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1. Introduction

Given a number of noisy sample points taken along a curve, we seek to reconstruct the original curve in the best way
possible. This problem, in various forms, has been studied extensively in the literature; we describe some previous work
below. In this paper we pose the problem as a statistical estimation problem: we formulate a model for curves where each
point on the curve is either a corner or it lies on a smooth arc, and we construct a near-optimal estimator for the original
locations of the sample points given our model.

In general, there are many, many approaches to the denoising problem. Curvature-based diffusion methods have been
used extensively in the literature for deblurring and denoising images; see, for example, [14,16,17]. These methods are
closely related to the smoothing functionals we describe later; like these methods, our functionals also seek to mini-
mize high-frequency oscillations, while still preserving some kind of fidelity to the original data. (In fact, the geometric
heat equation [7] can be derived as a limiting case of a curve evolution which seeks to drive our multiscale Sobolev-type
norms on curves to zero.) A disadvantage, for certain applications, of these methods is that naive application of curvature-
based methods will fail to preserve singular points like corners and cusps. In this work we add a shock detector which
works along the curve in order to identify and preserve these features. There are of course existing methods for identi-
fying shocks. Shock-preserving methods like geometric essentially non-oscillatory (GENO) polynomials [18] will preserve
corners, but it is difficult to make strong statements about the local regularity of the piecewise polynomial approxima-
tions.

Our methods also bear similarity to the curvelet [12] and beamlet [5] approaches of Donoho, Starck, et al. for image
processing. These both provide multiscale representations suited for analysis of plane curves; the beamlet approach in
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particular is a multiscale method for detecting features in images. Our work here differs in that we work in one dimension,
that is, on the curve itself, using a wavelet-like representation of local oscillation adapted for use on locally Lipschitz curves,
and we assume that the curve has already been extracted from some image or dataset. In this way our work can be viewed
as a parsing stage occurring after feature extraction has been performed.

1.1. Overview

The remainder of the paper is organized as follows. In Section 2 we collect necessary background material and describe
the tools we use to perform multiscale analysis of plane curves. In Section 3 we describe our proposed methods for detecting
singularities and denoising piecewise smooth curves. In Section 4 we discuss numerical solution of the problem and provide
experimental results.

2. Background

Here we provide the relevant theorems and background material.

2.1. Characterizations of differentiability

The constructions here are motivated by the following theorem (see Stein [19]):

Theorem 1. Let f : R" — R bein L2 N C!. Then

2
dx

n

- 2
/ If(X+t)+fT;<|2 ) —2f() |(:—|tndx=cn/2
RN R Rn k=1

of

Xy

where ¢, depends only on the dimension.

We remark that changing the power of |t| reweights the various scales and will increase or decrease the number of deriva-
tives being taken. For 0 < @ < 2 we have that the quantity

—dx
|£|2 e|"

// Ifx+t)+ f(x—t) —2f )| dt
R Rn

is a multiple of the squared L% norm of the «-th derivatives of f.
These integrals also yield a local statement of regularity:

Theorem 2. For almost every x € R, the function f : R® — R has a weak derivative in the L? sense at x iff

fx+0+fx=0-2f@P dt _

It]? [e|
]Rn

In other words, this integral in t controls the regularity of f about x. Again, if we introduce the parameter o we get
corresponding statements for the «-th derivatives.

2.2. B angles and Sobolev norms

Here we introduce versions of the previous results more suited to analysis of curves. Let y(s) be an arc-length!
parametrization of a smooth curve I" C R? and let {zn}?’: ; be a collection of sample points taken at equal arc-length
along I" (we are not yet assuming any noise in the samples). Given the parametrization y (s) = x(s) + iy(s), we define the
angle (s, t) with respect to y by

y(s+t) —y(s)

P =, 5 60

1 Arc-length sampling is not at all necessary; we assume it mostly for a concise presentation. The results can easily be modified if, for example, the
sampling intervals are bounded above and below.
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We introduce the « “norm”? for curves, defined for closed curves as

