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Abstract. Plateau’s problem is not a single conjecture or theorem, but rather an abstract frame-

work, encompassing a number of different problems in several related areas of mathematics. In its

most general form, Plateau’s problem is to find an element of a given collection C of “surfaces”
specified by some boundary constraint, which minimizes, or is a critical point of, a given “area”

function F : C Ñ R. In addition, one should also show that any such element satisfies some sort

of regularity, that it be a sufficiently smooth manifold away from a well-behaved singular set. The
choices apparent in making this question precise lead to a great many different versions of the

problem. Plateau’s problem has generated a large number of papers, inspired new fields of mathe-
matics, and given rise to techniques which have proved useful in applications further afield. In this

review we discuss a few highlights from the past hundred years, with special attention to papers of

Federer, Fleming, Reifenberg and Almgren from the 1960’s, and works by several groups, including
ourselves, who have made significant progress on different aspects of the problem in recent years.

A number of open problems are presented.

1. Introduction

Plateau’s problem has intrigued mathematicians and scientists alike for over two hundred years. It
remains one of the most accessible problems in mathematics, yet retains a subtle difficulty in its
formulation. Many different versions of Plateau’s problem have been solved, but even today there
are still important questions left unanswered, and deep mysteries about the problem still remain.

Figure 1. Three surfaces meeting at a triple junction singularity
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(a) A wire-
frame as a

boundary

(b) A non-closed boundary

Figure 2. Non-standard boundaries

Plateau’s problem was first posed by Lagrange, who in 1760 derived the minimal surface equation
and asked if one could find a surface of minimal area with a prescribed boundary. The problem
was later named after Joseph Plateau [Pla73] who undertook a physical study of soap films and
characterized their properties, most notably their singularities. It was actually Lebesgue who coined
the term “Plateau’s problem,” the crux of which was to describe these soap films in mathematical
terms. These objects do not behave like classical surfaces such as embedded, or even immersed
manifolds with branch points. Three sheets can come together along a line and form what is known
as a triple junctions (Figure 1.) Soap films can span wires that are not cycles (Figure 2.) Some films
are local area minimizers, yet can retract onto their boundaries (Figure 3.)

The long journey towards a full understanding these phenomena began with a much simpler question
about the existence of a function with prescribed values on the boundary of a domain Ω Ă R2, such
that the graph of the function on the interior of Ω is a minimal surface. This problem was studied
by Weierstass and Riemann and evolved into the classical theory of minimal surfaces. The next step
up in generality came with the study of surfaces defined as images of disks. Jesse Douglas won the
first Fields Medal for his solution, which proved the existence of a minimally immersed disk in R3

with a prescribed contour boundary. Many others continued on with striking results of existence and
regularity along the way, and the Douglas-Plateau problem for surfaces with higher (non-infinite)
genus in arbitrary dimension and codimension was finally solved by Jost in 1985.

However, Fleming demonstrated the existence of a contour boundary which bounds a minimal surface
of infinite genus (Figure 4.) In 1960, Federer and Fleming introduced objects known as integral
currents which could model these somewhat pathological surfaces. Their novel approach won them
the Steele prize and helped launch the modern study of geometric measure theory. They proved the
existence of an integral current with a given boundary which minimizes mass, a quantity which can
be thought of as area weighted by an integer multiplicity. It later became known that in low enough
dimension, their minimizing current corresponded to an embedded minimal submanifold.

At the same time, Reifenberg thought of a completely different approach. Building on results of
Besicovitch and aided by Adams, he defined what it meant for a surface to span a bounding set
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(a) A soap film which retracts onto its boundary

(b) The boundary wire

Figure 3. The Adams surface (A) retracts onto its boundary (B). The left portion
of (A) is a triple Möbius band (a “Y” cross an interval, glued along the ends with a
1{3 twist, see also Figure 9b) and the right portion is a classical Möbius band. They
are joined by a bridge, so that the boundary is a single Jordan curve.

A using Čech homology. Using his theory, he proved the existence of a surface with minimal area
amongst those surfaces which can be written as a nested union of manifolds whose boundaries
converge to the contour. These surfaces include non-orientable surfaces, as well as the example of
Fleming, amongst others. His work is considered to be a masterpiece and deeply influenced several
mathematicians, including Morrey, Almgren, Fomenko, as well as ourselves.

Almgren proposed three approaches to Plateau’s problem. The first used varifolds [Alm65,Alm66a],
which Young [You42a, You42b] had discovered but called “generalized surfaces.” Integral varifolds
have a compactness theorem [All72] which can be used to prove the existence of a stationary varifold
with smallest area. Integral varifolds model just about any imaginable minimal surface, including
the example of Adams (Figure 3.) However, Almgren did not prove that this smallest stationary
varifold was the smallest among a class of surfaces which also included non-stationary varifolds.

Almgren’s second approach [Alm68] was an attempt to generalize Reifenberg’s results to elliptic
integrands. To read his paper requires expertise in methods of geometric measure theory, varifolds,
integral currents, and flat chains, for it blends them all. It has some gaps, one of which seems serious
(see [HP16a].)

Almgren’s third and final approach [Alm76] was to define a new class of surfaces which later became
known as quasiminimal sets, which, roughly speaking, have a controllable increase of area under
small deformations. Although he was unable to prove an existence theorem of an area minimizer in
this category, his regularity results are of major importance.
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(a) A minimal surface with infinite genus

(b) The boundary wire can be made smooth

except at a single point

Figure 4. Fleming’s example of a minimal surface with infinite genus

The authors have recently announced the first solution to the full elliptic Plateau problem [HP16a].
Our proof of existence of minimizers builds upon classical measure theory, and techniques of Reifen-
berg [Rei60], Federer and Fleming [FF60]. Our proof of regularity relies upon Almgren [Alm76],
although Reifenberg [Rei64a,Rei64b] is closely related. Spanning sets can be defined using homology,
cohomology or homotopy. An axiomatic approach without requiring any definition of a spanning
set is also provided. Our results carry over to ambient spaces of Lipschitz neighborhood retracts,
including manifolds with boundaries and manifolds with singularities.

In the last few years there has been a flurry of other activity in Plateau’s problem and in related fields.
Papers have recently appeared on sliding boundaries, where the soap film’s interface within a larger
boundary is permitted to move freely, on flexible boundaries, where the boundary itself is permitted
to move subject to forces created by the spanning soap film, and on axiomatic theory, ellipticity,
spanning conditions, and classical minimal surface theory. Indeed, very recently, a beautiful and
central theorem in classical minimal surfaces was proved by Meeks and Rosenberg, namely that every
simply connected, properly embedded minimal surface in R3 must be either a plane or a helicoid
(Figure 5.)
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Figure 5. A piece of the helicoid, which extends to infinity in all directions

There are still many major questions left unanswered in Plateau’s problem, indeed the list seems
to be growing, not shrinking. We have enumerated several of our favorites at the end of this paper,
some of which are newly posed.

