
JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2013.5.319
c©American Institute of Mathematical Sciences
Volume 5, Number 3, September 2013 pp. 319–344

ON EULER’S EQUATION AND ‘EPDIFF’

David Mumford

Division of Applied Mathematics, Brown University
Box F, Providence, RI 02912, USA

Peter W. Michor

Fakultät für Mathematik, Universität Wien

Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

(Communicated by Juan-Pablo Ortega)

Abstract. We study a family of approximations to Euler’s equation depend-
ing on two parameters ε, η ≥ 0. When ε = η = 0 we have Euler’s equation

and when both are positive we have instances of the class of integro-differential

equations called EPDiff in imaging science. These are all geodesic equations
on either the full diffeomorphism group DiffH∞ (Rn) or, if ε = 0, its volume

preserving subgroup. They are defined by the right invariant metric induced

by the norm on vector fields given by

‖v‖ε,η =

∫
Rn
〈Lε,ηv, v〉 dx

where Lε,η = (I − η2

p
4)p ◦ (I − 1

ε2
∇ ◦ div). All geodesic equations are locally

well-posed, and the Lε,η-equation admits solutions for all time if η > 0 and
p ≥ (n + 3)/2. We tie together solutions of all these equations by estimates

which, however, are only local in time. This approach leads to a new notion

of momentum which is transported by the flow and serves as a generalization
of vorticity. We also discuss how delta distribution momenta lead to “vortex-

solitons”, also called “landmarks” in imaging science, and to new numeric

approximations to fluids.

In Arnold’s famous 1966 paper [2], he showed that Euler’s equation in Rn for
incompressible, non-viscous flow was identical to the geodesic equation on the group
of volume preserving diffeomorphisms for the right invariant L2-metric. This raises
the question, what are the equations for geodesic flow on the full group of diffeo-
morphisms in various right invariant metrics? Arnold also gave the general recipe
for writing down these equations but, as far as we know, geodesics of this sort were
not specifically studied beyond the 1-dimensional case, until Miller and Grenander
and co-workers introduced them into medical imaging applications. In 1993 they
laid out a program for comparing individual medical scans with standard human
body templates [17]. Subsequently they introduced a large class of right-invariant
metrics on the group of (suitably smooth) diffeomorphisms using norms on vector
fields given by:

‖v‖2L =

∫
Rn
〈Lv, v〉dx.
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Here L is a positive definite self-adjoint differential operator. They proposed to
measure the distance from the subject scan to the template by the length of the
L-geodesic connecting them (see their survey article [18]). The geodesic equation
for these metrics are integro-differential equations called EPDiff (or ‘Euler-Arnold’
equations). In this paper we want to study the relationship of Euler’s equation to
EPDiff.

To be specific, we shall use in this paper the group DiffH∞(Rn) of all diffeomor-
phisms ϕ of the form ϕ(x) = x+ f(x) with f in the intersection H∞ of all Sobolev
spaces Hs, s ≥ 0, and also its normal subgroup DiffS(Rn) where f is in the space
S of all rapidly decreasing functions. See [16] for Lie group structures on them.

Note that, in the H∞ case, f , along with its derivatives, will approach 0 as
‖x‖ → ∞, but not necessarily at any fixed rate. The geodesic equation in these
metrics is similar in form to fluid flow equations except that it involves a momentum
m(x, t) = Lv(x, t), called momentum because it is dual to velocity in the sense that
the ‘energy’ can be expressed as ‖v‖2L =

∫
〈v,m〉dx.

The geodesic equation EPDiff of interest in this paper is this:

∂tm = −(v · ∇)m− div(v)m−m · (Dv)t (1)

In coordinates, we can write the right hand side more explicitly as: −
∑
j(vj∂xjmi+

∂xjvj ·mi + mj∂xivj). Note that v can be recovered from m as v = K ∗m where
K is the (matrix-valued) Green’s function for the operator L, that is, its inverse in
the space S.

The rather complicated expression for the rate of change of momentum – that is
the force – has a simple meaning. Namely, let the vector field v integrate to a flow
ϕ via

∂tϕ(x, t) = v(ϕ(x, t), t)

and describe the momentum by a measure-valued 1-form

m̃ =
∑
i

midxi ⊗ (dx1 ∧ · · · ∧ dxn)

so that ‖v‖2L =
∫

(v, m̃) makes intrinsic sense. Then it’s not hard to check that
equation (1) is equivalent to: m̃ is invariant under the flow ϕ, that is,

m̃(·, t) = ϕ(·, t)∗m̃(·, 0),

whose infinitesimal version is the following, using the Lie derivative (see [13, 3.4]),

∂tm̃(·, t) = −Lv(·,t)m̃(·, t). (2)

Because of this invariance, if a geodesic begins with momentum of compact support,
it will always have compact support; and if it begins with momentum which, along
with all its derivatives, has ‘rapid’ decay at infinity, that is it is in O(‖x‖−n) for
every n, this too will persist. This comes from the lemma:

Lemma. [16] If ϕ ∈ DiffH∞(Rn) and T is any smooth tensor on Rn with rapid
decay at infinity, then ϕ∗(T ) is again smooth with rapid decay at infinity.

Moreover this invariance gives us a Lagrangian form of EPDiff:

∂tϕ(x, t) =

∫
Kϕ(·,t)(x, y)(ϕ(y, t)∗m̃(y, 0)) = Kϕ(·,t) ∗ (ϕ(·, t)∗m̃(·, 0))

where Kϕ(x, y) = K(ϕ(x), ϕ(y)) (3)
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The main result of this paper is that solutions of Euler’s equation are limits of
solutions of equations in the EPDiff class with the operator:

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div), for any ε > 0, η ≥ 0. (4)

We will show that all solutions of Euler’s equation are limits of solutions of these
much more regular EPDiff equations and give a bound on their rate of convergence.
In fact, so long as p > n/2+1, Trouvé and Younes have shown [22] that these EPDiff
equations have a well-posed initial value problem with unique solutions for all time.
Combining our result with theirs gives a new way of approximating solutions of
Euler’s equation by solutions of a more regular equation. Moreover, although L0,η

does not make sense, the analog of its Green’s function K0,η does make sense as
do the equations (1), (2). These are, in fact, geodesic equations on the group of
volume preserving diffeomorphisms SDiffH∞(Rn) and become Euler’s equation for
η = 0. An important point is that so long as η > 0, the equations have ‘particle’
solutions in which the momentum is a sum of delta functions.

Our approach is closely related to several strands of work reformulating Euler’s
equation in a Hamiltonian setting. The first goes back to P. H. Roberts’ 1972 paper
[20] on weakly interacting vortex rings in R3 where a finite dimensional Hamiltonian
system for a finite set of such rings is introduced (his equations (35) and (36)). In
1988 Oseledets[19] gave a completely general Hamiltonian reformulation of Euler’s
equation. He introduced the dual momentum variables m(x, t) described above,
called γ(x, t) in his paper, that have non-zero divergence in general. With a suit-
able Hamiltonian, he recovers Euler’s equation as a Hamiltonian system. He notes
that when the momenta are sums of delta functions, one recovers Roberts’ system.
Subsequently, in a second direction, Alexandre Chorin and his students Thomas
Buttke, Ricardo Cortez and Michael Minion developed the discrete approximation
by vortex rings as an effective way to solve Euler’s equation numerically in line
with the general “Smoothed Particle Hydrodynamics” (SPH) technique (see [4, 7]).
Chorin discusses this technique in §1.4 of his book [6] where he calls the momentum
variables ‘magnetization’. Finally there is a third strand connected to our work. A
key point in EPDiff is the use of operators L of the form (I −4)p which have the
effect of smoothing the velocities v that solve the equation. The case p = 1 arose
earlier from the study of the Camassa-Holm equation [5], also called the α-Euler
equation for incompressible flows in dimension bigger than one. The CH equation
is very explicitly related to EPDiff in Holm and Marsden’s 2003 paper [9], which
strongly motivated the present paper.

The main point here is that all this work, in both the discrete and continu-
ous cases, fits in logically as special cases of the general EPDiff setup and thus
as geodesic equations on the group of diffeomorphisms with Riemannian metrics
depending on two auxiliary parameters. Besides these formal connections we give
what we believe are new existence theorems for certain cases of EPDiff that, as
stated above, lead to explicit bounds on the convergence of the particle methods to
solutions of Euler’s equation. In the last section, we show that Roberts’ dynamics
of vortex rings is the same as our geodesic dynamics when the momentum is a sum
of delta distributions. In this context, it is interesting that this dynamical system
generates in many cases higher order singularities in the infinite time limit and we
illustrate these.