L L2

dt
12 = [ [ B0 s ds (1)
0 0

where L is the length of I, and for open curves as

L min(s,L—s)

dt
Iy =/ / ﬂ(at)zmzﬁds (2)
0 0

In making computations on discretized closed curves we will use the equivalent dyadic variant

N K
lylla =" B, k?2 21~ (3)

n=1k=1
(although we truncate the inner sum near the endpoints for open curves), where

Vn42k-1 — Vn
Yn = Vn_ok—1

B, k) =arg

These constructions give geometric variants of Theorem 1; the 8’s are to curves what the second differences are to functions.
The next section gives these results in the dyadic case.

Remark. When passing from an integral like (2) to a dyadic sum like (3), it is helpful to keep the following intuition in
mind. Consider an integral of the form

drd
//f(s,t)Z%

R Ry

In the discrete setting, using point spacing of As in the s coordinate and At in the t coordinate, we might approximate this
integral as

Zi I AtAs
LKk L AMN2
nez k=1 (kAt)

where f, k is, for example, the value

ok = f(nAs, kAt)

An integral with respect to the measure dt/t puts equal weight on each octave. If we wish to use only dyadic scales 2%, we
have only one sample per octave in scale, and we must increase the weight per octave. Hence, when using dyadic scales,
the equivalent sum is obtained by dropping one factor of At in the denominator, to achieve equal weight on each scale; i.e.
we wish to use the sum

o0
W
neZ k=1
In our work here the factors At and As are unimportant constants which we omit. One may verify that this produces the

sum (3) from (2).

2.2.1. The mapping from B’s to wavelet coefficients
Consider I ¢ C which is the graph of a Lipschitz function; i.e. I' = {x+iA(x)} C C where A : R — R satisfies ||A’||c < M.
If y :R — C is an arc-length parametrization of I" we define ¢ : R — [—arctan M, arctan M] a.e. by writing

’ __ Lip(s)
y(s)=e
2 It is not correct to refer to this as a norm on curves; we have not imposed a linear structure on the space of curves. However, these integrals of

B angles play a role analogous to the Sobolev norms on function spaces and the ’s themselves share many features with wavelet coefficients from the
point of view of analysis. We hope the reader will forgive this abuse of terminology.



M. Feiszli, PW. Jones / Appl. Comput. Harmon. Anal. 31 (2011) 392-409 395

Fig. 1. Wavelet coefficients of complex-valued y’ in the continuous setting. Left: The wavelet coefficients a(s,t) are, up to the L? rescaling, given by the
vector §(s, t) joining y(s) to the opposite vertex of the parallelgram. Right: Again up to rescaling, the “normal” and “tangential” parts a", a’ are given by
the projections of § onto the line ¢ joining y (s —t) to y (s +1t).

Let D be the set of dyadic intervals of R. Given I € D, we write x; for the midpoint of I and x;r,xl_ for the right and left
endpoints, respectively. Denote by h; the Haar wavelet associated with I:

=12, xelx,xf]
hi(x) = 1 _
—[1I712, xelx;.xp)

We will generally write x; for intervals in the domain of a function and s; for intervals in the domain of a curve. Given our
curve Y (s), we may consider the dyadic 8 angles

Y =y (s

y s —y(sp)

as well as the Haar coefficients of y’

By =arg

ap = <)//, h1>

We see that in the sense of distributions, the Haar coefficients of y’ in fact agree with the second differences of y, up to a
rescaling:

ap = <]//, h1>
=172 (y (sf) + v (sy) — 27 ()

Geometrically, a; is a vector joining y(s;) to the opposing vertex of the parallelogram defined by the three points
(y(sf), y(s1), ¥ (s;)). The next theorem shows that on Lipschitz graphs, the g’s are almost the wavelet coefficients aj.
While this is pointwise false, it becomes true after integrating. We first need a lemma. Decompose a; into “tangential” and
“normal” components

aj=d} +adf
where

t_ .

a; = proj,, aj

n .

al =proj,La

1 =P le I

and ¢ is the line joining y(s;) to y(sf) (see Fig. 1). We think of ¢ as a rough tangent line, thus the terminology. We
will use the fact that |a;|? = \a5|2 + |a';|2. Our next lemma says that the g's and the normal components a} agree up to a
rescaling.

