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$0. ISTRODL’CTlON 

IN THIS paper. we define a real valued functional. the unuryr E. which is well-behaved for 

embedded circles in the 3 dimensional Euclidean space, and which blows up for curves with 

self-intersections. 

Let EiB be the sum of the energy E and the total squared curvature functional. We show 

that for any real number z. there are only finitely many ambient isotopy clusscs of 

embeddinps (i.e. knor t)‘pc’s) with the value of E‘iR not greater than x. 

There have been studied the total curvature (Fary [I]. Fenchel [7]. Milnor [5]), the 

total squared curvature (Lanpcr ilnd Singer [-I]), and the Gauss integral of the linking 

numhcr for a single curve, which. with the total torsion, leads to the notion of the self linking 

number (Pohl [7]) as functionals on the space of closed curves in R.’ with suitable 

conditions. Hut these functionals do not have the above properties. They do not blow up for 

curves with self-intcrscctions. and we can not in general show the finiteness of knot types by 

them. though we can distinguish the trivial knot from non-trivial knots by the total 

curvature. and hence. by the total squared curvature ([I], [S]). 

“Energy” of polygonal knots which is something like electrostatic energy was studied by 

Fukuhara [3], and “energy” of geodesic links in S’ which is defined by the principal angles 

was studied by Sakuma [U]. This work was motivated by [8]. 

in #I. we define the energy E, show the continuity of E, give a lower bound of E and the 

formulation for E by the double integral, and state a fundamental property of E. In $2, we 

show the finiteness of the knot types under the bounded value of EAB. 

Throughout this paper, we always consider the embeddings from S * into R’ of class Cz 

such that the norm of the derivative is always one. We use the notation 1.1 for the standard 

norm of R’. 

§I. DEFISITIONS AND PROPERTIES OF ENERGY E 

(I) Definitions and well-dt@dtwss 

Dcjnition 1.1. Let f: S’ = R/Z -+ R’ be an embedding of class Cz such that If’(r)1 = I 

for all YES’, where 1. I denotes the standard norm of R’. Let E be a real number with 

0 < 6 < l/2. We define C;(J .Y) for .reS’ and E,(j) by the following formulas. 

I 

I +x-c 
(I) c;(/; x) = I/(Y) -/WI -‘dy. 

XCI 
I 

I;(/. x)d.\-. 
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THEOREM 1.2. Let /: S’ = R;rZ + R’ be an embeddiny ojcluss C2 such thaf I/‘(t)/ = lfor 
all t E S’. Then the fullowiny holds. 

(1) There exists !iyo (Ci(J x) - Z/E) for any x E S’. Let it be denoted by I’(/; x). 

(2) There exists ,‘LrnO (E,(f) - l/Q. Let it be denoted by E(f). Then, 

Dejinition 1.3. We call E(f) the enrryy of /: 

Proof (1) For the given 1: let a positive number K be the maximum of the curvature 
I/“(t)/. To show (1). it is enough to show the existence of V(l; 0). For 0 _I y 5 n/K. define 
0(y) 2 0 by cos e(y) = (J’(y). f’(O)), where ( .) denotes the standard inner product of iw’. 
Then, for 0 5 y s n,‘K, we have B(y) 2 Ky, and hence we have the following estimate of 

I/(y) -/(O)l; 

Y 2 l/b9 --/Ku r 
s 

Y 
cos O(t) dt 2 

0 I 

Y 

cosKtdt = K-IsinKy... (1.2.1) 
0 

Therefore for any E, , c2 with 0 < c, < c2 < n/K, we have: 

2 y-‘dy i b;,(JO) - v,,(JO) 5 2 (K-‘sin K~)-~dy, 

and hence. 

0 5 (K,(.J 0) - 2/c,) - (v,,(f, 0) - 2/Q) 

5 2 ((Kcot Kc, - I/E,) - (Kcot Kc2 - I/e2)}, 

Since there exists lim (K cot Kt - l/t), there exists the limit lim (V,(/; 0) - 2/c). 
t-0 r-0 

(2) Note that in the above proof, V,(/, x) - Z/E converges lo V(/, x) uniformly on x. 
As <(j; x) is a continuous function of x for all E, V(J x) is a continuous function of x, and 
hence is integrable. The assertion follows directly from the uniform convergence 
of Y( /; x). (q.e.d.) 

