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ENERGY OF A KNOT

Jun O'Hara

(Received in revised form 10 April 1989)

§0. INTRODUCTION

IN THIS paper, we define a real valued functional, the energy E. which is well-behaved for
embedded circles in the 3 dimensional Euclidcan space, and which blows up for curves with
self-intersections.

Let £,z be the sum of the energy E and the total squared curvature functional. We show
that for any real number x. there are only finitely many ambient isotopy classes of
cmbeddings (i.e. knot types) with the value of E 5 not greater than x.

There have been studied the total curvature (Fary [1]. Fenchel [2], Milnoc [5]). the
total squared curvature (Langer and Singer [4]), and the Gauss integral of the linking
number for a single curve, which, with the total torsion, leads to the notion of the self linking
number (Pohl [7]) as functionals on the space of closed curves in R* with suitable
conditions. But these functionals do not have the above properties. They do not blow up for
curves with self-intersections, and we can not in general show the finiteness of knot types by
them, though we can distinguish the trivial knot from non-trivial knots by the total
curvature, and hence, by the total squared curvature ([13, [S].

“Encrgy” of polygonal knots which is something like electrostatic encrgy was studicd by
Fukuhara [3], and “energy” of geodesic links in $* which is defined by the principal angles
was studied by Sakuma [9]. This work was motivated by [8].

In §1, we define the energy E, show the continuity of E, give a lower bound of E and the
formulation for E by the double integral, and state a fundamental property of E. In §2, we
show the finiteness of the knot types under the bounded value of E 4.

Throughout this paper, we always consider the embeddings from S into R? of class C?
such that the norm of the derivative is always one. We use the notation |- | for the standard
norm of R?.

§1. DEFINITIONS AND PROPERTIES OF ENERGY E
(1) Definitions and well-definedness

Definition 1.1, Let f:§' = R/Z — R*® be an embedding of class C? such that | f(1)| = 1
for all teS"', where || denotes the standard norm of R>. Let ¢ be a real number with
0 <& < 1/2. We define F,(f. x) for xeS' and E,(f) by the following formulas.

l+x~-¢

(h V(fx= J 1f(3) =[]~ 2dy.

x+e

1 1
2 E(f) =3 J (S x)dx
~Jo
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THeOREM 1.2, Let f:S' = R;Z — R? be an embedding of class C* such that | f'(t)| = 1 for
all teS'. Then the following holds.
(1) There exists lim (V,(f, x) — 2/¢) for any xe S'. Let it be denoted by V(/, x).
e—~0

(2) There exists lin}) (E.(f) — 1/¢). Let it be denoted by E(f). Then,

1
E(f)= fj V(f x)dx.
s!

Definition 1.3. We call E(f) the energy of f.

Proof. (1) For the given f let a positive number K be the maximum of the curvature
| f7(t)]. To show (1), it is enough to show the existence of V'(f, 0). For 0 £ y £ n/K, define
6(y) 2 0 by cos8(y) = (f(y) f'(0)), where (,) denotes the standard inner product of R>.
Then, for 0 £ y < n/K, we have 8(y) £ Ky, and hence we have the [ollowing estimate of

[f(y)—fO0);

yZlf) -0 2 chosou)dt 2 jycostht =K 'sinKy--- (1.2.1)
o

0

Therefore for any ¢, £, with 0 < ¢, < ¢, < /K, we have:

ZJ:)"zd)' SV (L0 =V,(£0) s 2J x(K”sinKy)"dy,

and hence,
0 2 (K, (/. 0) = 2/e,) = (W, (/. 0) — 2/e,)
S 2{(KcotKe, — 1/e,) — (KcotKe, — 1/e,)}.

Since there exists lim (K cot Kt — 1/1), there exists the limit lim (V,(f, 0) — 2/).
10 £~0

(2) Note that in the above proof, V,(f, x) — 2/e converges to V(, x) uniformly on x.
As V,(f. x) is a continuous function of x for all ¢, V(f, x) is a continuous function of x, and
hence is integrable. The assertion follows directly from the uniform convergence
of V(/, x). (qed.)

(2) Continuity
Put # = {f:S' = R/Z — R?; embedding of class C? such that | f’(1)| = 1 foralltre S'}.

ProposiTiON 1.4. The energy functional E: & — R is continuous with respect to the
C2-topology.

