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Abstract

We propose efficiency of representation as a criterion for evaluating shape models, then apply this
criterion to compare the boundary curve representation with the medial axis. We estimate the ε-
entropy of two compact classes of curves. We then construct two adaptive encodings for non-compact
classes of shapes, one using the boundary curve and the other using the medial axis, and determine
precise conditions for when the medial axis is more efficient. Along the way we construct explicit
near-optimal boundary-based approximations for compact classes of shapes, construct an explicit
compression scheme for non-compact classes of shapes based on the medial axis, and derive some
new results about the medial axis.

1 Introduction

One of the great lessons of computer vision research is that, while humans are quite expert at
isolating and recognizing shapes, the notion of shape does not lend itself to precise quantification.
As a result, there now exist many competing shape models supported by factions of researchers whose
reasons for support range from the practical: compatibility with another phase of image analysis
(e.g., [19, 28, 5, 27]), to near-religious fervor: “shape simply is [insert model of your choice]”. In
this work, we attempt to sidestep that minefield by evaluating shape models on purely intrinsic
and quantitative data. The idea behind the work is that some shapes are naturally suited to being
modeled as boundary curves while others are suited for regions, etc., in the sense that modeling a
particular shape in one way will be simpler than any other. Borrowing from information theory, we
take efficiency of representation as a quantitative measure of that simplicity.

1.1 Goals

The goals of this work are threefold. First, we wish to introduce the approach of efficiency of
representation as a way to evaluate deterministic shape models. This is not to suggest that the
efficiency criterion should take precedence over all other criteria, but rather that in the absence of
other practical considerations, a quantitative basis for model selection is preferable to a religious
one. Even more, we argue that understanding which shape model is more efficient for a particular
shape or class of shapes gives important insights into the geometry and structure of that shape or
class even if, for a particular task, another model is more convenient.

1



Second, we wish to address one of the current shape model debates: are boundary curves or
skeletons better as shape models? Current views toward skeletal models such as the medial axis are
fairly dismissive, but this paper intends to demonstrate that the skeleton has a defensible position
as a shape model.

Finally, we are interested in theoretical properties of spaces of shapes. In the course of evaluating
the efficiency of boundary and skeletal models, we construct efficient coverings of shape space. The
nature and the size of these coverings contributes to the currently growing body of mathematical
understanding of these highly non-linear, infinite-dimensional spaces.

The paper as a whole realizes the first goal, and three theorems realize the second and third.
Theorem 33 gives a criterion in terms of medial data for when the medial axis is a more efficient
shape model than the boundary curve, and we provide examples of shapes better modeled by each.
Theorem 19 gives a tight estimate for the ε-entropy of certain compact classes of curves, and a near-
tight estimate for boundary curves, while Theorem 20 gives an indication of what an optimal covering
should look like in the non-compact case. Along the way, we derive some interesting properties of the
medial axis and explicitly construct what are, to our knowledge, the first provably optimal coverings
of a non-linear space.

1.2 Motivation

Shape seems to be garnering serious attention of late. One mathematically rigorous approach to
shape theory, taken by Mumford & Michor [17], Miller & Younes [1], Srivastava & Mio [10], and
others, is to place shape-related tasks on shape manifolds. A primary thrust of that work is the
search for Riemannian metrics on the shape manifold that result in geodesics between shapes that
are computationally tractable. Even better would be to define a probability measure on the manifold
in order to do statistical inference there. These problems are very hard, and have therefore generated
a general interest in the structure of shape spaces. This gives a theoretical motivation for our work.

A more practical motivation is the desire to construct a method for conclusively determining the
intrinsic suitability of shape models for particular shapes. Most researchers would agree that shapes
can be extracted from certain images only by region-growing techniques (e.g., the spotty dalmation
image), and from others only by edge-based techniques (e.g., a sketchy line drawing). The distinction
depends on properties of the image, such as relative grey levels or textures—not on properties of
the shape. We wish to determine appropriate properties of shape that will allow us to make similar
judgements. Are certain shapes suited to certain models, and can we take measurements to aid in
model distinction? Here we analyze two models, the boundary curve and the medial axis, and we
hope our work will inspire similar analysis of other models.

The boundary curve is an obvious selection for one of the models, but we justify our choice of the
medial axis. Blum first introduced the medial axis in the context of mathematical morphology in the
early Seventies [2]. Since then, the medial axis has been applied to many shape-related problems,
such as recognition [30], animation [23] and medical imaging [29]. Giblin and Kimia have explored
the medial axis extensively as a tool for shape reconstruction [8] and shape matching [20], where
its ability to decompose an object into parts is quite useful. Kimia has also used it to impose a
discrete structure on shape space [24], decomposing the space into cells based on medial topology
and defining a shape similarity based on the cost of moves between cells. One of the most powerful
aspects of the medial axis representation is the relationship that exists between the geometry of the
boundary curve and the geometry of the medial pair. In Section 6, we introduce these and other
known properties of the medial axis pair, then derive some new results. It is well-known that two
arbitrarily close shapes can have tremendously different medial structures; this contributes to the
divisive nature of the medial axis as a shape model. Researchers such as Zhu [30] and Pizer & Damon
[4, 9] have modified the definition of the medial axis in their work to make the axis more robust, but
as a consequence have sacrificed some of these wonderful geometric properties. We choose to work
with the original medial axis construction, avoiding the instability issue by focusing on the reverse
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relationship: when two medial curves are arbitrarily close, their corresponding shapes must be, too.
Such bounds are among the new results we present.

While this work emerges from the shape community, it owes a tremendous debt to information
theory. Our entire philosophy, inspired by work of Rissanen [12, 18] and Kolmogorov [11], depends
on the notion that, given an encoding of a shape, the encoding requiring the fewest bits to describe
is the preferable one. When an object to be encoded belongs to a compact class, Kolmogorov’s
ε-entropy gives the optimal bit rate for a fixed-length encoding, where each element of the class
requires the same number of bits. In a non-compact class, Rissanen’s minimum description length
(MDL) principle says that when trying to choose between two probability models for a class of
objects, look at the codelength in a variable-length encoding, where the number of bits required
depend on the particular element being encoded. The model resulting in a shorter expected value
for the codelength is the better model. We transfer this principle to a deterministic setting by
choosing the model with the shorter codelength on a shape-by-shape basis.

2 Metric Spaces of Curves

We will identify a shape with the boundary curve of its silhouette. In order to define the information
theoretic quantities of interest for shape model comparison, we must work in a metric space of curves.
It is desirable to have translation and rotation invariance in shape descriptors, and our spaces of
curves will therefore assume a canonical location and orientation for each curve.

Notation.

(a) A plane curve will be denoted by γ, and its tangent angle function by θγ .

(b) C denotes the collection of curves γ(sγ) : [0, Lγ ] → R2, for Lγ ≥ 0, satisfying:

(i) γ ∈ C1.

(ii)
∣∣∣ dγ
dsγ

∣∣∣ ≡ 1.

(iii) γ(0) = (0, 0), θγ(0) = 0.

(c) I ⊂ C denotes the collection of immersions of S1 into R2 passing through the origin with
horizontal tangent direction, i.e., the collection of curves γ ∈ C so that γ(0) = γ(Lγ).

Abusing notation, we will drop the subscript γ from sγ and will instead assume that the curve
γ(s) is arclength parameterized with the domain of s varying from curve to curve unless explicitly
stated otherwise. Within these larger classes of curves lie relevant compact classes:

(a) CL
K ⊂ C is the collection of curves of length at most L, so that for γ ∈ CL

K ,
|θγ(s1)− θγ(s2)| ≤ K|s1 − s2| where s is arclength on γ.

(b) IL
K ⊂ I is the collection of curves of length at most L, so that for γ ∈ IL

K ,
|θγ(s1)− θγ(s2)| ≤ K|s1 − s2| where s is arclength on γ.

We define a C1-type metric on C. We include a term for orientation because there is some
indication that it plays an important role in human shape perception [15]. The L∞ framework is
desirable because we will be constructing minimal ε-covers, and the box-like L∞ balls stack efficiently.
For γ1, γ2 ∈ C and λ > 0 a dimension-normalizing constant, define:

ρ(γ1, γ2) = sup
i=1,2

sup
sj

j 6=i

inf
si

1
λ |γi(si)− γj(sj)|+ |θi(si)− θj(sj)|

 .
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Note that as λ→∞, the distance between any two closed curves goes to zero. A suitable choice
for λ for CL

K , for example, would be λ < 1
K .

Given a sequence of curves {γi}, a straightforward argument on the sequence of pairs {(θi, Li)}
where Li is the length of γi and θi is the tangent angle function gives the following result:

Proposition 1. CL
K and IL

K are compact in the metric ρ.

3 Fixed Codelengths: Compact Classes and ε-entropy

The ε-entropy of a totally bounded metric space, defined below, essentially counts the minimum
number of ε-balls required to cover the space. There is a direct connection between ε-entropy and
fixed length encoding. Suppose one wishes to ε-represent each element in a compact metric space
with a fixed number of bits in the most efficient way possible. Given an ε-cover {Ui}n

1 for the space,
each element can be represented by the ε-ball to which it belongs. Enumerating these balls gives a
binary representation for each element of the space, requiring dlog ne bits per ball. If the covering
is minimal, the number of bits will be given by the ε-entropy of the space.