Disclaimer. Before diving in, the reader should be aware that the following exposition is far from
complete and will often be imprecise. We hope that it will be useful to give non-specialists some
idea of the history of Plateau’s problem, a few lines of current theoretical development, and some
open problems, both enduring and emerging. We have endeavored to give a broad overview of
many different aspects of the problem, and in doing so, have, by necessity, left out many important
contributions by numerous mathematicians. If we have neglected to mention your favorite result, it
was not due to malice, but rather due to the constraints of writing this article. If we have incorrectly
stated your favorite result, know that we are experts in only a small portion of the Plateau problem,
and would welcome any corrections you might provide. Lastly, the authors would like to thank
Emanuele Paolini1, Ken Brakke2, and Claire-Audrey Bayan3 for the use of their soap-film figures.

2. Classical Minimal Surfaces

2.1. The Minimal Surface Equation. Let Σ be a surface in R3. We say that Σ is a minimal
surface if every point in Σ has an ε-neighborhood U which has least area among all surfaces S Ă R3

with boundary BU . This condition is equivalent to Σ having vanishing mean curvature, and to the
condition that B

BtAreapΣtqtt“0“ 0 for all compactly supported variations Σt of Σ. These are the two
(and higher) dimensional analogs of geodesics, but one must be careful in this comparison: even in
Rn, a minimal surface with a given boundary may not have smallest area amongst all surfaces with
that boundary. For example, consider two horizontal disks in R3 separated vertically by a small

1Figures 2b, 3-7, 9
2Figure 11
3Figure 8
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(a) Two disks (b) Catenoid

Figure 6. Minimal surfaces with the same boundary

amount. Their union forms a minimal surface, but the cylinder has smaller area, and the catenoid,
smaller still.

A special kind of minimal surface Σ is one which occurs as a graph:

Suppose Ω is a bounded open set in R2 with locally Lipschitz boundary BΩ, and suppose g : BΩ Ñ R
is continuous. Let F denote the set of continuous extensions of g to Ω which are continuously
differentiable in Ω and whose derivative is integrable. Let Apfq denote the surface area of the graph
of such a function f and suppose f P F solves Plateau’s problem for this setup. That is, f satisfies

(1) Apfq ď Aphq for all h P F .

Then,

(2) div

˜

∇pfq
p1` |∇f |2q1{2

¸

“ 0.

This differential equation is called the minimal surface equation. It is the Euler-Lagrange equa-
tion for the area functional.

thm 2.1.1. A function f P F satisfies (1) if and only if f satisfies the minimal surface equation
(2).

Such a function f is unique, and is in fact analytic on Ω [Hop32].

Suppose now the domain Ω is a disk D of radius r. This produces a unique minimal surface for
each continuous function g on S1, and thus there are uncountably many minimal surfaces that are
graphs over disks of radius r ă 8. However, if r “ 8, the situation simplifies dramatically:

thm 2.1.2. (Bernstein [Ber17]) Any solution of the minimal surface equation (2) which is defined
on all R2 must be linear.
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Bernstein conjectured that this was also the case in higher dimension. Indeed this is the case up to
dimension seven:

thm 2.1.3. (de Giorgi [dG65], Almgren [Alm66b]) The Bernstein conjecture holds for minimal
graphs Γ “ tpx, fpxqq P Rn`1 : x P Rnu for n ď 4.

thm 2.1.4. (Simons [Sim68]) The Bernstein Conjecture holds for minimal graphs when n ď 7.

2.2. Recent Developments. In the classical theory, non-compact minimal surfaces might not be
graphs and might not have a boundary. An example in R3 is the helicoid (Figure (5)). A long
outstanding question posed by Osserman was the following generalization of Bernstein’s Conjecture:
The plane and the helicoid are the only properly embedded, simply-connected, minimal surfaces in
R3.

Osserman’s conjecture has recently been solved after many years of effort by Meeks and Rosenberg
[MR05] who built on the work of Colding and Minicozzi [CI08], [CI04] as well as a number of other
mathematicians (see [MP11] for a detailed discussion and a more complete list of citations.)

Combining this with work of Collin [Col97], López and Ros [LR91], Meeks, Pérez and Ros [MPR15]
give the following classification theorem:

thm 2.2.1. Up to scaling and rigid motion, any connected, properly embedded, minimal surface
in R3 is a plane, a helicoid, a catenoid or one of the Riemann minimal examples. In particular,
for every such surface there exists a foliation of R3 by parallel planes, each of which intersects the
surface transversely in a connected curve which is a circle or a line.

This beautiful theorem is only just the beginning of what looks to be a new era in classical minimal
surface theory. A few particularly intriguing open problems are listed in §7 and can be found as
part of a larger list in [MP11].

3. The Douglas-Plateau Problem: Immersions of Disks and Surfaces of Higher
Genus

The Plateau problem, in its original formulation, was to find a minimal immersed disk whose bound-
ary was a given Jordan curve in Rn. For any immersed disk, coordinates on the disk D can be chosen
so that the immersion is conformal, in which case minimality is equivalent to the immersion being
harmonic.

Independently, Jesse Douglas [Dou31] and Tibor Radó [Rad30] proved the existence of such a surface,
with (possibly) isolated singularities:

thm 3.0.1. If C is a Jordan curve in Rn, there exists a continuous map ι : D Ñ Rn which is
conformal and harmonic away from a set of isolated singularities (i.e. branch points,) such that
ιtBD parameterizes C.

The solutions produced by Douglas and Radó also had minimal area in the class of branched immer-
sions. However, Douglas could prove slightly more than Radó, principally his theorem allowed for
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(a) An immersed disk spanning the

boundary of the Möbius band

(b) A Möbius band

Figure 7. A non-orientable surface with smaller area than any immersed disk with
the same boundary

certain pathological boundaries C which could only be spanned by disks of infinite area4. In addition,
Douglas’s methods signaled a significant and promising departure from the classical techniques, and
for these reasons he was awarded the first Fields medal in 1936.

Osserman proved [Oss70] that if n “ 3, then branch points did not exist in such minimal disks.
Thus,

thm 3.0.2. If C is a smooth Jordan curve in R3, there exists a (conformal, harmonic) immersion
ι : D Ñ R3 such that ιtBD parameterizes C, whose area is minimal among all immersed disks whose
boundaries parameterize C.