(2) Continuity 

Put Y = { /: S’ = R/Z -+ E-4’; embedding of class C2 such that If’(t)1 = 1 for all t E S’ ). 

PROPOSITION 1.4. The enrryp functional E: Y + R is continuous with respect to the 

C2-topoloyp. 

Prooj Suppose f~ 9. We have to show that for a given positive number E there exist 
positive numbers do, d,, d, such that if gE3’ satisfies If(x) - y(x)1 < do, 

If’(x) - y’(x)1 < d,, and If”(x) - g”(x)1 < d, for all XES’, then I E(f) - E(y)1 < E. Put 

K = max I/“(s)I. Put d, = K. then ly”(x)( s 2K for all x. There exists a positive number 6, 
36s’ 

such that if 0 c t r 5, then 

12KcotZKt - I/t1 < ~14 and (Kcot Kt - l/t1 c 44. 
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Therefore for any XES’ we have 

I r.cj; xl - (ld,(_L xl - 2,6,)1 s .c 

and 

6, = inf F, ~ c, ( if‘4.x) -j’(.dI) = min {l/(.x) -f(y)lJ > 0. 
1 -I !‘i II 2 J, 

and d, such that ((il - 2J,)-: - Syz < E. Then 1 I;,($ x) - lb,(y, x)1 < E for all x. There- 

fore ) ~‘(1: x) - Cjg. .\-)I < 3~ for all x, and hence jE(f) - E(y)1 < 3e/2. (q.e.d.) 

(3) Lower hound of C’ and E 

PROPOSITION 1.5. Let /:S' = R,'h -+ 8' hr (J~I vmhtddiny ofchss C* such fhut I/‘(t)1 = I 

ji)r u// t E S ‘. Thw NV ~UCV k’( j; x) 2 - 4 fbr a// .‘c E s ’ and E(f) 2 - 2. 

Proof: l.f’(.~) -/‘(.x + .~)I 5 s for all I and for all s satisfying 0 2 s 5 l/2. The assertion 

follows immcdiatcly. (q.e.d.) 

(4) Example, the standard S ’ 

Dcfinc an cmbcddinp I’: S’ = R/Z’ + R” by 

Then, 

i(l) = (I/277 cos 2nr. l/211 sin 2nf. 0). 

I +x c 
c;(i, s) = 

5 
nZ(sinn(y-x)}-Zdy=2ncotnc. 

x+1 

thcrcforc, C(;, x) = lim ( C’,(L, \-) - 2/r:) = 0. Hence E(;) = 0. 
c .,I 

(5) Formulation fbr 1: hy double intepal 

Let j’: S’ = R/i2 + IR’ bc an embedding of class Cz such that If’(t)! = I for all YES’. 

Using the above enamplc WC‘ get; 

I’(_/; x) = lim (C;(_f_ x) - 2/c) = lim (V(J x) - V(c’, x)) 
r-0 c-0 

I +x-C 
= lim 

i 
j/(x) -/(y)I-* - n’{sinrc(y - x)J-*dy. 

c-0 Xtl 

CLAIM 1.6. Lrr j‘hr us ht./k. lf we &fine F(j; ?I, y) by 

for I # ): then F is 

Prooj: Put K = 

and hcncc. 

t-2 - 

F(/; I, y) = I/(x) -/(y)l-* - x*{sinn(y - x)}-* 

continuous und houndd on S ’ x S’-dioyonul. 

ITJ;~ Ij”(.s)l and r = min (1.x - yl. I - 1.x - yl}. If0 < t < x/K we have 

I -’ 5 I/(s) -j(y)) -* 2 K*(sin Kr)-*, 

n’(sinnf)-* 5 F(/; x. y) 5 K’(sin Kr)-’ - rr*(sinrrt)-*. 

