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METRIC SPACES OF SHAPES AND APPLICATIONS: COMPRESSION,

CURVE MATCHING AND LOW-DIMENSIONAL REPRESENTATION

MATT FEISZLI, SERGEY KUSHNAREV, AND KATHRYN LEONARD

Abstract. In this paper we present three metrics on classes of 2D shapes whose outlines are
simple closed planar curves. The first, a C1-type metric on classes of shapes with Lipschitz tangent
angle, allows for estimates of massiveness such as ε-entropy. A Sobolev-type metric on piecewise C2

curves allows for efficient curve matching based on a multiscale wavelet-like analysis. Finally, the
Weil-Petersson metric, a Riemannian metric on the class of smooth diffeomorphisms of S1 → R2 ,
allows a low dimensional shape representation, an N -Teichon, whose initial conditions are closely
linked to curvature.

Dedication

This paper is dedicated to the 75th birthday of Prof. David Mumford. Prof. Mumford served
as a PhD adviser for the authors of this paper, and the work contained here began as three of
the last four theses he supervised. His unparalleled knowledge, unmatched scientific intuition and
unabating interest in mathematics and applications shaped the authors’ academic lives and the field
of Pattern Theory itself. The authors are deeply grateful to him for his mentorship and intellectual
generosity.

1. Introduction

From a mathematical perspective, spaces of embedded plane curves are among the simplest
nonlinear infinite-dimensional spaces, offering the most tractable setting for explicitly computing
results on Banach manifolds. From an applications perspective, shape data is incredibly complex,
high-dimensional, and nonlinear.

One way to address that complexity is by identifying the data with linear function spaces. As
we show in Sections 2 and 3, this approach can be quite effective in certain contexts. In order to do
standard data analysis, however, the nonlinearity of the space must be accounted for, with shape
data parameterized by a shape manifold. For example, even a simple statistic such as an average
shape computed assuming linearity will be quite different from one computed in a way that respects
the geometry of shape space. We describe one realization of a shape manifold in Section 4.

Two of our metrics, the C1- and Sobolev-type metrics, exploit powerful techniques for function
spaces by working in geometrically important function classes associated to the curve classes. For
the C1-type metric, the function class is the collection of arclength parameterized tangent angles
functions {θ(s)}. In this setting we are able to obtain estimates on the complexity of shape space
as well as a criterion for comparing the relative efficiency of curve representations. For the Sobolev-

type metric, we take the class of tangent approximations {β(s, t)}, where β(s, t) = arg γ(s+1)−γ(s)
γ(s)−γ(s−t) for

an arclength parametrized curve γ. This multiscale analysis provides a wavelet-like analysis of the
curve, providing both theorems about regularity and practical algorithms for curve alignment. The
third metric, the Riemannian Weil-Petersson metric, induces a hyperbolic geometry on shape space
allowing for unique geodesics. We consider particular singular solutions to the geodesic equation,
an N -Teichon, that possess tractable evolution equations. Estimates of the curvature of the shape’s
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boundary in Section 4.5 allow us to construct an N -Teichon, that will provide essentially a linear,
low-dimensional representation for a shape.

1.1. C1-type Metric. Section 2 introduces standard measures of massiveness: ε-entropy for com-
pact classes of curves with Lipschitz tangent angle, and expected code length in an adaptive coding
scheme for the non-compact setting. In the 1950’s, Kolmogorov introduced the notion of ε-entropy
as a measure of massiveness for sets in spaces where the unit ball was not compact [14]. Given a
compact subset K of a metric space (X, ρ), with a minimal ε-covering containing Nε elements, the
ε-entropy of K is given by Hε(K, ρ) = log2Nε. The logarithm reflects the fact that the number of

ε-balls required to cover K in an infinite-dimensional space is on the order of C1/ελ , for constants
C and λ depending on K. The notion of ε-entropy has been useful as an invariant of topological
vector spaces [18], a way of measuring sizes of spaces of solutions to PDE’s [11], and in recent years,
as a measure of efficiency in tasks of data compression [12, 13, 19]. We are most interested in this
last application and its relationship to efficient coverings for recognition purposes. In general, opti-
mal compression rates are obtained using a “true” probability distribution on the data, something
we do not have due to the reasons mentioned above. Assuming a uniform probability on shapes,
ε-entropy offers a kind of “best in the worst case”, or minimax, compression rate.

The idea of adaptive coding arose in the data compression community in the early 1980’s,
introduced by Rissanen and Langdon in [15] as an alternative to arithmetic coding. Arithmetic
coding compresses data using a known, fixed statistical model, and has near-optimal compression
rate when the data comes from the model used to compress it. To accommodate situations where
the model is neither known nor fixed, Rissanen and Langdon developed a strategy to adapt the
model to data (hence “adaptive” coding), continually updating the model as new data arrives. In
this situation, the notion of optimality is not well-defined. Instead, Rissanen proposes a minimum
description length (MDL) criterion for evaluating efficiency: the encoding resulting in the shortest
expected code length is the most efficient [17].

Our main results in Section 2 are ε-entropy estimates for classes of curves with uniformly
bounded arclength and Lipschitz tangent angle function. We obtain a tight estimate for the ε-
entropy of general curves, and a slightly weaker one for closed curves, where the requirement of
closure impedes the search for a lower bound. We also present the codelength for an adaptive
encoding of curves that draws on the techniques developed for the ε-entropy estimates.

1.2. H1/2-type Metric. In Section 3 we recall some geometric variants of Sobolev spaces intro-
duced in [2], where the authors applied the techniques (using an H3/2-type metric) to the problem

of denoising curves. Here we use the H1/2 variant of the spaces and consider curve matching. The
goal of these constructions is to provide a multiscale analysis of a curve which is, in most respects,
like having a linear structure on the highly nonlinear space of curves. This representation encodes
information similar to the “shape-tree” of Felzenszwalb [7] and “shape contexts” introduced in [1]
by Belongie and Malik, while making the space of curves into a linear-like space in a simple and
computationally convenient way.

Given a constant-speed curve γ : [0, 2π)→ C, define the angles

β(θ, t) = arg
γ(θ + t)− γ(θ)

γ(θ)− γ(θ − t)
Modulo translation, rotation, and scale, these angles provide a lift of the curve γ (a 1-dimensional
object) into the strip [0, 2π) × [0,∞) with coordinate (θ, t). The theorem here is that β angles
behave essentially like the Haar wavelet coefficients of γ′, and working with them is almost like
working with wavelet coefficients. In particular, weighted L2 norms of the coefficient energies over
space and scale give information about the local Sobolev regularity of the curve when it is viewed
as a collection of Lipschitz graphs. There are several possible variants, all with slightly different
behaviors in practice, but the same theorems apply in each case. For example, the complex second



METRIC SPACES OF SHAPES AND APPLICATIONS 3

differences

δ(θ, t) = γ(θ + t) + γ(θ − t)− 2γ(θ)

are the Haar coefficients of γ′. In [?], it was observed that the complex second differences provide
a rich and robust shape descriptor for the purpose of curve matching. This very simple multiscale
shape descriptor seems to work well in applications, and the mathematics are simple and appealing.
Further, it offers a nice way to understand what geometry is being measured when fractional order
differential operators are applied to curve evolutions, as is done in the final section with the Weil-
Petersson metric.

1.3. Weil-Petersson Metric. In Section 4, we consider the Weil-Petersson (WP) metric on the
coset space PSL2(R)\Diff(S1). This coset space (or its completion in the WP metric or in the
Teichmüller topology) is known as the universal Teichmüller space and is well-known in many
contexts: in the classification of Riemann surfaces [31], conformal and quasi-conformal maps [37],
string theory [22] and most recently computer vision [42]. Its completion in the WP metric is an
infinite dimensional homogeneous complex Kähler-Hilbert manifold [43].

As we will explain in Section 4.1 below, a particular dense subset of the universal Teichmüller
space T (1) is given by PSL2(R)\Diff(S1), where Diff(S1) is the group of orientation preserving
C∞ diffeomorphisms of S1, and PSL2(R) is a subgroup of the Möbius selfmaps of the unit disk, see
(7) and the surrounding discussion. This coset space is a Riemannian manifold for the WP metric
and has another realization as the space of smooth simple closed curves modulo translations and
scalings. We will use the terms ‘shape’, ‘diffeomorphism’, ‘fingerprint’, or ‘welding map’ to refer to
members in this dense subset of T (1).

We have chosen Weil-Petersson metric for two main reasons. First, any two smooth shapes can
be connected with a Weil-Petersson geodesic [26]. Second, all sectional curvatures of the metric are
negative [43]. Thus geodesics connecting two shapes are unique [32].

