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1. Introduction

By a cube Q in IRn we mean a closed cube with sides parallel to the axes. Let lQ

denote the sidelength of Q and for X > 0 let XQ denote the cube concentric to Q with
sidelength lXQ = XIQ. We say Q is a dyadic cube if

Q = f[ K 2~*> K + 0 2"1, ^ e Z, m, e Z.

Let 2) denote the set of all dyadic cubes. Given a set F £ Un define the cylinder radius
of F in Q, rQ = rQ(F), to be the minimum radius of a cylinder containing F n Q, that
is, the maximal distance from points of F n Q to a best approximating line. Write 1{E)
for the one-dimensional (outer) Hausdorff measure of a set E. In this paper we prove
the following.

THEOREM. If T is a connected set in Un then

£ rf- ^ Cl(T),

where C = C(n).

The special case of n = 2 was proved by Peter Jones using complex analysis (see
[3], for applications see [1, 2]) and the converse of the theorem is included in the
following result (see [3]).

/ /A c R" then there exists a connected set T such that A c F and

/(F) < (1 + <5) diameter (A) + C £

for 3>0, where C = C(n, d).

It is well known that if F is a connected set in IRn then there is a tour of length 2/(F)
that hits every point of F. So if A is any set in IR", the minimal length of a tour that
hits every point of A is comparable to the minimal value of /(F), where the minimum
is taken over connected sets F containing A. By the results stated above, this is
comparable to the quantity

diameter (A) + £ r3y .
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I would like to thank John Garnett for a lot of very helpful advice.

Notation and outline of the proof of the theorem

We write

[*,;/] = {A;c + (1-A) j / : ( K A ^ 1}, x,yeUn,
D (-J\ / 1) • I V 1)1 <" 3 \ YClB" ] CD

Av / — \y"i —y\ ^ s> )Atii»)

E-\-x = \e-\-x'.esE}, xGR,xi£=lr8,
x-E = {x-e:eeE], xsUn,E^Un,

xt for the/th coordinate of x, xe Un,
^ = {e,:ee£}, ££R",
d£ for the boundary of E, E^ Un.

For feeZ, ^fc is the set of dyadic cubes of sidelength 2~k.
Let Q° be a cube in IRn. Choose a new origin and coordinate axes in which Q° =

[0, l]n. We define the dyadic decomposition ofQ° to be the set of dyadic cubes (with
respect to the new coordinates) contained in Q° and we denote this set by <(?°>. We
define the kth generation ofQ° to be set of cubes in 2>k contained in Q° and we denote
this set by <Q°>fc.

Let X > 1. In Lemma 1 part (b) we show how to associate to a cube Q° a finite
number of larger cubes containing Q° such that if Q is a cube in the kth generation of
Q°, then XQ is contained in some cube Q* in the kth generation of one of these larger
cubes. Furthermore, the number of cubes Q in the dyadic decomposition of Q° giving
rise to the same cube Q* under this association, is bounded. This association will be
used several times during the proof. First we use it to reduce the theorem to proving
the following:

If T is a connected set in Un and Q° is a cube in Un then

where C = C(n).

To prove this result we write
o 9 9

r v Y

—— = > ——A- 7 ——

Qe<Q°> IQ Qes/ IQ Qe& ̂ Q

where si is the set of cubes 2e<Q°> such that Y n Q* is 'almost' a union of two or
more straight line segments with endpoints in dQ* (where Q* = Q*(Q, Q°, X), X =
X(n)) and ^ is the set of cubes in <£?°> which are not in si. We now describe si
precisely.

We may assume that T is closed. There exists an arclength preserving map
y: T-> T, where T is a circle with l(T) = 2l(T), such that y(T) = T and y hits almost
every point of T twice. Let Q be a cube in Un. Let {T*:a,eAQ} be the set of connected
components of y~\Q), where AQ is an indexing set.

Write
r- = y{T«).
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We have that T (]Q = (JaeAcr
a. Write

\[y(x), y(y)] if Ta ^ T, where x,y are the endpoints of the arc Ta,

~[0 ififTa=T.

If T* # T then F" is (the image of) a curve with endpoints in dQ and L* is the line
segment joining these endpoints. Write

s = {'<r
supdist(z,La) i f r a # r s

if 7a = T
and

Sn =
txeA

Notice that sQ depends on our choice of y. Also notice that if sQ is very small then
F n Q is 'almost' a union of straight line segments with endpoints in dQ. We shall
set

where 8 = S(n) > 0, Q* = Q*(Q, Q°, X) and X = X{n) > 0. Lemmas 1 and 2 enable us
to bound

L Y

while Lemmas 1 and 3 enable us to bound

Lemma 2 states that if F is connected and /(F) < oo then

£ Sf^ Cl(T n 0°),

where C = C{n). The main ingredient in the proof (which follows Peter Jones [3]) is
the Pythagorean theorem.