However, there still could be immersed surfaces with boundary C whose area is strictly less than
those of the solutions produced above. Consider a thin Möbius band. Its area is less than that
of any immersed disk spanning the boundary curve (Figure 7.) Higher genus surfaces could also
have less area. Douglas had made attempts to generalize his techniques to account for possibly
non-orientable surfaces and those of higher genus, but the consensus seems to be that his arguments
were incomplete [GM08]. It took until the 1980s for a complete solution to the higher genus problem
to appear in a paper by Jost [Jos85] (see [Ber93] for the non-orientable case,) who built upon
ideas of Schoen-Yau [SY79] and Sacks-Uhlenbeck [US81]. Tomi-Tromba [TT88] soon after offered a
different solution to the higher genus problem based on a development of Teichmüller theory from
the viewpoint of differential geometry.

Although not a mathematical shortcoming, self-intersections in which two sheets intersect transver-
sally can easily show up in Douglas’s and others’ immersed solutions. Such solutions are not physi-
cally realistic as soap-films, since transverse intersections resolve into pairs of triple junctions (Figure

4Douglas was well known for his displeasure at having to share credit with Radó for Theorem 3.0.1. When teaching

subsequent geometry courses, he eschewed those books which, in covering the theorem, contained the attribution
“Douglas-Radó.” Unfortunately, as the years went on, he was forced to use increasingly antiquated texts, since
virtually no book published after the 1930s failed to give this (correct) attribution (See [Ste92]. The second author
has also heard a similar story from Martin Bendersky, who was a student in one of Douglas’s courses at City College.)
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Figure 8. The transverse intersection of two sheets can be replaced with a pair of
triple junctions with smaller area. These singularities do not, however, show up
in the mass minimization problem (see §4.2,) as the horizontal portion of the right
hand figure would require higher mass to cancel out any contribution of the triple
junction to the boundary.

8) with smaller total area when one is allowed to consider surfaces more general than immersed man-
ifolds. These generalized surfaces with triple junctions became important in the 1960s in the work
of Reifenberg [Rei60], Almgren [Alm68] and Taylor [Tay76], who studied soap-film regularity and
classified the singularities for these general size-minimizing surfaces.

4. Orientable Generalized Surfaces

Fleming’s example (Figure 4) shows that one must consider all topological types to find a true mini-
mizer for an orientable version of Plateau’s problem. The curve in the figure is an unknotted simple
closed curve and is smoothly embedded except at one point. It bounds the shaded surface which
is orientable and clearly area minimizing. This shows that one should not insist that competitors
have finite topological type when looking for absolute area minimizers. The proof of the existence
of an orientable surface minimizing the area among all possible surfaces without restriction on their
topological type requires other techniques, namely the results of Reifenberg [Rei60] and the integral
currents of Federer and Fleming [FF60].

4.1. Hausdorff Measure. Readers will recall that for any E Ă Rn, and any non-negative real
number k, the k-dimensional Hausdorff measure of E is

HkpEq “ lim
δÑ0

Hk
δ pEq

where

Hk
δ pEq “ αk inf

#

ÿ

iPI

diampUiq
k : E Ă YiPIUi

+

,

αk is a normalizing constant, and the infimum is taken over all coverings of E by a collection tUiuiPI
of sets with diampUiq ă δ. The normalizing constant αk is chosen so that when k is an integer, the
k-dimensional Hausdorff measure of the unit cube in Rk is one.
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Note that Hk
δ pEq is monotone decreasing in δ, so the limit limδÑ0 H

k
δ pEq exists but may be infinite.

Hk is a Borel regular outer measure and coincides with Lebesgue measure when E is a k-dimensional
submanifold.

The Hausdorff dimension of E is the infimum over all k ě 0 such that HkpEq “ 0.

4.2. Integral Currents and Mass Minimization. A k-dimensional current T on an n-
dimensional smooth manifold M is a linear functional on the space of compactly supported smooth
k-forms DkpMq, continuous in the following sense:

If ωi is a sequence of k-forms supported in a single compact set K contained in a coordinate neigh-
borhood and Brωi Ñ 0 uniformly for all 0 ď |r| ă 8, then T pωiq Ñ 0. Here r “ pr1, . . . , rnq is a
n-tuple of non-negative integers, |r| “

ř

ri, and Br is shorthand for the coordinate-wise differentia-
tion operator

B|r|

Bxr11 . . . Bxrnn
.

It is important to note that the topology on DkpMq is strictly finer than the subspace topology
induced by the inclusion of DkpMq into the space EkpMq of C8 differential k-forms on M , in which
a sequence of forms ηi converges to zero whenever BrηitKÑ 0 uniformly for all 0 ď r ă i and all
compact sets K contained in a coordinate neighborhood. The difference is subtle, but has extremely
important consequences (the full description of the space D0, its topology, and continuous dual
was the major component of L. Schwartz’s Fields medal.) For example, in E0pRq, any sequence of
bump functions fi equal to 1 on the interval r´i, is converges to the function 1, which is no longer
compactly supported. Such a sequence is not convergent in D0pRq. As a matter of fact, DkpRnq is
complete, so it is not even Cauchy.

4.2.1. Examples.

‚ If S ĂM is an oriented k-dimensional submanifold, then a k-current rrSss is defined, setting
rrSsspωq ”

ş

S
ω.

‚ If M is equipped with a volume form dV , then a k-vector field X on M defines a current
rrXss, whereby rrXsspωq ”

ş

M
ωpXqdV .

‚ A generalized Dirac delta is a current: if p PM and α P ΛkpTpMq, then a current rrpp, αqss
is defined, where rrpp, αqsspωq ” ωppαq.

‚ An pn ´ kq-form η in En´kpMq defines a k-current rrηss, where rrηsspωq “
ş

M
η ^ ω. Such

a current is called a smooth current. Through convolution, it is possible to construct a
smoothing operator which approximates any current by a smooth current (See §15 [dR73].)

Denote the space of k-dimensional currents by DkpMq. The operator dual to exterior differentiation
on forms, denoted B, turns D‚pMq into a chain complex. The image and kernel of B are closed. When
given the opposite grading (i.e. give DkpMq degree n´ k,) the resulting cochain complex pDn´‚, Bq
is quasi-isomorphic, via application of the the aforementioned smoothing operator, to the cochain
complex pE‚pMq, dq. Thus, Poincaré duality holds in this setting: the homology of currents in degree
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k (which is dual to the compactly supported de Rham cohomology in degree k) is isomorphic to de
Rham cohomology in degree n´ k.

Before we can describe a sub-complex of pD‚, Bq which computes the integral homology of M , it
will be necessary to define the mass of a current. If M is equipped with a riemannian metric and
W Ă M , define }T }pW q ” suptT pωq : supppωq Ă W , }ω}0 ď 1 u, where }ω}0 is the supremum of
ωpα, where p P M and α is a unit simple k-vectors in ΛkTpM . The (possibly infinite) mass of
T , denoted MpT q, is the quantity }T }pRnq. If }T }pW q is finite for every W ĂĂ M , we say T has
locally finite mass.