Geodesic equations of groups of diffeomorphisms on a general Lie group G were first studied
in Arnold’s ground-breaking paper [20]. Arnold considered in particular the group of volume
preserving diffeomorphisms of Euclidean space in its L2 metric and found the geodesic equation
for the vector field ~v(~x, t) to be Euler’s fluid flow equation (see [21] for a full exposition). Other
examples include the periodic Korteweg-deVries (KdV) equation and the periodic Camassa-Holm
(C-H) equation [23]. These equations are geodesic equations on the Virasoro group, a central
extension by S1 of the group Diff(S1) of the diffeomorphisms of S1, for the L2 and H1 metric
respectively. KdV and C-H are two completely integrable partial differential equations and have
soliton solutions. Holm and collaborators have found that the geodesic equation on Diff(Rn)
admits special solutions with many of the properties of solitons: for each fixed time, they are
diffeomorphisms which are largely localized in space and retain their general shape as they evolve;
furthermore they interact somewhat like KdV solitons [25]. There are not, however, infinitely many
conserved quantities so they are not true solitons.

The focus of this paper is a type of singular solution to the EPDiff, which we call Teichons.
Singular solutions first arose as peakons (from ‘peaked solitons’) for a completely integrable Hamil-
tonian water wave equation, C-H in [23]. The peaks occurred where the velocity profiles of the C-H
equation had discontinuity in its slope. These peaks correspond to Dirac delta distributions of the
associated momentum. The EPDiff equation for other metrics was later found independently in
[44], and its singular solutions were shown to be important as landmarks in shape analysis [28, 40].
Later they were shown to comprise a singular momentum map for the right action of the diffeo-
morphisms on embeddings in any dimension [29]. Currently, the use of EPDiff and its landmark
solutions is standard in shape analysis [30, 38, 39].

It turns out that considering the Weil-Petersson metric on the coset space PSL2(R)\Diff(S1)
yields another example of a geodesic equation that is similar to KdV and C-H. This equation
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describing evolution of the velocity field v(t, θ) is

(1) mt + 2mvθ + vmθ = 0, where m = −H(vθ + vθθθ),

and H is the periodic Hilbert transform defined by convolution with 1
2π ctn(θ/2).

It is not known if (1) is completely integrable but it admits a class of soliton-like solutions which
we consider in this paper: solutions in which m can be represented as a finite sum of weighted Dirac
delta functions. Darryl Holm suggested the portmanteau Teichons to describe these soliton-like
solutions on Teichmüller space and their corresponding geodesics. We adopt this terminology in
this paper.

We use an N -Teichon ansatz (a sum of N Teichons) to reduce the integro-differential equation
(1) to a finite-dimensional system of ordinary differential equations. The main idea is then to
represent any shape by the initial velocity that would send the unit circle to the shape via the
geodesic equation. The initial velocity will be constructed from an N -Teichon, thus providing a
low-dimensional representation for a given shape. Because of the uniqueness of the geodesic in the
WP metric, this representation is well-posed. The algorithm that computes a Teichon geodesic
between any two given shapes was described in [36]. Note, that in [36] authors did not look for the
optimal number of Teichons. In Section 4.5 we derive estimates that suggest a way to choose the
Teichons to represent a particular shape.

Section 4 is organized as follows. Section 4.1 introduces the background on universal Teichmüller
space T (1), fingerprints (also called welding maps), and the Weil-Petersson metric. With the WP
metric, Section 4.2 discusses the geodesic equation on the Teichmüller space (also known as EPDiff),
and Section 4.3 discusses Teichon solutions of EPDiff. In Section 4.5 we derive estimate of the
curvature of the shape produced by a Teichon.

2. Measures of massiveness with a C1-type metric

Partially motivated by applications to compression, a subset of the mathematical community
has been interested in questions about efficient ε-approximation in Banach spaces. We present
the earliest such results for curves, first presented in [16] without complete proof. A lesson from
results on Banach spaces is that when ε-balls are rectangular instead of round, they stack more
efficiently and therefore give a clear sense of how large an infinite-dimensional metric space might
be. The Hausdorff metric, the typical L∞-type metric on plane curves, is the simplest metric
inducing rectangular ε-balls. For curves, however, orientation is often viewed as more relevant to
similarity than location. We therefore introduce a C1-type metric on curves. See Figure 1.

d

P

Figure 1. Left: These concentric circles have Hausdorff and ρ1 distances both equal to the dif-
ference in radii of the circles. Right: The Hausdorff and ρ1 distances may be different for these
circles, depending on the value of d. If d ≥ π/2, ρ1 will equal the Hausdorff distance. If d < π/2,
the Hausdorff distance will equal d while ρ1 = π/2, the difference of tangent angles at the circled
intersection point P .
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Consider E , the set of all embeddings of the unit circle into R2 passing through the origin
with horizontal tangent angle. Among these embeddings are curves with Lipschitz tangent angle,
denoted E1. With analogous notation for immersions, we obtain classes I and I1. For curves that
are not necessarily closed, we have C and C1. Naturally, E1 ⊂ I1 ⊂ C1.

Let γ1, γ2 ∈ C1. For p ∈ γi, θ(p) will indicate the tangent angle to γi at the point p. A C1-type
metric is quite natural:

ρ1(γ1, γ2) = max
i=1,2
i 6=j

(
max
q∈γi

min
p∈γj

(|p− q|+ λ |θ(p)− θ(q)|)
)
,

where λ > 1/K is a dimension-normalizing constant.

2.1. Totally bounded spaces. Restricting to plane curves with length bounded by L and fixed
Lipschitz constant K, we obtain totally bounded spaces EK,L ⊂ IK,L ⊂ CK,L (these last two are
compact). We can then measure the massiveness of these spaces by counting the minimum number
of ε-balls in an ε-covering. Taking logarithms of that minimum number yields the ε-entropy of
the space [14].

Definition 1. Let Nε be the cardinality of a minimal ε-covering for a totally bounded subset X of
a metric space (M, ρ). The ε-entropy of (X , ρ) is then:

Hε(X , ρ) = log2Nε.

.

Our ε-entropy results for curves will draw on the following two results for functions, stated here
without proof.

Theorem 1. [14] For I = [a, b], C > 0, define:

F(C) =
{
f : I → R | f(a) = 0, |f(x)− f(x′)| ≤ C|x− x′|, ∀x, x′ ∈ I

}
,

and ρ∞(f, g) = supx∈I |f(x)− g(x)|. Then:

Hε(F(C), ρ∞) =

{ |b−a|C
ε − 1 C|b−a|

ε ∈ Z+
[
C|b−a|
ε

]
else.

Theorem 2. [16] Let I = [a, b], and define:

F0(C) =

{
f ∈ F(C) | f(b) = 0,

∫

I
f = 0

}
.

There exists a 2ε-separated set in (F0, L
∞) with m2ε elements, where m2ε � 2

C|b−a|
ε .

We now present results for curves. Note that we will pay an estimation tax of (1 + K2δ
4 ) for

viewing objects as curves instead of functions.

Theorem 3. With notation as above,

(a) Hε(C1
K,L, ρ1) ∼ KL

ε .

(b) Hε(I1
K,L, ρ1) ∼ C

ε , for KL−2π
ε ≤ C ≤ KL.

Proof. We compute the ε-entropy for a class by finding an ε-covering to obtain an upper bound,
a 2ε-separated set (a collection of elements in the class that must each belong to a distinct ε-ball)
to obtain a lower bound, so that the upper and lower bounds are asymptotically equal as ε → 0.
Note that an ε-covering for C1

K,L provides an upper bound for the other curve classes as well.

Denote the function class consisting of associated tangent angle functions to curves in C1
K,L by

Θ1
K,L = {θ(s) : [0, L] → R | |θ(s1) − θ(s2)| ≤ K|s1 − s2|, θ(0) = 0}. Here we take s to be an

arclength parameter with γ(0) = 0 for each γ ∈ C.
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(1) Upper Bound: Take δ so that ε = δ+
√
δ
λ , and set ξ = 3/2. Begin by partitioning possible

arclengths l, 0 < l ≤ L, into sequential subintervals of width δξ

4 with the first subinterval

given by (0, δ
ξ

4 ]. There will be
[

4L
δξ

]
such subintervals. Parametrize a curve γ ∈ C1

K,L of

length l ∈ (li− δξ

4 , li] so that γ(0) = 0, the tangent angle θ(0) = 0, and
∣∣∣dγdt
∣∣∣ = l

li
. For curves

associated to each arclength subinterval, |θ(t1)− θ(t2)| ≤ l
li
K ≤ K.

