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Introduction 

Our study of the asymptotic behavior of area-minimizing locally rectifiable 
currents in hyperbolic space consists of two parts. In this first part, we shall 
concern ourselves with the aspect of geometric measure theory of the problem. 
The p.d.e. aspect of the problem will be treated in the second part. 

In the upper half-space model, ( n  + k)-dimensional hyperbolic space is given 
as the set 

W n + k  = { (x ,  y )  E R n + k - l  x R + } ,  k 2 1 ,  n ~ 2 ,  

equipped with the hyperbolic metric y-*( dx2  + dy2) .  A standard compactifica- 
tion of W n t k  involves adding the boundary ( R n i k - l  x (0)) U ( * )  so that W n + k  
is simply the one-point compactification of the Euclidian closed half-space 

n + k -  1 x (0,m). Suppose 0 5 a 5 1, and r is a compact ( n  - 1)-dimensional 
C’,* smooth submanifold of R n + k - l  X ( 0 ) .  In [4], M. Anderson proved that 
there exists an area-minimizing locally rectifiable n-dimensional current T, com- 
plete without boundary, in W n + k  asymptotic to I‘ at infinity (see also [5]). By the 
interior regularity theory due to F. Almgren [2], the support M of any such 
hyperbolic-area-minimizing T is a relatively closed subset of W n + k  which is a real 
analytic submanifold away from a relatively closed singular set of Hausdorff 
dimension at most n - 2. Anderson’s construction gives M for which, in the 
ordinary Euclidian metric, a - M = r. The question of the behavior of M near 
I‘ was raised in [4] and, for the hypersurface case (i.e., k = l), was first studied in 
[ll]. In that paper one proved the “boundary regularity at infinity” result that, 
for any such hyperbolic-area-minimizing T, the union M U r, in the ordinary 
Euclidian metric, is, near r, a finite union of C1,* hyper-surfaces with boundary 
I‘; these have disjoint analytic interiors and meet R “  X (0) orthogonally at r. 
(For the particular T constructed by Anderson only one hypersurface will occur.) 
It follows that, for n 5 6 ,  M U r has finite topological type, and for n 2 7, any 
interior singularities of M must remain in a bounded region of hyperbolic space 
W n + l .  Near points of r (in the Euclidian topology), M U may thus be locally 
described as the graph of a function. This function is the solution of an elliptic 
partial differential equation that becomes degenerate along the part of the 
boundary corresponding to r. The author had recently established in [13] a 
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boundary higher-regularity result of this equation, which implies, in particular, 
that M U r is, near r, a C'," smooth hypersurface with boundary r provided 
that r is a C'," submanifold for 0 < a < 1 and for I = 2,3; . a ,  00. 

The asymptotic behavior of an n-dimensional area minimizing locally rectifi- 
able current M in W n + k  at its asymptotic boundary r has been unknown since 
the arguments in [ll] cannot be generalized to the higher codimensions. The main 
difficulties involved are the following: 

(i) the interior mass bound for certain indecomposable, n-dimensional area- 
minimizing integral currents in I W n f k ,  k 2 2 (see the open problem l in Section 3 
below); 

(ii) the local regularity theory for area-minimizing submanifolds of R n + k  (see 
the open problem 2 in Section 3 for details). 

These are crucial in [ l l ] .  
The purpose of this paper is to show the following 

THEOREM. Let r be a compact ( n  - 1)-dimensional C',". 0 6 a 6 1,  smooth 
submanifold of R n +  k -  ' X (0) .  Then there exists a complete, area-minimizing 
locally rectlfiable n-dimensional current T in W n + k  asymptotic to at injnity. 
Moreover, the set spt(T) U r, in the ordinary Euclidian metric, is, near I', a C1*" 
submanifold with boundary r which meets R n + k - l  X (0) orthogonally at I'. 

In the second part [14], we shall show, in particular, that spt(T) U r is 
smooth near r if r is smooth. 