The authors wish to thank Alexandre Chorin, Constantine Dafermos, Darryl
Holm and André Nachbin for very helpful conversations and references.
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1. Oseledets’s form of Euler’s equation. Oseledets’ Hamiltonian formulation
of Euler’s equation states that for a suitable kernel K, Euler’s equation becomes
equation (2) above. To describe his result, consider how EPDiff might be related
to Euler. First of all, it’s natural to take K to be the identity matrix times a delta
function δ0(x) because then ‖v‖2L is just the kinetic energy

∫
|v(x)|2dx where | · |

denotes also the Euclidean norm in Rn. Then v = m, and EPDiff becomes:

∂tv = −(v · ∇)v − div(v)v −∇( 1
2 |v|

2)

which looks like Euler’s equation if the divergence of v can be made to be zero for all
time and the last term can be interpreted as the gradient of pressure. But how do
we keep the divergence of v zero? In fact, the right link between Euler and EPDiff
is a little more subtle and requires the ansatz:

Kij(x) = δijδ0(x) + ∂xi∂xjH

with the Hessian of an auxiliary function H. With this form of K, we get:

vi −mi =
∑
j

(∂xi∂xjH) ∗mj = ∂xi

H ∗∑
j

∂xjmj


or

v = m+∇(H ∗ div(m)).

Substituting this into EPDiff and assuming div(v) = 0 we again get Euler’s equation:

0 = ∂tm+ (v · ∇)m+ div(v)m+m · (Dv)t

= ∂tv −∇(∂t(H ∗ div(m))) + (v · ∇)v − (v · ∇)(∇(H ∗ div(m))+

+∇( 1
2 |v|

2)−∇(H ∗ div(m)) · (Dv)t

= ∂tv + (v · ∇)v +∇p
with the pressure

p = −∂t(H ∗ div(m)) + 1
2 |v|

2 − (v · ∇)(H ∗ div(m)).

But now we can also guarantee that the divergence of v is zero if we choose H
correctly. We have:

div(v) = div(m) +4(H ∗ div(m)) = div ((δ0 +4H) ∗m)

so all we need to do is to take H to be the Green’s function of minus the Laplacian
and, at least formally, we get Euler’s equation. But K now has a rather substantial
pole at the origin. In fact, if Vn is the area of an (n− 1)-sphere, then:

H(x) =

{ 1
(n−2)Vn (1/|x|n−2) if n > 2,
1
V2

log(1/|x|) if n = 2

so that, as a function

∂xi∂xjH(x) =
1

Vn
· nxixj − δij |x|

2

|x|n+2
, if x 6= 0.

Letting M0 denote this matrix-valued function, note that convolution with any of
its elements (M0)ij is still a Calderon-Zygmund singular integral operator defined
by the limit as ε→ 0 of its value outside an ε-ball, so it is reasonably well behaved.
As a distribution there is another term; compare with [10, Thms. 3.2.4 and 3.3.2].
It is not hard to check that:

∂xi∂xjH
distribution

= (M0)ij −
1

n
δijδ0
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Now convolution among distributions is associative and commutative so we have

m+ ∂2(H)distr ∗m = m+∇H ∗ div(m)

which is the identity if div(m) = 0 and has values with div = 0, i.e., is a projection
onto the subspace of divergence-free vector fields. As it is self-adjoint we see that

m 7→ v =
(
m+ ∂2(H)distr

)
=
(
n−1
n ·m+M0 ∗m

)
is the orthogonal projection Pdiv=0 of the space of vector fields m onto the subspace
of divergence free vector fields v. This is the vector form of the Hodge decomposition
of 1-forms and is bounded orthogonal in each Sobolev space. The matrix given by
the value of M0 at each point x ∈ Rn has Rx as an eigenspace with eigenvalue
(n − 1)/Vn|x|n and Rx⊥ as an eigenspace with eigenvalue −1/Vn|x|n. So if we let
PRx and PRx⊥ be the orthonormal projections onto the eigenspaces, then we have
the useful formula:

Pdiv=0(m)(x) =

n−1
n ·m(x) +

1

Vn
· lim
ε→0

∫
|y|≥ε

1

|y|n
(
(n− 1)PRy(m(x− y))− PRy⊥(m(x− y)

)
dy.

With this choice of K, EPDiff in the variables (v,m) becomes the Euler equation
in v with pressure given by an explicit function of m and v. This gives us Oseledets’s
form for Euler’s equation:

v = Pdiv=0(m)

∂tm = −(v · ∇)m−m · (Dv)t
(5)

Let m̃ =
∑
imidxi be the 1-form associated to the vector field m. Since v is

divergence free we can use m̃ instead of
∑
imidxi ⊗ dx1 ∧ . . . dxn. In integrated

form, we have:

∂tϕ = Pdiv=0(m) ◦ ϕ
m̃(·, t) = ϕ(·, t)∗m̃(·, 0)

(6)

This form of Euler’s equation uses the variables v,m instead of the traditional
v, p (velocity and pressure) but it has the great advantage that m, like vorticity, is
constant when suitably transported by the flow. In fact, m determines the vorticity,
defined in arbitrary dimensions as the 2-form ω = d(

∑
i vidxi). This is because v

and m differ by a gradient, so ω = dm̃ also. Thus the fact that vorticity is constant
along flows is a consequence of the same fact for the momentum 1-form m̃. This way
of writing the velocity field as a convolution with a momentum field means we write
the velocity field as a superposition of the elementary vector fields Pdiv=0(m0δx0

)
for all points x0 and vectors m0. In dimension 2, x0 = (0, 0),m0 = (1, 0), this is

the harmonic vector field v =
(
x2−y2
|x|4 , 2xy|x|4

)
with a singularity at 0 where it has a

dipole as vorticity. In dimension 3, this vector field is an infinitesimal vortex ring
which is how Roberts’ paper [20] connects to our paper.

One of the motivations for this formulation of Euler’s equation is that if v(x, 0) is
any initial condition for velocity, we take any momentum m(x, 0) such that v(·, 0) =
Pdiv=0(m(·, 0)). As Chorin has pointed out, in many situations one can start with
m(·, 0) of compact support and then m will remain of compact support even though
v will have heavy tails due to the effects of pressure far from the support of m. This
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seems to be one of the reasons why his numerical vortex dipole/vortex ring technique
works so well.

2. Approximating Euler with EPDiff. However, the above equations (5) and
(6) are not part of the true EPDiff framework because the operator K = Pdiv=0

is not invertible and there is no corresponding differential operator L. In fact, v
does not determine m as we have rewritten Euler’s equation using extra non-unique
variables m, albeit ones which obey a conservation law so they may be viewed simply
as extra parameters. The simplest way to perturb this K to make it invertible is to
replace the above Green’s function H of the Laplacian by the Green’s function Hε

of the positive definite operator ε2I −4 for some constant ε > 0 (whose dimension
is length−1). The Green’s function may be given explicitly using the ‘K’ Bessel
function via the formula

Hε(x) = cnε
n−2|εx|1−n/2Kn/2−1(|εx|)

for a suitable constant cn independent of ε (see [1]).
Then we get the modified kernel

(Kε)ij = δijδ0 + (∂xi∂xjHε)distr

This has exactly the same highest order pole at the origin as K did and the second
derivative is again a Calderon-Zygmund singular integral operator minus the same
delta function. The main difference is that this kernel has exponential decay at
infinity, not polynomial decay. By weakening the requirement that the velocity
be divergence free, the resulting integro-differential equation behaves much more
locally, more like a hyperbolic equation rather than a parabolic one.

Note that here Kε scales as Kε(x) = εnK1(εx) and that, as ε goes to zero,
the limit of Kε (as an operator on S, say) is just our previous kernel K. Taking
the Fourier transform and inverting, we can find the corresponding operator Lε in
several steps:

Ĥε =
1

ε2 + |ξ|2
, hence

̂∂xi∂xjHε = − ξiξj
ε2 + |ξ|2

, hence

(̂Kε)ij =
(ε2 + |ξ|2)δij − ξiξj

ε2 + |ξ|2

Now the inverse of this as a matrix is the remarkably simple:(
(ε2 + |ξ|2)δij − ξiξj

ε2 + |ξ|2

)−1
= δij +

ξiξj
ε2

and this comes from the differential operator:

Lε = I − 1
ε2∇ ◦ div

Thus we have inverse operators as required by the EPDiff setup:

v = Kε ∗m, m = Lε(v).

