot I^{\beta})$

for all $w \in B_c(w^0)$, where C = C(n) and c = c(n) > 0.

(b) Let $\lambda_0 > 1$. Let Q be a cube in \mathbb{R}^n , \mathcal{L} a line meeting Q and z a point in \mathcal{L} . Given $\lambda \ge \lambda_0$, let $[x, y] = \mathcal{L} \cap \lambda Q$. We have that if $d = \min\{|x-z|, |y-z|\} > 0$, then

$$B_{\varepsilon d}(z) \cap \partial(\lambda Q) = \emptyset$$

where $\varepsilon = \varepsilon(n, \lambda_0) > 0$.

(c) If Γ is a connected set in \mathbb{R}^n with $l(\Gamma) < \infty$, if Q^0 is a cube in \mathbb{R}^n and if $Q \in \langle Q^0 \rangle$ is such that $s_{0^*} < \delta r_0$ then there exists a unit vector $w^0 \in \mathbb{R}^n$ such that

$$r_{o} \leq Cl((w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q))$$

for all $w \in B_c(w^0)$, where $\delta = \delta(n) > 0$, $Q^* = Q^*(Q, Q^0, \lambda)$, $\lambda = \lambda(n)$, C = C(n) and c = c(n) > 0.

Proof. (a) We can assume by translating that $x^{\beta} = 0$. We can assume that $x^{\alpha} \neq x^{\beta}$. Consider the orthogonal projection P onto a plane Π spanned by either

(i) v^{α} and v^{β} , or

(ii) $v^{\alpha} + v^{\beta}$ and $u^{\alpha} - u^{\beta}$.

For either of these choices of Π , P will satisfy

$$l(P(I^{\alpha})) = l(P(I^{\beta})) \ge \frac{l(I^{\alpha})}{\sqrt{2}}$$

and for one of them, P will satisfy

$$\frac{|x^{\alpha}-x^{\beta}|}{\sqrt{2}} \leq |P(x^{\alpha})-P(x^{\beta})|$$

Fix Π so that *P* satisfies this inequality.

Identify Π with \mathbb{C} by choosing the orthonormal vectors 1, $i \in \Pi$ such that

$$\begin{aligned} P(x^{\alpha} - x^{\beta}) &= x > 0, \\ P(y^{\beta}) &= Re^{-i\theta}, \quad R > 0, \frac{1}{4}\pi \leq \theta \leq \frac{1}{2}\pi. \end{aligned}$$

Then $P(y^{\alpha}) = x + Re^{i\theta}$ and by equation (3.5), $0 < x \le C_0 R$, where $C_0 = C_0(n)$. Write

$$r = \min(x, R), \quad I^0 = [0, re^{-i\theta}], \quad I^1 = [x, x + re^{i\theta}].$$
 (3.6)

344

Then $I^0 \subseteq P(I^\beta)$, $I^1 \subseteq P(I^\alpha)$ and

$$\frac{1}{4}\pi \leqslant \theta \leqslant \frac{1}{2}\pi, \quad 0 < r \leqslant x \leqslant \eta r, \tag{3.7}$$

where $\eta = \eta(n)$.

To prove (a) it suffices to show that if I^0 and I^1 are intervals in Π satisfying equations (3.6) and (3.7) then there exists a unit vector $w^0 \in \Pi$ such that

$$x \leqslant C_1(w \cdot I^0 \cap w \cdot I^1) \tag{3.8}$$

for all $w \in B_c(w^0)$, where $C_1 = C_1(\eta)$ and $c = c(\eta) > 0$.

Write $w^0 = e^{i\phi}$. Then

$$w^0 \cdot I^0 = [0, r\cos(\theta + \phi)],$$

$$w^0 \cdot I^1 = [x\cos\phi, x\cos\phi + r\cos(\theta - \phi)].$$

It is easy to check that if we choose ϕ to satisfy $x \cos \phi + r \cos (\theta - \phi) = 0$ then

 $x \leq C_2 l(w^0 \cdot I^0 \cap w^0 \cdot I^1),$

where $C_2 = C_2(\eta)$.

Let $w \in B_c(w^0)$. Let j = 0 or 1. If z is an endpoint of I^j then $|w \cdot z - w^0 \cdot z| \leq 2cx$. So $w \cdot I^j$ is an interval containing points within 2cx of the endpoints of $w^0 \cdot I^j$.

$$x \leq C_2(l(w \cdot I^0 \cap w \cdot I^1) + 4cx).$$

Choosing c sufficiently small, we get (3.8).