Unlike the case in [ l l ] ,  where one has the "boundary regularity at infinity" 
for such hyperbolic-area-minimizing hypersurfaces which have smooth asymp- 
totic boundary (which may even have higher multiplicity), we are in fact only 
able to show here that the solutions we constructed are smooth near the 
asymptotic boundary. r may in general bound more than one area-minimizing 
locally rectifiable current in W n + k .  In fact, even when I' is a smooth Jordan curve 
in R 2  x (01, I' may still bound at least two distinct area-minimizing surfaces in 
W (see e.g. [5 ] ) .  The study of stationary currents (even in the Euclidian space) is 
much more difficult than that of minimal hypersurfaces. The nonexistence, 
nonuniqueness and irregularity of solutions to the Dirichlet problem for the 
minimal surface system were shown by B. Lawson and R. Osserman [ 1 5 ] .  On the 
other hand, W. Allard [ l ]  proved a general boundary regularity theorem, which 
implies in particular that stationary varif olds near smooth, extreme boundaries 
are smooth submanifolds with boundary. Due to the convexity of asymptotic 
boundaries in hyperbolic space W n + k ,  our regularity theorem was in some sense 
expected. 

The paper is organized in the following way: In Section 1, after some 
preliminary discussions, we show that the proof of the C'p " regularity theorem of 
[11] can be modified to obtain the same C'," estimate for any area-minimizing 
flat chain modulo 2 in with C'*"-asymptotic boundary. This uses, however, 
a universal interior mass bound for area minimizing flat chains modulo 2 
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obtained recently by F. Morgan [16]. In Section 2, we use area-minimizing flat 
chains modulo 2 as comparison surfaces to show that the constructed solutions 
satisfy a uniform mass ratio bound up to the asymptotic boundary. In proving 
this mass ratio bound, we also need to solve a free boundary problem. Finally, in 
Section 3, we list a few open problems. 

For convenience, we adopt the following convention: All unspecified state- 
ments about metric and topology will refer to the usual Euclidian metric 
on ~ n + k - l  X R, and the word "hyperbolic" will be stated explicitly when appro- 
priate. 

1. Boundary Estimate for Area-Minimizing Modulo 2 

Let p be an integer, p 2 2. The definition of various quantities associated 
with a flat chain modulo p can be found in [6], 4.2.26. By the compactness 
theorem of Federer-Fleming (see [6], 4.2.26) and by the monotonicity formula for 
the volume growth of stationary varifolds (see [l], [4]), the proof of the existence 
theorem in [4] can be easily generalized to obtain 

THEOREM 1.1 (Existence). Let r be an ( n  - 1)-dimensional C'," submanifold 
of R n + k - l  X (0}, 0 a 5 1, k 2 1. Then there exists a complete hyperbolic 
area-minimizing $at chain modulo p ,  p 2 2, T in W n + k  without interior boundary 
and asymptotic to r at inJinity. 

In this paper only flat chains modulo 2 will be used. For p = 2, by the 
interior regularity theory of geometric measure theory, the spt2(T) of any such 
hyperbolic-area-minimizing flat chain modulo 2, T, is a relatively closed subset of 
W n + k  which is a real analytic submanifold away from a relatively closed singular 
set of Hausdorff dimension at most n - 2 (see [7]). Here we shall show the 
"boundary regularity at infinity". 

THEOREM 1.2 (Regularity). For any such hyperbolic area-minimizing flat chain 
modulo 2, T, the set spt2(T) U r, in the ordinary Euclidian metric, is, near r, a 
C'." submanifold with boundary I', and meets R n + k - l  x (0) orthogonally at r. 

The proof of this theorem is based on the following lemmas. 