In this section, we construct a minimal covering for CL
K and a near-minimal covering for IL

K .
In other words, the boundary curve attains optimal efficiency for fixed-length encodings of shapes.
While we do not present the overly technical details here (see [14]), we have also constructed a
medial-axis-based covering for a class of curves closely related to IL

K . The end result is that while
the medial covering is of the correct order, it is less efficient than the boundary curve for fixed-
length encodings. We present the argument for the optimality of the boundary curve below, saving
discussion of the medial axis for when it becomes interesting in Section 5.

Before tackling the nonlinear spaces of curves, we introduce the concept of ε-entropy and give an
example of an ε-entropy calculation for a linear function class. The example will play a key role in
the estimation of ε-entropy for curves given in the next section, as we will derive entropy estimates
for classes of curves by applying results for functions to classes of tangent angle functions to those
curves. In this way, we exploit the structure of linear classes of functions to obtain the desired
information about nonlinear classes of curves.

3.1 ε-entropy

Kolmogorov invented the notion of ε-entropy as a way of quantifying the massiveness of infinite-
dimensional metric spaces by capturing the exponent of the number of balls in a minimal ε-covering
of compact subsets of the space [11]. In the first section, we introduce ε-entropy and discuss some
relevant properties. In the second section, we provide an important example of an ε-entropy estimate.

3.1.1 Definitions and preliminaries

Consider a subset X ⊂ (M,ρ), where M is a metric space with metric ρ. A system of sets Uα,
α ∈ A, such that X ⊆

⋃
α∈A Uα and the diameter d of Uα satisfies d ≤ 2ε, is called an ε-cover for

X. A set of points {xα} ⊂ M is an ε-net for X when for any x ∈ X, there exists an xα so that
ρ(x, xα) ≤ ε. Note that any ε-net gives rise to an ε-cover, but not necessarily conversely (when X
is a centered space, the two are equivalent).

From a compression standpoint, the most desirable ε-cover is one with the fewest balls. This
leads to the definition of ε-entropy. Let Nε be the cardinality of a minimal ε-cover for a totally
bounded set X ⊂ (M,ρ). Then the ε-entropy of X is Hε(X, ρ) = log2 Nε.

A set U ⊂ X is ε-separated when ρ(x1, x2) ≥ ε for any x1 6= x2 ∈ U . For Mε equal to the
maximal number of elements in an ε-separated set U ⊂ X, the ε-capacity of X is Cε(X, ρ) =
log2 Mε. The following theorem gives the relationship between these quantities and provides the
foundation for the ε-entropy estimates.
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Theorem 2. [11] For every totally bounded set X contained in a metric space M , the following
inequalities hold:

1. M2ε(X) ≤ Nε(X) ≤ Mε(X)

2. C2ε(X) ≤ Hε(X) ≤ Cε(X).

3.1.2 Example: Kolmogorov, L∞, and Lipschitz Functions

The classical method of estimating ε-entropy is to construct an ε-cover with Kε elements and a 2ε-
separated set with L2ε elements so that limε→0

Kε

L2ε
= 1, or at worst is some non-zero constant. The

following theorem of Kolmogorov and Tikhomirov applies this technique. Estimates for ε-entropy
are not usually as clean as this example might indicate; the use of the L∞ metric allows the ε-balls to
stack very neatly. In fact, the result in Theorem 3 produces a rare example where C2ε(X) = Hε(X)
(up to ±1). We provide an explanation of Kolmogorov’s construction in the one-dimensional case
where this miraculous equality holds, but consult [11] for rigorous proofs and full generality.

Theorem 3. For I = [a, b], define:

FI
1(C) = {f : I → R | f(a) = 0, |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} ,

and ρ∞(f, g) = supx∈I |f(x)− g(x)|. Then:

Hε(FI
1(C), ρ∞) =

{ |b−a|C
ε − 1 |b−a|C

ε ∈ Z+[
|b−a|C

ε

]
else.

Proof.

(i) First, construct an efficient ε-covering for FI
1(C) and count the number of balls. Divide the

interval [a, b] into (n+ 1) = (
[
|b−a|C

ε

]
+ 1) subintervals Ik = [a+ (k− 1)ε, kε], k = 1, .., n, and

In+1 = [nε, b].

Let φi(t) be a function so that φi(a) = 0 and φi is linear with slope ±C on each subinterval
Ik. See Figure 1. To each φi, associate an 2ε-corridor:

K(φi) =

{
(x, y) ∈ R2

∣∣∣ −x ≤ y ≤ x

φi(x)− 2ε ≤ y ≤ φi(x)
x ∈ I1

otherwise

}
.

The diameter of each K(φi) is at most 2ε, and each distinct φi gives rise to a distinct corridor.
Furthermore, one may see that every f ∈ (F )1I belongs to such a corridor.

Figure 1: Epsilon corridors, I. [11]

A short calculation shows that the total number of {φi} is at most 2n + 1, giving an upper
bound for Hε(FI

1 , ρ∞) of
([

|b−a|C
ε

]
+ 1
)

.

(ii) To find the lower bound, construct a 2ε-separated set similar to the {φi}. Again taking
n =

[
|b−a|C

ε

]
, divide I into n equal subintervals, Jk, where |Jk| = |b−a|C

n ≥ ε. Now consider
the set Ψn of functions ψi which are linear with slope ±C on each Jk and vanish at a. These
functions are 2ε-separated, and there are 2n of them, which gives the appropriate lower bound
for Hε(FI

1 , ρ∞).
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Corollary 4. Define

FI
1(B,C) = {f : I = [a, b] → R | |f(x)| ≤ B, and |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} .

Then:

Hε(FI
1(B,C), ρ∞) =

[
|b− a|C

ε

]
+
[
log

B

ε

]
+O(1).

The corollary is proved by applying the constructions of functions φi and ψi as defined in the
proof of Theorem 3 to each of the starting points (−ε, 2kε), for k = −[ B

2ε ], . . . , [ B
2ε ] to obtain functions

φi,k and ψi,k. See Figure 2.

Figure 2: Epsilon corridors, II [11].

3.2 Adaptations of Kolmogorov’s Theorem

In the next two theorems, we explore variations of Kolmogorov’s Theorem 3. The first adaptation
is a simple one where we consider functions whose starting point and ending point are the same,
foreshadowing applications to closed curves. The second is more fundamental, modifying both the
space and the metric. It provides the functional analogue for the estimates we obtain for curves.

Theorem 5. For I = [a, b], define:

F̃I
1(C) = {f : I → R | f(a) = f(b) = B and |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} .

Then:

Hε(F̃I
1(C), ρ∞) ∼ |b− a|C

ε
.

The proof of Theorem 3 requires only a slight modification: we require that the {φi(t)} satisfy
φ(a) = φi(b) = B. There will be, in the above notation,

(
n

n/2

)
≤ 2n such functions when n is even;

take n + 1 if n is odd. On the other hand, to find a 2ε-separated set, we will find
(

m
m/2

)
elements

for m = n− 2 or m = n− 3, whichever is even, and 1
m+12m ≤

(
m

m/2

)
[3]. The corollary immediately

follows:

Corollary 6. Define

F̃I
1(B,C) =

{f : I → R | |f(x)| ≤ B, f(a) = f(b), |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} .

Then:

Hε(F̃I
1(B,C), ρ∞) ∼ |b− a|C

ε
.

Next, we adapt Theorem 3 by modifying the class of functions and the metric to include derivative
information. This new function class mirrors the classes of curves CL

K and IL
K . Define a class of

functions whose first derivatives are Lipschitz:

GI = {f : I → R | f(0) = f ′(0) = 0, |f ′(x)− f ′(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} .

We introduce a C1 metric on GI :

ρC1(f, g) = sup
x∈I

(
1
λ
|f(x)− g(x)|+ |f ′(x)− g′(x)|

)
,
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for λ > 0 a dimension-normalizing constant. We will construct a covering in this metric space by
covering the space of derivatives, then lifting that cover to the space of primitives, GI . The lifted
cover is then refined to give an ε-cover of GI . As it turns out, this process produces the critical
insight for our results on curves: the high order term of the ε-cover comes from the covering of the
derivative space; refining the lifted cover requires only lower order terms. Hence the leading term in
covering spaces of curves will come from covering the linear space of tangent angle functions.

Theorem 7. Hε(GI , ρC1) ∼ |b−a|C
ε .

Proof. Take FI to be the collection of first derivatives for functions in GI , equipped with the L∞

metric.

(i) For δ1 > 0, we may apply Theorem 3 to obtain an L∞ δ1-cover {U ′i} for F, with centers {f ′i},

i = 1, . . . , 2
h
|b−a|C

δ1

i
. Define Ui ⊂ GI to be the collection of primitives of all the elements in U ′i ,

so Ui = {f(x) =
∫ x

0
f ′(t)dt | f ′ ∈ U ′i}. The ρC1-diameter of Ui is |b−a|

λ δ1 + δ1. Fix a ξ with

1 < ξ < 2. We will construct a ( δξ
1
λ + δ1)-cover for each Ui in the metric ρC1 .