The left term goes to - n*/3 and the right term to K ‘/3 - n2/3 as I goes to + 0. Hence 

F is bounded on S’ x S’-diagonal. (q.e.d.) 
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Let us put f(f; x. x) = lim F(f; x. y) if exists, or else F(f; x, x) = 0. Then. 
Y-r 

I 

I +x-c 

s 

I 
I.(_/; x) = lim F(f; I, y)dy = F( f; x, _v) dx. 

c-0 x+c 0 

Since E(j) = i 
i^ 

I 
C’( 1; x) ds, we get: 

0 

THEOREM 1.7. LA /: S’ = W,‘Z + R3 hr un emhrddiny ofclass C2 such that I/‘(t)1 = I/or 
u/l t E S’. Then H’V htm; 

E(j) =; 
u 

If(x) -f(y))-’ - n’{sinn(y - x)jm2dxdy. 
S’ . S’ 

(6) The fundamcmtai proprty of E 

We want to show the following statement; “Two distinct points in S’ can not approach 

each other so close if the energy E is bounded above.” 

Let us consider fhc following condition. 

( # ) For some x. YES’ with min (1.~ - y(, I - 1.~ - ~1; = 6. I/(r) -f(y)1 = (J. 

WC can calculate ;I lower bound of the cncrpy E under the above condition (# ) by 

intcprxting over S’ the minimum of Z’at each point of S’ under the condition ( # ). In this 

section, WC will omit the lcttcr ‘y/“* in I’. WC may assume .‘I = 0 and y = ii. Put y = I - S. For 

0 5 I 2 (8 - rr);‘?, WC have 

I;,,$_~), ~;,(,)~(~l~“‘~+~~~~‘~z+‘+~~~“‘i~+~:’lli”)r-’di, 

(See Izig. 1.9.) kxxc, we have 

b’((S - I). b’(l) 2 2((r + a)-’ -2(S+a)-‘--2(~+u+2r)~‘). 

For 0 5 t 5 (7 - n)/Z WC have similarly 

jq;i+Q C~(-I)~2((~+0)-‘-2(;1+u)-‘-2(S+u+2t)-’). 

For (5 - a)/2 2 I s (b + a)/2 and 6 + (;, - a)/2 5 I 5 6 + (;, + (r)/2 we have 

I’(f) 2 - 4 by Proposition 1.5. Hence under the condition ( #), we have 

E(/) = f 
s 

C’ 2 f (2a)( - 4) + 2 
1 

(8 -ul/Z 
{Cc + u)-’ - 2(S + u)-’ - 2(7 + CT + 2t)- ’ } dr 

St 0 

r 

,;-a, 2 

+? (([+u)-‘-2(;‘+u)-‘-Z(S+u+Zt)-‘}dt 
Jo 

= -.$(i- 2Q - 6),ji + U) 

+ 4log(; + u) - 4loga 

2 - 4 - x l0g 2 + 4 lop (5 - 

Thcrcforc. 

log d 2 

Summarizing thcsc up, we have 

- 2(7 - a),‘(; + a) - 4 log 2 + 4 log(S + a) 

4,i - 4 log 6. 

- I-:/-l - I - lop4 - 5 + logs. 
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r-j-u-~ 
(6 + cl)/2 * 

I + (I + u)/2 w 

Fig. 1.9 

THEOREMS 1.8. Giwn rrul numbers a 1 - 2 and 6 > 0. Let f: S* = W, L 4 R3 

hr an wdwddiny of c1~r.w C’ such that If’(t)1 = I j or all t ES’. Suppose E(J) 5 2 and 

min(1.v - ~1. 1 - 1.~ - yl) = S for X. YES’, then we burr; 

IfW -f(Y)1 2 
s s 

4r .exp(a/4).expa 
> 

18 exp(z,‘J) 

52. FINITENESS OF KNOT TYPES 

To make things easier, WC consider the sum of the energy E and the to!;11 squilrcd 

curvoturc. The latter physicrllly corresponds to the bending energy of the elastic rod. Let 

k S’ = Iw/Z -+ [w” bc an embedding of class C* such that I/‘(t)l = I for all t ES’. WC dcfinc 

the bending cncrgy of/by 

B(f) = $ ’ lf”(t)I’df. 
s 0 

We give the lower bound of the bending energy B, which WC USC Inter in Thcorcm 2.4. 