Finally this operator Lε defines the simple metric:

‖v‖2Lε =

∫
Rn

〈
v, Lε(v)

〉
dx1∧ · · ·∧dxn =

∫
Rn

(
|v(x)|2 + 1

ε2 div(v)(x)2
)
dx1∧ · · ·∧dxn.
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As in Arnold’s original paper, formally at least, solutions of EPDiff for this
Kε, Lε are geodesics in the group of diffeomorphisms for this metric. EPDiff is the
geodesic equation with momentum and velocity but in this case it simplifies to a
form involving only velocity that closely resembles Euler’s equation. Substituting
the formula for Lε, we calculate as follows:

∂t(vi) = (Kε)ij ∗ ∂t(mj)

= −(Kε)ij ∗ ((vkmj,k +mj · div(v) +mk · vk,j)
= −(Kε)ij ∗

(
(vkvj,k + vj div(v) + vk · vk,j)

− 1
ε2 (vk div(v),jk + div(v),j div(v) + div(v),kvk,j)

)
= −(Kε)ij∗

(
vkvj,k + 1

2

(
|v(x)|2 − (div(v)

ε )2
)
,j

+ vj div(v)− 1
ε2 (vk div(v),k),j

)
= −(Kε)ij ∗

(
vkvj,k + 1

2

(
|v(x)|2 + (div(v)

ε )2
)
,j

+ (Lε)jk(vk div(v))
)

= −(Kε)ij ∗ (vkvj,k)− vi div(v)− 1
2 (Kε)ij ∗

(
|v(x)|2 + (div(v)

ε )2
)
,j

Here we have written |v(x)| in order to make clear that we are taking the norm of
the single vector v(x), not the norm of the whole vector field, so |v(x)| is a function
on Rn. Now we also have the identity:

(Kε ∗ ∇f)i = f,i +
∑
j

∂i∂jHε ∗ f,j = f,i +4Hε ∗ f,i = ε2∂xiHε ∗ f

so the final geodesic equation is:

∂t(v) = −(Kε) ∗ ((v · ∇)v)− v · div(v)− ε2

2 ∇Hε ∗
(
|v(x)|2 + (div(v)

ε )2
)

(7)

This is certainly the simplest choice for a metric which allows non-zero diver-
gence but, as ε → 0, seeks to make the divergence smaller and smaller so that, in
the limit, the divergence must be identically zero and we have the L2 metric on the
group of volume preserving diffeomorphisms. At the same time, the above equa-
tion approaches Euler’s equation. We will show below that solutions of the above
equation must approach solutions of Euler’s equation and, when the momentum has
rapid decay at infinity, we will give an explicit bound on the rate of convergence.
Curiously though, the parameter ε can be scaled away. That is, if v(x, t),m(x, t)
is a solution of EPDiff for the kernel K1, then v(εx, εt),m(εx, εt) is a solution of
EPDiff for Kε.

The above case of EPDiff still has a singular kernel Kε for which existence the-
orems are difficult (see below). The cases of EPDiff which have been analyzed and
used in medical imaging applications [18, 22, 23] involve kernels which are C1. We
can easily make our singular example a limit of better behaved examples. The
simplest way is to compose the above operator Lε with a scaled version of the stan-
dard regularizing kernel (I−4)p giving the positive definite self-adjoint differential
operator given above (equation (4) of the Introduction):

Lε,η = (I − η2

p 4)p ◦ (I − 1
ε2∇ ◦ div)

Here the constant η has dimension length and although ε and η could be scaled
away by themselves, the composite kernel has a dimensionless parameter η ·ε. Since
Lε,η is a composition, so is its inverse and hence the kernel is now the convolution:

Kε,η = G(p)
η ∗Kε
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where G
(p)
η is the Green’s function of (I − η2

p 4)p and is again given explicitly by

a ‘K’-Bessel function dp,nη
−n|x|p−n/2Kp−n/2(|x|/η). The reason for inserting p in

the denominator of the coefficient is that for p � 0, the kernel converges to a

Gaussian with variance depending only on η, namely (2
√
πη)−ne−|x|

2/4η2 . This

follows because the Fourier transform takes G
(p)
η to

(
1 + η2|ξ|2

p

)−p
, whose limit,

as p → ∞, is e−η
2|ξ|2 . These approximately Gaussian kernels lie in Cq if q ≤

p− (n+ 1)/2. So long as the kernel is in C1, it is known that EPDiff has solutions
for all time [22]. A particularly simple case is when p = (n+3)/2. Then the Green’s
function is just a constant times the C2 function (1+ |x|/η)e−|x|/η as you can verify
by taking n = 1 and checking that that this is the Green’s function of 1−η2(d/dx)2.

Figure 1. The dipole given by the kernel K0,η in dimension 2.

Finally we may also consider the limiting case ε = 0, η > 0. In this case v =

G
(p)
η ∗ Pdiv=0(m) so v has divergence zero. There is no L because v determines m

only up to a gradient field. However EPDiff in Oseledets’s form form (5) makes
perfect sense. Like Euler’s equation it gives geodesics on the group of volume
preserving diffeomorphisms. As always, the energy is E =

∫
v · m and this is

conserved on geodesics. Even though we have no L, we can rewrite the energy

using (I − η2

p 4)pv = Pdiv=0(m), giving us:

E =

∫
v ·m =

∫
v · Pdiv=0(m) =

∫
v · (I − η2

p 4)pv.

Alternatively, we may use the above energy to define a metric on the group of
volume preserving diffeomorphisms which differ from the identity by a mapping in
H∞ (or S), and our equation is just the geodesic equation on SDiffH∞(Rn) for
this metric. Note that the Lie algebra of SDiffH∞(Rn) is just the space of vector
fields v in H∞ with divergence zero and its dual is the space of 1-forms in H∞
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modulo closed 1-forms, which is the same as the space of exact 2-forms in H∞. In
the divergence free setting there is no need to consider 1-forms tensored with the
standard density dx. On SDiffH∞(Rn), the ‘momentum’ associated to a geodesic,
defined as the dual of the tangent to the geodesic, is the classical vorticity of the
flow and, in our formulation, we have simply ‘lifted’ this to the dual Lie algebra of
DiffH∞(Rn).

The case p = 1 has been introduced and studied by Holm and collaborators (see
[8], equation (8.29)) who use the letter α for our η and call EPDiff the α-Euler
equation:

(1− α24)(∂tv) = −(v · ∇)(1− α24)v − (1− α24)v · (Dv)t +∇p,
div(v) = 0.

You can also drop incompressibility and when n = 1 this becomes the Camassa-
Holm equation [5].

The K for the ε = 0, η > 0 metric is just the convolution G
(p)
η ∗ Pdiv=0. This K

can be explicitly calculated using the fact that the Green’s function H is harmonic.
We use:

Theorem 1. Let F (x) = f(|x|) be any integrable C2 radial function on Rn. Assume
n ≥ 3. Define:

HF (x) =

∫
Rn
min

(
1

|x|n−2 ,
1

|y|n−2

)
F (y)dy =

1

|x|n−2

∫
|y|≤|x|

F (y)dy +

∫
|y|≥|x|

F (y)

|y|n−2
dy

Then HF is the convolution of F with 1
|x|n−2 , is in C4 and:

∂i(HF )(x) = −(n− 2)
xi
|x|n

∫
|y|≤|x|

F (y)dy

∂i∂j(HF )(x) = (n− 2)

(
nxixj − δij |x|2

|x|n+2

∫
|y|≤|x|

F (y)dy − Vn
xixj
|x|2

F (x)

)
If n = 2, the same holds if you replace 1/|x|n−2 by log(1/|x|) and omit the factors
(n− 2) in the derivatives.

Proof. The idea is to first check that HF ∈ C2 with the above expressions for
its first and second derivatives. This is straightforward when x 6= 0. Near 0, let
F (x) = a+ b|x|2 + o(|x|2). Then one checks that:

HF (x) =

(∫
F (y)

|y|n−2
dy

)
− (n− 2)aVn

2n
|x|2 − (n− 2)bVn

4(n+ 2)
|x|4 + o(|x|4)

hence the expressions for the first and second derivatives extend across the origin.
Taking the trace of the matrix of second derivatives, one finds that; 4HF = −(n−
2)VnF. Since the Green’s function of −4 is 1/(n−2)Vn|x|n−2, this implies that HF

is the convolution F ∗ (1/|x|n−2).

This applies to F = G
(p)
η for example, or to the limiting case where F is a

Gaussian, giving the following expression for the kernel K0,η for finite p or the
limiting Gaussian case:

K0,η(x) =
δij |x|2 − xixj

|x|2
G(p)
η (x) +

xixj − δij |x|2/n
|x|2

MeanB|x|

(
G(p)
η

)
(8)

where Ba is the ball of radius a centered at the origin.



328 DAVID MUMFORD AND PETER W. MICHOR

We can summarize all possibilities in a handy table (we have changed notation
slightly to use double subscripts ε, η for all cases):

no L K0,0 = Pdiv=0 = δijδ0 + (∂i∂jH)distr

no L K0,η = G
(p)
η ∗ Pdiv=0 – see above

Lε,0 = I − 1
ε2∇ ◦ div Kε,0 = δijδ0 + ∂i∂jHε

Lε,η =
(
I − η2

p 4
)p
◦
(
I − 1

ε2∇ ◦ div
)

Kε,η = δijG
(p)
η + ∂i∂j(G

(p)
η ∗Hε)

3. Existence theorems for the Lε,η metric. It is well known that local solutions
of Euler’s equation itself, that is L0,0, exist, e.g. see [11, 21]. Moreover global
solutions of the EPDiff equations Lε,η, ε, η > 0, p ≥ (n + 3)/2 have been shown to
exist by Trouvé and Younes (unpublished but apparently implicit in the results of
[22] for geodesics in what they call ‘metamorphosis’). Their result extends easily to
the EPDiff equations L0,η because the kernel K0,η is still C1, which holds so long
as p ≥ (n+ 3)/2. The method here is based on the Lagrangian form (3) of EPDiff.
For completeness, we include the proof:

Theorem 2. Let ε ≥ 0, η > 0, p ≥ (n + 3)/2 and K = Kε,η be the corresponding
kernel. For any vector-valued distribution m0 whose components are finite signed
measures, consider the Lagrangian equation for a time varying C1-diffeomorphism
ϕ(·, t) with ϕ(x, 0) ≡ x:

∂tϕ(x, t) =

∫
K(ϕ(x, t)− ϕ(y, t))(Dϕ(y, t))−1,>m0(y)dy.