Divide the interval [a, b] into subintervals Ik = [xk−1, xk] of width ∆ = δξ−1

2 except possibly

the last one which might be shorter, so k = 1, . . . ,
([

2|b−a|
δξ−1
1

]
+ 1
)
. For each Ui, construct a

collection of piecewise Lipschitz functions gi,j , where g′i,j = f ′i on the interior of each Ik, but

gi,j jumps by ± δξ

2 at each interval endpoint xk for all but the last k. See Figure 3. We will
associate a gi,j to each f ∈ Ui by choosing the function gi,j whose values at the xk minimize
|gi,j(xk)− f(xk)|. Denote the collection of f ∈ Ui associated to gi,j by Vi,j .

Figure 3: Jumps to correct the location of approximating functions gi,j .

We claim the ρC1-diameter of Vi,j is at most 2( δξ
1
λ + δ1) in the metric ρC1 . By construction,

supx |f ′(x) − g′i,j(x)| ≤ δ1 and |f(0) − gi,j(0)| = 0 ≤ δξ
1
2 for f ∈ Vi,j . In fact, supx |f(x) −

gi,j(x)| ≤ δξ
1. Assume |f(xk−1)− gi,j(xk−1)| ≤ δξ

1
2 for some k. Then, for x ∈ Ik:

|f(x)− gi,j(x)| ≤
∫

Ik

∣∣f ′(t)− g′i,j(t)
∣∣ dt+

δξ
1

2

≤ δ1∆ +
δξ
1

2
= δξ

1.

At the point x = xk, gi,j jumps by δξ
1
2 , giving |f(xk) − gi,j(xk)| ≤ δξ

1
2 . Therefore, given

f, f̄ ∈ Vi, j, supx |f(x)− f̄(x)| ≤ 2δξ
1, and the diameter of Vi,j is as claimed.

At each xk but the last, the functions gi,j may jump positively or negatively, giving a total of

2

»
2|b−a|
δ

ξ−1
1

–
functions, and therefore the same number of balls Vi,j for each i. This gives the total

number of balls in the
(

δξ
1
λ + δ1

)
-cover as Kδ1 = 2

h
|b−a|C

δ1

i
+

»
2|b−a|
δ

ξ−1
1

–
.

(ii) For δ2 > 0, apply Theorem 3 to obtain a 2δ2-separated set in L∞ for F with at least

L2δ2 = 2
h
|b−a|C

δ2

i
elements h′i. Taking the collection of primitives hi(x) =

∫ x

0
h′i(t) dt, we

7



obtain a 2
(

δ2
2

2Cλ + δ2

)
-separated set in the metric ρC1 . Certainly, for each i 6= j, there exists

some xij so that |h′i(xij) − h′j(xij)| ≥ 2δ2. Then, by definition of hi and hj , we have that

|hi(xij)− hj(xij)| ≥
∫ δ2

C

0
2Ct dt = δ2

2
C , as desired.

(iii) Fix an ε > 0. To estimate Hε(GI , ρC1), we select ξ = 3
2 , δ1 so that ε = δ1 + δ

3
2
1
λ , and δ2 so that

ε = δ2 + δ2
2

2Cλ . Then from (i), we have an ε-cover with at most Kδ1 elements, and from (ii), we
have a 2ε-separated set with at least L2δ2 elements, giving:

logL2δ2 ≤ C2ε ≤ Hε ≤ logKδ1 .

But then for 0 < δi < ε:

lim
ε→0

logL2δ2

|b−a|C
ε

= lim
ε→0

|b−a|C
δ2

|b−a|C
ε

= lim
ε→0

ε

δ2
= lim

δ2→0

δ2 + δ2
2

2Cλ

δ2
= 1

and similarly

lim
ε→0

logKδ1

|b−a|C
ε

= lim
δ1→0

δ1 + δ
3
2
1
λ

δ1
= 1,

which gives

lim
ε→0

Hε(GI , ρC1)
|b−a|C

ε

= 1.

Note that because the centers for these balls have jump discontinuities, they are no longer in a
space of functions with Lipschitz derivatives. What has happened is that whereas a ball of derivatives
and its balls of primitives have centers in the appropriate space, the derivative of a primitive center
is not the center of the derivative ball, and so we fail to obtain a center in the appropriate space for
the C1 metric.

4 Estimation of ε-entropy for spaces of curves

We next apply techniques developed in the linear setting of classes of functions to the nonlinear
setting of classes of plane curves, specifically curves with Lipschitz tangent angle as a function of
arclength. We obtain tight bounds on ε-entropy for classes of curves containing both open and closed
curves in Section 4.1, and slightly weaker bounds for closed curves in Section 4.2. Together, these
results comprise Theorem 19.

4.1 Estimation of Hε(C
L
K , ρ)

4.1.1 Upper Bound

To construct an ε-cover for curves, we will mimic the techniques of Theorem 7. As before, the ε-cover
for curves does not correspond to an ε-net for the space: we can find centers in the product space
CL

K × S1, but for each center, the tangent angle function paired with the curve is not the tangent
angle for that curve. Instead, centers for CL

K will have jump discontinuities.
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To refine the lifted cover for derivatives in the case of functions, the direction of adjustment
necessary for the refinement was clear; it was parallel to the vertical axis (c.f. Figure 3. In the
curve case, however, the direction of correction must be specified. The next two lemmas address
that issue; proofs are in the Appendix.

Lemma 8. Given γ̃(s) : [0, L] → R2, γ̃ ∈ C1 with tangent angle function θ̃(s), define:

Γδ(γ̃) =
{
γ : [0, L] → R2 | γ ∈ C1, |γ(0)− γ̃(0)| ≤ δξ

2 , |θ(s)− θ̃(s)| ≤ δ
}
,

where s is the arclength parameter for all curves. There exists a (δ + δξ

λ )-cover for (Γδ(γ̃), ρ) with

at most 2log 3
h

2L
δξ−1

i
elements.

Modifying the above lemma to allow the curve lengths to vary gives the following lemma.

Lemma 9. Given γ̃(s) : [0, l̃] → R2, γ̃ ∈ C1, with tangent angle function θ̃, define:

Γ′δ(γ̃) =
{
γ : [0, l̃] → R2 | γ ∈ C1, |γ(0)− γ̃(0)| ≤ δξ

2 , |θ(s)− θ̃(s)| ≤ δ, l ∈ [l̃ − δξ

4 , l̃]
}
,

where l is arclength of γ, s is the arclength parameter for γ̃, and all other curves are parameterized

to have constant speed l/l̃. There exists a (δ + δξ

λ )-cover for (Γ′δ(γ̃), ρ) with at most 2log 3
h

4L
δξ−1

i
elements.

We now have the necessary ingredients for constructing an ε-cover on CL
K , applying Lemma 9

together with Theorem 3.

Proposition 10. There exists a
(
δ +

√
δ3

λ

)
-cover for (CL

K , ρ) with no more than:[
4L√
δ3

]
2[KL

δ ]+log 3
h

4L√
δ

i

elements.

Proof. To construct the cover, partition the interval [0, L] of possible arclength into subintervals of
width

√
δ3

4 , giving
[

4L√
δ3

]
subintervals. Let lδ be the right endpoint of any such subinterval. We will

parameterize γ of length l ∈
(
lδ −

√
δ3

4 , lδ

]
by s ∈ [0, lδ] so that γ(0) = 0, θ(0) = 0 and dγ

ds = l
lδ

.

For all curves with lengths in a particular subinterval, |dθ/ds| ≤ l
lδ
K ≤ K, and so we may apply

Theorem 3 to obtain an L∞ δ-net for the angle functions with at most 2
h

KL
δ

i
elements θδ. Each θδ

gives rise to a curve

γ̃δ(s) =
∫ s

0

〈cos θδ(t), sin θδ(t)〉 dt,

and its associated neighborhood of curves Γ′δ(γ̃δ). Then by Lemma 9, we may construct a (δ + δξ

λ )-

cover for each (Γ′δ(γ̃), ρ) with at most 2
log 3

»
4L√
δ3

–
elements.

Applying this process within each length subinterval gives the result.

Taking δ1 so that ε = δ1 +
√
δ31 , and applying Proposition 10 gives a (δ1 +

√
δ3
1

λ )-cover for (CL
K , ρ)

with

Kδ1 =

[
4L√
δ31

]
2

h
KL
δ1

i
+log 3

»
4L√

δ1

–

elements, thus proving the following corollary, which gives out upper bound.
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Corollary 11. Hε(CL
K , ρ) � KL

ε .

4.1.2 Lower Bound

We construct a 2ε-separated set in CL
K . This is not a straightforward as it might appear, as we

must guard against pairs of curves where |γ1(s) − γ2(s)| is large but there exists and s′ such that
|γ1(s) − γ2(s′)| is small. To do so, we will restrict how far a curve can wander away from the
horizontal axis.

As a first step, we count the number of realizations of an n-step symmetric random walk g
satisfying g(0) = g(n) = 0 and

∫
g = 0, where g is piecewise linear with slope ±1. This will allow

us to piece together curves from functions that stay close to the horizontal axis, while maintaining
differentiability of the curve at the joins.

We count the number of such walks using a probabilistic argument. Let a(n) =
∫ n

0
g, and for

fixed n consider the random variable z = 〈g(n), a(n)〉 Σ−1 〈g(n), a(n)〉T , where Σ is the covariance
matrix for the random vector 〈g(n), a(n)〉. We will use level sets for z to find a lower bound for the
number of walks g so that 〈g(n), a(n)〉 are “close enough” to the origin, then we will add steps to
those walks to bring the endpoints and areas back to 0. Proofs of the next two lemmas are left to
the Appendix.