Each class Θ1
K,li

then admits an L∞ δ-covering with at most 2
Kli
δ ≤ 2

KL
δ elements by

Theorem 1. This generates an ε-covering for (C1
K,li

, ρ1). To see this, lift a δ-ball of tangent

angle functions in Θ1
K,li

to its curve primitives in C1
K,li

. This lifted ball will have ρ1 radius

of 2li sin δ
2 + λδ ≈ (li + λ)δ.

We must refine the lifted covering to give a ρ1 ε-covering. To do so, we correct for

location (the first term in ρ1) in three directions every ∆ = δξ−1

4 in arclength, introducing
discontinuities into the curves at the centers of the refined balls. See Figure 2. The length of

the discontinuity is δξ

4 + δ∆
2 . We claim this procedure produces an ε-covering for (C1

K,li
, ρ1).

γ
+ δ∆

s=a

’γ

’γ

2

ξ
δ_

2

ξ
δ_

Figure 2. Refining the lifted covering to maintain the required ρ1 radius by introducing jump
discontinuities to the centers of the refined covering.

To see this, suppose |γ(0) − γ̂(0)| ≤ δξ/2, |θ(t) − θ̂(t)| ≤ δ, and suppose that for k =

0, 1, . . . ,
[
li
∆

]
−∆, |γ(k∆)− γ̂(k∆)| ≤ δξ/2. Then:

|γ((k + 1)∆)− γ̂((k + 1)∆)| ≤
∫ (k+1)∆

k∆
2

∣∣∣∣∣sin
θ − θ̂

2

∣∣∣∣∣ dt+
δξ

2

≤ δ∆ +
δξ

2

=
3δξ

4
.

Once we correct γ̂ to return to within δξ/2 of any γ at t = k∆ for each 0 ≤ k ≤
[
li
∆

]
−∆,

we will have refined the lifted covering of (C1
K,li

, ρ1) to an ε-covering.

Let P = limt→k∆− γ̂(t) for some k. Consider the closed disk of radius δξ

4 centered at P .

We set γ̂(k∆) to be one of the three points at a distance of 3δξ

8 away from P along one of
the radii at an angle of 0, π/3 or 2π/3 around the disk. If γ is in the refined ball associated
to γ̂, γ(k∆) will be within the disk and will have distance from γ̂(k∆) of no more than
3
√

3δξ

8 < δξ

2 . The curves γ, γ̂ then satisfy our conditions in the interval [k∆, (k + 1)∆) and

are therefore at a distance of no more than 3δξ

4 there. As the tangent angles of two curves
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in a lifted ball are no more than δ apart, we have that each curve γ is within ε = δξ + λδ
of at least one center γ̂ of the refined covering.

Repeating the above process for each k and each li produces an ε-covering with at most[
4L√
δ3

]
2m balls, where m =

[
KL
δ

]
+ log 3

[
4L√
δ

]
, giving the desired asymptotic result.

(2) Lower Bound for C1
K,L: We construct a 2ε-separated set of curves by generating functions

and viewing their realizations as plane curves. This turns out to be more delicate than one
might initially suspect.

Choose δ so that ε = δ

1+K2

4

and set L′ = L/
√

1 +K2δ. Subdivide [0, L′] into subintervals

Ik = [k
√
δ, (k+1)

√
δ], k = 0, 1, . . . ,

[
L′√
δ

]
. For each Ik, apply Theorem 2 with C = K, ε = δ,

a = k
√
δ, b = (k + 1)

√
δ to obtain a collection of functions fi,k, i = 1, . . . ,

[
K√
δ

]
, satisfying

for all i, k:
• ||fi,k − fj,k|| ≥ 2δ for i 6= j
• fi,k(a) = fi,k(b) = 0
•
∫
Ik
fi,k = 0

• ||Fi,k||∞ ≤ K
√
δ

2 .
From these, we generate for each i, k a primitive gi,k so that g′i,k = fi,k. These primitives

have curvature bounded by K and satisfy for all i, k:
• gi,k(k

√
δ) = gi,k((k + 1)

√
δ) = 0

• gi,k at x, θi,k(kδ) = θi,k((k+ 1)δ) (where θi,k(x) denotes the tangent angle to the curve
(x, gi,k(x)))

• ||θi,k − θj,k|| ≥ 2δ

1+K2δ
4

= 2ε.

Create a functions {gi} on [0, L′] by concatenating all possible sequences {gi,k}k. Since
each function gi,k has length given by:

∫

Ik

√
1 + f2

i,k ≤
∫

Ik

√

1 + (K

√
δ

2
)2

=
√
δ ·
√

1 +
K2δ

4
,

the total arclength of any gi (viewed now as a plane curve) is no more than:

L′

δ

√
δ ·
√

1 +
K2δ

4
= L.

Furthermore, ρ1(gi, gj) ≥ 2ε for i 6= j. Recall that λ > 1/K, and note that if gi 6= gj , we
may assume (possibly by swapping labels i and j) that g′i has slope K and g′j has slope

−K on some interval I = [x0, x0 + δ/K] which means |g′i(x0 + δ/K)− g′j(x0 + δ/K)| ≥ 2δ.
Without loss of generality, we may take x0 = 0. Now consider the ρ1-distance of gj to the
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point (δ/K, gi(δ/K)):

ρ1(gi, gj) ≥ ρ1 ((δ/K, gi(δ/K)) , gj)

geq min
x

1

λ

∣∣∣∣
δ

K
− x
∣∣∣∣+ |θi(δ/K)− θj(x)|

= min
x

1

λ

∣∣∣∣
δ

K
− x
∣∣∣∣+
∣∣arctan g′i(δ/K)− arctan g′j(x)

∣∣

≥ min
x

1

λ

∣∣∣∣
δ

K
− x
∣∣∣∣+

1

1 + K2δ
4

∣∣g′i(δ/K)− g′j(x)
∣∣

≥ min
x

1

λ

∣∣∣∣
δ

K
− x
∣∣∣∣+

1

1 + K2δ
4

|δ +Kx|

≥ 2δ

1 + K2δ
4

= 2ε

The last inequality arises from finding the minimizing x = δ/K.
Hence the curves described by the functions {gi} give a 2ε-separated set for ρ1. All that

remains is accounting: Each subinterval Ik produces m functions fi,k where m � 2
K
√
δ

δ ,

and there are [L
′

δ ] subintervals, which gives a total number of curves in the 2ε-separated set

asymptotically equal to 2
K
√
δ

δ
·L
′
δ = 2

KL
ε .

(3) Lower Bound for I1
K,L: The lower bound for closed curves slightly modifies the argument

for open curves. Generating a theorem like Theorem 2 that will generate closed curves
corresponds to an unsolved question in partition theory. Instead, we sacrifice tightness of
our lower bound.

Again, select δ so that ε = δ√
1+K2δ

4

. Take L′ to satisfy 2L′ ≤ L√
1+K2δ

4

− 2π
K and gen-

erate functions gi as above that are ρ1 2ε-separated. Taking any two such functions (not
necessarily distinct), join two halves of a circle of radius 1/K to form a closed curve with
Lipschitz tangent angle, Lipschitz constant K, and length bounded by L. The number of
such curves is 2m where m � 2KL′

δ = KL−2π
ε .

�

2.2. Applications to adaptive coding for unbounded spaces. We replace the finite ε-covering
giving an upper bound for the above ε-entropy estimates for the totally bounded spaces CK,L and
IK,L with a countable ε-covering in the full curve spaces C1 and I1. Changing philosophy only
slightly, one may view the ε-entropy of a class as the minimum number of bits required in a uniform
encoding of the elements of that class with ε error. From this perspective, we consider a countable
covering of a non-bounded space as an adaptive (non-uniform) encoding of the elements of that
space. The bits required for encoding a particular element represent the complexity of encoding
that element in the given scheme. The number of balls will be infinite, but the number of bits for
any given element will be finite. Again, we are interested in asymptotic behavior of the bit rate as
ε→ 0.

We have seen that, given a good L∞ approximation for the tangent angle function for a curve,
obtaining a good ρ1 approximation for the curve itself requires only lower order terms. In other
words, the leading term in an adaptive approximation for a curve in C comes entirely from approx-
imating the corresponding tangent angle. The following theorem for functions therefore tells the
whole story for curves.