LEMMA 1.3 (Mass bound). For 1 n ,  k < m, there is a positive constant 
Cl( n ,  k )  such that if T is an n-dimensional hyperbolic area-minimizing flat chain 
modulo p in the open ball B;'k(0,2) of W n + k  with ~ T L B : + ~ ( O , ~ )  = 0 (mod p ) ,  
then 

M'(TLB:/:~(O,~)) s p C , ( n ,  k ) .  
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Proof: A hyperbolic area may be described by the parametric integrand (see 

R: lxI2 + Iy - 212 < I}, this integrand is (with respect to the Euclidian metric) 
elliptic (see [6], 5.1.2) with ellipticity bound 3-". Since T is a hyperbolic 
area-minimizing flat chain modulo p ,  it has locally finite mass, and, for all 
0 < r < 1, we may define 

[6], 5.1.1) @((x, y ) ,  5) = ~ y ~ - " ~ ~ ~ .  On the ball B;+k(0,2) = {(x, y )  E R n + k - l  X 

Since /( r )  is increasing, it is differentiable for almost all r .  Slicing theory (see [6], 
4.2.26) with u ( x ,  y )  = (Ix12 + ly - 2I2)'I2 implies that, for almost all 0 < r -= 1, 

the last equality holds since aTLB;'+k(O, 2) = 0 (mod p ) .  Moreover, 

here S, is an area-minimizing flat chain modulo p with as, = a T ,  (mod p ) .  Thus 

by the isoperimetric inequality of [16], 2.5. 
Combining (1.2) and (1.4) we see that 

and hence, integrating from 5 to 1 we obtain 

In particular, 
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We shall sometimes identify Rn+k- '  with R"-' X Rk and use the projection 
P: R"-'  x Rk x R + R " - l  x w, 
(1.7) P ( ( w ,  4 ,  Y )  = (w, Y ) .  

LEMMA 1.4 (Interior regularity). For any positive number E, there exists a 
positive 6 such that if S is an n-dimensional hyperbolic area-minimizing flat chain 
modulo 2 in W n + k  with 

P,S = ( E " L B ; - ' ( O )  x [-$,4])'2', 

then SLP- ' (B~- ' (O)  X [ l ,  21) is a graph of a real analytic function z = u(w,  y )  
with JIuI1cl,l 5 E. 

Proof: The parametric integrand @((x, y ) ,  t )  = Iyl-"I,$'l on the region 
Rn+k-l X [i, 41 is elliptic with ellipticity bound 4-". Since S is @-minimizing 
modulo 2, one obtains, from Lemma 1.3, that 

(1.8) M ~ ( s L P - ~ ( B ; / ; ~ ( o )  x [+ ,3] ) )  5 c 2 ( n ,  k ) .  

Hence SLP-~(B&'(O) X [$,3]) is also a representative modulo 2 (see [6], pp. 
430-431), that is, S has density at most 1 almost everywhere, so that 

Spt(S) = Spt2(S). 

By the upper semi-continuity of the density of a varifold with bounded first 
variation, we also conclude that S has density greater than or equal to 1 
everywhere. 

Now we can apply the standard squashing deformation (see [12], 3.2) 

(1 .lo) F ( ( %  4 ,  Y )  = ((w, P b ,  Y > Z L  u>,  
here p: R" --, [0,1] is a C1-function, and such that 
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and that 

to obtain 

where A = B;>l(O) x [f, 31 - B!hl(0) x [a, $1. In view of the computations in 
[12], 3.2, and (M), we have 

(1.13) M ( F # ( S L P - ' ( A ) ) )  - M ( S L P - ' ( A ) )  c 3 ( n ,  k ) 6 .  

Combining (1.12) and (1.13) with [18], we conclude that there is a positive 
number 6 = a(&, n ,  k )  which satisfies the assertion of Lemma 1.4. 