Lemma 12. The number of realizations of a symmetric n-step random walk g so that g(0) = 0,
|g′(n′)| ≤ 3

√
n, and |a(n′)| ≤

√
3

2

√
4n3 − n is at least 1

32n.

Lemma 13. Given a realization g′ of an n′-step random walk so that g′(0) = 0, |g′(n′)| ≤ 3
√
n

and |a(n′)| ≤
√

3
2

√
4n3 − n, there exists a realization g of an n-step random walk, coinciding with

g′ on the first n′ steps, satisfying g(0) = g(n) = 0 and
∫
[0,n]

g = 0, where n ≤ n′ + 3
√
n′ +

8
√

9n′

2 +
√

3
2

√
4n′3 − n′.

We now construct an appropriate collection of functions. Recall the definition of FI
1 :

FI
1(C) = {f : I → R | f(a) = 0, |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I} .

Proposition 14. Let I = [a, b], and define:

FI
1,0(C) =

{
f ∈ FI

1 | f(b) = 0,
∫

I

f = 0
}
.

There exists a 2ε-separated set in (FI
1,0, L

∞) with M′
2ε elements, where M′

2ε � 2
C|b−a|

ε .

Proof. Set n =
[

C|b−a|
ε

]
, take n′ = n − 3

√
n − 2

√
9n
2 +

√
3

2

√
4n3 − n and ∆ = C|b−a|

n ≥ ε. On the

interval [a, a + n′∆], Theorem 3 and Lemma 12 gives at least 1
32n′ elements in a 2ε-separated set

consisting of functions f̂ which are piecewise linear with slopes ±C satisfying, for sufficiently large
n:

f̂(a) = 0,

f̂(a+ n′∆) ≤ 3C|b− a|
n

√
n′ ≤ 3C|b− a|

n

√
n,∫

[a,a+n′∆]

f̂ ≤
√

3C|b− a|2

2n2

√
4n′3 − n′ ≤

√
3C|b− a|2

2n2

√
4n3 − n.

Now apply Lemma 13 to extend f̂ , in fewer than n−n′ steps, to obtain a function with endpoint
and integral values of zero. Extend f̂ to the full interval [a, b] by setting it to zero on the remainder
of the interval, producing a function f with the desired properties.
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As ε→ 0, n→∞, and limn→∞
n
n′ = 1, giving the desired result.

We are now ready to estimate the lower bound.

Proposition 15. There exists a 2ε-separated set for (CL
K , ρ) with M2ε

(
CL

K

)
elements, where M2ε

(
CL

K

)
�

2[KL
ε ].

Proof. Choose δ so that ε = δ

1+
K2δ

4

, giving limε→0
δ
ε = 1. For a fixed L′, divide the interval [0, L′]

into subintervals Ik = [ak, ak+1] of width
√
δ, giving k ≤

[
L′√

δ

]
. Within each Ik, apply Proposition 14

with C = K to obtain a collection of 2δ-separated functions {dfk
j

dx }, j = 1, . . . , n, where n � 1
32

K
√

δ
δ .

The functions satisfy, for i 6= j:

(i) dfk
j

dx (ak) = dfk
j

dx (ak+1) = 0

(ii)
∫

Ik

dfk
j

dx = 0

(iii)
∣∣∣∣∣∣dfk

i

dx − dfk
i

dx

∣∣∣∣∣∣
∞
≥ 2δ

(iv)
∣∣∣∣∣∣∣∣dfk

j

dx

∣∣∣∣∣∣∣∣
∞
≤ K

√
δ

2

Integrating, we obtain a collection of primitives {fk
j } with curvature functions bounded by K,

and tangent angle functions {θk
j }, where θk

j = arctan dfk
j

dx . These primitives satisfy the following
properties for i 6= j:

(i) fk
j (ak) = fk

j (ak+1) = 0

(ii) θk
j (ak) = θk

j (ak+1) = 0

(iii)
∣∣∣∣θk

i − θk
j

∣∣∣∣
∞ ≥

∣∣∣∣∣∣∣∣arctan dfk
i

dx − arctan dfk
j

dx

∣∣∣∣∣∣∣∣
∞
≥ 1

1+
K2δ

4

∣∣∣∣∣∣∣∣dfk
i

dx − dfk
j

dx

∣∣∣∣∣∣∣∣
∞
≥ 2δ

1+
K2δ

4

= 2ε.

Construct functions {fi} on [0, L′] by concatenating sequences {fk
i }. These will be C1 and

piecewise quadratic (not piecewise circular as in the construction of the upper bound). The number
of such functions will be 2m, where m �

(
L′√

δ

)(
K
√

δ
δ

)
= KL′

δ , and each will the properties above.

In particular, dfi

dx (0) = dfi

dx (L′) = 0 and fi(0) = fi(L′) = 0 for every i.
Each function fk

i has length

Lk
i =

∫
Ik

√
1 + f ′i

2 dx

≤
∫

Ik

√
1 + (K

√
δ

2 )2 dx

=
√
δ ·
√

1 + K2δ
4 .

This gives the length of fi to be at most L′√
δ

√
δ ·
√

1 + K2δ
4 = L′

√
1 + K2δ

4 . Take:

L′ =
L√

1 + K2δ
4

,
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to find m � KL
δ = KL

ε .
Finally, we demonstrate the 2ε-separation of these functions as curves. Recall from the definition

of ρ that λ < 1/K. For fi, fj , i 6= j, we may assume there exists some subinterval I = [x0, x0 + δ
K ]

so that dfi

dx |I has slope +K and dfj

dx |I has slope −K, giving |dfi

dx (x0 + δ
K ) − dfj

dx (x0 + δ
K )| ≥ 2δ. See

Figure 4.

Figure 4: Separation of curves.

Consider the ρ-distance of fj to the point P =
(

δ
K , fi( δ

K )
)
:

ρ(f1, f2) ≥ ρ(P, fj)

≥ min
x

1
λ

∣∣∣∣x0 +
δ

K
− x

∣∣∣∣+ ∣∣θi(x0 + δ
K )− θj(x)

∣∣
= min

x

1
λ

∣∣∣∣x0 +
δ

K
− x

∣∣∣∣+ ∣∣∣arctan dfi

dx (x0 + δ
K )− arctan dfj

dx (x)
∣∣∣

≥ min
x

1
λ

∣∣∣∣x0 +
δ

K
− x

∣∣∣∣+ 1

1 + K2δ
4

∣∣∣dfi

dx (x0 + δ
K )− dfj

dx (x)
∣∣∣ .

Since this last expression does not depend on location in the plane, we may take x0 = 0, f ′i = Kx,
and f ′j = −Kx, as depicted in Figure 4. Assume also that x ∈ [0, δ

K ] (the argument is analogous for
x > δ/K), giving:

ρ(fi, fj) ≥ min
x

1
λ

∣∣∣∣ δK − x

∣∣∣∣+ 1

1 + K2δ
4

|δ +Kx| .

Taking derivatives with respect to x, we see that since λ < 1/K, the minimum of the last expression
occurs when x = δ/K, giving ρ(f1, f2) = |θi( δ

K )− θj( δ
K )| ≥ 2δ

1+
K2δ

4

= 2ε as desired.

Corollary 16. Hε(CL
K , ρ) � KL

ε .

Corollaries 11 and 16 result in a tight estimate of Hε(CL
K , ρ), which we present in Theorem 19.

4.2 Estimation of Hε(I
L
K , ρ)

Corollary 11 also gives an upper bound for Hε(IL
K , ρ). Any search for a lower bound, however,

encounters the obstacle of constructing a 2ε-separated set of curves which are closed, putting con-
straints on areas under the tangent angle functions. This can be shown to be related to an unsolved
problem of partition functions (c.f. [25]).

Instead, we sacrifice tightness of the lower bound and force closure another way. Suppose we
have a collection of functions, 2δ-separated in the metric ρC1 , defined on an interval of length L′

with second derivative bounded by ±K. We may select any two functions defined on an interval
[a, b] so that f(a) = f(b) and use the graphs of these to join two halves of a circle of radius 1/K. See
Figure 5. For functions satisfying f(0) = f(L′) = df

dx (0) = df
dx (L′) = 0, and for appropriate choices

of L′ and δ, these curves will give the desired 2ε-separated set. In other words, we may build upon
the construction in Proposition 15 for open curves to obtain a 2ε-separated set of closed curves.

Theorem 17. There exists a 2ε-separated set for (IL
K , ρ) with M2ε

(
IL
K

)
= 22m elements where

2m � KL− 2π
ε

.
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Proof. Select δ so that ε = δr
1+

K2δ
4

. We will use a slight modification of the collection {fi}

constructed in the proof of Proposition 15 to construct a 2ε-separated set of closed curves. Taking
any two (not necessarily distinct) functions fi, fj , we may join two halves of a circle of radius 1/K
with the functions, forming a closed C1 curve with bounded curvature and length. See Figure 5.
The number of such curves is 22m, where m � KL′

δ . We have from the proof of Proposition 15 that
this collection of functions is 2ε-separated as curves in the metric ρ.