Theorem 4. For every ε > 0, there exists a countable codebook Fε = {f1, f2, . . .}, depending only
on ε, with the following property. For every Lipschitz function f defined on [a, b] so that f(a) = 0
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and f ′(x) is continuous a.e., there are constants C(f, δ) such that for all δ > 0, there is a codeword
fn ∈ Fε such that ||f − fn||∞ ≤ ε and fn has description length:

L(fn) ≤
[∫ |f ′|+ δ

ε

]
+ C(f, δ).

Proof. Since f ′ is continuous a.e. and bounded, f ′ is Riemann integrable. Therefore, for any δ,
there exists a step function g taking on rational values, with a finite number of jumps at rational
points {x′j}, so that |f ′| ≤ g and

∫
g ≤

∫
|f ′| + δ. On each subinterval Ij = [xj , xj+1) where g is

constant, f is therefore Lipschitz with constant g(xj). Denote the number of jumps by m.

Using g, determine a variably spaced finite number of points {xk} so that for any k,
∫ xk+1
xk

g ≤ ε.
In particular, on each subinterval Ij , select the points spaced ε

g(x′j)
apart. There will be at most:

[
g(x′j)|Ij |

ε

]
+ 1 =

[∫
Ij
g(x)

ε

]
+ 1

such points. Take {xk} to be the collection of {x′j} together with these equally spaced points.
Construct an approximation fn for f . We claim there exists a piecewise linear function φn, with

slope ±g(xk) on the interval Jk = [xk, xk+1), vanishing at a, so that f ⊂ K(φn), where K(φn) is
the corridor of width 2ε with φn as its top boundary. On J1, take φn(x) = g(0)x. Certainly, since
f is Lipschitz with constant g(0) on I1, f ⊂ K(φn). Inductively, assume φn has been constructed
so that f ⊂ K(φn) for x ≤ xk. We wish to define φn for Ik so that f remains in K(φn). Since f is
Lipschitz with constant g(xk) on Ik and f ⊂ K(φn) for x ≤ xk, one of the following is true:

(a) f(xk+1) ∈ [φn(xk)− g(xk)(x− xk), φn(xk) + g(xk)(x− xk)] ⊂ [φn(xk)− ε, φn(xk) + ε],

(b) f(xk+1) ∈ [φn(xk)− g(xk)(x− xk)− 2ε, φn(xk) + g(xk)(x− xk)− 2ε]
⊂ [φn(xk)− 3ε, φn(xk)− ε].

If (a) is true, then defining φn to have positive slope on Ik gives f ⊂ K(φn). If (b) is true, then
defining φn to have negative slope on Ik gives the desired result. And so we have constructed a φn
so that f ⊂ K(φn). Taking fn to be the center of the corridor K(φn), we have ||f − fn||∞ ≤ ε.

Encode f by encoding fn, or equivalently, φn. To do so requires describing g, which in turn
requires describing the collection of points {xk} as outlined above. We must also describe the
sequence of signs ± to assign to the slopes g(x′j) at each of the points {xk}. Since g has rational
jumps at rational values, encoding g requires a fixed and finite number of bits depending only on f
and δ, yielding the constant C(f, δ). Describing a sign requires a single bit. As this must be done
at each of the {xk}, we see encoding the sequence of signs requires at most:

∑

j

([∫
Ij
g

ε

]
+ 1

)
+m ≤

[∫
[a,b] g

ε

]
+ 2m

bits. Then, absorbing 2m into C(f, δ), the total number of bits required to describe fn satisfies:

L(fn) ≤
∫
g

ε
+ C(f, δ) ≤

∫
|f ′|+ δ

ε
+ C(f, δ),

as claimed.
�

Corollary 1. Suppose γ ∈ C has curvature κ(s), s an arclength parameter. Then the leading term
in the number of bits for an adaptive encoding of γ with ε-accuracy in the metric ρ1 is at most:

[∫ |κ(s)| ds+ δ

ε

]
.
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Corollary 1 allows now for an intrinsic evaluation of curve-based shape representations for any
given shape. Fix δ > 0. Presented with two candidate shape representations, the one requiring
fewer bits for the given shape is the one that more efficiently captures that shape’s structure (this
is Rissanen’s minimum description length [17]). For a comparison of boundary representation to
the medial axis representation based on Corollary 1, see [16] where we obtain a precise criterion for
when the boundary is more efficient.

3. Curve matching with a Sobolev-type metric

One of the most important problems in shape is curve matching – finding similar points on a
pair of curves, for example in an object recognition problem. One typically wishes to introduce a
notion of shape similarity (which may or may not be a metric) on a space of curves in order to make
statements about which curves most closely resemble each other. We here introduce a multiscale
analysis on curves which can be used to provide a local or global measure of similarity between a
pair of curves. These geometric Sobolev-type metrics have their roots in a theorem from harmonic
analysis which relates L2 norms of fractional derivatives to averages of finite differences, and they
provide both effective algorithms and strong statements about regularity.

3.1. Some classical results. Our wavelet-like constructions are motivated by the following the-
orem (see Stein [5]):

Theorem 5. Let f : Rn → R be in L2 ∩ C1. Then
∫

Rn

∫

Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|ndx = cn

∫

Rn

n∑

k=1

∣∣∣∣
∂f

∂xk

∣∣∣∣
2

dx

where cn depends only on the dimension.

Changing the power of |t| reweights the various scales and will increase or decrease the number
of derivatives being taken. For 0 < α < 2 we have that

‖f (α)‖2L2 = cn,α

∫

Rn

∫

Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2α

dt

|t|ndx

While it is tempting to look at the second differences and think of the second derivative, this
is not particularly useful here. The second differences are in fact the Haar wavelet coefficients of
f ′, so the theorem is really looking at the first derivative. Note that the integral does not even
converge at α = 2.

There is also a local statement:

Theorem 6. For almost every x ∈ Rn, the function f : Rn → R has a weak derivative in the L2

sense at x iff
∫

Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|n <∞

Again, if we introduce the parameter α we get corresponding statements for the order-α deriv-
ative.

Remark 1. The function

F (x, t) = f(x+ t) + f(x− t)− 2f(x)

defines, modulo affine functions, a lift of f : Rn → R to the space of functions Rn × Rn → R. One
may define the square function SF as

SF (x)2 ≡
∫

Rn

|f(x+ t) + f(x− t)− 2f(x)|2
|t|2

dt

|t|n
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One now sees that Theorems 5 and 6 both relate regularity of f to the square function SF . We will
use very similar square functions later, when we lift a curve Γ ⊂ R2 to a function β : R × R → R
which has a similar square function associated with it.

Let γ(s) be an arc-length1 parametrization of a smooth curve Γ ⊂ R2 and let {zn}Ni=1 be a
collection of sample points taken at equal arclength along Γ (we are not yet assuming any noise
in the samples). Given the parametrization γ(s) = x(s) + iy(s), we define the angle β(s, t) with
respect to γ by

β(s, t) ≡ arg
γ(s+ t)− γ(s)

γ(s)− γ(s− t)
We introduce the α “norm”2 for curves, defined for closed curves as

‖γ‖2α =

∫ L

0

∫ L/2

0
β(s, t)2 dt

|t|2α−1
ds(2)

where L is the length of Γ, and for open curves as

‖γ‖2α =

∫ L

0

∫ min(s,L−s)

0
β(s, t)2 dt

|t|2α−1
ds(3)

In making computations on discretized closed curves3 we will use the equivalent dyadic variant

‖γ‖2α =
N∑

n=1

K∑

k=1

β(n, k)22−2k(1−α)(4)

where

β(n, k) = arg
γn+2k−1 − γn
γn − γn−2k−1

These constructions give geometric variants of theorem (5); the β’s are to curves what the second
differences are to functions. The next subsection gives these results in the dyadic case.

3.2. The mapping from β’s to wavelet coefficients. Consider Γ ⊂ C which is the graph of a
Lipschitz function; i.e. Γ = {x+ iA(x)} ⊂ C where A : R→ R satisfies ‖A′‖∞ < M . If γ : R→ C
is an arc-length parametrization of Γ we define φ : R→ [− arctanM, arctanM ] a.e. by writing

γ′(s) = eiφ(s)

Let D be the set of dyadic intervals of R. Given I ∈ D, we write xI for the midpoint of I and
x+
I , x

−
I for the right and left endpoints, respectively. Denote by hI the Haar wavelet associated

with I:

hI(x) =

{
|I|−1/2 , x ∈ [xI , x

+
I ]

−|I|−1/2 , x ∈ [x−I , xI)

We will generally write xI for intervals in the domain of a function and sI for intervals in the
domain of a curve. Given our curve γ(s), we may consider the dyadic β angles

βIγ = arg
γ(s+

I )− γ(sI)

γ(sI)− γ(s−I )

1Arc-length sampling is not at all necessary; we assume it mostly for a concise presentation. The results can easily
be modified if, for example, the sampling intervals are bounded above and below.