Lemma 3 states that

£ rQ ^ C/(F n 20°)
Qes/

where C = C(n).
In Section 2 we prove Lemmas 1 and 2 and put together Lemmas 1, 2 and 3 to

prove the theorem. The proof of Lemma 3 is lengthy and is given in Section 3. To
illustrate the proof consider the case where F n XQ° is just a union of two straight
segments with endpoints in dXQ°. Then for each cube 0e<0°> we can choose an
interval EQ £ F n 20 such that

rQ ^ cl{EQ)

and such that any point of F is contained in EQ for at most C cubes 0e<0°> . Then

£ ro^c £ 1{EQ) ^ cCl(T n 20°).
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REMARK. The theorem is equivalent to the following result. If X' > X > 0, if
c Un is a connected set and if Q° £ FT is a cube, then

K<2°> lQ

Cl(Y n X'Q),

where C = C(n, X, X'). We do not prove this here.

2. Proof of the theorem

LEMMA 1. (a) Let X > 0. / / F g Rn //u?«/br A: = 0,1,2,.. . ,

(b) Le/ A > 1. 7/0° w a cwfo m Rn then for k = 0,1,2,... andeach cube
there exists a cube which we denote by Q* = Q*(Q, Q°,X) such that

where V is the set of the 2n vertices of the cube [0, l]rt and

If
Qe\J<Q\X,e)yk

eeV

then

Proo/. (a) Now F is contained in a cube, QF, of sidelength diameter (F). If
Q e 3>k and Z7 n XQ = 0 then Q is contained in the cube concentric to QF with
sidelength equal to diameter (F) + (X + l)2"fc.

(b) We prove (b) for
1 1 1 1 ln

(so ANQ° = [0, l]n). The result follows for any other cube by dilation and translation.
Suppose that ke{0,1,2,...} and J ^ [|, 1] is an interval of length ld ^ 2~*/3. Then

there exists an interval 7*e<[0, l]>fc such that

J<=I* + e/3 (2.1)

where either e = 0 or e = 1. To see this, suppose that there is no interval /* e <[0, l]>fc

with / £ / * . Then there is an interval in <[0,1])^ with an endpoint xeJ. Since
J £ [0,1]+|, there is an interval /* e <[0, l]>fc with xel* + | . Let y be an endpoint of
/* + £. Write x = 2~kp, y = 2~fc^ + i with p,qeZ. Then

>-x\ = 2"
2-k

3

Since /, ^ 2 fc/3 we conclude that J £ /* + i . This proves (2.1).
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Next, let 7° = [±- 1/8JV, ± + 1/8JV] (so 4NP = [0,1]). If ke{0,1,2,...} and Ie<7°>,
then NIc [|, l] and /N/ = 2~k/A < 2~fc/3. By writing J = Nl'm (2.1), we see that there
exists /*e<[0, l]>fc and e = 0 or 1 such that

NlQl* + e/3. (2.2)

Let 0° = [f- 1/8N, \+ \/8N)n and 0 e <0°>fc. By writing I=Qj'm equation (2.2)
for 1 <_/ ̂  n, we see that there exists If e <[0, l]>t and ei = 0 or 1 such that

Thus

Finally, if

eeV

and Qe(Q°) is such that Q* = Q then Q^Q and lQ = l$/4N. There are at most
{AN)n such cubes Qe(Q°).

Proving the Theorem is now reduced to proving the following.

If F is a connected set in Un and Q° is a cube in Un then

r

where C = C(n).

To see this let Q° be a cube in Un. Then

where Q* = Q*(Q,Q°,3), by Lemma 1.

LEMMA 2. If V is a connected set in Un with l(T) < oo and Q° is a cube in Un then

where C = C(n).

Proof Let Q be a cube in IR" and let aeAQ. Write

Aa,t = {fi:Pc: r,fleAQ, for some Q'e(Q}k}, k = 0,1,2,...,
r sup dist (JC, La), V # T,

T* = T.