Lemma1 (g is a’,’). With B, v, ¢, a; defined as above,
||~ 1BilI11'/?

with constant that depends only on M.

Proof. Let x,i = Rey(s,i). Since {(x, A(x))} is a Lipschitz graph, we have ds ~ dx and hence there exist k, m > 0, depending
only on M, such that y (s;) is located in a rectangle {(x, y): x; +m|I| <x < xf —m|l|, —k|I| <y <k|I|}. Now compose with
a rotation R so R(y(sf)) lie on the real axis. Observe that R(y(sy)) lies in a tilted rectangle whose boundary makes an
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angle with the real axis which is bounded below by a constant depending on M. Elementary geometry shows that |I|8; is
comparable to the distance of R(y (sy)) from the real axis. However, this distance is the normal part of the second difference
of y on I and hence equal to |I['/2|a"|, and the conclusion follows. O

In fact, under certain conditions, we can use B in place of the entire coefficient a;. Pointwise, this is false, but on
Lipschitz graphs, af controls a} after integrating, when « is large enough. The next theorem makes this precise. Let Z be a
dyadic partition of the domain of A.

Theorem 3 (B’s are almost wavelet coefficients). For 0 < o < 1,
2\71-2 2711-2
D lar P~y R
leT leT

with constant that depends only on the Lipschitz constant M.

Proof. The lower bound is trivial. By Lemma 1, we have

2 2 2
jar|* = |a}|” + |af|
2
n
|af|
2
CmpBi 1
Similarly, the ’s give an upper bound on the sum of the a}. Hence, we must show that there is Cy so that

S la P2 <o Y BRI

leZ leT

2
2

Let p be the projection of y(s;) onto the line passing through y(s;—L) and set

re=y(si) — p|
gz =y (s7) — v D)

We claim that r— —ry and q— — g+ are comparable. Indeed, by the Pythagorean theorem applied to the triangles
(Y (s7). p. ¥ (sp) and (¥ (s), p, ¥ (s1)), one finds

22 _ .2 _ 2
= —=q- =1 —qy

which gives us
ro—re _q-+4s
q-—q+ TI-+T1y
The right-hand side is bounded below by 1 and bounded above by some constant depending on M, so we conclude that

1 r——ry
- — <
¢ q-—4q+
as claimed. We now proceed to estimate the tangential parts of our wavelet coefficients.
laf| = 111712 pr- =14
<cll7V2)g- — g4
=cll17"2|g- = 111/2+111/2 = q-]|
<cl72((N/2 —a-) + (111/2 - q+)) (4)

The next step is essentially the Lipschitz graph case of the second author’s traveling salesman theorem; we use the B’s
to control the length of arcs of I'. For any ] € Z, let I'; be the corresponding arc of I" and let £; be the line segment
joining y(s]’) to y(s}“). We will consider a succession of piecewise linear approximations to I'j. Let 7, be the collection of
generation-n dyadic children of I. Define the n-th generation approximation

mn=\J¢
JeFn

with Ip being the line segment ¢; of length L(Ip) =ry +r_. Then by the Pythagorean theorem,
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L) = 2 402 4/ 412

where h = |ys, — p|. Continuing,
h\? h\?
L(In)=r4 1+<—> +r_ l+<—>
ry r—
h\>2 h\>2
() (4 ()
r r—

<ry+r-+c(reBf +1-B7)

< L(I) +c|118?

where we used the facts that on Lipschitz graphs, r+ ~ |I| and also that h/ry is bounded and comparable to 8. Applying
this recursively we see

L(Thp1) = L) <c¢ Y 18]