Here Dϕ is the spatial derivative of ϕ. This equation has a unique solution for all
time t.

Proof. The Eulerian velocity at ϕ is:

Vϕ(x) =

∫
K(x− ϕ(y))(Dϕ(y))−1,>m0(y)dy

and Wϕ(x) = Vϕ(ϕ(x)) is the velocity in ‘material’ coordinates. Note that because
of our assumption on m0, if ϕ is a C1-diffeomorphism, then Vϕ and Wϕ are C1

vector fields on Rn; in fact, they are as differentiable as K is, for suitably decaying
m. The equation can be viewed as a the flow equation for the vector field ϕ 7→Wϕ

on the union of the open sets

Uc =
{
ϕ ∈ C1(Rn)n : ‖ Id−ϕ‖C1 < 1/c, det(Dϕ) > c

}
,

where c > 0. The union of all Uc is the group DiffC1
b
(Rn) of all C1-diffeomorphisms

which, together with their inverses, differ from the identity by a function in C1(Rn)n

with bounded C1-norm. We claim this vector field is locally Lipschitz on each Uc:

‖Wϕ1 −Wϕ2‖C1 ≤ C.‖ϕ1 − ϕ2‖C1

where C depends only on c. This is easy to verify using the fact that K is uniformly
continuous and using ‖Dϕ−1‖ ≤ ‖Dϕ‖n−1/|det(Dϕ)|. As a result we can integrate
the vector field for short times in DiffC1

b
(Rn). But since (Dϕ(y, t))−1,>m0(y) is

then again a signed finite Rn-valued measure,∫
Vϕ(·,t)(x)(Dϕ(y, t))−1,>m0(y)dx = ‖Vϕ(·,t)‖Lε,η

is actually finite for each t. Using the fact that in EPDiff the Lε,η-energy ‖Vϕ(·,t)‖Lε,η
of the Lε,η-geodesic is constant in t, we get a bound on the norm ‖Vϕ(·,t)‖Hp ,
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depending of course on η but independent of t, hence a bound on ‖Vϕ(·,t)‖C1 . Thus
‖ϕ(·, t)‖C0 grows at most linearly in t. But ∂tDϕ = DWϕ = DVϕ ·Dϕ which shows
us that Dϕ grows at most exponentially in t. Hence detDϕ can shrink at worst
exponentially towards zero, because ∂t det(Dϕ) = Tr(Adj(Dϕ).∂tDϕ). Thus for all
finite t, the solution ϕ(·, t) stays in a bounded subset of our Banach space and the
ODE can continue to be solved.

For Lε,0 with ε > 0 we proved in a previous paper [14] that the Lε,0-metric defined
a well behaved Riemannian metric on the group of diffeomorphisms of Rn in that
the infimum of path lengths joining two distinct diffeomorphisms was positive. Here
we prove that for all ε and η, including ε = 0 and/or η = 0, geodesics exist locally
– though as in the Euler case, as far as we know, they might become singular in
finite time hence not be indefinitely prolongable – and that these local solutions
behave continuously in the parameters ε, η. In particular, as ε, η → 0 they approach
solutions of Euler’s equation.

Everything depends on proving a Sobolev estimate for the time derivative of
certain energies. We need the following straightforward lemma:

Lemma. If η ≥ 0 and ε > 0 are bounded above, then the norm

‖v‖2k,ε,η =
∑
|α|≤k

∫
〈DαLε,ηv,D

αv〉dx

is bounded above and below by the metric, with constants independent of ε and η:

‖v‖2Hk + 1
ε2 ‖div(v)‖2Hk +

∑
k+1≤|α|≤k+p

η2(|α|−k)
∫
|Dαv|2 + 1

ε2 |D
αdiv(v)|2

Here Hk is the k-th order Sobolev norm for the standard metric, and Dα is the
partial derivative for the multiindex α. We also often omit dx at the end of integrals,
and corresponding brackets. The proof of the lemma is obvious by expanding Lε,η.

Assuming k is sufficiently large, for instance k ≥ (n + 2p + 4) works, we now
prove the main estimate:

|∂t
(
‖v‖2k,ε,η

)
| ≤ C.‖v‖3k,ε,η

where, so long ε and η are bounded above, the constant C is independent of ε and
η.

Write Mη = (I − η2

p 4)p, so that mi = Mηvi − 1
ε2Mη div(v),i. Using EPDiff and

integration by parts, the time derivative is given by:

1
2∂t
(
‖v‖2k,ε,η

)
=
∑
|α|≤k

∫
Rn

(∂tD
αm,Dαv)

=
∑

i,j,|α|≤k

∫
Rn

(−1)|α|+1D2αvi. (vj .mi,j +mi.vj,j +mj .vj,i)

Next replace the mi by Mηvi − 1
ε2Mη div(v),i. Integrating the third term by parts

to move the ith derivative of vj to the other factors and noting that the two terms
involving the second derivative of div v cancel, one checks that the estimate can be
reduced to 6 terms all of the form

∫
D2αf · g ·Mηh with one of the triples:

(f, g, h) =(vi, vj , vi,j), (vi, vj , vj,i), (vi,div v, vi),

(div v
ε , vj ,

div v,j
ε ), (vi,

div v
ε ,

div v,i
ε ), (div v, vj , vj).
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Next we expand Mη to
∑
|β|≤p(−1)|β| η

2|β|

p|β|
D2β (omitting binomial constants) and

integrate by parts some more, moving a Dα from the first to second or third terms
and a Dβ from the third to first or second terms, getting terms

η2|β|

p|β|

∫
Dα+β1f ·Dα2+β2g ·Dβ+α1h

where α = α1 +α2, β = β1 +β2. Now either α1 or α2 is less than or equal to k/2 so
that the corresponding (second or third) term in the integrand has order at most
k/2 + p + 1, hence ≤ k − n/2 − 1. Thus by the Sobolev inequalities, its sup norm
is bounded by its k-th Sobolev norm and we have:

η2|β|

p|β|

∣∣∣ ∫ Dα+β1f ·Dα2+β2g ·Dβ+α1h
∣∣∣ ≤

≤ 1

p|β|

{
‖η|β|Dα+β1f‖L2 · ‖g‖Hk · ‖η|β|Dβ+α1h‖L2 , if |α2| ≤ k/2,
‖η|β|Dα+β1f‖L2 · ‖η|β|Dα2+β2g‖L2 · ‖h‖Hk , if |α1| ≤ k/2.

The first term is always bounded by ‖f‖k,ε,η and so is the other D-term except in the

first case with α2 = 0, |α| = k, |β| = p and h is a first derivative h̃,` with h̃ either a
component of v or div v/ε. In this last case, the third term has k+p+1 derivatives,
so the lemma does not apply. But we can still integrate by parts, putting the `th

derivative on the other terms. If |β2| > 0 or if f = v`, this reduces again to terms

bounded by the (k, ε, η) norm. The only remaining case is when f = h̃, and then
we have:∫

Dα+βf · g ·Dα+βf,` = 1
2

∫
(Dα+βf)2,` · g = − 1

2

∫
(Dα+βf)2 · g,`

and this finishes the proof of the estimate.
Using this estimate, we can prove:

Theorem 3. Fix k, p, n with p > n/2 + 1, k ≥ n + 2p + 4 and assume (ε, η) ∈
[0,M ]2 for some M > 0. Then there are constants t0, C such that for all initial
conditions v0 ∈ Hk+p+1, there is a unique solution vε,η(x, t) of the above case
of EPDiff (including the limiting case of Euler’s equation) for t ∈ [0, t0]. The
solution vε,η(·, t) ∈ Hk+p+1 depends continuously on ε, η ∈ [0,M ]2 and satisfies
‖vε,η(·, t)‖k,ε,η < C for all t ∈ [0, t0].

For ε, η > 0, existence and uniqueness for all time has been proven in [22]. Their
proof has been extended to the case ε = 0, η > 0 in Theorem 2. For ε = η = 0,
this is the well known result for Euler’s equation. What remains is the new case
ε > 0, η = 0. We follow a standard approach, used, for example, in [21], Ch. 16 and
17. First consider existence. But by our estimate and Gronwall’s lemma, we have
a local upper bound uniformly in ε, η for these solutions:

‖vε,η‖k,ε,η ≤ C(t), t ∈ [0, t0].