TIIKORVM 2.2. (Fenchcl [2]) Lcr /be us ahooc~. Thin B(f) 2 I. 

(2) Ei,, and thefini~eness of knot fypes 

Dclfinilion 2.3. Let f: S’ = Iw/Z -+ [w’ be an embedding of class C* such that Ij”‘(r)l = I 

for ail I ES’. For a positive number i., define E&J) by 

El,(f) = E(f) + j-B(f) 

1 
=- 

2 II 
s, rI, {If(.x) -/(y)l-’ - n’{sinx(y -x))-* 

+ i./4n2(lf”(x)12 + I/“(y)l*)j d.udy. 

Let / be as before. We have E(j) 1 - 2 by Proposition 1.5 and B(f) 2 I by 

Theorem 2.2. Given a real number a >= i. - 2, then EAB(/) 5 a means E(j) 2 a - i. and 

B(J) r i.-‘(z + 2). (Remark that E&j) s a for some/means necessarily a 2 i. - 2.) 

Now we can have ;I main theorem. 

THEOREM 2.4. Given recil numhurs 2 > 0 and a 2 i. - 2. Then fhrre e.\-is! only finitely 

many ornhicnr isotopy classes of embeddings (knor types) which cun he represenrrd by un 

tw~hrddiny/ojcfuss C*/rom S’ info R3 such that l/‘(f)1 = I fir all I ES’ and that E,,(f) 5 LX. 
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LEMMA 2.5. For yiren i. > 0 and z 2 L - 2. there exists a positite number r = r(i., I) nith 
a Ji~llo~viny property. 

Let f: S’ - W’ be an embeddiny of class Cz such that j/‘(t)1 = 1 jiw ull t ES’ and that 

Eis( f) 5 1. S be a point in f (S’). and B,(S) be a 3-ball with center X and radius r. Then 

B,(S) nf (S’ ) is an arcwise connected unknotted curry seyment. thut is. it cun puss into 

a struiyht line segment by an isotop_v of B,(.Y) which keeps the boundar_v sphere fixed. 

We show that Lemma 2.5 implies Theorem 2.4. 

Proof of Theorem 2.3. For given i. > 0 and z $ i. - 2. take a positive number r = r(i., z) 

of the abobe Lemma. and put the natural number N = N(i.. z) = [l/3] + I. where [ J is 

Gauss’s symbol. Suppose Eis( f) 5 z. Then /(S’) can be covered by N balls with radius r in 

each of which f (S’) is an unknotted curve segment. Hence f(S’) is ambient isotopic to ;1 PL 

knot with N vertices. Now the proof follows directly from the fact that there exist only 

finitely many knot types of PL knots with N vertices. (q.e.d.) 

Proc$‘of’Lcmma 2.5. We show that 

r = l,‘lXcxp((z - i.),‘4).(2 - $)L,‘4n*(z + 2). 

has the property of Lcmmcl 2.5. 

Suppose E,,(/‘) 5 z. Then we have E(j) 5 z - i. and B(f) 5 (I + 2)/i., may assume 

X =f(O) = 0 andj“(0) = (I, 0. 0). Put f = (,f,.f2,. f,) and t, = (2 - &)i./4n’(z + 2). 

For 0 s t 5 t,, WC have the following estimates: 

2 t 
I 
’ If”(.s)I% 

0 

5 t4n2(z + 2)/i. 5 2 - t/j?, 

and therefore j”,(t) 2 l/J? and /;(t)/lf(t)l > I/& since f,(t) > t/G. 
Hence for 0 5 t 5 t, we have 

-@)I*~ = 2(f(t),f’(t)) > 0. 

Besides, for t, 5 t 5 l/2 we have If(t)) > r by Theorem 1.9. Summarizing these up, we have 

the proof. (qcd.) 
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