(b) The idea of this proof is that since \mathscr{L} meets Q, \mathscr{L} cannot meet any face of λQ (where $\lambda \ge \lambda_0 > 1$) at too small an angle.

Suppose that $z \in \lambda Q$ so $d \leq \frac{1}{2}\lambda \sqrt{nl_Q}$. Let F be a face of λQ . Choose new axes so that F lies in the hyper-plane $x_1 = 0$ and Q lies in the region $x_1 > 0$. Relabel x and y if necessary so that $x_1 \leq y_1$. If $x_1 \geq \frac{1}{4}(\lambda - 1)l_Q$ then

$$z_1 \ge \frac{\lambda - 1}{4} l_Q \ge \left(\frac{\lambda - 1}{4}\right) \left(\frac{2}{\lambda \sqrt{n}}\right) d.$$

If $x_1 < \frac{1}{4}(\lambda - 1)l_q$ then let u be any point in $L \cap Q$ and write v = (u - x)/|u - x|, so v is parallel to \mathcal{L} . Then

$$v_1 \ge \frac{\frac{1}{2}(\lambda-1)l_Q - \frac{1}{4}(\lambda-1)l_Q}{\lambda\sqrt{n}l_Q} = \frac{\lambda-1}{4\lambda\sqrt{n}}$$

so

$$z_1 \ge x_1 + v_1 d > \frac{\lambda - 1}{4\lambda \sqrt{n}} d.$$

If $z \notin \lambda Q$ then relabel x and y if necessary so that $y \notin [x, z]$ and let F be a face of λQ containing x. By choosing new axes and a point $u \in L \cap Q$ as we did above, we find that $z_1 \leq -d(\lambda-1)/2\lambda \sqrt{n}$.

(c) Let $0 < \delta < 1$ and $\lambda = 4\sqrt{(2n)} + 3$ (see (3.4)). Suppose that $s_{q*} < \delta r_q$. Let $\alpha \in \Lambda_{q*}$ be such that Γ^{α} meets Q. Then L^{α} meets

$$\left(1 + \frac{2s_{Q^{\star}}}{l_Q}\right)Q$$

which is contained in $\frac{3}{2}Q$ if δ is sufficiently small. Let \mathscr{L}^{α} be the line containing L^{α} . Then

$$r_{Q} \leq \sup_{z \in \Gamma \cap Q} \operatorname{dist}(z, \mathscr{L}^{\alpha}).$$
(3.9)

Let $z \in \Gamma \cap Q$ attain this supremum and let $\beta \in \Lambda_{o^*}$ be such that $z \in \Gamma^{\beta}$. Then

$$r_Q \leq \sup_{z \in L^{\beta} \cap \frac{3}{2}Q} \operatorname{dist}(z, \mathscr{L}^{\alpha}) + s_Q.$$

so

$$r_Q \leqslant 2 \sup_{z \in L^{\beta} \cap \frac{3}{2}Q} \operatorname{dist}(z, \mathscr{L}^{\alpha})$$

if δ is sufficiently small. By (3.3) and part (a), there exists a unit vector $w^0 \in \mathbb{R}^n$ such that

$$r_o \leq Cl(w \cdot I^{\alpha} \cap w \cdot I^{\beta})$$

for all $w \in B_c(w^0)$, where I^{α} and I^{β} are defined in (3.2) and α, β may have been interchanged. Now let $\varepsilon = \varepsilon(n, \frac{4}{3})$ be as in part (b). For $j = \alpha, \beta$ let $\hat{x}^j, \hat{y}^j \in \lambda Q$ be such that

$$|x^{j} - \hat{x}^{j}| = |y^{j} - \hat{y}^{j}| = s_{Q^{*}}/\varepsilon, \qquad [\hat{x}^{j}, \hat{y}^{j}] \subseteq [x^{j}, y^{j}],$$

where x^{j}, y^{j} are as in (3.2) and δ is small enough so that $2s_{\rho*}/\varepsilon < l(I^{j})$.