J€Fn

and hence by summation,
L) < L(To) +¢ Y _ 11187 (5)
jci
Applying (5) to the left and right dyadic children I+ of I gives
/2<qe+cy |}
I'cly
and substitution into (4) yields
jaf| <2y 13 (6)
Jjcl
A similar argument shows that there is ¢ so that
S| <l 7)
rci

again using the fact that I" is a Lipschitz graph. The next and final step essentially says that points on I" cannot be brought
too near each other unless I' is wrinkly. Applying our estimates above, we see

2
Z!aﬂzurz‘“<cZ|I|”(Z|J|ﬁ§> 172 by (6)

IcT IcT jcli
<Y Y IBIT by (7)
IcT jcl
=cy [JIBFY 1>
Jjcz o]
oo
<cY BT Y 27
jcT k=1
<cY I
JjcT

where the geometric series in the second-to-last line converges for o > 0. This completes the proof. O

Remark. The condition o > 0 in Theorem 3 is necessary. Consider the curve of length 2 obtained by joining the line segment
[—1,0] C R to 2* triangle functions with sides of slope =M, as shown in Fig. 2. Let y be an arc-length parametrization of
this curve. Note that the rightmost endpoint of the curve lies at (—=. 0), independent of k, so the tangential part of the

J1+m2’
largest a; is non-zero. If 7 is a dyadic partition of [—1,1] we see there are 2¥ non-zero g;’s which share some common
value 8. We have
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NNNNNNNN

(-1,0) (0,0)

(v 0)
1+M?2

Fig. 2. The condition « > 0 is necessary in Theorem 3. For « < 0, the cost of the wiggly part vanishes as the number of wiggles increases.

ZﬂIZ“'l—ZC{ — ‘322k(2—k)172a

leZ
— ﬂ2220{k
If @ <0 we can make this arbitrarily small by increasing k, so no variant of Theorem 3 can hold.
In light of Theorem 3 it follows that statements about local regularity of y(s) which can be obtained via decay of

wavelet coefficients can be translated immediately into an equivalent statement about the g’s. For example, Theorem 3 has
an immediate corollary:

Corollary 4 (Characterization of Sobolev spaces via ). For0 <s < 1,y € HI*S iff

Zﬂ12|”1—2a < oo

leZ

Proof. By Theorem 3, the fractional derivative seminorms induced by the a; and the B’s are comparable, and y is always
in L2 by construction, hence this is simply a restatement of the definition of H!*S. O

These results are more-or-less implicit in the results of [10,11]. We plan to expand on and extend these techniques in
an upcoming paper.

In fact, more is true. The mapping from one wavelet basis to another, and hence the mapping from the 8's to essentially
any “reasonable” wavelet basis, is “almost diagonal” in the following sense. Choose two mother wavelets v, € L1 N L,
Then given some f € L?, we may expand f in either basis

=Y ay
7
and one finds immediately that the coefficients are related by
C=Y vy )
JeD

If we fix a scale | J| = |I|, the decay as we translate | away from I can be made as rapid as one wishes by choosing mother
wavelets with rapid decay. The next result demonstrates that the inner product always decays exponentially in scale, given
only our modest assumptions on the mother wavelets. It is in this sense (rapid decay of the off-diagonal terms in the
change-of-basis matrix) that we mean the change of basis is an almost diagonal transformation.

Theorem 5 (Change of wavelet basis is almost diagonal). For any , J e L1 N L°, we have the following:
(1) Let I, J e D with [I|=27%,|J| = 2~X. Then

(W, ¥y < Cr2~ k2
(2) Assume further that |y (x)|, |1Z(x)| < M(x) for some symmetric M : R — R, decreasing for x > 0. If |I| = | J|, then
00
W< [ Meods
[xr=x;1/1JD

where Cy1, Cy each depend on both  and 1/~/ In other words, the off-diagonal terms always decay exponentially in scale, and the
translates may be made to decay as rapidly as one wishes.
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Proof. We prove part (1) first. Consider | J| < |I]:

1 X] X — x]
(Y1, Iﬁ']) |]|1/2|1|l/2 ( || ) ( [J] )x

1|l oo (X Xj
IR |J]

1/2 5
(%) 19 {[Lee 1yl

dx

Exchanging the roles of v and J j in the above, one sees

~ I\ ~
(WM#/)<<H> Il e 11l

Taking Cy = min([[y | [ I, ¥l |¥]l;1) proves (1). We now prove (2).
b= v (55 (e o
= [lr= )P0 =)o
< [rlo= il 5)

<2 Ml f M(y)dy

[x1—xy1/21]J

This completes the proof. O

In summary, studying the g angles and their decay at small scales is equivalent to studying the wavelet coefficients of the
derivative y’. Any statements about regularity obtained using one construction translates immediately into a corresponding
statement about the other.

3. Denoising: Feature detection, local scales and near-optimal estimation

In this section we present the method for feature detection and denoising. We begin by discussing our noise model.
Then we discuss feature detection and how to break a piecewise smooth curve into its smooth subarcs. Finally derive a
near-optimal method for denoising the smooth arcs, and then describe the resulting algorithm. Our strategy is the following:

(1) Define a set of singular features we wish to preserve.

(2) Determine what these features look like in the B-angle representation.

(3) Apply statistical testing to the 8 angles to detect the features.

(4) Reconstruct a curve which is near the original in a least-squares sense, preserves singularities, and is as smooth as
possible away from singular points.

3.1. Noise on piecewise smooth curves

In this section we describe our model for curves and describe methods for singularity detection and denoising piecewise
smooth curves. We first discuss our model for noise, and justify some approximations we will use in the remaining sections.
We relate our techniques to wavelet shrinkage methods for function estimation and then derive our proposed algorithms.

Consider a curve I" ¢ R? which is a finite union of smooth (say, at least C?) arcs. Let y(s) be an arc-length parametriza-
tion. Assume we are given a number of sample points {zn},’,:’:1

z(n) =y (sp) +n(n)

where

-1
Length(I™)

Sp =

and 7(n) € R? is random noise. We assume that 7 (n) is given by
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n(m) =v(y(sn))
where v : R — R2 is a Gaussian random vector field whose covariance is such that the expected value of the increments
locally satisfies

I

E[v@ —viw)||"=0(llz— w|P) ®)

for some exponent p € R. For example, p =0 amounts to assuming our measurements have been corrupted by Gaussian
white noise, while p =1 produces a field which is continuous almost everywhere, but not differentiable. In the case p =2
the field admits one derivative in the mean-square sense almost everywhere.

We wish to understand how this noise looks after we perform our multiresolution analysis.

3.1.1. B angles

In this section we work in the continuous setting and study the noise as it affects the angles (s, t). We show that while
the noise is certainly not Gaussian, it tends to Gaussian when the noise is small relative to the scale under observation.
Given our noise model, it is straightforward to compute the difference AB(s,t) between the observed and true B’s. About
any point y (s), consider the vector field

ws(t) =v(y(s+1) —v(y ()

Then we have the following:

Proposition 1. At any fixed s and for t > 0, we have
1
AB(s,t) = ———— proj; ws(t) +o( | ws(t) 9)
PEO= o=y Pl O ellwol)

where proj; wi(t) is the scalar projection onto T, a unit vector orthogonal to the line joining y (s) to y (s + t).