But, for k, p as above, by the lemma we have ‖v‖Hk ≤ C1‖v‖k,ε,η with C1 indepen-
dent of ε, η. Thus the Hilbert space with the norm ‖ · ‖k,ε,η is compactly embedded
in C1(Rn) in the local sense that any bounded sequence for the former has a sub-
sequence which, for every compact subset K ⊂ Rn, converges in C1(K). Therefore
vε,η(t) lie in a ‘locally’ compact part of the Banach space of C1 functions of (x, t).
Therefore, as ε or η tend to zero, they have a convergent subsequence whose limit
v must be a solution of the corresponding EPDiff, because each equation can be
written in terms of the corresponding kernel, and the kernels depend nicely on ε
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and η. So by Gronwall’s lemma again the original estimates gives Hk bounds on
this solution.

Next we prove that the cluster point for ε → 0 or η → 0 of the solutions vε,η is
unique. Let us temporarily abbreviate Lε,0 by L and let v and ṽ be two solutions
of EPDiff for this L. We write u = v− ṽ for their difference and follow the ideas of
the preceding estimate to estimate d

dt‖u‖
2
L.

d
dt‖u‖

2
L = 2

∫
〈 ddtLu, u〉dx so using summation of indices:

= −2

∫
ui · (vjLvi,j + Lvi div v + Lvjvj,i − ṽjLṽi,j − Lṽi div ṽ − Lṽj ṽj,i)

= −2

∫
ui (ujLvi,j + ṽjLui,j + Lui div v + Lṽi div u+ Lvjuj,i + Luj ṽj,i)

Next replace all expressions of the form Luk by uk − 1
ε2 ∂k div u. Then integrate by

parts by the “div” part of the last term, that is replace −ui · 1
ε2 (div u),j ṽj,i by

ui · 1
ε2 (div u),ij ṽj + div u · 1

ε2 (div u),j ṽj

The term with the second derivative of div v cancels the term with the second
derivative of div v arising from the second term ṽjLui,j in the above expression.
With this and further integration by parts, we get:

d
dt‖u‖

2
L = −2

∫
uiuj(Lvi,j + ṽj,i) + u2i div v + uiui,j ṽj + uiuj,iLvj+

+ ui div uLṽi + 1
ε2 (div u),i(div u ṽi − ui div v)

= −2

∫
uiuj(Lvi,j − Lvj,i + ṽj,i) + u2i (div v − 1

2 div ṽ)+

+ ui div u (Lṽi − Lvi + 1
ε2 div(v),i) + 1

ε2 (div u)2(div v − 1
2 div ṽ)

≤ C.‖u‖2L
where the constant depends on the strong sup bounds we have for v and ṽ. By
Gronwall again, this means that we have a growth estimate on ‖u‖2L as a function
of t. In particular, if u is zero at time 0, it is always zero and this proves uniqueness.

Finally, as ε goes to zero, we again have the solutions lying in a ‘locally’ compact
part of C1 (as above) so if there is only possible limit, they must converge to this
limit and are continuous in η. Likewise, as ε converges to zero, this solution must
converge to that of Euler’s equation.

4. Conserved quantities: Linear and angular momentum. We would like
to derive the conservation laws from Noether’s theorem using the fact that our
geodesic equation is invariant with respect to the Euclidean group SO(n) nRn, as
we did in our earlier paper [15]. However, if we take (X,w) ∈ so(n) n Rn to be
the infinitesimal generator for the 1-parameter group (exp(tX), tw), composition
maps a diffeomorphism ϕ ∈ DiffS(Rn) to the diffeomorphsm exp(tX) ◦ ϕ + tw.
Unfortunately, the latter diffeomorphism no longer rapidly falls towards IdRn so it
is not in DiffS(Rn). The infinitesimal generator for this action is

ζ(X,w)(ϕ) = ∂t|0(exp(tX) ◦ ϕ+ tw) = X ◦ ϕ+ w.

Consider a right invariant Riemannian metric G on DiffS(Rn) as described for ex-
ample in [13], so that Gϕ is an inner product on the tangent space at ϕ, which is
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invariant under the motion group. Then for any geodesic t 7→ ϕ(·, t) the right in-
variant inner product Gϕ(ζ(X,w)(ϕ), ϕt) should constant in t, according to Noether’s
theorem in the form of [3, section 2.6], if the action above was a left action of the
motion group on DiffS(Rn). We could dedure this directly by taking DiffS(Rn) as
the normal subgroup of an extension of the motion group which can be described as
a group of diffeomorphisms which fall rapidly to “Euclidean motions near infinity”
and extend the metric to a right invariant one. Instead of doing this in detail we
directly check that the the above well defined expression is indeed constant in t
along each geodesic. Note first that

Gϕ(ζ(X,w)(ϕ), ϕt) = Gϕ(X ◦ ϕ,ϕt) +Gϕ(w,ϕt)

= GId(X,ϕt ◦ ϕ−1) +GId(w,ϕt ◦ ϕ−1)

= GId(X, v) +GId(w, v) where ϕt(·, t) = v(ϕ(·, t), t)

=

∫
〈X.x, L(v)(x)〉 dx+

∫
〈w,L(v)(x)〉 dx

=

∫
(X.x, m̃(x)) +

∫
(w, m̃(x));

the first expression viewed as a linear functional in X ∈ so(n) is the so(n)∗-valued
angular momentum mapping. If we identify so(n)∗ with so(n) via the Killing form
we can write the angular momentum succinctly as

∫
x∧ m̃(x). Similarly the second

expression leads to the linear momentum given by
∫
m̃(x).

Let us finally prove that these momenta are conserved by the geodesic flow. We
shall use the geodesic equation in the form ∂tm̃ = −Lvm̃. Then we have

∂t

∫
(X.x, m̃(x)) =

∫
(X.x, ∂tm̃(x)) = −

∫
(X,Lvm̃)

=

∫
(LvX, m̃) =

∫
([v,X], m̃) =

∫
(−LXv, m̃)

= −
∫
〈LXv, Lv〉dx now use LX(L) = 0 and LX(dx) = 0,

= −
∫

1
2LX(〈v, Lv〉dx) = 0.

For the linear momentum the proof is similar.

5. Explicit bounds on the approximation I. Assume you start with the same
initial condition v(x, 0) and integrate with both Euler’s equation and EPDiff with
Lε,η. Exactly how close are they? If you look at the kernels Kε,η, you see that
the effect of ε > 0 is to shrink the tails of K from polynomial to exponential and,
correspondingly, to eliminate the pole of its Fourier transform at zero. On the other
hand, the effect of η > 0 is to smooth the singularity of K at zero or to suppress
the high frequencies in its Fourier transform. These being opposite operations,
we need to estimate their effects separately. In this section, we consider the case
η = 0 and compare Euler’s equation with that given by Lε,0. Let v0(x, t) be the
solution of Euler’s equation and let vε(x, t) be the solution of EPDiff with Lε,0
(below abbreviated to Lε). Our goal is to prove the theorem:

Theorem 4. Take any k and M and any smooth initial velocity v(·, 0). Then there
are constants t0, C such that Euler’s equation and (ε, 0)-EPDiff have solutions v0
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and vε respectively for t ∈ [0, t0] and all ε < M and these satisfy:

‖v0(·, t)− vε(·, t)‖Hk ≤ Cε.

Note that by Theorem 3 we have essentially any bound we need on both v0
and vε. The t0 is needed only to guarantee the bounds on the solutions derived in
Theorem 3 hold for a big enough k to give us the needed bounds. As above the
proof is based on an estimate of the form:

∂t
(
‖v0 − vε‖2Hk

)
≤ C1‖v0 − vε‖2Hk + εC2‖v0 − vε‖Hk (9)

where C1 and C2 depend on the initial condition v(·, 0) and k but not on ε at all
times t for which Theorem 3 holds for needed norm bounds on v0 and vε.

Let u = v0 − vε and calculate as follows, using the geodesic equation (7) for Lε:

1
2∂t(‖u‖

2
Hk) =

∑
|α|≤k

∫
Dαu · (Dα(∂tv0 − ∂tvε))

=
∑
|α|≤k

∫
Dαu ·Dα

{
−K0 ∗ (v0 · ∇)v0

+Kε ∗ (vε · ∇)vε + vε · div(vε) + ε2

2 (∇Hε) ∗ |vε(x)|2 + 1
2 (∇Hε) ∗ (div vε)

2
}

≤
∑
|α|≤k

‖Dαu‖L2 ·
{
‖Dα(Kε −K0) ∗ (vε · ∇)vε‖L2 + ‖Dα(vε · div(vε))‖L2

+ ‖Dα( ε
2

2 (∇Hε) ∗ |vε|2)‖L2 + ‖Dα( 1
2 (∇Hε) ∗ (div vε)

2)‖L2

+ ‖K0 ∗Dα((u · ∇)vε)‖L2

}
−
∑
|α|≤k

∫
Dαu ·K0 ∗Dα((v0 · ∇)u)

≤ ‖u‖Hk ·
{
‖(K0 −Kε) ∗ (vε · ∇)vε‖Hk + ‖vε · div(vε)‖Hk

+ ‖ ε
2

2 ∇Hε ∗ |vε|2‖Hk + ‖ 12∇Hε ∗ (div vε)
2‖Hk

+ ‖((v0 − vε) · ∇)vε‖Hk
}
−
∑
|α|≤k

∫
Dα(v0 −K0 ∗ vε) ∗Dα((v0 · ∇)u) (10)

Here, in the last line, we used the fact that K0, being an orthogonal projection,
has norm 1 and is self-adjoint. Likewise Kε, after Fourier transform, at frequency ξ,
is multiplication by a diagonal matrix with eigenvalues 1 and ε2/(ε2 + |ξ|2); hence
is also a bounded self-adjoint operator with norm 1.