Then

$$\begin{split} B_{s_{Q^*}}([\hat{x}^j, \hat{y}^j]) &= \{z : \operatorname{dist} \left(z, [\hat{x}^j, \hat{y}^j] \right) \leq s_{Q^*} \} \\ & \subseteq \begin{cases} \lambda Q \setminus 2Q & \text{if } j = \alpha, \\ 2Q & \text{if } j = \beta, \end{cases} \end{split}$$

by part (b). By a simple argument we can find a connected set $\hat{\Gamma}^{j} \subseteq \Gamma^{j} \cap B_{s_{Q^*}}([\hat{x}^{j}, \hat{y}^{j}])$ such that $\hat{\Gamma}^{j}$ meets $B_{s_{Q^*}}(\hat{x}^{j})$ and $B_{s_{Q^*}}(\hat{y}^{j})$. Since $\hat{\Gamma}^{j}$ contains points within $(1+1/\epsilon)s_{Q^*}$ of the endpoints of I^{j} it follows that $w \cdot \hat{\Gamma}^{j}$ is an interval containing points within $|w|(1+1/\epsilon)s_{Q^*}$ of the endpoints of $w \cdot I^{j}$. Hence by (3.9) and part (a)

$$r_{o} \leq C(l(w \cdot \hat{\Gamma}^{\alpha} \cap w \cdot \hat{\Gamma}^{\beta}) + C_{1} s_{o^{*}})$$

for all $w \in B_c(w^0)$, where $C_1 = C_1(n)$. By choosing δ sufficiently small we get part (c).

LEMMA 5. (a) Let $\lambda > 2$, $x, y \in \mathbb{R}$. Write

 $\mathscr{K} = \mathscr{K}(x, y)$

= { $k \in \mathbb{Z}$: there exists an interval $I \in \mathcal{D}_k$ with $x \in 2I$ and $y \in \lambda I \setminus (interior 2I)$ }.

Then $#(\mathscr{K}) \leq 2 + \log_2(2\lambda)$.

(b) Suppose that Q^0 is a cube in \mathbb{R}^n , $x \in \mathbb{R}^n$ and $F \subseteq \mathbb{R}^n$. Write

$$\mathscr{E} = \mathscr{E}(x, F) = \{ Q \in \langle Q^0 \rangle : x \in 2Q, F \cap 2Q = \emptyset, F \cap \lambda Q \neq \emptyset \}.$$

Then $\#(\mathscr{E}) \leq C$, where $C = C(n, \lambda)$.

(c) Suppose that Γ is a closed subset of \mathbb{R}^n , Q^0 is a cube in \mathbb{R}^n and w is a unit vector in \mathbb{R}^n . Then

$$\sum_{Q \in \langle Q^0 \rangle} l((w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q)) \leq Cl(\Gamma \cap 2Q^0),$$

where C = C(n).

Proof. (a) By replacing x, y by -x, -y if necessary we can assume that $x \le y$. If $I \in \mathscr{K}$ then the right endpoint of 2*I* lies in [x, y]. There exists $I' \in \mathscr{D}$ with $l_{I'} = l_I$ such that the right endpoint of 2*I* is the midpoint of *I'*. Now if $I, J \in \mathscr{D}$ and $I \ne J$ then

|right endpoint of I-right endpoint of J| $\ge \frac{1}{2} \min \{l_I, l_J\}$.

Hence there exists at most one interval $I \in \mathscr{K}$ with $2(y-x) < l_1$. If $I \in \mathscr{K}$ then $x, y \in \lambda I$ so $(y-x)/\lambda \leq l_1$.

(b) Let $y \in \text{closure}(F)$ be such that |x - y| = dist(x, F). If $Q \in \mathscr{E}$ then $|z = x| + |x - y| \leq |(2 + \lambda) \cdot x/p|$

$$|\operatorname{centre}(Q) - y| \leq |\operatorname{centre}(Q) - x| + |x - y| < ((2 + \lambda) \sqrt{n}) l_Q$$

So $y \in 2((2+\lambda)\sqrt{n}) l_Q = \lambda_1 Q$. Thus

$$\mathscr{E} \subseteq \{Q \in \langle Q^0 \rangle : x \in 2Q, y \in \lambda_1 Q \setminus \text{interior} (2Q)\}.$$
(3.10)

Recall that $Q_j = \{q_j : q \in Q\}$. If Q is in the right-hand side of equation (3.10) then there exists j, $1 \le j \le n$, such that $x_j \in 2Q_j$, $y_j \in \lambda_1 Q_j$ interior $(2Q_j)$. Hence by part (a) we have

 $\#\{k:\mathscr{E} \cap \langle Q^0 \rangle_k \neq \emptyset\} \leq n(2 + \log_2(2\lambda_1)).$