Remark 1.5. Let M = spt2T. As in [ll], Section 1, one has the following 

(i) if x E IW"+~-' and 0 < r < d(x) = dist(x, r), then M n B,(x,O) = 0,  

(ii) there is a positive number pr (depending only on the C'-character of r) 

facts about the location of M near r: 
where B,(x,O) = { ( w ,  y )  E R n + k - l  X Iw, iw - xi2 + y 2  < I}; 

such that M n { y < pr}  is contained in the set 

(iii) at each edge point ( a ,  0) E r, the tangent cone of the containing set W 

Let Nk be the normal bundle of r in W " + k - '  and, for (a,O) E r and r > 0, 
equals the vertical half n-plane tan(r, a )  X (0, GO). 

let 
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Then one has that 

(i) r-'6(a, r )  + 1 as r + 0 if r is differentiable at ( a ,  0); 
(ii) sup,,r{l - & ( a ,  r ) }  -, O as r -, O if r is c'; 
(iii) SUPaEr[I - r-'S(a, r ) ]  5 Crrn if r is C1,* for O < a < 1; 
(iv) r-'6(a, r )  E 1 for 0 < r < l/l(max. principle curveIILm(r) if r is C','. 

We also note that if ( x ,  y )  E W, and (a,O) E I' with Ix - a1 = d ( x ) ,  then 
x = a + d ( x ) u ( a )  for some u ( a )  E N,(u) ,  ~ u ( a ) l =  I. Let r = d ( x )  + y 2 / d ( x ) ;  
we see that the three points ( a ,  0), ( x ,  y )  and ( a  + ru( Q), 0) are vertices of a right 
triangle. Let S be the distance between the latter two vertices; then 

d ( x )  [rZ - s y 2  '/2 

-- Y - s = [(;)2- 11 9 

since r 5 2d(x), 6 ( a ,  r )  5 d ( a  + ru(a) )  5 6 5 r.  
We finally conclude that d(x)/y .+ 0 as ( x ,  y )  -, r X ( 0 )  if r is C'. 

1.6. Proof of Theorem 1.2: We first want to show: 

If r is C', then there exists a positive p < pr  so that 
( M U  r) n { y < p }  is a C'-submanifold, and that 
M ur meets R~+,-' x ( 0 )  orthogonally at I'. 

( * I  

To see this, we choose an arbitrary point ( a ,  0) E r. For convenience, we may 
assume that a = 0 and that tan(r, 0) = R"-'. For each sufficiently small positive 
p < pr, one may choose a map Q that projects r n [B;,,-'(O) x B&(O) x {O}] 
C'-diffeomorphically onto B;,,-'(O) X (0) .  It then follows from Remark 1.5 that 
M n [B;,,-'(O) X aB,k,(O) X (0,4p)] = 0 for some sufficiently small positive S. 
Also one knows that 

Next we scale T by a factor l / p  about (0,O). Since the homothety map p,, 
that sends ( x ,  y )  to ( l / p ) ( x ,  y )  induces a hyperbolic isometry of W n + k ,  the flat 
chain 

is a hyperbolic area-minimizing flat chain modulo 2. Moreover, one verifies that 
S satisfies the hypothesis of Lemma 1.4, from which we may conclude that 
( M  U r) n C,, is a C'-graph over a subregion of the vertical cylinder r x R, 
where C,, = { ( x ,  y )  E Rn+k- '  x R +, 1x1 5 2y 5 p } .  Since the point (0,O) E r 
is chosen arbitrarily, by the compactness of r we obtain the statement (*). 
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Let 0 < a 5 1; we wish to show now that ( M  U I?) n { y < p }  is, in fact, a 
C', a submanifold. 

If r is C', then as in the first part of our proof we may view ( M  U r) n 
{ y < p } locally, near (0,O) E r, as lying in the graph of a vector-valued function 
z = u ( w ,  y )  that is C' on a region B,"-'(O) X (0, p ) .  

is 
For any compact K c B,"- ' (0)  X (0, p ) ,  the hyperbolic area of the graph U I 

gIJ = a,, + U, U, for i 5 j ,  j 5 n 

The minimality of T leads to the Euler-Lagrange equation 

( *  * )  

Here g = det(gi,), (g") is the inverse matrix of (g;,), and we have used the 
summation convention for repeated indices. Thus U = u ( w ,  y )  is a C'-solu- 
tion of ( *  * )  on the region B,"-'(O) X (0, p ) .  By Remark 1.5, one obtains, as in 
[ll], Section 3, that IU(w, y ) l  5 cr(lwl + Y ) ~ + '  for ( w ,  y )  E B,"-'(O) x [0, p ) ,  
0 < fy 5 1. The C1," estimate follows from arguments in ill], Section 3 and the 
interior estimates of [8], Chapter VI. 