CHARACTERIZATION OF SUBSETS OF RECTIFIABLE CURVES IN Un 341

Let a(A;)eAa fc be an index such that

ta{k)= sup tp, k = 0 , 1 , 2

Then

s« ^ E W (2-3)
fc-0

To see this, suppose that afc is a sequence such that a0 = a, afc+1eAa v Then the
sequence sa is eventually non-increasing and sa —*• 0, so

fc-0

Let ak be such that

Then sak-sak+i < tm), so we get equation (2.3).
We also have

ee<e>
where C = C(n).

To see this, let aeAQ. By the Pythagorean theorem,

•« '"U?.,
Hence

Z — ̂  C\ T KLh— V

for k = 0,1,2,.. . , where C = C(n). Hence

= Csup
Jy~l(Q°) Qe<Q0>

«2°)) = 2n+1c/(r n Q°),
where / e denotes the characteristic function of the set Q and C = C(«). Putting
equations (2.3) and (2.4) together, we get

e<«°>

where C = C(«). From this, we get Lemma 2.
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REMARK. Suppose that F is the image of a closed, rectifiable, chordarc Jordan
curve with chordarc constant k. That is, suppose that there is a circle T and a length
preserving bijection y: T -* F and if x and y are in F then the (shorter) arc between
x and y has length bounded by k\x-y\. Let Q° be a cube in Un. If Q<=(Q0} and
Q* = Q*(Q, Q°, X), where X = k y/n + 1, then at most one component of F n Q* meets
Q and there is one arc in T mapped onto this component. Hence rQ ^ sQ* = sQ*(y) and

where C = C(«, K), by Lemmas 1 and 2. This proves the theorem for closed,
chordarc, Jordan curves.

LEMMA 3. IfT c (Rn is a connected set with /(F) < oo and Q° c Un is a cube then

£ rQ ̂  C/(F n 22°),

= {Q e <e°>: V < ^ 5 * = Q*(Q, Q°, X), I = A(/i), <5 = <J(/i) fl«rf C = C(/i).

Before proving Lemma 3 we shall now complete the proof of the theorem.

Proof. Let d,X be the constants in Lemma 3. Let

Then

Now
^ o 7~ ^ 7

where C = C(n), by Lemma 3, and

-2 1 c2

I ^ S2 LJ I "^ S2
<36<<3U> *C

where C = C(«), by Lemmas 1 and 2.

3. Proof of Lemma 3

First we give a brief outline of the proof beginning with some simple Euclidean
geometry. Let Q c un be a cube and let if" and Jz?̂  be lines meeting \Q. We define
two line segments

F £ %* n A0\interior(20
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having the same length, comparable to the maximum distance of points of JSf (1 1Q
to se\

In Lemma 4 part (a) we will show that there exists a unit vector w° such that the
length of the interval w • F 0 wflis comparable to this maximum distance for all unit
vectors w close to w°.

In Lemma 4 parts (b) and (c) we use this to show that if T is a connected set, Q°
is a cube, Q is in the dyadic decomposition of Q° and sQt is small (that is T n Q* is
'almost' a union of straight line segments), then we can find sets F and P which
are 'almost' straight line segments with

k m A0\interior(20
P s r n 2Q

and a unit vector w° such that the length of the interval w• F n wP bounds (up to a
constant) rQ for all unit vectors w close to w°. Hence for such cubes Q, rQ is bounded
by the length of the interval

(w-rn
To complete the proof of Lemma 3, we show in Lemma 5 that we can sum the

lengths of the above intervals over all cubes Q in the dyadic decomposition of Q°, and
the result will be bounded by a constant multiple of l(T n 2Q°). This is a slightly
subtle fact which would be false if the number 2 were replaced by the number 3. The
main ingredient in the proof (see in Lemma 5 part (a)) is the fact that if / is a dyadic
interval (that is, a dyadic cube in U1) then the right endpoint of 2/is the midpoint of a
dyadic interval of the same length as /. If however / is a dyadic interval longer than
/, then the right endpoint of 2J is an endpoint of a dyadic interval of the same length
as /. Hence these two right endpoints are separated by a distance at least half as long
as /.

We now embark upon the full proof.

Let Q s Un be a cube and let Jz?a and J§P' be lines meeting \Q. We define points
a and xp,xp£^p as follows. Let ua, v*, up, t / e i n be such that

(u* -1/) • v* = (up-u*) • IA

By replacing (v*, if) by (— va, — t/) if necessary we can assume that

&« n 2Q =
& (1 2Q =

= [ua + s*v*, ua + fVU

where sa ^ f, / ^ tp and max{|sa|, |/|} ^ max{?a, t*}. Relabel if" and JSP' if necessary
so that f ^ tp. Write

xa = ua + t^va, xp=ul}+ M,

y« = u' + ltP + ̂ V*, / = U
v „ , . (3-2)
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Then
^ a ) = sup d i s t ^ J H (3.3)

and

So
(3.4)

where A =

and

/(/*) =/(T^^^k'-A (3.5)

At this point we need two auxiliary lemmas.