For each k,

$$\mathscr{E} \cap \langle Q^0 \rangle_k \subseteq \{ Q \in \langle Q^0 \rangle_k \colon x \in 2Q \}$$

so by Lemma 1 part (a),

$$\#(\mathscr{E} \cap \langle Q^0 \rangle_k) \leq 3^n.$$

(c) Let $x \in \mathbb{R}^n$. For $1 \le j \le n$ write

$$F^{j}(x) = \{ y \in \Gamma : w \cdot y = w \cdot x, y_{j} > x_{j} \},$$

$$F^{-j}(x) = \{ y \in \Gamma : w \cdot y = w \cdot x, y_{j} < x_{j} \}.$$

Let Q be a cube in \mathbb{R}^n . For $1 \leq |j| \leq n$ write

$$\Gamma(j,Q) = \{x \in \Gamma \cap 2Q : F^{j}(x) \cap 2Q = \emptyset, F^{j}(x) \cap \lambda Q \neq \emptyset\}.$$

Then

$$(w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q) \subseteq \bigcup_{|\leq|j| \leq n} w \cdot \Gamma(j, Q).$$
(3.11)

To see (3.11) write

$$Q=\prod_{j=1}^n [m_{-j},m_j].$$

Suppose that $x \in \Gamma \cap 2Q$, $y \in \Gamma \cap \lambda Q \setminus 2Q$ and $w \cdot x = w \cdot y$ is a point in the lefthand side of (3.11). There exists $j, 1 \leq j \leq n$, with $y_j > m_j$ or $y_j < m_{-j}$. Suppose that $y_j > m_j$. Let $z \in \{z' \in \Gamma \cap 2Q : w \cdot z' = w \cdot x\} = E$ be such that $z_j = \sup E_j$. Then

 $F^{j}(z) \cap 2Q = \emptyset, \qquad F^{j}(z) \cap \lambda Q \setminus 2Q \neq \emptyset.$

So $z \in \Gamma(j, Q)$ and $w \cdot x = w \cdot z$ belongs to the right-hand side of (3.11). If $y_j < m-j$ the argument is similar. Now

$$\sum_{Q \in \langle Q^0 \rangle} l((w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q)) \leq \sum_{|\leq|j| \leq n} \sum_{Q \in \langle Q^0 \rangle} l(\Gamma(j, Q))$$
$$\leq \sum_{|\leq|j| \leq n} \int_{\Gamma \cap 2Q^0} \sum_{Q \in \langle Q^0 \rangle} \chi_{\Gamma(j, Q)}(x) \, dl(x)$$
$$\leq Cl(\Gamma \cap 2Q^0),$$

where $\chi_{\Gamma(j,Q)}$ denotes the characteristic function of the set $\Gamma(j,Q)$ and C = C(n). The last inequality holds because the function in the integrand is uniformly bounded by part (b).

We can now complete the proof of Lemma 3.

347

Proof. Let c = c(n) be as in Lemma 4 part (c). Since the unit sphere S^{n-1} is compact there exists a finite set $W \subseteq S^{n-1}$ such that

$$S^{n-1} \subseteq \bigcup_{w \in W} B_c(w).$$

Let $\delta = \delta(n)$ and $\lambda = \lambda(n)$ be as in Lemma 4 part (c). Then if $Q \in \mathcal{A}$,

$$r_{Q} \leq C \sum_{w \in W} l((w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q)),$$

where C = C(n). Hence

$$\sum_{Q\in\mathcal{A}} r_Q \leq C \sum_{w\in W} \sum_{Q\in\langle Q^0 \rangle} l((w \cdot \Gamma \cap 2Q) \cap (w \cdot \Gamma \cap \lambda Q \setminus 2Q)) \leq C_1 l(\Gamma \cap 2Q^0),$$

where $C_1 = C_1(n)$, by Lemma 5 part (c).

References

- 1. CHRISTOPHER J. BISHOP and PETER W. JONES, 'Harmonic measure and arclength', Ann. of Math. 142 (1990) 511-547.
- 2. GUY DAVID and STEPHEN SEMMES, 'Singular integrals, square functions and the geometry of subsets of \mathbb{R}^n ', Au-dela des graphs Lipschitziens, Asterisque to appear.
- 3. PETER W. JONES, 'Rectifiable sets and the traveling salesman problem', Invent. Math. 102 (1990) 1-15.

Department of Mathematics UCLA Los Angeles CA 90024 USA

Present address: Department of Mathematics Princeton University Princeton NJ 08544-1000 USA