For the first term, if we abbreviate vε to v, first write:

((K0 −Kε) ∗ (v · ∇)v) = F − (K0 −Kε) ∗ v · div(v)

where Fi =
∑
j,k

(K0 −Kε)ij ∗ (vjvk),k =
∑
j,k

∂k(K0 −Kε)ij ∗ vjvk

The Fourier transform of the derivative of the difference of the K’s is:

(∂k(K0 −Kε)ij )̂ =
√
−1ξiξjξk

ε2

|ξ|2(ε2 + |ξ|2)
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Thus

‖F‖2Hk =

∫
(1 + |ξ|2)k

∑
i

∣∣∣∣∣∣
∑
j,k

ε2ξiξjξk
|ξ|2(ε2+|ξ|2 v̂kvj

∣∣∣∣∣∣
2

≤
∫

(1 + |ξ|2)k ε4

|ξ|2(ε2+|ξ|2)2
∑
j,k

(ξjξk)2 ·
∑
j,k

|v̂jvk|2|

≤
∫

(1 + |ξ|2)k ε
2

4

∑
j,k

|v̂jvk|2 = ε2

4

∑
j,k

‖vjvk‖2Hk

Repeating this for v.div(v) also, we find:

‖(K0 −Kε) ∗ (v · ∇)v)‖Hk ≤ ε
2

∑
j,k

‖vjvk‖Hk + ‖v · div(v)‖Hk) < Cε‖v‖2k+m,ε,0

for some universal constant C coming from the product rule for Sobolev spaces and
m = dn/4e. Along the way we also derived a similar bound for the second term in
the expression (10).

To treat the third and fourth terms we need the bound on the norm of convolution
with ∇Hε:

|ε · (̂Hε),i| = ε|ξi|
ε2+|ξ|2 ≤

|ξi|
2|ξ| ,

hence ‖ε∇Hε ∗ f‖Hk ≤ 1
2‖f‖Hk for any function f and in particular:

‖( ε
2

2 ∇Hε) ∗ |vε(x)|2‖Hk ≤ ε
2‖|vε|

2‖Hk ≤ Cε‖vε‖2k+m,ε,0
‖( 1

2∇Hε) ∗ (div vε)
2‖Hk ≤ ε

2‖
(
div vε
ε

)2 ‖Hk ≤ Cε‖vε‖2k+m,ε,0
For the fifth term in expression (10) we use sup bounds on k + 1 derivatives of

vε and the Sobolev inequality to obtain:

‖(u · ∇)vε‖Hk ≤ C‖u‖Hk · ‖vε‖H` , with ` = k + 1 + dn+1
2 e

We come to the last term in (10). Up to constants, we write it as:∑
0≤β≤α,|α|≤k

∫
Dαu · (Dβv0 · ∇)Dα−βu+

∫
Dα(vε −K0 ∗ vε) ·Dα(v0 · ∇)u (11)

In the first term of (11), the summand with β = 0 vanishes because it equals
∫
v0 ·

∇( |D
αu|2
2 ) and v0 has zero divergence. Using a sup norm on Dβv0, the remaining

summands are bounded by ‖v0 − vε‖2Hk times this sup norm. This sup norm is

bounded by a universal constant times ‖v0‖H` with ` = k + dn+1
2 e. To bound the

second term in (11), using the expression for K0 we find vε−K0∗vε = ∇H0∗div(vε).
Now calculate:∫

Dα(vε −K0 ∗ vε) ·Dα((v0 · ∇)u) = −
∑
i,j

∫
Dα(∂i∂jH0 ∗ div(vε)) ·Dα((v0)iuj)

But ∂i∂jH0 has Fourier transform (ξiξj)/|ξ|2, a matrix with eigenvalues 0 and 1, so
the L2 norm of the first factor is bounded by ε‖vε‖k,ε,0. Then, as above, we get a
bound of the form:

Cε‖vε‖k,ε,0 · ‖v0‖H` · ‖u‖Hk
with ` = k + dn+1

2 e. Now using Theorem 3, we see that we can bound all needed
norms of v0 and vε on this time interval by norms of the initial condition v(·, 0).
Putting everything together, we get the asserted bound (9).
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To complete the proof of the Theorem, rewrite (9) in the form

∂t‖u‖Hk ≤
C2

2
ε+

C1

2
‖u‖Hk or

‖u(t)‖Hk ≤
C2

2
εt+

∫ t

0

C1

2
‖u(s)‖Hkds

and apply Gronwall’s lemma to obtain ‖v0(t)−vε(t)‖Hk = ‖u(t)‖Hk ≤ ε2C3e
C1t/2 =

O(ε) as required.
In comparing Euler’s equation with EPDiff for (ε, 0), a key point is that K0 =

Pdiv=0 and Kε = Kε,0 have identical singularities at the origin, but their difference
is much better behaved. In fact convolution with K0 −Kε equals

∇ ◦ (convolution with Jε) ◦ div

where Jε has Fourier transform 1/|ξ|2(ε2 + |ξ|2). Near the origin, this looks like
e−|x| in R3, has a log pole in R4 and is like 1/|x|n−4 in higher spaces. Considering
Euler’s equation and EPDiff for (ε, 0) in Lagrangian form (3), they differ only by
changing the convolution on the right hand side by this term. This makes it seems
reasonable to conjecture that if solutions of (ε, 0)-EPDiff do not blow up, i.e. exist
for all time, then neither do the solutions to Euler’s equation. Or conversely, if
Euler’s solutions do blow up, so do solutions of this EPDiff.

6. Explicit bounds on the approximation II. Now we want to compare solu-
tions of EPDiff for ε > 0, η = 0 with solutions for ε > 0, η > 0. The difference here
is a convolution with the Gaussian Gη, so solutions with η > 0 are essentially just
smoothed or low-pass version of those with η = 0. We will prove:

Theorem 5. Let ε > 0. Take any k and M and any smooth initial velocity v(·, 0).
Then there are constants t0, C such that (ε, 0)-EPDiff and (ε, η)-EPDiff have solu-
tions v0 and vη respectively for t ∈ [0, t0] and all ε, η < M and these satisfy:

‖v0(·, t)− vη(·, t)‖Hk ≤ Cη2.

A basic tool is the simple estimate:

‖f −G(p)
η ∗ f‖L2 ≤ η2‖4f‖L2 (12)

To prove this, just take Fourier transforms and use the elementary inequality:(
1− (1 + η2

p |ξ|
2)−p

)
≤ η2|ξ|2.

Working as in the setup of Theorem 4, let m0 and mη be the momenta corresponding
to v0 and vη. Write u = v0 − vη and calculate the time derivative of:

‖u‖2k,ε,0 =
∑
|α|≤k

∫
〈Dαu,DαLεu〉 = ‖u‖2Hk + ‖div(u)ε ‖2Hk .
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We get a lot of terms:

1
2∂t‖u‖

2
k,ε,0 =

∑
|α|≤k

∫
Dαu ·Dα

(
(∂tm0 −G(p)

η ∗ ∂tmη

)
=
∑
α

∫
Dαu ·Dα

{
(v0 · ∇)m0 − (vη · ∇)mη + (I −G(p)

η ) ∗ (vη · ∇)(mη) (13)

+ div(v0)m0 − div(vη)mη + (I −G(p)
η ) ∗ (div(vη)mη)

+m0 · (Dv0)t −mη · (Dvη)t + (I −G(p)
η ) ∗mη · (Dvη)t

}
By the bound (12), the three terms with I − G

(p)
η are bounded by ‖u‖Hk times

η2‖(vη · ∇)mη‖Hk+2 and η2‖mη · div(vη)‖Hk+2 and η2‖mη · (Dvη)t‖Hk+2 . Hence if
` = 1+max(k+2, dn2 e), then, by the product rule for Sobolev norms, all three terms

are bounded by Cη2 · ‖vη‖H` · ‖mη‖H` for some constant C depending only on k
and n. Using Theorem 3, this is bounded by C ′η2, where C ′ is another constant
now depending on the initial data as well as k and n.