LEMMA 4. (a) Let Q^Unbea cube and let SCa and 5£? be lines meeting \Q. Define
xa, x^, F, P as in equations (3.2). Then there exists a unit vector w°eUn such that

for all weBc(w°), where C = C(n) and c = c(n) > 0.
(b) Let Xo > 1. Let Qbea cube in Un, S£ a line meeting Q and z a point in 5£'. Given

X 5* Xo, let [x,y] = j£? n XQ. We have that ifd=min{\x-z\,\y-z\} > 0, then

BJiz) n d(XQ) = 0,
where e = e(n, Xo) > 0.

(c) If Vis a connected set in Un with l(T) < oo, ifQ° is a cube in Un and ifQe(Q°)
is such that sQ* < SrQ then there exists a unit vector w° e Un such that

rQ < ci((w • r n 20 n (w • r n XQ\IQ))

for all weB£w°), where S = 3(n)>0, Q* = Q*(Q,Q°,X), X = X(n), C = C{n) and
c = c(n) > 0.

Proof (a) We can assume by translating that x^ = 0. We can assume that
xa 7̂  x^. Consider the orthogonal projection P onto a plane II spanned by either

(i) v* and i/, or
(ii) ya + i^and ua-uP.
For either of these choices of II, P will satisfy

and for one of them, P will satisfy

Fix n so that P satisfies this inequality.
Identify II with C by choosing the orthonormal vectors 1, /el l such that

Then P(ya) = x + Rei0 and by equation (3.5), 0 < x ^ C0R, where Co = C0(n). Write

r = min (*,/?), 1° = [0, re-% P = [x,x + rei&]. (3.6)
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Then 7° c p(f), f <= p(F) and

£rc ̂  0 =̂  \n, 0<r^x^rjr, (3.7)
where rj = rj(n).

To prove (a) it suffices to show that if 7° and 71 are intervals in II satisfying
equations (3.6) and (3.7) then there exists a unit vector w°ell such that

x^C^w-P n wf) (3.8)

for all weBc(w°), where C1 = C^rf) and c = cfa) > 0.
Write w° = e'*. Then

It is easy to check that if we choose $ to satisfy xcos<fr + rcos(6—<fi) = 0 then

where C2 = C2(//).
Let weBc(w°). Letj = 0 or 1. If z is an endpoint of V then \wz — w°-z\ ^ 2cx. So

w • P is an interval containing points within lex of the endpoints of w° • P.
Hence

Choosing c sufficiently small, we get (3.8).

(b) The idea of this proof is that since if meets Q, 3? cannot meet any face of XQ
(where X ̂  Xo > 1) at too small an angle.

Suppose that z e XQ so d ̂  \X •s/n lQ. Let F be a face of XQ. Choose new axes so
that F lies in the hyper-plane xx = 0 and Q lies in the region xx > 0. Relabel x and y
if necessary so that xx ^ yv If xx ^ \(X— 1) lQ then

A - l , / A - I V 2

If xx < \{X— \)lQ then let u be any point in L 0 Q and write y = (u — x)/\u — x\, so y
is parallel to if. Then

so

If z$XQ then relabel x and ^ if necessary so that y$[x,z] and let F be a face of
XQ containing x. By choosing new axes and a point ueL D 0 as we did above, we find
that z1 < -d(X- \)/2X y/n.

(c) Let 0 < S < 1 and X = 4 V(2«) + 3 (see (3.4)). Suppose that JQ. < <5rQ.
Let aeAe, be such that F" meets g- Then La meets

which is contained in \Q if S is sufficiently small. Let ifa be the line containing U.
Then

r e ^ sup dist(z,ifa). (3.9)
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Let zeF f) Q attain this supremum and let /?eAQ, be such that ZGTP. Then

rQ^ sup dist(z,^) + sQt

so
rQ^2 sup dist(z,jS?a)

zez/nfe

if (5 is sufficiently small. By (3.3) and part (a), there exists a unit vector w°elR" such
that

rQ^Cl(w-r f] wf)