Proof. Suppose fe .#. We have to show that for a given positive number ¢ there exist
positive numbers d,, d,, d, such that if ge% satisfies |f(x)—g(x)| <d,,
[f'(x) = g'(x)| <d,, and |f"(x) — g"(x)| < d, for all xeS', then |[E(f)— E(g)| <& Put

K = max |[f"(s)]. Putd, = K. then |g”(x)| < 2K for all x. There exists a positive number ¢,

seS'

such that if 0 < ¢ £ 6, then

|2Kcot2Kt — 1/t <e/4 and |KcotKt — 1/t] <¢/4.
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Therefore for any xeS' we have

Fifox) = (5, (fx) =28 S e,

and
g x) = (}s(9.x) - 276,)| Se.
Put
S,= inf  f)—fON} = min {{f()=f(»I} >0
-2, oo v 28,
and d,, such that (8, — 2d,)™% — 072 < & Then [35,(f x) = F5,(g. x)| < ¢ for all x. There-
fore | }'(f. x) — V(g. x)] < 3¢ for all x, and hence |E(f) — E(9)| < 3&/2. (g.ed)

(3) Lower bound of V and E

PrOPOSITION 1.5. Let f:S' = R'Z — R* be an embedding of class C?such that | f"(t) = 1
Sor all teS". Then we have V(. x) = — 4 for all xeS' and E(f) 2 - 2.

Proof. | f(x) — f(x + s)| £ s for all x and for all s satisfying 0 < s < 1/2. The assertion
follows immediately. {q.e.d)
(4) Example, the standard S'

Define an embedding «: $' = R/Z —» R* by

() = (1/2mcos 2mt, 1/ 2nsin 2nt, 0).

Then,

1 +x ¢
Vi, x) = J n?{sinn(y — x)} " ?dy = 2ncotne,

te

therefore, V(e x) = lim (V(/, x) — 2/c} = 0. Hence E(/) = 0.
e 0

(5) Formulation for E by double integral

Let f:S' = R/Z = R* be an embedding of class C? such that [ /()] = 1 for all teS'.
Using the above example we get;

VS, x)=1Iim (V(f. x) = 2/e) = im (V(f, x) — V(<. x))

e—~0

1+x-¢
= 1i"3,f H(x) = f()] 72 = 2 {sinn(y — x)} "2 dy.

Cram 1.6, Let f be as before. If we define F(f; x. y) by
FUGx y) =100 =S = n{sinn(y — x)} 72

Jor x # v, then F is continuous and bounded on §' x S'-diagonal.

Proof. Put K = max |f’(s)land t = min {|x — y|. 1 =[x — y|}. If0 < t < n/K we have
e st

1TPSIS) —f(3)) 7 S K (sinKo) 72,
and hence,

17— n¥sinnn) P S F(f: x. y) S K3GsinKe)™2 — a?(sinn)~ 2

The left term goes to — n2/3 and the right term to K2/3 — n?/3 as t goes to + 0. Hence
F is bounded on S' x S'-diagonal. {q.ed.)
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Let us put F(/: x. x) = lim F(f; x. y) if exists, or else F(f; x, x) = 0. Then,

y—=x

l+x~¢ 1
F(f. x) = lim J F(f:x.pdy= j F(f; x, »)dy.

=0 +c 0

1 i
Since E(f) = ;J V(f, x)dx, we get;

THeOREM 1.7, Let f:S' = R/Z — R? be an embedding of class C* such that | f*(1)| = 1 for
all teS'. Then we have:

1
E(f)= EHS- L —fI7% = n?{sinn(y — x)} " dxdy.

(6) The fundamental property of E
We want to show the following statement; “Two distinct points in S can not approach

each other so close if the energy E is bounded above.”
Let us consider the following condition.

(#) Forsome x, yeS' withmin{|x =yl =[x —y[} =&, [f(xX) = f () = 0.

We can calculate a lower bound of the encrgy E under the above condition (# ) by
integrating over §' the minimum of 1" at each point of S under the condition ( #). In this
scction, we will omit the letter *f ™ in 1, We may assume x = 0and y = 0. Puty = | — d. For
0 £1 (0 - a)/2, we have

3 a2 (y ta)/2 bt dray2 (y +a)/2 +¢
bAS — 1), f,ﬂ);([ +J‘ +f +f )s‘zdx.
4 [4 t+a t+a

(Sce Fig. 1.9)) Hence, we have
PO -0, VO Z20+0) ' =20+06)"'=20+0+20)7")
For 0 €1 € (y = a)/2 we have similarly
VS +1, V(=) Z2((t+a) ' =2(3+0) ' =20+0+207")
For (0-0)/2<t<(6+0)2 and d+(y—0)/2Z5tS6+(y+0)2 we have

}(t) 2 — 4 by Proposition 1.5. Hence under the condition ( # ), we have

6-a)/2
E(f)=;J b2 l(2«r)(—4)+2J- {t+0) ' =20+0)"' =2;+0+ 20" }dt
S!