A k-dimensional current T is called (integer) rectifiable if it has locally finite mass and there
exists a sequence Si of C1 oriented k-dimensional submanifolds of M , a sequence of pairwise disjoint
closed subsets Ki Ă Si and a sequence of positive integers ki such that

T pωq “
ÿ

i

ki

ż

Ki

ω

for all ω P DkpMq. If T and BT are rectifiable, we say that T is an integral current. One can
show, e.g. using sheaf theory, that the homology of the chain complex pI‚pMq, Bq of integral currents
computes the homology of M with Z coefficients.

One can also show that the mass MpT q of an integral current T is the same as the quantity
ř

i kiH
kpKiq.

Central to the utility of integral currents is the following compactness theorem:

thm 4.2.1. (Federer-Fleming) If tTiu Ă IkpMq is a sequence of integral currents such that

sup
i
}Ti}pW q ` }BTi}pW q ă 8

for all W ĂĂM , then there exists an integral current T and a subsequence of tTiu which converges
weakly to T .

Since mass is weakly lower-semicontinuous, Federer-Fleming produced the following corollary:

Corollary 4.2.2. If T P IkpMq, then there exists T0 P IkpMq with T ´T0 “ BR0 for some R0 P Ik`1

such that

MpT0q “ inf
RPIk`1

MpT0 ` BRq.

As a special case, setting Q “ BT :

Corollary 4.2.3. If Q P Ik´1pRnq, there exists T0 P IkpRnq with BT0 “ Q such that

MpT0q “ inf
TPIk,BT“Q

MpT q.

Another special case occurs when T is a cycle:

Corollary 4.2.4. Each class in HkppI‚pMq, Bqq contains a representative of least mass.
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4.3. Regularity. The support supppT q of a current T P Dk is the complement of the largest open
set U for which supppωq Ă U ñ T pωq “ 0 . We say p P supppT qzsupppBT q is an interior regular
point if there exists ε ą 0, a positive integer κ and an oriented k-dimensional smooth submanifold S
such that T pωq “ κrrSsspωq for all forms ω supported in the ball of radius ε about p. The remaining
points in supppT qzsupppBT q are called interior singular points, the set of which will be denoted
SpT q.

thm 4.3.1 (Complete Interior Regularity). If T0 P InpRn`1q, where 2 ď n ď 6, and the mass of
T0 is minimal among all integral currents with the same boundary, then supppT0 qzsupppBT0 q is an
embedded minimal hypersurface in RnzsupppBT0 q, and SpT0q is empty.

In 1962, Fleming proved the result for n “ 2, so other than regularity at the boundary which was
to take another 17 years [HS79], this result completed the solution of the oriented Plateau Problem
in R3 for surfaces of all topological types.

Almgren [Alm66b] extended Fleming’s theorem to n “ 3, and Simons extended it up to n “ 6
in [Sim68].

Also in [Sim68] Simons constructed an example which showed that singularities could in fact occur
in dimension 7 and higher. The “Simons cone” is the cone over S3 ˆ S3 Ă S7 Ă R8. He showed
it was locally mass minimizing, yet has an isolated interior singularity. Immediately after Simons
published his example, Bombieri, de Giorgi, and Giusti [BdGG69] showed in a marathon three-day
session5 that S is in fact globally mass minimizing. As a corollary, they also showed that, for any
n ě 8, there exist functions which satisfy the minimal surface equation and are not affine, finally
settling the Bernstein problem in all dimensions.

Not long after, Federer [Fed70] put a bound on the size of the singular set SpT q:

thm 4.3.2. The singular set SpT0q has Hausdorff dimension at most n´7. Singularities are isolated
points if n “ 7.

Bombieri, de Giorgi, and Giusti [BdGG69] showed that this bound is sharp: there exist mass min-
imizers T0 in every dimension n ě 7 such that Hn´7pSpT0qq ą 0. In the 90’s, Leon Simon [Sim95]
proved this singular set is well-behaved:

thm 4.3.3. Except for a set of Hm´7-measure zero, the singularity set of a codimension one mass
minimizer T0 is covered by a countable collection of C1 submanifolds of dimension m´ 7.

A new and simpler proof of Simon’s theorem has been recently found by Naber and Valtorta [NV15].
To the best of our knowledge, however, it is still an open question whether or not the remainder of
the singularity set stratifies as lower-dimensional submanifolds.

Surprisingly, codimension one mass minimizers do not have boundary singularities, as Hardt and
Simon [HS79] established:

thm 4.3.4. If T0 P InpRn`1q, BT0 “ rrSss for some oriented embedded C2 submanifold S Ă Rn, and
the mass of T0 is minimal among all integral currents with the same boundary, then there exists an

5This story was recently communicated by Simons to the second author.
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open neighborhood V of S such that V X supppT0 q is an embedded C1,α hypersurface with boundary
for all 0 ă α ă 1.

The story is more complicated and incomplete in higher codimension. Almgren in his 1700 page
“big regularity paper” [Alm83] proved the following theorem:

thm 4.3.5. The singular set SpT0q of an m-dimensional mass-minimizing integral current T0 in Rn

has Hausdorff dimension at most m´ 2.

Again, this bound is sharp in codimension ě 2 [Fed65]. Chang [Cha88] built upon Almgren’s work
to show that if m “ 2, then the singularity set consists of isolated branch points. More recently, in a
series of papers [LS11,LS13a,LS13b,LS13c,LS13d], De Lellis and Spadaro took on the monumental
task of modernizing and simplifying Almgren’s work. For an excellent overview of their approach,
see [Lel].

5. Non-Orientable Generalized Surfaces

Much of the above story can be repeated using chains with coefficients in a finite group, and in
particular in Z{2Z to account for non-orientable surfaces. Fleming [Fle66] has a beautiful theory of
flat chains with coefficients (see also [Zie62],) the homology of which recovers the mod-p homology
of the ambient space.

However, soap films that occur in nature are not only non-orientable, but possess singularities such
as triple junctions which are not amenable to mass-minimization. To ensure that the triple junction
not be part of the algebraic boundary, one must assign one of the three surfaces a higher multiplicity.
This in turn increases the total mass of the surface, and as a result triple junctions do not show up
in solutions to the mass minimization problem.

To get around this issue, there is a different approach one can take, and that is to ignore multiplicity
when measuring area. Instead of minimizing mass, one can instead minimize size, which for an
integral current

ř

i ki
ş

Ki
is the quantity

ř

iH
kpKiq. The k-dimensional size of an arbitrary subset

E ĂM is just HkpEq. Note that the size of an integral current may be smaller than the size of its
support. The primary difficulty with working with size is that unlike mass, it is not weakly lower
semicontinuous. Extreme care must be taken with the minimizing sequence to account for this. The
payoff is that size is better suited to the study of soap films than mass.