2. Boundary Estimate for Hyperbolic Area-Minimizing Currents 

Let I? be a compact ( n  - 1)-dimensional C ' F ~ ,  0 5 a 5 1, submanifold of 
~ n + k - l  X { 0 } ,  and let S be hyperbolic area-minimizing modulo 2 with asymp- 
totic boundary r. By Theorem 1.2, spt2(S) U I' is, near r, a C'," submanifold 
with boundary r, and meets R B n + k - l  x ( 0 )  orthogonally at r. From the orienta- 
tion of r one thus obtains an orientation for spt2(SL{y < 2pr}), for some 
positive number pr  (depending only on the C'-character of r). Using this 
orientation we obtain a multiplicity 1 rectifiable current s" with spt(f)  = 

Now let { E ,  } be a sequence of positive numbers which tend to zero, and let 
r, = (9, y ,  E , ) ,  for E ,  < 2p,.  We consider a sequence of solutions T, of the 
oriented Plateau problem in W n f k  with given boundaries r,. As in [4] one can 
verify easily that T, -+ T in Floc(Wnik) (by taking a subsequence if neces- 
sary). Moreover, T is a local hyperbolic area-minimizing rectifiable current in 

SPt2(WY < 2Pr)).  
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W n + k  with asymptotic boundary r. We wish to show that spt(T) is, near r, 
a C'q" submanifold with boundary r. For this purpose, we consider a point 
( a ,  0) E r. For simplicity we may assume that a = 0, tan(r, 0) = R n-', and let 
P: (Rn- '  X R k )  x R + R"-'  X R, P ( ( w ,  z ) ,  y )  = (w, y ) ;  then, by the above 
construction, by the convex hull property of stationary varifolds in (see 
[2], [ l l]) ,  and by the constancy theorem (see [6], 4.1.7), we have 

Note also that spt(T) n { y < pr}  is contained in the set W defined in Remark 
1.5. In particular, one sees that 

and that 

for p < pr. 

introduction. 
The following lemma is the key point in proving the theorem stated in the 

LEMMA 2.1. There is a positive number po (depending only on the C'-character 
of r) such that, if 

then 

(2 -4) M ( T L A , )  5 C ( n ,  k ,  r)6" for 0 < 6 < p0,  

and for some constant C(n, k, r). 
Proof: The proof is divided into three steps. 

Step 1. To show (2.4) it suffices to show, for all sufficiently small E , ,  that 
M ( T  LA,) 5 c(n ,  k, r)Sn (see [6], 5.4.2). For this purpose, we let 
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where q is a solution of the oriented Plateau problem in with 

Since M H ( a q )  5 C,(n, k ,  I'), one can use cone comparison to obtain 
M H ( c )  5 c2(n ,  k ,  r). Then 

(note that R i  is an integral current), and 

for all sufficiently small ei .  

Step 2. Since the homothety map pa which sends (x, y )  f Wn+"-' X W + to 
6-'(x, y )  is an isometry in W n + k ,  one obtains, from (2.7), 

where Si = psJ,  Si* = ps,(S~{ y > E ~ ) ) .  

Next note that 

In fact (for E~ < a), S i * ~ A 1  can be represented by a graph of a smooth function 
z = ui (w ,  y )  on the region B;-l(O) x (1,3), with IIuillcl,l 5 c4(a ,  n, k ,  r)sa 
provided that 6 < )Pr and that l? is C',* (here 0 5 a 5 1, a = 0 means that 
c 4 ( a ,  n, k, I?) can be arbitrarily small for sufficiently small 6). 