2It is not correct to refer to this as a norm on curves; we have not imposed a linear structure on the space of
curves. However, these integrals of β angles play a role analogous to the Sobolev norms on function spaces and the
β’s themselves share many features with wavelet coefficients from the point of view of analysis. We hope the reader
will forgive this abuse of terminology.

3Open curves can be handled as well; the easiest method is simply truncating the sum near the endpoints.

bishop
Sticky Note
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as well as the Haar coefficients of γ′

aI = 〈γ′, hI〉
We see that in the sense of distributions, the Haar coefficients of γ′ in fact agree with the second
differences of γ, up to a rescaling:

aI = 〈γ′, hI〉
= |I|−1/2

(
γ(s+

I ) + γ(s−I )− 2γ(sI)
)

Geometrically, aI is a vector joining γ(sI) to the opposing vertex of the parallelogram defined by
the three points (γ(s+

I ), γ(sI), γ(s−I )). The next theorem shows that on Lipschitz graphs, the β’s are
almost the wavelet coefficients aI . While this is pointwise false, it becomes true after integrating.
We first state a lemma. Decompose aI into “tangential” and “normal” components

aI = atI + anI

where

atI = proj`IaI

anI = proj`⊥I
aI

and ` is the line joining γ(s−I ) to γ(s+
I ) (see figure 3). We think of ` as a rough tangent line, thus

γ(s)

γ(s − t)

γ(s + t)

δ(s, t)

γ(s)
γ(s − t)

γ(s + t)

√
san

√
sat

Figure 3. Wavelet coefficients of complex-valued γ′ in the continuous setting. Left: The wavelet
coefficients a(s, t) are, up to the L2 rescaling, given by the vector δ(s, t) joining γ(s) to the opposite
vertex of the parallelgram. Right: Again up to rescaling, the “normal” and “tangential” parts an, at

are given by the projections of δ onto the line ` joining γ(s− t) to γ(s+ t).

the terminology. We will use the fact that |aI |2 = |atI |2 + |anI |2. Our next lemma says that the β’s
and the normal components anI agree up to a rescaling; the proof is a simple geometric argument.

Lemma 1 (β is anI ). With β, γ, φ, aI defined as above,

|anI | ∼ |βI ||I|1/2

with constant that depends only on M .

In fact, under certain conditions, we can use β in place of the entire coefficient aI . Pointwise,
this is false, but on Lipschitz graphs, anI controls atI after integrating, when α is large enough. The
next theorem makes this precise. Let I be a dyadic partition of the domain of A.

Theorem 7 (β’s are almost wavelet coefficients). For 0 < α < 1,
∑

I∈I
|aI |2|I|−2α ∼

∑

I∈I
β2
I |I|1−2α

with constant that depends only on the Lipschitz constant M .
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Remark 2. The condition α > 0 in Theorem 7 is necessary, and the counterexample for other α
contains the gist of the proof. Consider the curve of length 2 obtained by joining the line segment
[−1, 0] ⊂ R to 2k triangle functions with sides of slope ±M , as shown in figure 4. Let γ be
an arclength parametrization of this curve. Note that the rightmost endpoint of the curve lies at(

1√
1+M2

, 0
)

, independent of k, so the tangential part of the largest aI is non-zero. If I is a dyadic

partition of [−1, 1] we see there are 2k non-zero βI ’s which share some common value β. We have
∑

I∈I
β2
I |I|1−2α = β22k

(
2−k
)1−2α

= β222αk

If α < 0 we can make this arbitrarily small by increasing k, so no variant of Theorem 7 can hold.

(-1,0) (0,0)
(

1√
1+M 2, 0

)

Figure 4. The condition α > 0 is necessary in Theorem 7. For α < 0, the cost of the wiggly part
vanishes as the number of wiggles increases.

In light of Theorem 7 it follows that statements about local regularity of γ(s) which can be ob-
tained via decay of wavelet coefficients can be translated immediately into an equivalent statement
about the β’s. For example, Theorem 7 has an immediate corollary:

Corollary 2 (Characterization of Sobolev spaces via β). For 0 < s < 1, γ ∈ H1+s iff
∑

I∈I
β2
I |I|1−2α ≤ ∞

Proof. By Theorem 7, the fractional derivative seminorms induced by the aI and the β’s are com-
parable, and γ is always in L2 by construction, hence this is simply a restatement of the definition
of H1+s. �

In summary, studying the β angles and their decay at small scales is equivalent to studying
the wavelet coefficients of the derivative γ′. Any statements about regularity obtained using one
construction translates immediately into a corresponding statement about the other. In the next
sections we will construct matching algorithms based on square functions of β and other related
quantities.

3.3. Curve matching. We now apply the theoretical results of the previous section to design a
family of curve matching algorithms. Let γ1, γ2 : [0, 2π) → C be unit-speed parametrizations of
some pair of plane curves Γ1,Γ2. For simplicity we will assume these are Jordan curves; the main
reason is that the periodic versions of all our formulas are simpler to state than the versions which
allow for endpoints of arcs. We normalize both curves to have length 2π.

A standard technique to define a distance between two curves is to consider all aligning home-
omorphisms σ : [0, 2π] → [0, 2π] which define correspondences between points γ1(θ) on Γ1 and
γ2 ◦σ(θ) on Γ2 (see Figure 5). One then uses geometric criteria to associate a cost with the map σ.
For example, using the β angles described above, one could match curves as follows. For i = 1, 2,
define the angles on the i-the curve at scale t:

βi(θ, t) = arg
γi(θ + t)

γi(θ − t)
In analogy with square functions in analysis (see [6]), we now define a type of geometric square
function associated with the angles β. In fact, more generally we can allow β to be any lift of a
curve to R2 (or some subset of R2 and make the following definition.
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Figure 5. Curve alignment. These are two images from the MPEG7 dataset. The point γ1(θ) on
the blue curve Γ1 is matched to γ2 ◦ σ(θ) on Γ2.

Definition 2 (Geometric square function). Let S be the space of simple closed curves of length 2π
and let P : S → [0, 2π]× R be any lift. Define the square function associated with P to be

SαP (θ, t)2 =

∫ ∞

0
P (θ, t)2 dt

t2α−1

In the case where P = β, for example, we recover the geometric Sobolev norms introduced in
the previous section. If γ is an arclength parametrization of a curve, then

‖γ‖2α =

∫ 2π

0
Sαβ(θ)2dθ

As we discuss below, we will consider lifts other than β.
Now given a map σ : [0, 1]→ [0, 1] and a choice of α ∈ (0, 2) we define the matching cost

K(σ) =

∫ 2π

0

∫ ∞

0
(β1(θ, t)− β2(σ(θ), t))2 dt

t2α
dθ(5)

This is the natural norm on the lift β which is compatible with the square function Sβ. To define a
distance, one chooses a class Σ of maps (say, homeomorphisms, or Lipschitz mappings), and defines

d2(Γ1,Γ2) = inf
σ∈Σ

K(σ)

or the symmetric variant

d2
sym(Γ1,Γ2) = d2(Γ1,Γ2) + d2(Γ2,Γ1)

We have the following properties for dsym.

Proposition 1. Let Γ1,Γ2 be continuous closed curves and let Σ be the set of homeomorphisms
[0, 1]→ [0, 1]. The distance dsym defined by

d2
sym(Γ1,Γ2) = d2(Γ1,Γ2) + d2(Γ2,Γ1)

satisfies

(1) dsym(Γ1,Γ2) ≥ 0
(2) dsym(Γ1,Γ2) = dsym(Γ2,Γ1)
(3) dsym(Γ1,Γ2) = 0 iff Γ1 = Γ2

Proof. Non-negativity and symmetry are obvious. We claim that d(Γ1,Γ2) = 0 iff Γ2 = Γ1 es-
sentially follows from the fact that β is a lift. Indeed, assume we have two curves Γ1 6= Γ2, but
d(Γ1,Γ2) = 0. The second condition implies β1 = β2 a.e., and since β is continuous in θ and t we
have β1 ≡ β2, hence Γ1 = Γ2. �
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3.4. Discretization and computation. In order to achieve greater robustness, we wish to weaken
the matching cost (5) significantly. In the discrete setting, we proceed as follows. Say we have N
sample points taken at arc length along each curve. We wish to map some M ≤ N points on Γ1 to
similar points on Γ2. The aligning transformation σ then becomes a map

σ : {1, 2, ...,M} → {1, 2, ..., N}(6)

Once we fix a maximum scale of interest K, our distance can be approximated as

d(Γ1,Γ2) = min
σ∈ΣN

M∑

n=1

K∑

k=1

k−(1+2α)|β1(n, k)− β2(σ(n), k)|2

where ΣN is some class of admissible discrete alignments and the βi(n, k) are the β’s computed
about the n-th point on curve i at scale k. By scale k, we mean the k-th dyadic scale; i.e. if z(n)
are equally-spaced points along a curve, then set

β(n, k) = arg
(
z(n+ 2k)− z(n)

)
− arg(z(n)− z(n− 2k))

for k = 0, 1, 2, ...,K. In our experiments below, we have made the following choices:

(1) Each curve is resampled to 256 uniformly-spaced points. We match 128 randomly-chosen
points on Γ1 to their best matches on Γ2 and vice-versa to compute dsym.