5.1. Reifenberg’s 1960 Paper. The same year that Federer and Fleming’s seminal paper appeared
[FF60], Reifenberg published a work [Rei60] which dealt with the Plateau problem for non-orientable
manifolds of arbitrary genus. This paper is also famous for a result that later became known as
“Reifenberg’s disk theorem,” which placed sufficient conditions on the approximate tangencies of a
surface to guarantee that it was a topological disk. A set satisfying these conditions is now known
as Reifenberg flat. Reifenberg was well known for his prowess with tricky if not quirky estimates,
and indeed his disk theorem did not disappoint: a condition involved in the statement required

ε ď 2´2000n2

. Reifenberg’s paper has sparked a number of subsequent results: Almgren provided a



14 J. HARRISON & H. PUGH

(a) The boundary of a triple Möbius band (b) A Triple Möbius band

(c) A non-orientable embedded surface (d) An immersed disk

Figure 9. Depending on the configuration of the boundary wire, either (b) or (c)
can have smaller area.

generalization to so-called “elliptic integrands” in [Alm68]. Morrey generalized Reifenberg’s result
to ambient manifolds in [Mor65] (see also [Mor66].)

Reifenberg’s approach to proving his main theorem was built on work by Besicovitch and was purely
set-theoretic, not involving any fancy machinery such as currents or varifolds. His main result was
the following:

Consider a finite collection A of pairwise disjoint Jordan curves in R3. A compact subset X of R3 is
said to be a surface spanning A if X can be written as an increasing union of manifolds Xi with
boundary, such that for each i, there exists a manifold Yi with boundary AYBXi such that Yi Ñ A
in the Hausdorff distance. Reifenberg then proved:

thm 5.1.1. There is a surface spanning A of least area.

His class of surfaces included those with infinite genus such as in Fleming’s example 4, and non-
orientable surfaces as well. However, it did not include soap-film type surfaces with triple junctions
(Figure 9b.) Reifenberg proved a secondary result which did minimize amongst this larger category,
in the case that A Ă Rn is homeomorphic to the pm´ 1q-sphere:

thm 5.1.2. If A is a topological pm ´ 1q-sphere in Rn, 2 ď m ď n and G˚ is the collections
of all compact sets X Ą A which do not retract onto A, then there exists a set X P G˚ with
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X1 X2M X3

Figure 10. Three minimal surfaces spanning three circles

least m-dimensional Hausdorff spherical measure. Any such minimizer is locally Euclidian almost
everywhere.

Both of these theorems were special cases of a general result involving “surfaces with algebraic
boundary,” which were defined by Reifenberg and developed by Adams in an appendix of [Rei60].

Let G be a compact6 abelian group and suppose A is a compact subset of Rn with Hm´1pAq ă 8.
Suppose L is a subgroup of the pm´1q-dimensional Čech homology Ȟm´1pA;Gq of A with coefficients
in G. We say that a compact set X Ą A is a surface with (algebraic) boundary Ą L if L is
in the kernel of the inclusion homomorphism ι˚ : Ȟm´1pA;Gq Ñ Ȟm´1pX;Gq. Reifenberg proved
existence of a surface with algebraic boundary Ą L with least m-dimensional Hausdorff spherical
measure. The case that G “ Z{2Z implies Reifenberg’s first theorem, and the case that G “ S1

implies, via a theorem of Hopf, the second.

A shortcoming of Reifenberg’s theory is that for boundaries more general than a sphere, he did
not defined a single, unifying collection surfaces with soap-film singularities. For example, consider
the disjoint union of a disk and a circle in R3. There is no retraction to the pair of circles, yet we
might not want to consider this as an admissible spanning set. As another example, consider the
surfaces Xi, i “ 1, 2, 3, in Figure 10. Any one could be a surface with minimal area, depending on
the distance between the circles, but a simple computation shows there is no non-trivial collection
of Reifenberg surfaces which contains all three simultaneously. Thus, one would have to find an
appropriate subgroup L which would produce the correct minimizer, and this task would change
depending on the configuration of the circles in the ambient space.

In a recent paper [HP13,HP15], the authors found a way around this problem using linking number
to define spanning sets, and later in [HP16b], using Čech cohomology in higher codimension. We
also generalized Reifenberg’s result so as to minimize a Lipschitz density functional.

5.1.1. Spanning sets via linking numbers.

Definition 5.1.3. Suppose A is a pn´2q-dimensional compact orientable submanifold of Rn, n ě 2.
We say that a circle S embedded in RnzA is a simple link of A if the absolute value of the linking

6The exactness axiom is used in the proof and Čech homology only satisfies exactness when the coefficients are

compact, so we will need this assumption
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Figure 11. Each row of surfaces depicts a distinct type of minimal surface span-
ning the Borromean rings. A surface in the first row spans the Borromean rings
using any linking test. That is, every simple link of any number of curves must meet
the surface. In the second row, every simple link of one curve or all three curves
must meet the surface. The third row has mixed types.

number LpS,Aiq of S with one of the connected components Ai of A is equal to one, and LpS,Ajq “ 0
for the other connected components Aj of A, j ‰ i. We say that a compact subset X Ă Rn spans A
if every simple link of A intersects X (See Figure 11.)

If A is a topological pn ´ 2q-sphere then the set of spanning surfaces is the same as the collection
G˚ above. Any orientable pn ´ 1q-manifold with boundary A spans A. The set A can be a frame
such as the pn ´ 2q-skeleton of an n-cube, in which case one can specify pn ´ 2q-cycles which the
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simple links need to link. This procedure generalizes to higher dimension using linking spheres, or
alternatively, via Alexander duality, to Čech cohomology.

This idea was first proposed for connected smooth boundaries in the existence paper of [Har14]
which was followed by the more substantial [HP13, HP15] which established lower semicontinuity
of Hausdorff measure for a minimizing sequence Xk Ñ X0 in codimension one and applied to any
number of boundary components. One of us (HP) realized that linking number tests could be
naturally viewed a cohomological spanning condition in higher codimension7, and while we were
writing this generalization [HP16b], two papers appeared [DLGM15,DPRG15] which built upon our
linking number test for spanning sets.

The cohomological spanning condition is stated as follows: if L is a subset of the pm´1q-st (reduced)
Čech cohomology group Ȟm´1pA;Gq (G need not be compact,) we say that X Ą A is a surface with
(algebraic) coboundary Ą L if L is disjoint from the image of ι˚ : Ȟm´1pX;Gq Ñ Ȟm´1pA;Gq.