Figure 5: Construction of closed curves for 2ε-separated set.

It remains to determine a suitable value for L′. Each function fi has length L′
√

1 + K2δ
4 . To-

gether, the two halves of the circle of radius 1/K add an additional 2π/K in length. To construct
a curve of length no more than L, L′ must satisfy:

2L′
√

1 + K2δ
4 + 2π

K ≤ L,

which gives 2L′ ≤ L− 2π
Kr

1+
K2δ

4

. Taking L′ =
L− 2π

Kr
1+

K2δ
4

, we have m � KL−2π
δ ∼ KL−2π

ε , as claimed.

Corollary 18. Hε(IL
K , ρ) � KL−2π

ε .

4.3 Entropy Theorem

Together, Corollaries 11, 16, and 18 prove the following theorem. Although we were not able to
prove it, we believe Theorem 19(b) should be Hε(IL

K , ρ) ∼ KL
ε .

Theorem 19.

(a) Hε(CL
K , ρ) ∼ KL

ε .

(b) Hε(IL
K , ρ) � 1

ε .

5 Variable Length Encoding: Non-compact Classes and Adap-
tive Codelengths

5.1 Minimum Description Length and Adaptive Coding

The ε-entropy gives the minimum number of bits required to represent elements in a compact
space with a fixed code length. To relax the compactness constraint, we will allow a variable code
length, thereby replacing the finite number of codewords of fixed length with a countable number of
codewords of varying length in an adaptive coding scheme.

We will construct an adaptive coding scheme for functions in Lemma 20, which will give rise to
two adaptive encodings for curves, one based on the boundary curve and the other on the medial
axis. We will apply the Rissanen’s MDL principle in Section 7 to determine which of those two
encodings is most efficient.
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5.1.1 Adaptive Coding for Lipschitz Functions

We carry out an adaptive coding scheme for Lipschitz functions, again motivated by Theorem 3.

Theorem 20. For every ε > 0, there exists a countable codebook Fε = {f1, f2, . . .}, depending only
on ε, with the following property. For every Lipschitz function f defined on [a, b] so that f(a) = 0
and f ′(x) is continuous a.e., there are constants C(f, δ) such that for all δ, there is a codeword
fn ∈ Fε such that ||f − fn||∞ ≤ ε and fn has description length:

L(fn) ≤
[∫

|f ′|+ δ

ε

]
+ C(f, δ).

Proof. Since f ′ is continuous a.e. and bounded, f ′ is Riemann integrable [7]. Therefore, for any δ,
there exists a step function g taking on rational values, with a finite number of jumps at rational
points {x′j}, so that |f ′| ≤ g and

∫
g ≤

∫
|f ′|+δ. This means that on each subinterval Ij = [xj , xj+1)

where g is constant, f is Lipschitz with constant g(xj). Denote the number of jumps by m. Note
that g ≡ C gives the result in Theorem 3.

Using g, we may determine a variably spaced finite number of points {xk} so that for any k,∫ xk+1

xk
g ≤ ε. In particular, on each subinterval Ij , select the points spaced ε

g(x′j)
apart. There will

be at most: [
g(x′j)|Ij |

ε

]
+ 1 =

[∫
Ij
g(x)

ε

]
+ 1

such points. Take {xk} to be the collection of {x′j} together with these equally spaced points. Note
that when g ≡ C, this gives xk+1 − xk = ε

C as in Theorem 3.
We now construct an approximation fn for f . We claim there exists a piecewise linear function

φn, with slope ±g(xk) on the interval Jk = [xk, xk+1), vanishing at a, so that f ⊂ K(φn), where
K(φn) is defined as in the proof to Theorem 3. On J1, take φn(x) = g(0)x. Certainly, since f is
Lipschitz with constant g(0) on I1, f ⊂ K(φn). Inductively, assume φn has been constructed so that
f ⊂ K(φn) for x ≤ xk. We wish to define φn for Ik so that f remains in K(φn). Since f is Lipschitz
with constant g(xk) on Ik and f ⊂ K(φn) for x ≤ xk, one of the following is true:

(a) f(xk+1) ∈ [φn(xk)− g(xk)(x− xk), φn(xk) + g(xk)(x− xk)] ⊂ [φn(xk)− ε, φn(xk) + ε],

(b) f(xk+1) ∈ [φn(xk)− g(xk)(x− xk)− 2ε, φn(xk) + g(xk)(x− xk)− 2ε]
⊂ [φn(xk)− 3ε, φn(xk)− ε].

If (a) is true, then defining φn to have positive slope on Ik gives f ⊂ K(φn). If (b) is true, then
defining φn to have negative slope on Ik gives the desired result. See Figure 6. And so we have
constructed a φn so that f ⊂ K(φn). Taking fn to be the center of the corridor K(φn), we have
||f − fn||∞ ≤ ε.

Figure 6: Possible range for functions in a particular corridor.

Encode f by encoding fn, or equivalently, φn. To do so requires describing g, which in turn
requires describing the collection of points {xk} as outlined above. We must also describe the
sequence of signs ± to assign to the slopes g(x′j) at each of the points {xk}. Since g has rational
jumps at rational values, encoding g requires a fixed and finite number of bits depending only on f
and δ, yielding the constant C(f, δ). Describing a sign requires a single bit. As this must be done
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at each of the {xk}, we see encoding the sequence of signs requires at most:

∑
j

([∫
Ij
g

ε

]
+ 1

)
+m ≤

[∫
[a,b]

g

ε

]
+ 2m

bits. Then, absorbing 2m into C(f, δ), the total number of bits required to describe fn satisfies:

L(fn) ≤
∫
g

ε
+ C(f, δ) ≤

∫
|f ′|+ δ

ε
+ C(f, δ),

as claimed.

5.2 Adaptive Code Lengths for Curves

In the compact setting, the leading term in the bit rate comes from approximating the tangent angle
function; correcting for location requires only lower order terms. The same argument applies in the
adaptive setting. Lemma 20 describes a method for adaptively encoding functions in a non-compact
space by adaptively approximating each function’s derivative, and we may use it to encode curves
by applying it to the associated tangent angle function. Doing so gives an encoding with leading
term for the bit rate of: ∫

|κγ | ds+ δ

ε
,

for some fixed δ.

6 Medial Axis

Before we describe our encoding scheme for the medial axis representation and return to the discus-
sion of efficient representation, we introduce the medial axis construction and derive some important
properties.

6.1 Medial axis properties

In 1970, Blum introduced an elegant description for closed planar regions that captures local sym-
metries, preserving geometric information about the region’s boundary in its own geometry. The
medial axis pair of a closed region in R2 consists of m(t), the closure of the locus of centers of
maximal bitangent circles contained within the region, and r(t), the function of associated radii.
The axis curve m is a subset of the symmetry set of the region, and can be thought of as the
region’s “skeleton,” where r gives the length of “ribs.” One of the appealing aspects of the me-
dial axis from a shape modeling perspective is that this skeletal structure allows for a region to be
decomposed into meaningful parts, allowing for parts-based comparisons between two shapes (c.f.
[8, 24, 20, 29, 23, 30]).

We will mostly consider medial axes of regions bounded by a single simple, closed, C2 curve. In
this setting, many beautiful results may be proved. We list these here; proofs may be found in [8].

6.1.1 Geometry of the medial axis

In general, m will consist of several branches with a degree of smoothness determined by the smooth-
ness of the boundary curve (c.f. Theorem 23), meeting at branch points. We will denote a branch
contained in m by m. First, we introduce some notation; see Figure 7.
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Figure 7: Notation and relationships for the medial axis.

Notation. Refer to Figure 7. The following notations are applicable locally, within a branch of the
medial curve for a region bounded by the closed curve γ. Let m(t) be a local parameterization of m.

• Denote the tangent vector to m(t) by Tm(t), which makes an angle θm(t) with the positive
horizontal axis. Denote the normal vector to m by Nm(t) and the curvature by κm.

• Following m(t) in the direction of its orientation, denote by γ+(t) the boundary point corre-
sponding to m(t) lying to the left of m and by γ−(t) the boundary point lying to the right.

• Parameterizing γ in the standard orientation, denote by T− the tangent vector to γ− with
orientation inherited from m(t), and by T+ the tangent vector to γ+ with opposite orientation
to the inherited one. Denote by θ± the angles between the tangent vectors, T±, and the positive
horizontal axis.

• With the standard orientation, denote by κ+ the curvature at points on γ+ and by κ− the
curvature at points on γ−.

• Denote the smaller angles between −T+ and Tm by α, and between −T+ and T− by β.

• Denote the smaller angle between Tm and −N+, the outward pointing normal to γ+, by φ,
and so φ = α+ π

2 .

• The symbols s, s+, s−, and v will always indicate the arclength parameter for γ, γ+, γ−, and
m, respectively.

• The symbol ’ will be reserved for derivatives with respect to an arclength parameter of m.

The first result shows that the information contained in the medial axis pair is equivalent to
that contained in the boundary curve, and gives explicit formulas for alternating between the two
representations.

Theorem 21.