(2) ΣN is the collection of all injective maps σ : {1, 2, ..., 128} → {1, 2, ..., 256}, without any
regard for topology.

(3) The β’s are computed at 7 dyadic scales. We weight each scale corresponding to the choice

of α = 1/2 to produce a H(1/2)-type norm.
(4) The optimal match may be computed with, for example, the Hungarian algorithm; in

practice we use a fast greedy algorithm which loops through a random permutation of
the 128 points on Γ1, pairing each point to the best match on Γ2 which has not already
been paired. We have not observed any significant difference between the classification
performance of this naive greedy algorithm compared to the optimal match.

(5) The symmetric distance dsym was used in all experiments.

Remark 3. The choice of H1/2 is natural in the following way: if one assumes that the boundaries
in the dataset have been corrupted by a white noise of a fixed (but unknown) variance, the H1/2

norm weights each scale according to the signal-to-noise ratio in that octave. Indeed, the empirical
results confirm that this is a reasonable choice, as the best results are obtained very close to H1/2.
H1/2 is also the Sobolev critical exponent at which the curve becomes continuous.

3.4.1. Other multiscale geometric quantities. In addition to computing the angles β, we also im-
plement the same algorithm, but replacing the β’s with the log ratio of point separation to arc
length4. We denote this by

`(n, k) = log
|z(θ + t)− z(θ − t)|

2t

Since Theorem 5 also holds in the case of complex-valued functions, we consider the complex

Figure 6. Left: The ratio of point separation to arc length |z(θ − t) − z(θ + t)|/2t is a natural
scale-invariant quantity on curves. Right: The dyadic β angles used in computations.

4This is asymptotically the angle β(s, t)2, so one can use ` to study local regularity. We use it here to capture
distortion of inter-point distances which is not captured by β.



16 MATT FEISZLI, SERGEY KUSHNAREV, AND KATHRYN LEONARD

Figure 7. (Some sample images from the MPEG7 test dataset. In certain categories, like the
spoons, guitar, and key images in the bottom row, it is not clear that any shape-based algorithm
(nor human subjects) would be able to correctly classify the images. Image from Veltkamp/Latecki
’00.)

second differences; these are not naturally scale-invariant so we normalize by the length of the
underlying arc, which is 2−k given our normalizations described above.

δ(n, k) = 2−k
(
z(n+ 2k) + z(n− 2k)− 2z(n)

)

Rotation-invariance was achieved for the complex second differences in two ways. Best perfor-
mance was obtained by rotating so the tangent to Γ1 pointed along the real axis before computing
the δ’s about a given point. Rotating so the “coarse tangents”, i.e. the line joining the endpoints
of the arc at scale k, pointed along the real axis gave only slightly lesser performance, with the
loss almost certainly owing to the fact that this allows inconsistent matching to take place across
scales.

Summarizing, we have not one method, but a family of curve matching algorithms based on
the distance dsym. The matching algorithm is the same in all cases; the only difference is the
geometry under consideration. We have tried several multiscale measures, swapping the angles β
for the complex differences δ or the length ratios `. In each case we use dyadic scales and make
the scale-invariant choice of placing equal weight on each scale (equivalent to looking at the 3/2
derivative). We list the choices here and summarize the discussion above; experimental results
appear in the next section.

(1) Angles β
These are the β angles described above.

(2) Complex second differences δ, tangent normalization
The complex second differences correspond to thinking of the curve as a complex-valued
function γ on the unit circle with |γ′| = 1 and applying Theorem 5. We normalize the
second differences by arclength, as described above. “Tangent normalization” means that
we achieve rotation invariance by rotating the curve so the tangent line coincides with the
real axis before computing δ’s about each point.

(3) Complex second differences δ, “coarse tangent” normalization
This differs from the previous only in how we achieve rotation invariance: instead of rotating
so the tangent to the curve lies along the real axis, we rotate differently at each point and
each scale. We rotate so the “coarse tangent”, i.e. the line joining the endpoints of the arc
at scale k, lies along the real axis.

(4) Distance ratios `
These are the ratios of point separation to arclength, as described above.

(5) Blend: β, `
This is a blended distance obtained by normalizing β and ` so the mean distances are equal
and then summing the two, equally weighted.

3.5. Experimental results: MPEG7 CE Shape-1 Part B. The MPEG7 CE Shape-1 B test
dataset is generally felt to be of the hardest datasets in the literature for testing shape classification
algorithms. The dataset contains 20 binary images in each of 70 categories. Some are hand-drawn,
some were extracted by thresholding digital images, some are cartoons, etc. The dataset has
essentially every possible major source of difficulty, including occluders, noise, and widely-varying
resolutions. On the other hand, it does not have many examples of shapes with articulated parts.
In any event, the standard test benchmark is the following.

(1) For each image Ik in the dataset, 1 ≤ k ≤ 1400
(a) Choose 40 other images from the dataset
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(b) Count how many of the 40 are in the same category as Ik (max possible is 20)
(2) Final score is called the “bull’s-eye percentage”:

BEP =
total images in correct class

28000

(28000 = 20 ∗ 1400 correct is the best possible.)

Some representative results from existing methods. Many, many more approaches exist, some
with very good scores.

Method BEP
Shape-tree [7] 87.7
Inner-distance Shape Context [3] 85.4
Shape Context [1] 76.51
Curvature Scale Space [4] 75.44

We report the following results using the methods described above:

Method BEP
Complex second differences δ, tangent normalization 85.64
Complex second differences δ, coarse tangent normalization 84.57
Blend: β, ` 78.59
Angles β 75.43
Distance ratios ` 74.21

The complex second differences yield performance nearly equal to the shape-tree method even
using a much weaker matching algorithm. The β angles and log-distance ratios ` both perform
reasonably well alone, but conspire to give better performance when blended. The blend was
created by normalizing both distances by the mean distance and summing their squares with equal
weight on each. The point seems to be that measuring angle and distance alone is good; measuring
them both together is better.

4. Weil-Petersson Metric: Conformal Mappings, Fingerprints, and Teichons

4.1. Shapes as diffeomorphisms of the circle S1.

4.1.1. Fingerprints. Let Dint be the open unit disk in the complex plane C, i.e. Dint = {z ∈ C |
|z| < 1}, and let Dext = {z ∈ C | |z| > 1} be its exterior.

For every simple closed curve Γ in C denote by Γint its union with the region enclosed by it,
and denote by Γext its union with the infinite region outside of Γ (including ∞).

Then by the Riemann mapping theorem, for all Γ there exist two conformal maps

fint : Dint → Γint, fext : Dext → Γext.

The interior map fint is unique up to replacing fint by fint ◦ A for any Möbius transformation
A : Dint → Dint, where A is defined as

A(z) =
az + b

b̄z + ā
, |a|2 − |b|2 = 1.(7)

This subgroup of Möbius group of selfmaps of the circle is denoted PSL2(R).
The map fext is normalizated such that fext maps ∞ to ∞, and that its differential carries the

real positive axis of the D-plane at infinity to the real positive axis of the Γ-plane at infinity.
Thus we define the map ψ which is called the ‘fingerprint’ (in Teichmüller theory this is known

as a ‘welding map’) of the shape

ψ = f−1
int ◦ fext ∈ PSL2(R)\Diff(S1).(8)
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Figure 8. Left: an ellipse. Right: various welding map representatives of the ellipse shape corre-
sponding to the same equivalence class in PSL2(R)\Diff(S1).