One of the primary benefits of using this definition over the covariant “surface with algebraic bound-
ary” is that if A is an oriented manifold, then there is a natural choice for the subset L, namely the
collection LZ of those cocycles on A which evaluate to 1 on the fundamental cycle of a particular
component of A, and zero on the rest. By naturality of the Alexander duality isomorphism, the
collection of surfaces with coboundary Ą LZ is equivalent in codimension one to the collection of
compact sets which span A in the sense of linking number.

Eight years after [Rei60] was published, Almgren proved an extension [Alm68] of Reifenberg’s theo-
rem to prove the existence of surfaces which minimize not only area, but area weighted by a density
function which is permitted to vary in both spacial and tangential directions, subject to an ellipticity
condition. To discuss [Alm68,Alm76], we will need to introduce rectifiable sets and varifolds, which
we now define.

5.2. Rectifiable sets. A subset E of Rn is m-rectifiable if there exist a countable collection of
Lipschitz maps tfi : Rm Ñ Rnu such that the m-dimensional Hausdorff measure of Ez Y8i“0 fipR

mq

is zero. If E is Hm measurable and HmpEq ă 8, then the maps fi can be taken to be C1. Such sets
are the higher dimensional analog of rectifiable curves. The defining property of a rectifiable set is
that it is equipped with a unique “approximate tangent m-plane” almost everywhere, a consequence
of Rademacher’s theorem. If these approximate tangent spaces are equipped with an orientation,
it becomes possible to integrate m-forms: An integer rectifiable current is just an integer weighted
rectifiable E together with an orientation, i.e. an Hm measurable field of m-vectors on E such that
for almost every p P E, the m-vector at p is unit simple in the direction of the approximate tangent
space at p.

A set F is purely m-unrectifiable if HmpF X Eq “ 0 for every m-rectifiable set E. Every subset
of Rn with finite Hm measure can be written, uniquely up to Hm measure zero sets, as the disjoint
union of a m-rectifiable set an a purely m-unrectifiable set. The beautiful Besicovitch-Federer
structure theorem says that if F is purely m-unrectifiable, then for almost every m-plane V in the
Grassmannian Grpm,nq, the orthogonal projection of F onto V has Hm measure zero.

7Similar “surfaces with coboundary” were discovered independently by Fomenko [Fom90].
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Morally, every subset of Euclidian space can be decomposed almost uniquely into a countable col-
lection of C1 submanifolds, and a remainder which casts no shadows.

5.3. Integral and Stationary Varifolds. Varifolds were first introduced by Young [You42a,
You42b] as “generalized surfaces” and developed by Young and Fleming [Fle57, FY54]. Fleming,
who had been Young’s student, in turn, taught Almgren what he knew [Fle15] when Almgren was
a student at Brown 1958-62. Almgren took an interest in generalized surfaces and changed the
name to “varifolds,” a mnemonic for manifolds in the calculus of variations. He produced a set of
mimeographed notes [Alm65] on varifolds that were circulated amongst his students but never pub-
lished. Allard, who had been Fleming’s student, produced the definitive reference on varifolds [All72]
in which he proved the compactness theorem for integral varifolds.

Definition 5.3.1. Let M be a smooth n-dimensional Riemannian manifold. A k-varifold V in M
is a Radon measure on the total space of the Grassmannian bundle π : Gr Ñ M , whose fiber above
a point p P M is the Grassmannian of un-oriented linear k-planes in TpM . The pushforward of V
by π is denoted }V }. The mass of V is the quantity }V }pMq. The support of V is the support of
the measure }V }.

For example, an embedded k-dimensional submanifold S Ă M , together with a Hk-measurable
function θ : S Ñ R` determine a varifold V as follows:

V pAq :“

ż

SXtp:pp,TpSqPAu

θppqdHkppq.

More generally, S can be replaced by a k-rectifiable set. In this case V is called a rectifiable k-
varifold. If θ takes integer values, the varifold is called an integral varifold. Integral varifolds are the
non-orientable analogs of integral currents. There is no notion of integration of differential forms on
a varifold, and unlike currents the space of varifolds does not possess a boundary operator. However,
integral k-varifolds can be pushed forward by a Lipschitz map.

Almgren saw these features as an advantage, for he wanted to model non-orientable surfaces and
those with triple junctions. In [Alm66a] Almgren credits Federer-Fleming for proving the Plateau
problem for mass minimization of oriented surfaces, and Reifenberg for size minimization of non-
oriented surfaces “subject to certain topological restraints.” Almgren sought at this time to prove a
mass minimization result for non-oriented surfaces. He did not specify what it meant for a varifold
to span a given contour in [Alm65] or [Alm66a], but his focus at the time was on stationary varifolds
where the definition seemed self-evident as we shall next see.

The first variation δV of a compactly supported varifold V is a function which assigns to a smooth
compactly supported vector field Y on M the rate of change of the mass of the pushforward of V
by the time-t map of the flow of Y at t “ 0. A varifold is stationary if δV “ 0.

In [Alm65], Almgren proved the following theorem:

thm 5.3.2. Let M be a smooth compact n-dimensional Riemannian manifold. For each 0 ă k ă n
there exists a stationary integral k-varifold in M .

Allard in [All72] proved a beautiful regularity result for such varifolds:
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thm 5.3.3. If V is a stationary integral k-varifold in a smooth compact n-dimensional riemannian
manifold M , 0 ă k ă n, then there is an open dense subset of the support of V which is a smooth
k-dimensional minimal submanifold of M .

Even many years later, this theorem remains state-of-the-art in terms of what is known about the
singularity set of stationary varifolds. For example, it is not known if the singularity set has zero
Hausdorff measure in dimension k. Indeed, regularity theory for stationary varifolds is still at an
early stage, even compared to what is known about mass minimizing integral currents in higher
codimension. It has been shown that the integral varifold can be covered, up to a set of measure
zero, by twice continuously differentiable submanifolds of the same dimension, see [Sch04], [Men13].
See [Bom79] who mentions this problem, as well as [Lel12] for a more detailed accounting of progress.

5.4. Elliptic variational problems. In [Alm68] Almgren initiated the study of elliptic variational
problems for non-orientable surfaces by providing the first definition of an elliptic integrand and a
proof of regularity, depending on the degree of smoothness of the integrand. His definitions and
main regularity result follow:

Let A be a compact pm ´ 1q-rectifiable subset of Rn with Hm´1pAq ă 8, G a finitely generated
abelian group, and σ P ȞmpRn, A;Gq. We say a compact m-rectifiable set X Ą A is a surface
which spans σ if σ is in the kernel of the homomorphism on homology induced by the inclusion
pRn, Aq ãÑ pRn, Xq.