(a) Given a smooth, arclength parameterized medial axis pair (m(v), r(v)) for a region with smooth
boundary, the pieces of the boundary curve corresponding to v are given by:

γ±(v) =
(
m+ rr′Tm ∓ r

√
1− r′2Nm

)
(v). (1)

(b) Given associated boundary points γ±(s±), the medial axis pair corresponding to s± is given by:

r(s±) = − (γ+ − γ−) · (N+ −N−)
(N+ −N−) · (N+ −N−)

,

m(s±) = γ±(s±) + r(s±)N+,

for γ± oriented to have inward pointing normals.

We next describe the relationships between the geometry of the boundary curve and the geometry
of the medial axis.

Theorem 22. For a smooth branch of the medial curve, the following relationships hold:
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1. r′ = sinα = − cosφ.

2. Tm = ±
√

1− r′2T± + r′N±.

3. Nm = −r′T± ±
√

1− r′2N±.

4. T± = ∓
√

1− r′2Tm + r′Nm = ∓ sinφTm + cosφNm.

5. N± = r′Tm ∓
√

1− r′2Nm = − cosφ∓ sinφNm.

6. κ± = ±κm

√
1−r′2−r′′

(1−r′2)±rκm

√
1−r′2−rr′′

.

7. ±κm = κ±
√

1−r′2

1−rκ±
+ r′′√

1−r′2
= ± 1

2 sin
(

θ+−θ−
2

)(
κ−

1−rκ−
− κ+

1−rκ+

)
.

8. α = β/2 (and so φ is also the angle between Tm and the outward pointing normal at γ−).

9. φ′ = − 1
2 sin

(
θ+−θ−

2

)(
κ−

1−rκ−
+ κ+

1−rκ+

)
.

With some work, these geometric relationships give rise to the following smoothness relationships:

Theorem 23. Let v and s be arclength parameters for m and γ, respectively.

(a) If (m(v), r(v)) are a Cp, p ≥ 2, interior portion of the medial axis pair for γ±(s) satisfying
r > 0, |r′| < 1 and |κm| < 1−r′2−rr′′

r(1−r′2)
, then γ±(s±) are also Cp.

(b) Conversely, if γ±(s±) are portions of a Cp curve γ, p ≥ 2, corresponding via the medial axis
so that:

1 + κ±
(γ+ − γ−)(̇N+ −N−)

(N+ −N−)(̇N+ −N−)
> 0,

then the associated interior portion of the medial axis is Cp.

Given an axis curve m, not every function defined on m can be a radius function. Theorem 24
gives constraints on r.

Theorem 24. The smooth pair (m, r) is locally the medial axis of a smooth boundary curve if and
only if

1. |r′| < 1

2. |κm| < 1−r′2−rr′′

r
√

1−r′2
.

Following a branch of a medial curve, the two boundary curves γ± are described simultaneously.
If each is parameterized by its own arclength, s±, quantities of interest are the relative velocities of
traversal of those boundary pieces to each other and of each boundary piece to the velocity of the
medial axis.

Theorem 25.

(a) Two boundary curves γ±(s±) correspond to each other via a medial point if and only if the
function s+(s−) satisfies the ODE:

ds−
ds+

=
2 cos2(β/2) + κ+(γ+ − γ−) ·N+

2 cos2(β/2)− κ−(γ+ − γ−) ·N−

with initial condition s−(s0+) = s0− for γ(s0−) and γ(s0+) corresponding via the medial axis.
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(b) The velocity of boundary points γ± corresponding to a medial axis point m(v) is given by:

ds±
dv

=
∓
√

1− r′2

1− rκ±
.

Corresponding boundary points must also fulfill a geometric condition:

Theorem 26. The two points γ± with tangent vectors T± are related by a bitangent circle, thereby
corresponding to the same symmetry set point, if and only if:

(γ+ − γ−) · (T+ −T−) = 0.

We end our review of geometric properties of the axis with results about how smooth pieces of a
medial curve can come together at a branch point. By a generic curve, we mean a curve for which
small perturbations do not alter the structure of m.

Theorem 27. For a region bounded by generic, smooth curves γ±, any point of the medial curve
corresponds to a medial circle with one of the following types of tangency:

1. a fourth order osculating circle, in which case the point is an endpoint of a medial curve where
the medial circle has fourth order contact with the boundary curve.

2. a bitangent circle, in which case the point is in the interior of a smooth part of the medial
curve.

3. a tri-tangent circle, in which case the point is a branch point of the medial curve where smooth
medial branches come together.

6.1.2 Constraints on the Boundary Curve

It is well-known that the boundary curve is not a stable representation of the medial axis pair, as
small perturbations in the boundary can cause drastic changes in the structure of m. The reverse,
however, is not true. The medial axis provides a very stable representation of the boundary curve,
as we demonstrate in the following two results. The first is a geometric argument bounding the
region in the plane where a boundary curve can go, given sufficiently well-sampled medial data. The
second is an analytic analogue of the geometric result.

Suppose we are given medial points mi = m(vi), with corresponding radii ri and boundary points
γ±i , i = 1, 2, where |v2 − v1| ≤ δ for δ < min(r1, r2). Denote by Ci the medial circles centered at
mi of radius ri. Since the arclength of the medial curve joining m1 and m2 is at most δ, δ < ri, we
have C1

⋂
C2 6= ∅.

Figure 8: Possible regions for R+ and R−, containing boundary points.

We wish to determine the regions in the plane R± within which the boundary curves γ±i (v) can
lie for v ∈ (v1, v2). We claim R+ (resp. R−) is the region outside C1

⋃
C2 but inside the circle C+

(resp. C−) passing through the points γ+
i (resp. γ−i ) as depicted in Figure 8. The construction of

these regions is described below.
First, note that possible locations for medial centers must lie within the solid ellipse defined by

d((x, y),m1) + d((x, y),m2) ≤ δ. In addition, the medial curve cannot cross the normal lines joining
mi to the γ±i ; otherwise, there would be a point p of the medial curve on the normal line with an
associated circle Cp of radius rp ≤ min d(p, γ±i ), thereby violating the property that medial circles
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lie entirely within the boundary curve. We may therefore restrict the location of medial centers to
lie between the normal lines. Denote this subset of the ellipse by E.

Now consider possible radii for each p ∈ E. The maximum possible radius at p, rp, will be
determined by the distance between p and the nearest boundary point, γp ∈ {γ±i }. This creates
a natural partition of E into four regions E±i consisting of those points at least as close to the
corresponding boundary point as to all other boundary points. Furthermore, the boundaries of
these regions will be given by the lines of equidistance between pairs of boundary points. Denote by
l± the lines defined by d((x, y), γ±1 ) = d((x, y), γ±2 ).

The line l+ enters E at a point p+, and l− enters E at a point p−. Set r± = d(p±, γ±i ), the
maximum radius possible at p±. We define C± to be the circles of radius r± centered at p±.

In order to prove the regions R± are maximal, we require the following lemma, proved in the
Appendix.

Lemma 28. Fix x0 ≥ 0 and c ≤ 0, and consider all circles passing through the origin whose centers
(a, b) satisfy:

1. d((a, b), (0, 0)) ≤ d((a, b), (x0, 0)),

2. 0 ≤ a, b ≤ c.

By construction, the radius associated to each center, ra,b =
√
a2 + b2. Define a function associated

to each circle, ga,b(x), whose graph is the part of the circle lying above the x-axis. Then gx0/2,c(x) ≥
ga,b(x) for x ∈ [0, x0/2].

Returning to the original problem, we show that for p ∈ E, the largest medial circle centered at
p is contained in the region bounded by C1, C2, C+ and C−.

Choose p ∈ E. WLOG, assume p ∈ E+
1 , and set γ+

1 = (0, 0), γ+
2 = (x0/2, 0), p+ = (x0/2, c),

which makes l+ correspond to the line x = x0/2. Note that E+
1 lies entirely in the valid region

for centers (a, b) in the lemma, and therefore p+ is the center of the circle corresponding to the
maximum g of the lemma. Therefore, C+ gives the arc of the highest circle above the line joining
γ+
1 and γ+

2 . The maximality of C+, together with the constraints on the maximum radii, {rp},
completes the proof of the following Theorem:

Theorem 29. Let m1 = m(v1), m2 = m(v2) for |v1 − v2| ≤ δ < min{r1, r2} be two points on a
medial branch parameterized by arclength, with radii ri, associated to boundary points, γ±i , i = 1, 2.
Define C+ to be the circle centered at p+ of radius r+ = |γ+

1 − p+| and C− to be the circle centered
at p− of radius r− = |γ−1 − p−|, where p± is the point of intersection of the line of equidistance
between γ±1 and γ±2 and the ellipse of points whose distances to m1 and m2 sum to δ. Define
R± = cl

(
C±

⋃(
C±1

⋃
C±2
)c)

. Then for v ∈ [v1, v2], γ+(v) ⊂ R+ and γ−(v) ⊂ R−.

Returning to the metric ρ, we present the analytic analogue of Theorem 29. Here R̄ is the
maximum value for r; its value depends on Ω.

Proposition 30. Suppose (mi(v), ri(v)), v ∈ [0, l], are C1 medial branches for γi, a boundary curve
with tangent angle functions θi, and inward-pointing normal vectors Ni, i = 1, 2. Then:

ρ(γ1, γ2) ≤ sup
v

1
λ

(
|m1 −m2|+ |r1 − r2|+ R̄ (|θm1 − θm2 |+ |φ1 − φ2|)

)
+ |θm1 − θm2 |+ |φ1 − φ2|.
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Proof.