for all weBc(w°), where r and / are defined in (3.2) and a,/? may have been
interchanged. Now let £ = e(«,f) be as in part (b). For j = a,/? let xj,y}eXQ be such
that

where xj,y} are as in (3.2) and S is small enough so that 2sQ+/e < 1{P).
Then

~{2Q

by part (b). By a simple argument we can find a connected set f} £ F} n Bs .([*',.)>'])
such that f' meets B. (xj) and 5. (vy)- Since f} contains points within (1 + l/e)sOi,
of the endpoints of r it follows that w • P is an interval containing points within
|w| (1 + \/e)sQ1, of the endpoints of w-P. Hence by (3.9) and part (a)

for all WEB£W°), where Cx = Cx(n). By choosing d sufficiently small we get part (c).

LEMMA 5. (a) Let k>2, x,yeR. Write

= {ke2: there exists an interval Ie@k with xe2IandyeXl\interior 21)}.

(b) Suppose that Q° is a cube in Un, xeUn and F ^ Un. Write

C = £{x,F) = {Qe(Q°):xe2Q,F n 2Q = 0,F n XQ * 0} .

Then # (^) ^ C, where C = C(n, X).
(c) Suppose that F /s a closed subset ofUn, Q° is a cube in Un and w is a unit vector

in Un. Then

£ i((w • r n 2 0 n (w • r n XQ\2Q)) ^ c/(r n 25°),

«6<e°>

w/iere C = C(«).

Proof, (a) By replacing x,^ by —x, —y if necessary we can assume that x ^ y.
If /e Jf then the right endpoint of 2/lies in [x,y]. There exists / ' e ^ with lr = /7 such
that the right endpoint of 2/ is the midpoint of /'. Now if /, JeQ) and / # / then

|right endpoint of/—right endpoint of J\ ^ |min{//5 /,}.
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Hence there exists at most one interval IeJt with 2{y — x)<lr If IeX then
x,yeXI so {y — x)/X ^ lr

(b) Let ye closure (F) be such that \x-y\ = dist(x,F). If Qeg then

|centre(0-^| ^ |centre(0-x| + |jc-^| < ((2 + X)Vn)lQ.

So ye2((2 + X)y/ri)lQ = XxQ. Thus

(3.10)

Recall that G> = {^:^e0. If 2 is m t n e right-hand side of equation (3.10) then
there exists j , 1 <y < /?, such that x}e7Q}, y}eXx (^interior (2Q^). Hence by part (a)
we have

# { W n «2°>fc * 0) ^ »(2 + log2(2A1)).
For each k,

so by Lemma 1 part (a),

(c) Let xeUn. For 1 <y < /i write

F(x) = {j;er:w^ = wx,y} > x}),
F~j(x) = {yeT:wy = w-x,y} < x^}.

Let Q be a cube in Rn. For 1 ^ \j\ ^ n write

r O ' , 0 = { x e m 20:F(x) n 2Q = 0,F*(x) 0 XQ * 0}.
Then

To see (3.11) write

G^n^Jm^mJ.
Suppose that xeT n 2g, j e F n XQ\2Q and u>-x = w ^ is a point in the left-
hand side of (3.11). There exists j , 1 ^y ^ n, with y} > mi or yi < m_y Suppose that
yj > mr Let ze{z'eT (] 2Q:wz' = wx} = Ebe such that zi = sup£"r Then

F\z) O2Q = 0, P(z) n XQ\2Q * 0.

So z e TO", 0 and w • x = w z belongs to the right-hand side of (3.11). If y} < m — j the
argument is similar. Now

E /((wrn20n(wrrue\20X E E /(ny,0)
° 0

^ c/(r n 2G°),
where / r a Q) denotes the characteristic function of the set T(j, Q) and C = C{n). The
last inequality holds because the function in the integrand is uniformly bounded by
part (b).

We can now complete the proof of Lemma 3.



348 CHARACTERIZATION OF SUBSETS OF RECTIFIABLE CURVES IN Un

Proof. Let c = c(n) be as in Lemma 4 part (c). Since the unit sphere 51'1"1 is
compact there exists a finite set W £ Sn~l such that

Sn~l £ U Bc(w).
weW

Let S = d(ri) and X = X{ri) be as in Lemma 4 part (c). Then if Qe s0,

rQ^c£ /((w-rn2fi) n (w• rnXQ\2Q)),
weW

where C = C(n). Hence

I ' « < c £ £ /((w • r n 2g) n (w • r o Ag\20) ^ cx/(r n 2(2°),

where Cx = C^n), by Lemma 5 part (c).
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