A Ck (resp. real analytic) integrand is a Ck (resp. real analytic) function f : RnˆGrpm,nq Ñ
ra, bs, where 0 ă a ă b ă 8. We say f is elliptic with respect to G if there exists a continuous

function c : Rn Ñ RX tt : t ą 0u such that if D Ă Rn is an m-disk, τ P ȞmpRn, BD;Gqzt0u, and D̃
is any surface which spans τ , then

ż

D̃

fpx, TyD̃q dH
mpyq ´

ż

D

fpx, TyDq dH
mpyq ě cpxq

´

HmpD̃q ´HmpDq
¯

for all x P Rn.

thm 5.4.1. Let 3 ď k ď 8 and G P G. If f is a Ck (resp. real analytic) integrand, elliptic with
respect to G, and S is a surface that spans σ such that

ż

S

fpx, TxSq dH
mpxq ď

ż

T

fpx, TxT q dH
mpxq

for all surfaces T which span σ, then S is Hm almost everywhere a Ck´1 (resp. real analytic)
submanifold of Rn.

The authors proved there exists such a surface S. These results marked a significant advance8 over
Reifenberg’s paper which only dealt with the functional f “ 1, and bring Plateau’s problem, which
had grown well beyond the classical theory of minimal surfaces and the minimal surface equation,
squarely back into the realm of PDE’s.

8Readers should be warned that the existence portion of [Alm68] contains a serious gap. Briefly, a minimizing conver-

gent sequence for a bounded elliptic integrand does not automatically yield a uniformly quasiminimal subsequence,
but [Alm68] assumes that it does. This is a critical part of the argument for existence of a minimizer (see [HP16a] for
a more detailed discussion.) In [Alm76] spanning surfaces are chosen to be a priori uniformly quasiminimal so that
the problem disappears. However, he was not able to prove a general existence theorem.
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5.4.1. pf, ε, δq-minimal sets. In his memoir [Alm76] (see also [Alm75]), Almgren defined new classes
of surfaces to model soap bubbles as well as many types of soap films.

Fix A Ă Rn. If φ : Rn Ñ Rn is Lipschitz, let Wφ “ tx : φpXq ‰ xu. If Wφ Y φpWφq is disjoint from
A and contained in a ball of radius δ for some 0 ă δ ă 8, we say that φ is a δ-deformation fixing
A.

Let 1 ď γ ă 8. A compact set X Ă Rn with HmpXq ă 8 is pγ, δq-restricted with respect to A if

HmpX XWφq ă γHmpφpX XWφqq

for all δ-deformations φ fixing A.

If ε : r0,8q Ñ r0,8q with εp0q “ 0 is a continuous non-decreasing function, the set X is called
pf, ε, δq-minimal if in addition for every r-deformation φ fixing A, 0 ă r ă δ,

ż

X

fpx, TxXq dH
mpxq ď p1` εprqq

ż

φpXq

fpx, TxφpXqq dH
mpxq.

An important fact about pγ, δq-restricted sets is that they are m-rectifiable ( [Fed69] 3.2.14(4)) and
have both upper and lower bounds on density ratios. Almgren proved regularity results a.e for
pf, ε, δq minimal sets in [Alm76]:

thm 5.4.2. Suppose f is elliptic and C3 and X is pf, ε, δq-minimal with respect to A where ε satisfies

ż 1

0

t´p1`αqεptq1{2dt ă 8

for some 0 ď α ă 1. Then there exists an open set U Ă Rn such that HmpXzUq “ 0 and X X U is
a C1 m-dimensional submanifold of Rn.

Almgren states however that “These hypotheses and conclusions, incidentally, do not imply that
S X U locally can be represented as the graph of a function which satisfies any of the various Euler
equations associated with f . ” Indeed, any C2 m-dimensional submanifold S with boundary is9

pM, ε, δq minimal with respect to BS if δ is sufficiently small and ε is a linear map with large slope.

For the three-dimensional case, Taylor [Tay76] relied upon Theorem 5.4.2 to prove a beautiful soap
film regularity result for pM, ε, δq-minimal sets. However, Morgan [Mor88] points out that the class
of pM, 0, δq-minimal sets, taken over all δ ą 0, is not compact. It remains an open problem of
whether a smoothly embedded closed curve in R3 bounds a film with minimal area in the class of
all pM, 0, δq-minimal sets.

Another open problem motivated by [DLGM15,DPRG15,HP13,HP15] is to prove the same regularity
theorems as above in the case that φ is also required to be uniformly close to a diffeomorphism.

9Here and in the literature, M denotes the constant function 1.
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6. Variable boundaries

6.1. Sliding boundaries. The notion of a sliding boundary has had a long history in the study of
elasticity in mechanical engineering (see §24 of [PG00], for example.) David brought the attention
of this problem to those in geometric measure theory [Dav14]. We shall mention a formulation of
the problem found in [DLGM15, DPRG15] which was influenced by [Dav14]. These works assume
that the bounding set A has zero Hm measure and often pm´ 1q-rectifiable, but others do not (see,
e.g., [CJ13,FS15]) as applications often require a large, and even rough, bounding set.

Definition 6.1.1. Let A Ă Rn be compact and S˚ Ă RnzA be relatively compact. Let §pAq denote the
collection of Lipschitz maps φ : Rn Ñ Rn such that there exists a continuous map Φ : r0, 1sˆRn Ñ Rn

with Θp1, ¨q “ φ, Θp0, ¨q “ Id and Θpt, Aq Ă A for each t P r0, 1s. Define

CpA,S˚q “ tS : S “ φpS˚q for some φ P §pAqu

and call S˚ a sliding minimizer if HmpS˚q “ inftHmpSq : S P CpA,S˚qu.

Note that CpA,S˚q does not form an equivalence class. It is not known if CpA,S˚q is compact.
However it can be shown with some assumptions onA (see [DLGM15] for codimension one, [DPRG15]
for higher codimension) that if tSku Ă CpA,S˚q is a minimizing sequence, then the measures HmtSk

converge weakly to a measure gHmtS0
where S0 is m-rectifiable and g ě 1. In particular, HmpS0q ď

lim inf HmpSkq. It is not known if S0 P CpA,S˚q, but [DLGM15] and [DPRG15] proved nonetheless
that S0 is a sliding minimizer.

It is an open question if this result extends to Lipschitz or elliptic integrands. It is similarly open
to prove the result if the aforementioned assumptions on A (e.g. HmpAq ă 8) are removed.