If ũ = m0 −mη, we can write the remaining terms in (13) as:

(u · ∇)mη, (v0 · ∇)ũ, mη div(u), ũdiv(v0), mη · (Du)t, ũ · (Dv0)t

Next use the calculation:

ũ = m0 −G(p)
η ∗mη − (I −G(p)

η ) ∗mη

= Lε(v0 − vη) + term bounded by η24(mη) in Hk+2

= u− 1
ε2∇(div(u)) + term bounded by η24(mη) in Hk+2

The η24(mη) terms are bounded like the previous ones. We finish the proof by
applying the same tricks we have seen above to the remaining terms. Letting C
denote suitable constants depending on bounds for v0 and vη, the terms with u, not
ũ, are easy:∑
α

∫
Dαu ·Dα((u · ∇)mη) ≤ C‖u‖2Hk∑

α

∫
Dαu ·Dα(div u ·mη) ≤ C‖u‖Hk‖ div u‖Hk ≤ C‖u‖2k,ε,0∑

α

∫
Dαu·Dα(mη ·(Du)t) = −

∑
α

∫
Dα div(u)·Dα(u·mη) +Dαu·Dα(u·(Dmη)t)

≤ C‖u‖2Hk + C‖u‖Hk‖ div u‖Hk ≤ C‖u‖2k,ε,0

Finally, the ũ terms have two more pieces, one where it is replaced by u and the
other with 1

ε2∇div(u). If it is replaced by u, everything is bounded as above by

C‖u‖2Hk but where the usual trick is needed:∫
Dαu ·Dα((v0 · ∇)u) =

∫
Dαu · (v0 · ∇)Dαu) + terms with ∇Dβu, β < α,

the latter being bounded by ‖u‖2Hk and the former being equal to

1
2

∫
(v0 · ∇)|Dαu|2 = − 1

2

∫
div(v0) · |Dαu|2.
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The div terms have the 1/ε2 factor but also a cancellation and reduce to:∫
Dα div(u)

ε ·Dα((v0 · ∇)div(u)
ε ) =

− 1
2

∫
div(v0)|Dα div(u)

ε |2 + terms with ∇Dβ div(u)
ε , β < α.

and

−
∫
Dαui ·Dα

(
div(v0)

ε
div(u),i

ε

)
=∫

Dα div(u) ·Dα
(

div(v0)
ε

div(u)
ε

)
+

∫
DαuiD

α
(

div(v0),i
ε

div(u)
ε

)
which have the needed bounds. Thus we have the estimate

1
2∂t‖u‖

2
k,ε,0 ≤ C1‖u‖2k,ε,0 + η2C2‖u‖k,ε,0,

and we can use Gronwall’s lemma as in the end of the proof of Theorem 4, to finish
the proof.

7. Approximating Euler solutions via landmark theory. The great advan-
tage of having a C1 kernel is that we can now consider solutions in which the
momentum m is supported in a finite set {P1, · · · , PN}, so that the components of
the momentum field are given by mi(x) =

∑
amaiδ(x− Pa). The support is called

the set of landmark points {P1, · · · , PN} and in this case, EPDiff reduces to a set
of Hamiltonian ODE’s based on the kernel K = Kε,η, ε ≥ 0, η > 0:

Energy E =
∑
a,b

maiKij(Pa − Pb)mjb

dPai
dt

=
∑
b,j

Kij(Pa − Pb)mbj

dmai

dt
= −

∑
b,j,k

∂xiKjk(Pa − Pb)majmbk

where a, b enumerate the points and i, j, k the dimensions in Rn. These are essen-
tially Roberts’ equations from [20]. His paper takes n = 3 so that the landmark
points are the center of ‘circular vortex rings’. He assumes they do not get too close
to each other and takes K(x) at all x 6= 0 to be the Euler kernel Pdiv=0, our K0,0.
He sets K(0) = δijκ for a constant κ which comes out of the specific model used for
each finite (non-infinitesimal) vortex ring. What using our kernel K0,η does is just
smoothly interpolate between the kernel Pdiv=0 at points x far from 0 – but which
is singular at 0 – and a C1 function near 0 with K(0) = δij .κ.

For some other PDEs (like the KdV or Camassa-Holm equations) solutions whose
momenta are sums of delta distribution are called solitons. In analogy to this we
can call vortex-solitons or vortons the solutions with momenta supported in finite
sets.

For every landmark tangent vector
∑
aXaδ(x−Pa) there exist a divergence free

vector field v with compact support with v(Pa) = Xa. Thus the space of soliton-like
momenta m(x) =

∑
amaδ(x− Pa) is injectively embedded in the dual of the space

of divergence free vector fields (with compact support, of in S, or in H∞). This
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means, that landmark theory as explained below is already adapted to the subgroup
SDiffH∞(Rn).

All of our kernels have the form Kij(x) = G1(|x|)δij + ∂xi∂xjG2(|x|) hence at

every point x have eigenspaces Rx and (Rx)⊥. For any vector x, let x = ρx · ux,
where ρx = |x| and ux is a unit vector; and let Pux be the projection to the subspace
R · ux and Pu⊥x be the projection onto the perpendicular subspace (R · ux)⊥. Then

the matrix Kij(x) can be written in terms of two scalar functions K1 and K2 as

K(x) = K1(ρx)Pux +K2(ρx)Pu⊥x , if x 6= 0

and as κ · I at the origin. If K1 = K2, then Kij would be a multiple of the identity
and we would have the case studied in our previous paper [12]. But this never
happens for our metrics. For example, in the K0,η case, using formula (8) and the

fact that G
(p)
η is a monotone decreasing function of |x|, we get:

K1(x) = 2
3MeanB|x|(G

(p)
η )(x)

K2(x) = G(p)
η (x)− 1

3MeanB|x|(G
(p)
η )(x)

(K1 −K2)(x) = MeanB|x|(G
(p)
η )(x)−G(p)

η (x) ≥ 0,

κ = 2
3G

(p)
η (0) > K1(x) > K2(x) if x 6= 0

If we differentiate the formula for K, we get the following formula for its deriva-
tive:

DvK(x) = K ′1(|x|)〈v, ux〉Pux +K ′2(|x|)〈v, ux〉Pu⊥x

+
K1(|x|)−K2(|x|)

|x|
〈v, u⊥x 〉

(
ux ⊗ u⊥x + u⊥x ⊗ ux

)
.

Using this we can rewrite the geodesic equations in a geometric form:

E =
∑
a

κ · |ma|2 +
∑
a 6=b

K1(ρab)〈Puabma, Puabmb〉+K2(ρab)〈Pu⊥abma, Pu⊥abmb〉

dPa
dt

= κ ·ma +
∑
b 6=a

K1(ρab)Puabmb +K2(ρab)Pu⊥abmb

dma

dt
= −

∑
b6=a

(
K ′1(ρab)〈Puabma, Puabmb〉+K ′2(ρab)〈Pu⊥abma, Pu⊥abmb〉

)
uab

−
∑
a 6=b

K1(ρab)−K2(ρab)

ρab

(
〈ma, uab〉Pu⊥abmb + 〈mb, uab〉Pu⊥abma

)
One of the characteristics of these landmark space EPDiff geodesics as that when

two landmarks near each other, they can either repel or attract. If their energy is
low compared to their angular momentum, they repel and vice versa. When they
attract, they typically spiral in towards each other with the momentum of each
landmark point growing infinitely while their sum remains bounded. They do not
collide in finite time. Whether this characteristic reflects developing singularity be-
havior in Euler’s equation is not clear because, as soon as landmarks approach closer
than η, solutions of EPDiff are no longer close to those of Euler. This attraction is
clear with only two landmark points but, at least in the case of the Weil-Peterson
metric on cosets of Diff(S1), following a geodesic typically produces a hierarchical
clustering of many landmarks (unpublished work of Sergey Kushnarev and Matt
Feizsli).
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We want to look at the simplest cases of one or two landmark points. One
landmark point is very simple: its momentum must be constant hence so is its
velocity. Therefore it moves uniformly in a straight line ` from −∞ to +∞. As a
geodesic in Diff(Rn), it will push everything in front of it, compressing points ahead
of it on ` while pushing out points near ` to maintain incompressibility. Behind the
landmark, they will be sucked back towards ` to compensate for the rarification left
by its passage. By rotational symmetry around ` and time-reversal symmetry, the
motion, from t = −∞ to t = +∞ c an only be a shear in which points are dragged
forward parallel to ` by a distance which goes to zero as you go further from ` and
goes to ∞ as you approach `.

−4 −3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 2. The result of the incompressible flow from t = −∞
to t = 0 with n = 2, momentum concentrated at one point and
K = K0,η, η = 1.