Note, that fext(S
1) = Γ, f−1

int (Γ) = S1. The fingerprint ψ : S1 → S1 is a real-valued orientation-
preserving diffeomorphism, and it uniquely identifies the shape Γ (modulo scaling and rigid trans-
lations). Due to the Möbius transformation ambiguity in the choice of fint, we see by construction
that ψ is a member of the right coset space PSL2(R)\Diff(S1). An example of a shape along with
four realizations of its fingerprint is given in Figure 8.

The inverse map from diffeomorphisms to shapes is called welding, and is defined as follows:
starting with ψ, construct an abstract Riemann surface by ‘welding’ the boundaries of Dint and
Dext via ψ. The resulting Riemann surface must be conformally equivalent to the Riemann sphere.
Choose a conformal map f from the welded surface to the sphere taking ∞ ∈ Dext to itself and
having real positive derivative there. Let Γ = f(S1) (for details and the numerical implementation
see [42]).

4.1.2. Weil-Petersson Norm. The Lie algebra of the group Diff(S1) is given by the vector space
Vec(S1) of smooth periodic vector fields v(θ)∂/∂θ on the circle. The Weil-Petersson metric for
v ∈ Vec(S1) can be expressed as [41]:

‖v‖2WP =
∑

n∈Ẑ

|n3 − n||vn|2

=

∫

S1

Lv(θ)v(θ)dθ.

Here v(θ) =
∑∞

n=−∞ vne
inθ (where vn = v−n for the vector field to be real), and Ẑ = Z\{n = 0,±1}.

The Weil-Petersson operator L is an integro-differential operator and it has the form

L = −H(∂3
θ + ∂θ).(9)

Above, H is the periodic Hilbert transform, defined as a convolution with 1
2π cot(θ/2).

The null space of the L operator is given by the vector fields whose only Fourier coefficients
are v−1, v0 and v1, i.e. vector fields of the type (a + b cos θ + c sin θ)∂/∂θ. These vector fields are
exactly in the Lie algebra sl2(R) of the Lie group PSL2(R).

It is a known fact [35] that the above WP norm on vector fields can be extended to the right-
invariant WP-Riemannian metric on the coset space PSL2(R)\Diff(S1).
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Consider any two diffeomorphisms ψ0, ψ1 ∈ PSL2(R)\Diff(S1). The Riemannian distance
induced by the WP norm on vector fields is given by

L =

∫ 1

0
‖v(s)‖WPds, where v(θ, t) = ∂ψ(ψ−1(θ, t), t)/∂t.(10)

Vector fields v that minimize the distance (10) are geodesics on PSL2(R)\Diff(S1).

4.2. The geodesic equation. The Euler-Poincaré equation for diffeomorphisms (hereafter ‘EPDiff’)
is a variant of Euler’s equations for fluid flow. It describes geodesics on the Lie group of diffeo-
morphisms of Rn in any right invariant metric given on vector fields by ‖v‖2 =

∫
Rn〈Lv, v〉dx for

some positive definite self-adjoint operator L (where 〈·, ·〉 is the canonical L2 pairing). The general
EPDiff(Rn) is derived in [20] and has the form

∂

∂t
Lv + (v · ∇)(Lv) + div v Lv +Dvt · Lv = 0,

where v is a smooth vector field in Rn, ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)T
is the divergence operator, L is a

self-adjoint differential operator and Dv is a Jacobian matrix.
The above formula extends to the setting of the homogeneous space PSL2(R)\Diff(S1) [33, 35].

Thus given a path φt(θ) = φ(θ, t) in Diff(S1), let v(θ, t) = ∂φ
∂t (φ−1(θ, t), t) be the scalar vector field

it defines on a circle and let L be the Weil-Petersson differential operator L = −H(∂3
θ + ∂θ). Then

EPDiff takes the form

(11) (Lv)t + v.(Lv)θ + 2vθ.Lv = 0.

Above, v(θ, t) is called the velocity of the path, m(θ, t) = Lv(θ, t) is the momentum, and this
equation is the same as introduced in (1). We note in particular that the momentum can be a
distribution. The v → m map may be inverted by the relation v(θ, t) = G ∗m(θ, t), where G is the
Green’s function G(θ) of the WP operator L. The Green’s function G(θ) is obtained as a solution
to LG = Proj(δ0), where δ0 is the Dirac measure centered at θ = 0, and Proj(δ0) is the projection
of δ0, such that 0th, ±1st Fourier coefficients of Proj(δ0) are zero. Expression for G(θ) has been
computed in [34], see Fig. 9:

G(θ) = (1− cos θ) log [2(1− cos θ)] +
3

2
cos θ − 1.(12)

Figure 9. Greens function (12) of the Weil-Petersson operator L = −H(∂3
θ + ∂θ)
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4.3. Teichons, Singular Solutions of EPDiff. The EPDiff equation (11) admits momenta so-
lutions that, once initialized as a sum of N Dirac measures, remain a sum of N Dirac measures
for all time [23, 29]. In reference to this self-similarity property, these singular solutions are named
Teichons (or an N -Teichon).

For a solution to EPDiff (11), we employ the N -Teichon ansatz

m(θ, t) =
N∑

j=1

pj(t)δ(θ − qj(t)),(13a)

v(θ, t) =

N∑

j=1

pj(t)G(θ − qj(t)),(13b)

where δ , δ0 is the origin-centered Dirac mass. Plugging these expressions into EPDiff (11), we
obtain a system of ODEs describing the evolution of the momentum coefficients pk and the Teichon
locations qk:

(14)





ṗk = −pk
∑N

j=1 pjG
′(qk − qj),

q̇k =
∑N

j=1 pjG(qk − qj).
Momenta m must lie in the horizontal space, i.e. m(θ, t) must have vanishing 0th and ±1st Fourier
coefficients. Using (13a), we obtain a set of three constraints for (qk, pk), linear in pk:

(15)
N∑

j=1

pj =
N∑

j=1

pje
iqj =

N∑

j=1

pje
−iqj = 0.

If they are satisfied at time t = 0 they will be satisfied for all t. The Teichons never collide: i.e.
the Teichon locations qk retain their initial ordering on S1 for all time.

The system (14) is a Hamiltonian system and can be efficiently solved using a symplectic
integrator, for example Lobatto IIIA-B (for details see [34]).

4.4. Numerical Simulations. We start with the initial shape as a circle, and evolve it with an
N -Teichon. In other words we have the vector field of the form

(16) v(θ, t) =
N∑

k=1

pk(t)G(θ − qk).

The evolution of the shape is the result of the corresponding evolution of the fingerprint

(17)
∂ψ(θ, t)

∂t
= v(ψ(θ, t), t), ψ(θ, 0) = θ.

Note, we are not solving a boundary value problem, but an initial value problem. In other
words we specify the initial velocity (i.e. pk(0) and qk(0)), solve forward equations (14) to obtain
evolution of {pk(t)}Nk=1, {qk(t)}Nk=1. We plug this in (16), thus obtaining the time evolution of the
velocity field. Integrating the flow equation (17) will yield the evolution of the fingerprint ψ(θ, t).
Performing the welding procedure will give us the time evolution of the corresponding shape. We
consider a few cases below.

4.4.1. Case N = 4, d0 = 0.2. The initial configuration that determines the velocity field is

p(t = 0) = (p0,−p0, p0,−p0), q(t = 0) = (2π − d0/2, d0/2, π − d0/2, π + d0/2).

In Fig. 10 you can see an eye-like shape, that is the result of the evolution from the circle by
the above velocity field, for d0 = 0.2 and variable p0. The estimates for the evolution of p(t), d(t)
and the shape were derived in [34].
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Figure 10. Final shapes of the 4-Teichon evolution for d0 = 0.2 and p0 = 1, 2, 3, 4 and 5. Asterisks
indicate location of Teichons: on the circle at the initial time t = 0; on the final shape at time t = 1.

Figure 11. Final shapes at T = 1 of the 4-Teichon evolution for d0 = π/2 and p0 =
0.5, 1, 1.5, 2, 2.5, 3 (from left to right, from top to bottom). For p0 = 0 the final shape is the
initial circle. Asterisks indicate location of Teichons: on the circle at the initial time t = 0; on the
final shape at time t = 1.

4.4.2. Case N = 4, d = π/2. In this case we consider the four 1-Teichons to be distributed equidis-
tantly on the circle at t = 0. Initial configuration is

p(t = 0) = (p0,−p0, p0,−p0), q(t = 0) = (π/4, 3π/4, 5π/4, 7π/4).