6.2. Euler-Plateau problem. Mahadevan and Giomi [GM15] proposed a type of Plateau problem
in which a rigid boundary is replaced by a soft boundary such as a flexible wire. Specifically, in
the language of Kirchhoff’s theory of rods [Dil92], permissible boundaries are circular rods which
resist bending yet are inextensible, unshearable, without intrinsic curvature, and without resistance
to twisting about their centerlines. Mahadevan and Giomi formulated an energy functional which
measured not only the area of a spanning surface, but also the energy of the boundary. The resulting
Euler-Lagrange equations are equivalent, in the zero surface tension case, to those derived by Langer
and Singer [LS84] (see [FC13].) This minimization problem is called the Euler-Plateau problem
after Euler’s study of column buckling, but might more appropriately be called the Kirchhoff-
Plateau problem.10

Chen and Fried [FC13] rigorously derived the equilibrium conditions for the minimization problem,
and provided geometric and physical interpretations of these conditions. Briefly, the surface on
the interior must have zero mean curvature, and the boundary is required to bend elastically in
response to a force exerted by the spanning film. The class of competitors for minimization are
those surfaces which occur as images of the disk. However, since the boundary is permitted to vary,
the maps cannot, in contrast to Douglas, Radó and Courant, be assumed to be conformal. See
also [BF14,FS15].

10The authors would like to thank Eliot Fried for helpful remarks.
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These papers are closely related to earlier work by Bernatzki [Ber97] and Bernatzki-Ye [BY01].

7. Open problems

Though we have labeled the following problems as “open,” some may have been solved without our
knowledge. If you have solved one of these, please accept our apologies (and our congratulations!)

7.1. Classical minimal surfaces. The following problems are part of a longer list in [MP11]. Let
C be the space of connected, complete, embedded minimal surfaces and let P Ă C be the subspace
of properly embedded surfaces.

‚ Isolated Singularity Conjecture (Lawson and Gulliver): The closure of a properly embedded
minimal surface in the punctured closed unit ball is a compact embedded minimal surface.

‚ Convex Curve Conjecture (Meeks): Two convex Jordan curves in parallel planes cannot
bound a compact minimal surface of positive genus.

‚ 4π-Conjecture (Meeks, Yau, Nitsche): If Γ is a simple closed curve in R3 with total curvature
at most 4π, then Γ bounds a unique compact, orientable, branched minimal surface and this
unique minimal surface is an embedded disk.

‚ Liouville Conjecture (Meeks): If M P P and h : M Ñ R is a positive harmonic function,
then h is constant.

‚ Finite Genus Properness Conjecture (Meeks, Pérez, Ros): If M P C and M has finite genus,
then M P P .

7.2. Integral currents. These problems are adapted from a longer list in [Amb15].

‚ Establish the uniqueness of tangent cones to an mass-minimizing current. Uniqueness for 2-
dimensional currents was proved in [Whi83], and partial results in the general case in [AA81]
and [Sim83].

‚ Does the singular set of a mass-minimizing current have locally finite Hm´2 measure? Chang
[Cha88] proved that it does if m “ 2.

‚ Is the singular set of an mass minimizing current rectifiable? Does it have other geometric
structure such as a stratification? See e.g. Theorem 4.3.3.

7.3. Reifenberg problems. Reifenberg posed ten open problems in [Rei60]. Three of particular
interest are these:

‚ Let M be a manifold with boundary and Dk be discs with boundary BM . Let µ be the
infimum of the areas of discs with boundary BM . Suppose Dk Ñ M and H2pDkq Ñ

H2pMq “ µ. Prove that M is a disc. Prove the same for m-dimensional disks.
‚ Generalize Theorem 2 of [Rei60] to the case where the boundary is any manifold. For

example, let A be the 2-torus and X the solid torus with a small interior ball removed.
Then A is not a retract of X, as one can deformation retract X onto the union of A and
a transverse disk. If the torus is made to be narrower in some region, the solution to the
generalized Theorem 2 in this case would be a transverse disk at the narrowest location.
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‚ Find a class of surfaces which includes those such as the Adams example which retract
onto their boundary, and also includes some class of deformations thereof; then prove a
compactness theorem for such surfaces. Do those sets which do not admit a deformation
retraction onto the boundary forms such a class?

7.4. Elliptic integrands.

‚ Show by example that interesting non-smooth solutions can arise which represent observed
phenomena in nature if an elliptic integrand is not smooth.

‚ Prove a version of the main result in [HP16a] for mass, instead of size, weighted by an elliptic
density functional.

‚ What restrictions on the competing class of surfaces can be made that carry over to minimiz-
ing solutions? E.g., one can restrict the problem to graphs, disks, continuous embeddings,
bordisms, topological type, etc. Each problem presents its own existence and regularity
questions.

‚ Axiomatic approach: Let S be a collection of surfaces such that if S P S and φ is a Lipschitz
map fixing A which is C0 close to a diffeomorphism, then φpSq P S. What are minimal con-
ditions needed on S to guarantee existence of a minimizer in S for an elliptic area functional?
See [HP16a,DLGM15,DPRG15,DDRG16].

7.5. Non-closed curves.

‚ Find models for surfaces spanning non-closed curves and prove a compactness theorem (Fig-
ure 2b.) In [HP16b] we proposed using relative (co)homology as follows: If one replaces
the boundary set A with a pair pA,Bq, the definition of a surface with coboundary can be
repeated: A pair pX,Y q Ą pA,Bq is a surface with coboundary Ą L if L is disjoint from

the image of ι˚ : H̃m´1pX,Y q Ñ H̃m´1pA,Bq. To what extent can this be adapted if B is
permitted to vary in some restricted fashion? See also [DW98] and [Mor88] 11.3.

7.6. Varifolds.

‚ Does a smoothly embedded closed curve in R3 bound a film with minimal area in the class
of all pM, 0, δq-minimal sets?

‚ Does the singular set of a stationary varifold have measure zero?

7.7. Dynamics and deformations. We close with four increasingly open-ended problems, ending
with one contributed by the authors:

‚ Euler-Plateau for sliding boundaries: State and solve the Euler-Plateau problem for sliding
boundaries. Not only is the bounding set B allowed to be flexible, but frontiers of solutions
can slide around within B as it flexes.

‚ To what extent can mean curvature flow detect soap-film solutions including triple junctions
and non-orientable surfaces, starting with a given spanning set? See [Bra95,Whi05,Whi09].
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‚ The problem of lightning (Harrison and Pugh): Formulate a dynamic version of Plateau’s
problem which models the formation and evolution of branched solutions. Applications
would be numerous: lightning, formation of capillaries, branches, fractures, etc. One should
permit boundaries with higher Hausdorff dimension and solve the elliptic integrand problem,
as solutions would be branched minimizers of the corresponding action principle, and thus
should be highly relevant to physics.
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[MP11] Williams Meeks and Jose Pérez, The classical theory of minimal surfaces, Bulletin of the American

Mathematical Society 48 (2011), 325–407.
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