Proof. Elementary geometry shows that Ag is related to the noise vector field by
projz ws(t) )
[y (s +1t) — y ()] + proj; ws(t)

where proj; w and proj; w are the projections of the vector ws(t) onto the unit vector parallel to z(s 4+ t) — z(s) and onto
the orthogonal vector, respectively. In other words, tan AS obeys a Gaussian ratio distribution. We regard the right-hand
side as a function g(a, b, c) = arctan(b%c) which has gradient

Vg(a,b,c)= ! a a
@29 =\pr¢ (b+0)?2 (b+o)?
The proposition statement is thus the first-order Taylor series for g about the point (0, |y (s+t) — ¥ (s)|,0). O

AB(s, t) = arctan(

The scalar projection proj; w, as a convex combination of Gaussians, is again Gaussian. Hence, the errors Ag will follow
a Gaussian distribution to first order. Whether this is a reasonable approximation in practice, of course, depends on the
situation. We remark that the true distribution of tan Ag is a Gaussian ratio distribution, which tends to Cauchy in the
large-noise case, in which case A tends to a uniform distribution on [—7, 7r]. From the point of view of denoising, this
is most likely either an unreasonable assumption or a hopeless situation; hence we feel the small-noise approximation is
likely to be more relevant in applications. That said, we recognize that there may be some benefit in assuming heavier tails,
particularly at the smallest scales where the noise may appear larger. We do not pursue this in the work below.

We will use one further approximation to the noise in the 8’s: we assume that the variance is not O (]|z(s) — z(s +t)||P),
but rather that it is O(|t|P). This is simply another first-order approximation; point separation is locally comparable to
arc-length on any smooth arc.

3.2. Singularity detection and local scales using 8 angles

As above, we consider a curve I C R? which is a finite union of smooth (at least C2) arcs which meet at points of
singularity. Here, the only singularity we attempt to detect is a corner, i.e. a pair of lines meeting at an angle. However, it
should be clear how to extend the algorithm described here to handle additional types of singularities, e.g. cusps, or corners
formed by a pair of circular arcs.

As before, we are given samples z(n) from a curve I', corrupted by Gaussian noise. We will write b(n, m) for the full
collection of observed angles (not just those at dyadic scales):

z(n+m) — z(n)

b(n,m) =arg z(n) —z(n —m)
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Using the full collection of angles increases power in our statistical testing. The angles b(n, m) contain noisy information
about the local geometry of I about each point. We wish to use the b’s to classify each point as either a corner or a point
on a smooth arc. We define corners to be the points where the true angles 8 locally look constant:

Definition 1. We say the point y(s) is a corner point if

B(s,t)=0+o(t)

for 0 € (—m, ).
On the other hand, if y (s) lies along a smooth arc, then we will have the following:

Proposition 2 (8 increases linearly on circular arcs). If y (s) is locally the graph of a C* function on some neighborhood of s, then

B(s,t) =t/Kk +o(t)

where k is the Euclidean curvature of y ats.

Proof. We remark that this follows directly from elementary geometry in the case that y is in fact locally a circular arc. In
the general case, let f(x) be a function which describes y locally, with x = x(t) so that x =0 corresponds to t = 0. Then
this is a direct calculation using

fx@)
x(t)

B(s, t) = arctan

combined with
dx 1

dt A+ (Fx))?

and the usual formulas for curvatures of plane curves. 0O

Thus our task is to decide, at various scales and after accounting for noise, whether 8 at each point looks more like
a constant or more like a straight line decaying to zero. We expect that at different scales the answer will be different;
for example, a straight line corrupted by noise may locally appear to have corners but at large scales will still be well-
approximated by a straight line. Conversely, if you round off the corners of a polygon, they will only look smooth at small
scales, whereas at large scales the 8’s will still look constant.

3.2.1. Detecting corners

Our ability to discriminate corners from arcs depends on the local level of noise near y (s). Using our small-noise model
(9) we now derive a likelihood-ratio test for identifying corners against the default hypothesis that the curve is locally a
smooth arc. If we assume that the local variance of the noise is known at each scale, then this is the most powerful test for
identifying corners at a given significance level.