On Fig. 11 you can see the range of shapes that one gets with the initial configuration of Teichons
with d0 = π/2 and p0 ranging from 0.5 to 3. The integration scheme failed to compute evolution
of p(t), q(t) for p0 > 3.
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In Fig. 12 we show the evolution of curvature from t = 0 to t = 1 for a configuration of
Teichons d0 = π/2, p0 = 1. Curvature has been estimated by fitting a second degree polynomial.
Namely, assume that the curve is described by a finite sequence of points {m(k)}Nk=1. We fix an
approximation scale, an integer D ≥ 1. For each k we are looking for three two-dimensional vectors
a(k), b(k), c(k) such that:

m(k + l) ≈ a(k)
l2

2
+ b(k)l + c(k).

The curvature at a point m(k) is then approximated via the formula:

κ(k) =
det[b(k), a(k)]

|b(k)|3 .

In the graphs in this section we have used approximation scale D = 3.
It shows an interesting behavior of an N-Teichon solution: the resulting curve consists of arcs

of the circles, at least for some initial time. If Teichons run into each other, then the curvature
between them becomes larger, thus they produce a circle of the radius that gets smaller with time.
On the intervals where Teichons are moving away from each other, the curvature decreases, thus
producing circles of larger and larger radii.

4.4.3. Case N = 6. We consider an example of a 6-Teichon with

p(t = 0) = (2,−1.4142, 1.4142,−2, 1,−1), q(t = 0) = (−π/4,−π/6, π/6, π/4, 3π/4, 5π/4).

The values of pk were adjusted such that the constraints (15) are met. The resulting shape at t = 1
is presented in Fig. 13.

The curvature evolution for a 6-Teichon is shown in Figure 14. We observe a compound effect:
Teichons that move toward each other produce increases in curvature, and the ones that are closer
at the initial time produce higher curvature than the ones that are further apart. Notice how this
is reflected in the shape: the right part of the shape has two sharp corners (higher curvature)
connected by a less curved arc, while the opposite side has the same appearance as in the ellipse
example. We derive the curvature evolution estimates in Section 4.5.

4.5. Curvature Evolution Estimates. We wil estimate the values of the curvature of the N -
Teichon at the small initial time ε. Recall, that the N -Teichon velocity is given by v(θ, t) =∑N

k=1 pk(t)G(θ − qk(t)). The flow equation for the fingerprint at time ε will be

ψ(θ, ε) = θ + εv(θ, ε) + o(ε)

It has been shown in [24] that the differential of the welding map at the origin (i.e. a unit circle)
has the form

v(θ) 7→ 1

2
(iv(θ) +Hv(θ))eiθ

∂

∂z
.

In other words, if the fingerprint of the circle, ψ(θ) = θ, is perturbed by εv(θ), then the resulting
shape will be a perturbation of the circle eiθ:

r(θ) = eiθ +
ε

2
(iv(θ) +Hv(θ))eiθ + o(ε).

Computing derivatives with respect to θ yields (writing only the linear terms):

r′(θ) = ieiθ + ε
eiθ

2

[
HR1(θ) + iR1(θ)

]
,

r′′(θ) = −eiθ + ε
eiθ

2

[
HR2(θ) + iR2(θ)

]
.

Above, R1(θ) = v′(θ) +Hv(θ) and R2(θ) = v′′(θ) + 2Hv′(θ)− v(θ).
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Figure 12. Snapshots of the evolution of the curvature of the shape, taken at times t = k/10, k =
0, 1, . . . , 10 with initial conditions p0 = 1, d0 = π/2. Crosses show positions of Teichons at a given
time, circles show initial positions of Teichons

Treating r′, r′′ as vectors in R2 and using the fomula κ = |r′×r′′|/〈r′, r′〉3/2 we get the curvature
of the shape after time ε to be:

κ(ε) = 1− ε

2

(
Hv′′(θ) +Hv(θ)

)
+ o(ε).

Recall, that the WP operator is L = −H(∂3
θ + ∂θ) and LG(θ) = 2

∑∞
k=2 cos(kθ). Therefore

−H(G′′(θ) +G(θ)) = 2

∞∑

k=2

sin(kθ)

k

= sign(θ)π − θ − 2 sin θ.

The last equality is based on the sum of the series
∑

k sin(kθ)/k [27]. Then, since v =
∑
pkG(θ−qk),

we get
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Figure 13. Final shape at t = 1 of a 6-Teichon. Asterisks indicate locations of Teichons: on the
circle at the initial time t = 0; on the final shape at time t = 1.

−H(v′′(θ) + v(θ)) = −
N∑

k=1

pk
[
HG′′(θ − qk) +HG(θ − qk)

]

=

N∑

k=1

pk [sign(θ − qk)π − θ + qk − 2 sin(θ − qk)]

=
N∑

k=1

pk [sign(θ − qk)π + qk] .

The two terms in the second line in the above equations equal to zero because of the constraints
(15). Finally, the curvature of the shape produced by a Teichon for small enough initial time has
the approximation:

(18) κ(θ) = 1 + ε/2

N∑

k=1

pk [sign(θ − qk)π + qk] + o(ε)

One can see that for small ε the curvature is a piece-wise constant function of θ. Thus the
Teichon evolution produces shapes that consist of piece-wise circular arcs of various radii. From
(18) one can see that the radii becomes smaller (i.e. curvature becomes larger) when two Teichons
run into each other, for example when q1 < q2 and p1 = −p2 > 0. When Teichons’ momenta
point away from each other, the region between them experiences the decrease in curvature, thus
producing circles of larger radii. This behavior is evident in Figs. 12 and 14.

In the future work we would like to investigate the behavior of the curvature for all time
t ∈ [0, 1]. The current approximation of curvature can serve as a useful tool to make a better
Teichons’ initialization for the shooting method described in [36].

5. Discussion

The first part of the paper discusses measures of massiveness (ε-entropy) of a C1-type of metric
on the space of planar curves and a related concept of coding and compression of shapes. The
resulting optimal curve approximations are piecewise circular arcs with jump discontinuities. In
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Figure 14. Snapshots of the evolution of the curvature of the shape from Fig. 13, taken at times
t = k/10, k = 0, 1, . . . , 10 for a 6-Teichon. Crosses show positions of Teichons at a given time, circles
show initial positions of Teichons
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the second part of the paper, variants of Sobolev type of metric are explored and they prove to be
robust and rich shape descriptors for the purpose of finding similarity between planar curves. The
paper concludes with a discussion of an H3/2-like metric, the Weil-Petersson metric. In particular
a special kind of singular solutions are suggested as a way to parametrize and describe a space of
planar curves using a low-dimensional N -Teichon, thus providing a way for a finite-dimensional
encoding of the 2D shape.

There are exciting prospects for these topics to be united. First, both the Teichon represen-
tation and the geometric Sobolev representation provide appealing finite-dimensional candidates
for computing the ε-entropy of their respective shape spaces. Epsilon balls are easy to define in
both cases, and in particular the geometric Sobolev machinery makes it relatively straightforward
to describe the ε-balls in geometric terms.

Connections between approximation in these spaces are also of interest. Results in the compres-
sion section using tangent angle functions can be thought of as point-wise analogues of the β-angle
approximations in the shape matching section. Bounds such as those in Lemma 2 of [2] give a
natural entry point into discussions of approximation. In the C1 case, a tangent angle function
almost completely determines point location for the associated curve. It would be interesting to
examine the extent to which this remains true in the Hα setting. With regard to the WP metric,
connections are less straightforward, yet both approximation schemes result in curves consisting
of piecewise circular arcs. It would be interesting to determine how the resulting approximations
differ and why.

Another exciting prospect is to establish connections and bounds relating the length of the
Weil-Petersson geodesic to the distance computed using angles β(θ, t) when working at the H3/2

exponent. Indeed, β is known to be control the Schwarzian derivative of the conformal maps used to
construct the Weil-Petersson welding map [10], and one can characterize the Weil-Petersson metric
in terms of Schwarzian derivatives. β alone will not prevent the curve from self-intersecting, but it
could be used to explain the local behaviour of the WP metric.

Further, denoising with the Sobolev-type metric could be an initial step before approximating
the shape with Teichons: since Teichon approximation depends on the curvature, distinguishing
between noise and shape features is a necessary step for any shape representation. In particular,
H3/2 is the critical exponent at which the boundary curve will admit a continuous tangent. Thus, a
mostly smooth boundary arc which has even the slightest corner or cusp will lie at infinite distance
from the origin (such a curve is not H3/2). In practice, this means denoising the curves prior
to computation is essential if one wishes to measure anything other than noise when computing
geodesics.
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