Note also that inequality (2.4) will follow, by scaling, from M H ( S i ~ A 1 )  5 
c4( n, k ,  r) because 

(2.10) M(SiLA,) 6 3"MH(SiLA1). 

Combining (2.8), (2.9) and (2.10) we see that it now suffices to show that 

(2.11) MH(Si*~Af)  - M H ( S i ~ A E )  5 c , ( n ,  k ,  I'). 
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To do so, we consider a solution Qi to the following partial free-boundary 
hyperbolic area-minimizing modulo 2 problem: 

Minimize M H (  Q ) ,  for all Q satisfying 
(i) Q is a flat chain modulo 2 in 

(ii) aQ = pSJi + Pi (mod2), 

(iii) spt2(Fi) c (p8#w)  n [ a ( B ; - ' ( o )  x (1,3)) x B; (O) ]  
where 

and P # ( r i )  = (E"- 'LJ(B; - ' (O)  X (1,3)))(2). 

(2.12) 

(W is the set in Remark 1.5.) The existence of a solution Qi to (2.12) follows 
again from the standard direct method of the calculus of variations and the 
compactness theorem (see [6], 4.2.26). 

Since &LA; and &*LA; satisfy (i), (ii) and (iii), it is clear that 

M H ( Q i )  5 min{ M H ( S i L A f ) ,  MH(Si*~Af) } .  

Therefore, (2.11) will follow from 

We claim that Q i ~ ( B ; - l ( 0 )  X [f,4] X Bt(0)  - B ; i l ( 0 )  X [+,2] X Bt(0))  is a 
graph of a smooth function z = i i i(w, y )  on a subregion of B;-'(O) X [ a ,  41 with 
~ ~ i i i ~ ~ p  5 c,((Y, n ,  k ,  r)S". By Theorem 1.2, we may also assume that 
Si*~B; - ' (0 )  X [4,4] X Bt(0) is a graph of a smooth function z = u i ( w ,  y )  on 
B;-'(O) X [f,4] with I(uiJ(cl.l c4(a, n, k ,  r)Sff. This implies, in particular, that 
both Q i ~ B '  and S,*LB' are hyperbolic area-minimizing flat chains modulo 2 
with boundaries pLS& + ri and pSJi + ri*, respectively. Here B = B;;'(O) x 
[i, 95-1 x Bt(0)  and ri, ri* are graphs of functions iii, and ui over the set 
J (B;Tl(O) x [ i, y]), respectively. Hence 

MH ( Si* L A f ) - MH ( Qi ) 
(2.14) 

5 M H ( S i * ~ B C )  - M H ( Q i  LB') + c , ( n ,  k ,  r). 

Finally, we also have 

(2.15) M H ( S i * ~ B C )  - M H ( Q i  LB')  5 cs (n ,  k ,  r)  

which follows from a simple comparison (by adding a vertical piece resulting 
from the homotopy formula to the 2-graphs ((1 - t ) i i i (w ,  y )  + tu,(w, y ) ,  
0 5 t 5 1, ( w ,  v )  E W ; ; l ( O )  x [i, +?I))). 
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Step 3. We wish to show the claim in Step 2. Consider Q i ~ ( B ; '  - ' (O) X 
[0,5] X Bt(0)). It is a hyperbolic area-minimizing flat chain modulo 2 such that 

Here 17 5 c,(a, n, k, r)Sa if 0 < a 6 1, and 17 may be chosen arbitrarily small if 
a = 0 and if S is sufficiently small (which depends only on r). Ths, in fact, 
follows from Remark 1.5 about the containing set W and a rescaling. 

One may apply Lemmas 1.3 and 1.4 to see that, for all sufficiently small E , ,  

the claim is true. 

Remark 2.2. The proof of the regularity theorem which is stated in the 
introduction is similar to that of Section 1 and [ll]. One uses (2.1) and Lemma 
2.1 instead of Lemmas 1.3 and 1.4. 