First, choose minimum and maximum lengths of interest:

0 < Mmin < Mmax < [N/2]

About each point z(n), for each M € [Mmjin, Mmin + 1, Mmin + 2, ..., Mmax] we solve two weighted least-squares problems
to approximate b(n,m) as a function of m on the set [0,1,2,..., M]. Given a choice of M, we look for the best linear
approximation

Ly(n,m)=cn, M\)m

for c(n, M) € R and also the best constant approximation iy (n). That is, we seek Ly (n, m) and wpy (n) which minimize the
squared residuals

M
R2(n. M) = > |Lua(n,m) — bn, m)|*m?~P
0
M 2
RZ(n, M) =" |m () — b(n,m)|"m?~P
0

We see that the least-squares weights m2~P are inversely proportional to the variance of AS. Now given a threshold value §,
apply the decision rule that declares “z(n) is a corner at scale M” when
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RP—R%2>5$ (10)
L 2

This test has the following justification given our noise model:

Proposition 3 (Likelihood ratio test). The decision rule which says z(n) is a corner when
Ri(n,m)? — R, (n,m)* > § (11)
is a likelihood ratio test for corners against the default hypothesis, when m is less than the inter-corner distance along z.

Proof. Let p(B) and q(B) be the likelihoods of the observed S under the assumptions that y (s,) is a corner point or a point
of smoothness, respectively. According to our model the errors AS are Gaussian. In this case, we have

p(B) =kexp{—Ry |
q(B) =kexp{—R?}

where the constant k € R is the same in both cases since we assume the noise is O(|t|?) and it is additive with identical
variance in either circumstance. This in turn means that

p(B)
q(B)

and the conclusion follows. O

log =R? - Ri

In practice, the choice of threshold
R} — R?, > & (n,m)*

works very well in virtually every case we have tried, where 6 (n,m)? is an estimate for the local variance of the noise at
scale m. We estimate o (n, m) using the heuristic that most points lie on smooth arcs and thus averaging the residuals R%
at points in a neighborhood of z(n) should give a good estimate for the level of local noise. That is, we compute

. 1 n+2m ‘ n—m '
az(n,m)=%< > RiGm+ Y Ri(;,m))

j=n+m j=n-2m

We avoid averaging over z(n) in order to reduce errors at corner points.

3.2.2. Local scales and local noise

The “local scale” associated with a point on an object is, loosely, the “size” at which different features appear on the
object. That is, if a curve locally looks like a smooth arc of a circle for a certain length L, we might say the curve is locally
a circle at scale L, and call L the local scale. Associated with the local scale L is some measure of local noise, which is
deviation from circularity on the arc of length L. The difference between this estimate for local noise and the method used
in the preceding section is that we now have more information about the point; we can now use the corner residuals or
the smooth residuals as appropriate, whereas above we did not yet know which was a better choice.

Finding and smoothing local scales on images has been discussed in [9]; a thorough development of methods for de-
tecting and smoothing local scales on curves is a substantial topic on its own and is a subject for a separate paper. Here
we make the above loose definitions precise by using goodness-of-fit measures to identify scales at which a feature, i.e. a
circular arc or a corner, is most likely present. We suggest the following simple method based on the R-squared statistic:

(1) For each n€1,2,3,...,N, examine the appropriate residuals Rf(n,m) or RfL(n,m) to find the scales at which the
R-squared statistic achieves a local maximum. Do not consider large scales M where the arcs [z(n — M), z(n)] or
[z(n), z(n + M)] cross corners. Record a list of features detected along with the length scales at which they were de-
tected.

(2) For each point z(n), do the following:

(a) If z(n) lies on a smooth arc, set the local scale Kj,.(n) to be the scale of the longest smooth arc detected in step 1
which contains z(n).

(b) If z(n) is a corner point, set the local scale Kj,.(n) to be the scale of the largest corner centered at z(n) detected in
step 1.