0

o

-~

ty~a)2
+2 (t+0) ' =2+0)" ' =20+a+ 20"} de
0 §

= —d4a - 20 — (I),/('(j +0)— 2y —0a)/(y +0)—4log2 + 4log(d + a)
+ 4log(y + 0) — 4loga
> —d4—8log2 + dlogd — 4 — 4loga.

Thercfore,
logo = — E/4—1 —logd — 3 + logod.

Summarizing these up, we have
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Fig. 1.9.

Tueorem 1.8. Given real numbers a2 —2 and 6>0. Let f: $'=R Z-R?
be an embedding of class C? such that | f'(0)] = 1 for all teS*. Suppose E(f)< x and
min{|x — y|. 1 — |x — y|} = for x, yeS', then we have;

P )
-exp(x/4)-expd > 18exp(x/4)’

10— 2 1

§2. FINITENESS OF KNOT TYPES
(1) Bending energy

To make things easicr, we consider the sum of the energy E and the total squared
curvature. The latter physically corresponds to the bending encrgy of the elastic rod. Let
£ S' = R/Z - R? bec an embedding of class C2? such that | f'(¢)] = 1 for all e §'. We define
the bending energy of f by

I
B(f) = ;{—;L |/ (@)% de.

We give the lower bound of the bending energy B, which we use later in Theorem 2.4.

Tueorem 2.2, (Fenchel [2]) Let f be as above. Then B(f) 2 1.

(2) E,4 and the finiteness of knot types

Definition 2.3. Let f: §' = R/Z — R? be an embedding of class C2 such that | f*(1)] = |
for all teS*. For a positive number 4, define E 5(f) by

Eis(f) = E(f) + 2B(f)

.” (/) = fI7? = n? {sinn(y — x); 72
S$' x§'

!
2
+ A4S (1 4+ 1S (3)17)) dxdy.

Let f be as before. We have E(f) 2= —2 by Proposition 1.5 and B(f)=1 by
Theorem 2.2. Given a real number x 2 4 — 2, then E 4(f) € 2 means E(f) £ 2~ 4 and
B(f) S 2™ Y2 + 2). (Remark that E,4(f) S « for some f means necessarily « 2 4 ~ 2.)

Now we can have a main theorem.

THeorem 24. Given real numbers A >0 and a 2 i — 2. Then there exist only finitely
many ambient isotopy classes of embeddings (knot types) which can be represented by an
embedding f of class C? from S* into R such that | f'(t)] = 1 for all te S* and that E,s(f) £ a.
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LemMma 2.5, For given i > 0and x 2 /i — 2, there exists a positive number r = r(, x) with
a following property.

Let f: S' — R? be an embedding of class C? such that | f'(1)] = 1 for all te S' and that
E.s(f) S x. X be a point in f(S*), and B,(X) be a 3-ball with center X and radius r. Then
B.(X)f(S') is an arcwise connected unknotted curve segment. that is, it can puss into
a straight line seyment by an isotopy of B,(X) which keeps the boundury sphere fixed.

We show that Lemma 2.5 implies Theorem 2.4.

Proof of Theorem 2.4, For given 4 > 0and x = A — 2. take a positive number r = r(4, a)
of the above Lemma. and put the natural number N = N(4, a) = [1,2r] + |, where [ ] is
Gauss's symbol. Suppose Eg( /) € «. Then f(S') can be covered by N balls with radius r in
each of which f£(S')is an unknotted curve segment. Hence f(S') is ambient isotopic to a PL
knot with N vertices. Now the proof follows directly from the fact that there exist only
finitely many knot types of PL knots with N vertices. {q.ed)

Proof of Lemma 2.5. We show that
r=1/18exp((x — 4),4)-(2 = /2)4/4n%(x + 2).
has the property of Lemma 2.5.
Suppose E;z(f) € x. Then we have E(f) S a — 4 and B(f) £ (x + 2)/4. may assume

X =f(0)=0and f(0) = (1,0, 0). Put f=(f,.fo.fy) and £, = (2 — /2)A/4n(x + 2).
For 0 £t £ 1, we have the following estimates:

2

S0 =0 = U J7(s)ds

t 2
([ o)

1]
< rj [f7 () ds
0
tdnd(x + 2)/AS2 - /2,

and therefore f3(t) 2 1//2 and £,(0)/1f(0)] > 1//2 since £,(0) > t/ /2.

Hence for 0 £ 1 £ ¢, we have

A

d
a;(lf(l)lz) =2(f(0). f'(1)) > 0.

Besides, for 1, <t € 1/2 we have | f(1)] > r by Theorem 1.9. Summarizing these up, we have
the proof. {q.c.d.)
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