Now consider the case of two landmark points P1, P2 with momenta m1,m2.
By conservation of total momentum, m1 + m2 is a constant. We can reduce this
Hamiltonian system by fixing the total momentum m and dividing by translations.
We get a new system in the variables δP = P2 − P1 and δm = m2 − m1 with
equations of motion:

E = κ ·
(
|δm|2 + |m|2

)
+
∑
ij

Kij(δP ) · (mimj − δmiδmj)
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d(δPi)

dt
= κ · δmi −

∑
j

Kij(δP ) · δmj

d(δmi)

dt
= −

∑
jk

∂xiKjk(δP ) · (mjmk − δmjδmk)

or, letting δP = ρ · u for a unit vector u, in geometric form:

E = κ ·
(
|δm|2 + |m|2

)
+K1(ρ)

(
|Pum|2 − |Puδm|2

)
+K2(ρ)

(
|Pu⊥m|2 − |Pu⊥δm|2

)
d(δP )

dt
= κ · δm−K1(ρ) · Puδm−K2(ρ) · Pu⊥δm

d(δm)

dt
= −

(
K ′1(ρ)(|Pum|2 − |Puδm|2) +K ′2(ρ)(|Pu⊥m|2 − |Pu⊥δm|2

)
u

− K1(ρ)−K2(ρ)

ρ
(〈m,u〉Pu⊥m− 〈δm, u〉Pu⊥δm)

Note that the derivatives of δp and δm lie in the span of δP, δm and m. Thus
this three dimensional space is constant in time so we can assume δP, δm,m ∈ R3.
The total angular momentum is:

ω = P1 ∧m1 + P2 ∧m2 = P1+P2

2 ∧m+ 1
2δP ∧ δm.

If m = 0, then the two vectors δp, δm always lie in a fixed two dimensional space
and their cross product is constant, equal to 2ω. We can then make a further sym-
plectic reduction and compute what happens in terms of the three scalar variables
ρ, 〈δP, δm〉, |δm| which moreover must lie on one sheet of a hyperboloid:

4|ω|2 + 〈δP, δm〉2 = ρ2 · |δm|2, ρ · |δm| ≥ 2|ω|.
The energy then simplifies to

E = (κ−K2(ρ))|δm|2 − K1(ρ)−K2(ρ)
ρ2 〈δP, δm〉2

= κ−K1(ρ)
ρ2 〈δP, δm〉2 + 4κ−K2(ρ)

ρ2 |ω|2.
Its level curves on the hyperboloid must then be the geodesics. Note that as long
as the kernel is C2, (κ−K1(ρ))/ρ2 and (K1(ρ)−K2(ρ))/ρ2 are finite at the origin
hence bounded.

We can illustrate this in the simple case of 3-space with kernel K0,1, p = 3. As
stated above, then the smoothing kernel is C2 and has the elementary expression

G
(3)
1 (x) = (1 + |x|)e−|x| = 1− |x|

2

2 + · · · .
It’s easy to calculate the mean of this function over a ball and we get:

MeanB|x|

(
G

(3)
1

)
(x) = 24|x|−3

(
1− e−|x|

(
1 + |x|+ |x|2

2 + |x|3
8

))
= e−|x|

(
1 +

∞∑
n=4

4
n! |x|

n−3

)
= 1− 3|x|2

10 + · · ·
hence

κ = 2
3 , K1 = 2

3 −
1
5x

2 + · · · , K2 = 2
3 −

2
5x

2 + · · · .
A typical plot of the contours of E in the (ρ, |δm|)-plane is shown in Figure 3.
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Figure 3. Level sets of energy for the collision of two vortons
with m = 0, η = 1, ω = 1. The coordinates are ρ = |δP | and
|δm|, and the state space is the double cover of the area above and
right of the heavy black line, the two sheets being distinguished
by the sign of 〈δm, δP 〉. The heavy black line which is the curve
ρ · |δm| = ω where 〈δm, δP 〉 = 0. Each level set is a geodesic. If
they hit the black line, they flip to the other sheet and retrace their
path. Otherwise ρ goes to zero at one end of the geodesic.

In the figure, if an orbit hits the heavy black line defined by ρ · |δm| = ω,
then 〈δP, δm〉 is instantaneously zero and, along its orbit, changes sign. On the
two-sheeted cover given by including this sign, this is a smooth orbit in which ρ
decreases to a minimum where 〈δP, δm〉 = 0 and then increases. One sees that
there are two types of orbits: scattering orbits where the vortons separate infinitely
at both t = ±∞ and ρ has a minimum at some point in time; and capturing orbits
which either start or end at infinity but spiral indefinitely, getting closer and closer,
at the other limit. Which happens depends on the relative size of the angular
momentum and the energy exactly as in the simpler case studied in [12]. Here if
E ≥ (8/5)|ω|2, the points attract while if E < (8/5)|ω|2, they scatter.

When the landmark points attract, this simple system forms higher order sin-
gularities. If we take coordinates so that δP is on the x1-axis and δm in the
(x1, x2)-plane, then for ρ very small, we have:

P1 = (ρ/2, 0, 0), P2 = (−ρ/2, 0, 0), m1 =
1

ρ
(C,ω, 0), m2 = −1

ρ
(C,ω, 0)

where 2C = 〈δP, δm〉, hence (using the limiting values of the k-terms in the formula
for energy) we get C2 ≈ 5

4E − 2ω2 > 0. Then, as these points approach each other,

the corresponding global vector field in R3 approaches:

vi(x) = − (K0,1)i·(x+ (ρ/2, 0, 0))− (K0,1)i·(x− (ρ/2, 0, 0))

ρ
·
(
C
ω

)
≈ −∂x1

((K0,1)i1 · C + (K0,1)i2 · ω)
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This vector field for ω = 2C is illustrated in Figure 4. Whereas for any column
vector A, K01 ·A is a vortex ring with maximum norm at the origin and maximum
vorticity along a ring centered at the origin and lying in a plane perpendicular to A,
its derivative v is now zero at the origin and it has maximum vorticity there. In our
case, computing the derivatives Dv(0), we find that near the origin, the flowlines of
v spiral in along the (x1, x2)-plane and shoot out along the x3-axis.

Figure 4. Streamlines and MatLab’s ‘coneplot’ to visualize the
vector field given by the x1-derivative of the kernel K0,1 times the
vector (1, 2, 0). See text.

Another case which is easy to explore is when m lies in the plane spanned by δP
and δm. The angular momentum no longer descends to a function on the δP, δm
space but we may numerically integrate the geodesic equations. Figure 5 shows
geodesics all starting with the same δP and δm but with varying m fixed along the
y-axis.

It is extremely easy to compute landmark geodesics numerically even in much
more complex situations and we hope that, letting η → 0, this may be a useful tool
to exploring the instabilities of Euler’s equation itself.
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[10] Lars Hörmander, “The Analysis of Linear Partial Differential Operators. I,” Springer-Verlag,
Berlin, 1983,

[11] Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equa-

tions, in “Springer Lecture Notes in Math.,” 448 (1975), 27–50.
[12] Mario Micheli, Peter Michor and David Mumford, Sectional curvature in terms of the comet-

ric, with applications to the Riemannian manifolds of landmarks, SIAM Journal on Imaging

Sciences, 5 (2012), 394–433.
[13] Mario Micheli, Peter W. Michor and David Mumford, Sobolev metrics on diffeomorphism

groups and the derived geometry of spaces of submanifolds, Izvestiya: Mathematics, 77

(2013), 541–570.
[14] Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds

and diffeomorphisms, Documenta Mathematica, 10 (2005), 217–245.

http://www.ams.org/mathscinet-getitem?mr=MR2902663&return=pdf
http://dx.doi.org/10.1137/100807983
http://dx.doi.org/10.1137/100807983
http://www.ams.org/mathscinet-getitem?mr=MR1104363&return=pdf
http://dx.doi.org/10.1016/0021-9991(91)90198-T
http://www.ams.org/mathscinet-getitem?mr=MR1234453&return=pdf
http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://www.ams.org/mathscinet-getitem?mr=MR1281384&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1618663&return=pdf
http://dx.doi.org/10.1137/S1064827595293570
http://www.ams.org/mathscinet-getitem?mr=MR1627802&return=pdf
http://dx.doi.org/10.1006/aima.1998.1721
http://dx.doi.org/10.1006/aima.1998.1721
http://dx.doi.org/10.1007/0-8176-4419-9_8
http://dx.doi.org/10.1007/0-8176-4419-9_8
http://www.ams.org/mathscinet-getitem?mr=MR0407477&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2902666&return=pdf
http://dx.doi.org/10.1137/10081678X
http://dx.doi.org/10.1137/10081678X
http://dx.doi.org/10.1070/IM2013v077n03ABEH002648
http://dx.doi.org/10.1070/IM2013v077n03ABEH002648
http://www.ams.org/mathscinet-getitem?mr=MR2148075&return=pdf


344 DAVID MUMFORD AND PETER W. MICHOR

[15] Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of
curves using the Hamiltonian approach, Applied and Computational Harmonic Analysis, 23

(2007), 74–113.

[16] Peter W. Michor and David Mumford, A zoo of diffeomorphism groups on Rn, Annals of
Global Ananlysis and Geometry (2013).

[17] Michael I. Miller, Gary E. Christensen, Yali Amit and Ulf Grenander, Mathematical textbook
of deformable neuroanatomies, Proceedings National Academy of Science, 90 (1993), 11944–

11948.
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