ρ(γ1, γ2) ≤ sup
v

1
λ |γ1(v)− γ2(v)|+ |θ1(v)− θ2(v)|

= sup
v

1
λ (|m1 + r1Nγ1 −m2 − r2Nγ2 |) + |θm1 + φ1 − θm2 − φ2|

≤ sup
v

1
λ (|m1 −m2|+ |r1Nγ1 − r2Nγ2 |) + |θm1 − θm2 |+ |φ1 − φ2|

≤ sup
v

1
λ

(
|m1 −m2|+ |r1 − r2|+ R̄ |Nγ1 −Nγ2 |

)
+ (|θm1 − θm2 |+ |φ1 − φ2|)

≤ sup
v

1
λ

(
|m1 −m2|+ |r1 − r2|+ R̄ (|θm1 − θm2 |+ |φ1 − φ2|)

)
+ |θm1 − θm2 |+ |φ1 − φ2|

6.1.3 Counting Branches

For the medial axis to be acceptable as a shape descriptor, we need to make sure that reasonably
simple curves produce axes with a reasonable number of branches.

Lemma 31. Let Ω be a bounded, simply connected region of the plane, and (m, r) the medial axis
pair for a generic, twice-differentiable, simple closed curve γ ⊂ Ω. Then if γ has N local maxima of
curvature, the number of branches in m is at most M = 2N − 3.

Proof. By Theorem 27, the medial axis of a generic curve consists of three types of points: points
where the medial circle osculates at the endpoint of an axis branch, tritangent points where three
medial branches come together, and bitangent points in the interior of a medial branch.

If the medial circle osculates at the endpoint of a branch, γ must have a local maximum of
curvature at the point of osculation. On the other hand, every local maximum of curvature does not
necessarily correspond to an osculating medial circle. Therefore, the number of endpoint branches
is at most N .

Because γ is a simple, closed, C2 curve, m is connected. As the deformation retract of the
boundary of a contractible space, it is also contractible. Therefore, the graph of m is a tree, where
edges correspond to bitangent circles and vertices correspond to tritangent circles. Since vertices
will only occur at tritangent points, a simple counting argument gives that the number of vertices
for the medial graph with k endpoints is k − 2, which gives the number of edges as 2k − 3. Hence
the number of branches M in m satisfies M ≤ 2N − 3.

7 Adaptive Coding and Optimal Representation

At last we return to the question of whether the region-based medial axis model or the boundary
curve is a more efficient representation for a particular shape. In the compact setting, ε-entropy
provides a benchmark for optimal description length, and so efficiency of fixed length encodings
for elements of compact spaces can be decisively determined by comparison to the ε-entropy of the
space, yielding the boundary curve as the clear winner. No such benchmark exists in the non-compact
setting, but we can make reasonable comparisons.

To compare efficiency of adaptive encodings, we turn to Rissanen’s Minimum Description Length
(MDL) principle [18]. Thanks to Shannon [22], it is well known that given a probability distribution
P on a space X, the best compression scheme for elements x ∈ X will assign the shortest code lengths
to the most probable elements. Code lengths, LP , are therefore completely defined by the probability
distribution: LP (x) = − log2 P (x). Conversely, every coding scheme C gives rise to a sub-probability
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distribution on X, where probabilities are defined by the code lengths: PC(x) = 2−L(x) . The better
the compression scheme, the closer to a true probability distribution PC will be.

Behind this formulation is the idea that the best compression scheme will exploit regularities in
the space, thereby resulting in the smallest expected code length. This gives a method for evaluating
coding schemes with or without a probabilistic framework: the encoding resulting in the shortest
code length for the largest proportion of the space is the one best capturing the salient aspects of
the space.

While the boundary curve gives an optimal fixed-length bit rate, moving to a variable-length
adaptive code allows the medial axis to shine. We derive a precise characterization of curves for
which the medial axis gives a shorter adaptive codelength.

In both fixed- and adaptive-length encoding, the high-order term in the bit length comes from
encoding the tangent angle function. This observation allows us to exploit the way in which the
medial axis encodes the geometry of the boundary curve. In particular, since θ± = θm±φ+π/2, to
construct an ε-approximation to θγ requires approximations to θm and φ with error summing to ε.
For 0 < η < ε, if we η-encode θm and (ε − η)-encode φ, we obtain an encoding for θγ with leading
bit length term: ∫

|θγ | dv + δ1
η

+
∫
|φ| dv + δ2
ε− η

.

Note that this also explains why the medial axis does poorly in the fixed length setting: to construct
a uniform covering with ε-balls, both θm and φ must be accurate within ε/2 to guarantee θγ has
ε-accuracy. For most curves, such a high level of accuracy in both angle functions is overkill.

To relate the number of bits in this medial axis encoding to the number of bits in a boundary
encoding, we require the following lemma:

Lemma 32. Let m be a branch of a medial curve of length l for γ ∈ E. Let s be an arclength
parameter for γ so that γ(s)|s∈D = γ+ ∪ γ−. Then:∫

D

|κ| ds =
∫

[0,l]

|κm|+ |φ′|+ ||κm| − |φ′|| dv.

Proof. Recall from Theorem 22 that within a branch of a medial curve, N± = − cosφTm∓sinφNm,
and so:

dN±
dv = φ′ sinφTm − κm cosφNm ∓ φ′ cosφNm ± sinφκmTm

= (−κm − φ) (∓ sinφTm) + (−κm − φ) cosφNm

= (κm ∓ φ′)T±.

Therefore, ∫
D

|κγ | ds =
∫

[0,l]

|κ+| ds+
∫

[0,l]

|κ−| ds−

=
∫
|dN+

ds+
||ds+

dv | dv +
∫
|dN−

ds−
||ds−

dv | dv

=
∫
|dN+

dv || dv
ds+

||ds+
dv | dv +

∫
|dN−

dv || dv
ds−

||ds−
dv | dv

=
∫
|κm − φ′| dv +

∫
|κm + φ′| dv

=
∫

[0,l]

|κm|+ |φ′|+ ||κm| − |φ′|| dv.
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Selecting the optimal value for the error tolerance η within a fixed region of a branch of m
depends on the behavior of the medial axis there. The optimal value for η will determine the bit
length of a medial encoding for that region which will in turn determine whether or not the medial
axis outperforms the boundary curve there. In other words, we wish to minimize the expression:∫

[0,l]
|κm| dv
η

+

∫
[0,l]

|φ′| dv
ε− η

with respect to η for 0 ≤ η ≤ ε. Note that since the δi can be made arbitrarily small, we have dropped
reference for ease of computation. Set a =

∫
[0,l]

|κm| dv and b =
∫
[0,l]

|φ′| dv The minimization then

gives η = ε/2 for a = b and η = ε
b−a

(√
ab− a

)
for a 6= b. We will now adaptively select regions of

the medial curve and associated local optimal values for η to give the best bit rate for the medial
axis within a particular branch.

Theorem 33. Let m be an arclength parameterized medial branch defined on a closed interval I
for γ ∈ E with corresponding boundary segments γ±. Then encoding γ± via the medial axis is more
efficient than directly adaptively encoding θγ whenever I can be partitioned into a finite number of
subintervals Ij where for each j:

supIj
|κm|

supIj
|φ′|

> 2 +
√

3 or

supIj
|φ′|

supIj
|κm|

> 2 +
√

3.

Proof. Following the proof of Theorem 20, select gκ and δ1 satisfying |κm| ≤ gκ and
∫
gκ ≤

∫
|κm|+

δ1, and select gφ and δ2 satisfying |φ′| ≤ gφ and
∫
gφ ≤

∫
|φ′|+ δ2. Construct an encoding scheme as

follows. Partition I, the domain of m, into maximal subdomains {Ii} on which both gκ and gφ are
constant. Since both functions are piecewise constant with a finite number of jumps, the number of
such subdomains will be finite. On each subdomain, compute the minimizing ηi. Then the medial
axis will be more efficient when:

gκ + gφ + 2
√
gκgφ′ < 2 max{gκ, gφ′}.

For gκ ≥ gφ, this gives:
gκ

gφ′
> 2 +

√
3,

otherwise take the reciprocal of the left side of the inequality.
Recalling the construction of the functions gκ and gφ, the result is proved.

An interpretation of Theorem 33 is that the medial axis decouples the curvature of the boundary
curve into the portion coming from the curvature of the local axis of symmetry, i.e., the medial
curve, and the portion coming from variation around that axis. When the boundary curvature
comes primarily from one source or the other, the medial axis is more efficient. When the curvature
of the boundary relies heavily on both sources (the most extreme case of which is when a = b), the
boundary curve is more efficient.

This result partitions shapes silhouettes into two classes: those that are best modeled by the
boundary (edge-based model) and those that are best modeled by a skeleton (region-based model).
Figure 9 gives an example of each, with the leading term in the associated bit rates indicated for
ε = 0.01. A forthcoming paper will apply this partitioning criterion to large databases of shape
contours.
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Figure 9: Two shapes with bit rates for medial axis and boundary encodings. The fish is better
modeled by the medial axis while the rectangle prefers the boundary model.
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A Proof of Lemma 8

Proof. Construct a cover by taking a collection of curves with tangent angle equal to θ̃ and with jump
discontinuities in suitable directions at suitable intervals. To see which jumps and which intervals,
take γ ∈ Γδ, and let γ′ be a curve satisfying |γ(0) − γ′(0)| ≤ δξ

2 , θ′(s) = θ̃(s), so that for some ∆
and n, γ′ jumps by δξ

4 + δ∆
2 in one of n specified directions every ∆ in arclength. See Figure 10. We

must determine values for ∆ and n so that ρ(γ, γ′) ≤ δ+ δξ

λ . By hypothesis, |θ(s)− θ′(s)| ≤ δ, so it
remains to show |γ(s)− γ′(s)| ≤ δξ.