3. Open Problems 

We would like to conclude the paper by discussing a few open problems 
which arise very naturally along the lines of our study. 

PROBLEM 1 (Interior mass bound). Let T be an indecomposable, n-dimen- 
sional area-minimizing integral current in R"'", k 2 1, and let 

C, = B:(O) X R", and P = 08" X 08" -+ R"  which is defined by P ( x ,  y )  = x, for 
(x, y )  E R "  x R". Suppose that 

(i) P,T = mE"LD, ( m  is the multiplicity of the projection, m 2 l), 
(ii) ~ T L C ,  = 0, 

(iii) the Hausdorff distance p(D, ,  spt T )  = S << 1. 
Is there a positive number 6, = 6,(m, n ,  k )  such that, for any such indecom- 

posable area-minimizing current T which satisfies (i), (ii) and (iii) with S So, 
M ( T L C , / , )  6 C ( m ,  n, k)? 

Even if one assumes that m = 1, and that T is a smooth graph over D,, the 
answer to the above question is unknown. We should point out, indecomposable 
currents in higher codimension may be rather complicated. For example, one can 
easily construct an integral 2-dimensional indecomposable current T in Iw which 
satisfies (i), (ii) and (iii) (for any given positive integer m ,  and any 6 > 0), and 
such that T L C ~ / ~  = rnlE"~D,/,, and that T L ( C ,  - C,) is a smooth embedded 
surface (which is also a graph over D, - D,), for any r > $. 

PROBLEM 2 (Local regularity). Let T be as in Problem 1. Suppose 
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then, is it true that T L  C,,, can be represented as a graph of a C',* m-valued 
function, for sufficiently small 6? For m = 1 the answer is yes, and it is well 
known (see for example [6], 5.3) when m 2 2, Almgren gave several counterex- 
amples in [2]. 

PROBLEM 3 (Boundary regularity). Let T be an n-dimensional, complete, 
area-minimizing locally rectifiable current in k 2 1, with smooth, embed- 
ded submanifold as its asymptotic boundary. Suppose, in addition, that T is a 
normal current in the ordinary Euclidian topology with J T  = I?. Is spt(T) u r 
smooth near r in the Euclidean metric? 

It seems most likely that the answer will be yes. In general, the additional 
hypothesis in the above question may be replaced by the following multiplicity 1 
condition. 

Let C( r )  be the convex hull of r in  HI'+^, and, near I?, P = C(r)  -+ r x R, 
the horizontal nearest point projection. One defines dT = m r  if P,T = mT x R 
(in a neighborhood of I?). The multiplicity 1 condition means simply that m = 1. 

PROBLEM 4 (Higher multiplicity boundary). Let T be an n-dimensional, 
complete, area-minimizing locally rectifiable current in W n f k ,  k 2 2, with d T  = 
m y .  Here r is a smooth submanifold of R n + k - l  x (0 ) .  Is spt T u r, near I?, a 
union of at most m distinct smooth submanifolds with boundary in the 
Euclidian metric? 

If n = 2, and if the total Euclidian mass of T is bounded, then one can easily 
verify that the interior mass ratio of T is uniformly bounded up to r provided 
that r is C'". In general, one can construct an area-minimizing n-dimensional 
integral current T in W n + k  whose asymptotically smooth, embedded boundary is 
I? with multiplicity m (i.e., J T  = m r )  via Anderson's construction. Moreover, 
such a construction will imply automatically that the Euclidian mass of T is 
bounded. 

A related question for the hypersurface has been studied by B. White (see 
[19]). The following is, however, unknown: 

PROBLEM 5. Let r be an ( n  - 1)-dimensional smooth, embedded (extreme) 
submanifold of R n + k ,  and let T be an area-minimizing integral current modulo 
2p. Suppose that a T  = pT (mod2p). Is spt(T), near r, a union of at most p 
distinct smooth submanifolds with boundary? 

If the answer to the above is yes, then how about the solutions of the oriented 
Plateau problem with higher multiplicity boundary? 
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