Figure 10: Correction of approximation curve γ′.

Assume |γ(ak)− γ̃(a− k)| ≤ δξ

2 for ak = k∆, k <
[

L
∆

]
. Then:

|γ(ak + ∆)− γ′(ak + ∆)| ≤
∫ ak+∆

ak

2
∣∣∣∣sin(θ − θ′

2

)∣∣∣∣ dt+
δξ

2

≤ δ∆ + δξ

2 .

To ensure |γ(s)−γ′(s)| ≤ δξ for s ∈ [ak, ak+∆], ∆ ≤ δξ−1

2 . If, for every choice of k, |γ(ak)−γ′(ak)| ≤
δξ

2 , then |γ(s)− γ′(s)| ≤ δξ for any s. We set about constructing such a γ′.

Figure 11: Distance after correction.

Suppose at the point s = ak + ∆, γ′ jumps to the point O in Figure 11. Take the circle of radius
r = δ∆ + δξ

2 centered at P = lims→ak+∆ γ
′(s). From P emerge radial lines in n directions, for

some n, spaced so that each line makes an angle of 2π
n with the lines on either side of it. On the

line closest to γ(ak + ∆), γ′ jumps out half the length of the spoke to O, which is at a distance of
r
2 = δξ

4 + δ∆
2 from P . The maximum for |γ(ak +∆)−γ′(ak +∆)| occurs when γ(ak +∆) corresponds

to the point Q on the radial line making an angle of π
2n with the radial line containing O, giving a

maximum value of
√

5
4 − cos

(
π
n

) (
δ∆ + δξ

2

)
. Choosing n = 3 and ∆ = δξ−1

2 produces a γ′ so that

ρ(γ, γ′) ≤ δ + δξ

2 as desired.

Now construct the cover. For ∆ = γξ−1

2 and n = 3 as above, divide the interval [0, L] into subin-
tervals of width ∆ (except perhaps the last subinterval which might be shorter), giving subintervals
Jk = [ak, ak+1], k = 1, ... ,m, where m = [ L

∆ ]. We will construct piecewise C1 curves that are
allowed a jump discontinuity at each s = ak+1 for k < m. Within each Jk, these curves will have
tangent angle functions equal to θ̃, and at s = ak+1 each curve will jump a distance of δξ

4 + δ∆
2 in

one of n directions, for some n. In other words, each of these curves satisfies the same properties as
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γ′, and we therefore take n = 3 and ∆ = δξ−1

2 . We demonstrate that these are suitable curves for
the centers of the covering.

Define dik
= (cosψik

, sinψik
), where for each k = 1, ... ,m, ik ∈ {1, ... , 3}, and ψik

is an angle
so that θ̃(ak) 6= ψik

for any k, and |ψik
− ψi′k

| = 2π/3 for i′k = ik ± 1. Then for (i) = {i1, ... , im},
consider the collection of curves γ̃(i)(s) = γ̃(s) +

∑k
j=0

δξ

2 dij
for s ∈ [ak, ak+1).

Associate to each γ̃(i) a curve γ ∈ Γδ by sequentially determining at each ak the dik
that will

minimize |γ̃(i)(ak)− γ(ak)|. By the above argument for γ′, for each (i), the set of associated curves
is at most δ + δξ

λ away from γ̃(i) in the metric ρ, and therefore defines a ball of diameter no more
than 2(δ + δξ

λ ).

The number of curves γ̃(i) is 2log 3
h

2L
δξ−1

i
: for each k, γ̃(i) can jump in 3 possible directions, and

k ≤
[

2L
δξ−1

]
.

B Proof of Lemma 9

Proof. For γ ∈ Γ′δ of length l, taking γ′ as in the proof of Lemma 8, of length l̃:

|γ′(ak + ∆)− γ(ak + ∆)| =

∣∣∣∣∣
∫ ak+∆

ak

〈
cos θ̃, sin θ̃

〉
− l

l̃
〈cos θ, sin θ〉 dt

∣∣∣∣∣+ δξ

2

≤

∣∣∣∣∣
∫ ak+∆

ak

〈
cos θ̃, sin θ̃

〉
− 4l̃ − δξ

4l̃
〈cos θ, sin θ〉 dt

∣∣∣∣∣+ δξ

2

≤
∫ ak+∆

ak

∣∣∣〈cos θ̃, sin θ̃
〉
− 〈cos θ, sin θ〉

∣∣∣ dt+
δξ

4l̃

∣∣∣∣∣
∫ a+∆

a

〈cos θ, sin θ〉 dt

∣∣∣∣∣
+
δξ

2

≤
∫ ak+∆

ak

∣∣∣∣∣2 sin

(
θ̃(t)− θ(t)

2

)∣∣∣∣∣ dt+
δξ

4l̃
∆ +

δξ

2

≤ (δ +
δξ

4l̃
)∆ +

δξ

2

≤ δ∆ +
δξ

4
+
δξ

2
.

Adjusting the argument from Lemma 8, we may take n = 3 as before, and set ∆ = δξ−1

4 , giving

a covering with at most 2log 3
h

4L
δξ−1

i
as claimed.

C Proof of Lemma 12

Proof. Let {εi}n
1 be a collection of independent random variables taking on the values ±1 with equal

probability. Then a symmetric n-step random walk g has the property that g(n) =
∑n

1 εi and a(n) =∑n
1 (n− i+ 1

2 )εi, which leads to a simple computation for Σ: Var(g(n)) = n, Var(a(n)) = n3

3 − n
12 ,
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and Cov(g(n), a(n)) = n2

2 . This gives:

z =
(4n2 − 1)g(n)2 − 12ng(n)a(n) + 12a2

n3 − n
,

E(z) = 2.

Then by the Markov inequality, P (z ≥ α) ≤ E(z)
α = 2

α , which gives P (z ≤ α) ≥ 1− 2/α. Taking
α = 3, we have P (z ≤ α) ≥ 1/3, which gives the number of random walks g resulting in z ≤ 3 to be
at least 1

32n.
If z ≤ 3, then the point (g(n), a(n)) is inside the ellipse

(4n2 − 1)g(n)2 − 12ng(n)a(n) + 12a2

n3 − n
= 3,

which gives |g(n)| ≤ 3
√
n and |a(n)| ≤

√
3

2

√
4n3 − n as desired. This may be seen by finding where

the tangent lines to the ellipse are horizontal and vertical.

D Proof of Lemma 13

Proof. WLOG, assume g′(n′) ≥ 0 and a(n′) ≥ 0. Clearly, we may extend g′ to return to the origin
in g′(n′) steps, which is bounded above by 3

√
n. This correction adds at most 9n

2 in positive area,
giving

a(n′ + g′(n′)) ≤ 9n′

2
+
√

3
2

√
4n′3 − n′.

We will correct the area by adding on stepped pieces beginning and ending on the horizontal axis,
forming triangles with base of width bi, height bi/2, and area b2i

4 , bi ∈ Z+. This gives 4a(n′+g(n′)) =∑
i b

2
i , obtainable in

∑
i bi steps for some i. Since any integer may be expressed as a sum of four

squares [21]: 4a(n′ + g(n′)) = b21 + b22 + b23 + b24, where each bi ≤
[√

4a(n′ + g(n′))
]
. Therefore, we

find the number of steps required to recover the area is:

4∑
i=1

bi ≤ 4 · 2
[√

a(n′ + g(n′)
]

≤ 8

√
9n′

2
+
√

3
2

√
4n′3 − n′.

This means that obtaining g such that g(n) = 0 and
∫
g = 0 requires at most

√
3

2

√
n′ +

8
√

9n′

2 +
√

3
2

√
4n′3 − n′ steps which completes the proof of this lemma.

E Proof of Lemma 28

Proof. Choose any center (a, b) satisfying the hypotheses of the lemma. If a 6= x0/2, then the
circle centered at (a, b) will be completely contained in the circle centered at (x0/2, bx0/2a), the
point of intersection of x = x0/2 and the line through the origin and (a, b). Therefore ga,b(x) <
gx0/2,bx0/2a(x), and we need only consider points on the line x = x0/2 for b ≤ c, resulting in circles
containing the point (x0, 0) as well as the origin. See Figure 12.
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Figure 12: Maximal circle.

Define θa,b(x) to be the angle between the x-axis and the tangent vector to ga,b(x). Then
b1 ≤ b2 ⇒ θa,b1(x) ≤ θa,b2(x), and so θx0/2,b(x) ≤ θx0/2,c(x) for x < x0

2 . This means dgx0/2,b

dx (x) ≤
dgx0/2,c

dx (x), which, together with 0 = gx0/2,c(0) = gx0/2,b(x), gives gx0/2,c(0) ≤ gx0/2,b(x) for every x
in their domain.
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