Note that the largest possible scale that can be associated with a smooth point is the length of the smooth arc of I" on
which it lies, not the distance to the nearest corner. This allows for the removal of large-scale noise near corners, which is
impossible if the local scale is limited by distance to the nearest corner.
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Once the local scales Kj,c(n) have been chosen, we need to estimate the local variance of the noise. We use the fact that
for small noise, displacement of points is O (tAB(s,t)) (see the proof of Proposition 3). Hence we compute

Kioc (1)

Z (mAB(n, m))2

m=0

52(77, Kloc(n)) =

Kioc (1)
3.3. Shrinkage methods and near-optimal estimation

We now apply methods of Donoho, Johnstone and Silverman (see [3,8]) to construct a shrinkage-type denoising algorithm
for curves. The goal is to find an estimator y (n) in order to recover the true locations y (sp) of our noisy sample points z(n).
Note that we explicitly do not wish to use £2 error as a measure of risk; we wish to use a Sobolev-type measure of error in
order to correctly capture the oscillations of the curve.

Given sampled curves 1, y with angles 8, 8,,, define the distance

N K

1
a2 By By) = 3 D (B k) = By (0, k)’ S2ka—1)

n=1k=1

We also need some ¢2 type measure of distance. Set

N
a.y)=> o7 2m)|nm -y m|?

n=1

where the weights o2(n) are operator chosen. We take them to be the variance of the noise near y (n). Finally, we define
the risk for our estimator as

R, y)=E(d3(P.y) + Cd3(B;. By))

We view this as a Sobolev-type norm on curves, since d, is an £2-type measure of error in the point locations, and d is a
measure of difference in the order-« regularity of the curves, using the B8 angles defined earlier. C is a constant chosen by
the operator.

3.3.1. Regularity and $ angles
As per our noise model described above, we assume that we are given observations B;(n, k) of the true g angles

Bz(n, k) = By (n, k) + €& (n, k)

where the noises &(n, k) are now (correlated) normal N'(0, 1) which are stationary in n (this occurs, for example, in the
case p =0 of small white noise), and € > 0 is the noise level at each scale. We assume for the moment that the noise level
is known. Consider the problem of constructing an estimator 8 for just the angles By, regardless of whether B produces
a collection of angles which could have arisen from a curve (in fact, the estimates described below will almost surely not
arise from any curve). Begin by defining the hard and soft threshold operators

nH(B, M) = Blp>a]
ns(B, ) =sgn(B) (181 — 1),

It is shown in [8] that for fixed k, the estimator

B.k)=ns(b(-. k), ex2logN)'/?)
satisfies

N
E|BC.k) — By (0|3 < @logN + e + Y min(B(n. k)2, €)
=1

where || - |2 is the £2 norm on N points (the same holds for the hard threshold 7y). Since e,f is the expected squared error
for estimating a single parameter, this result says that the thresholding estimator is optimal in an £2 sense, up to essentially
2log N. Even better, this estimator is also optimal in the Sobolev sense we take as our risk. For example, it follows from [4]
that the estimated 8's look as “smooth” as the By's of the original curve; i.e. with probability approaching 1 as N — oo, we
have a constant C; so that
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N K 1 N K 1
A 2 2
Zzﬂ(n’k) 52k(@—1) <G Zzﬁy(n’k) 52k(@—1) (12)

n=1k=1 n=1k=1

Note that this estimate holds without any a-priori assumptions on the smoothness of the original curve. There are many
results along these lines for wavelets, including local versions, which all pass over directly to our geometric constructions,
see [6] for details.

In other words, A is nearly optimal for estimating the true 8’s under our Sobolev risk.

3.3.2. The €2 term

We want our estimator 9 to produce a curve which is near the original both in terms of regularity, for which we use dg,
and in terms of absolute location, for which we use an ¢2 type distance d. Let p(n) denote our estimates for the true point
locations y (n). In the current work, we simply use the observed point locations z(n); i.e. we set

pm) =z(n)

This is a minimum-risk estimator if we consider each point separately, corrupted by mean-zero white noise.

Remark. There are certainly other methods for handling ¢2 risk, which we hope to explore in future work. First, one might
simply require that the algorithm preserve the large-scale B’s, as is typically done with wavelet shrinkage. However, while
the analogy between B angles and wavelet coefficients is ideally-suited for the study of local regularity properties of curves,
it is less natural for ¢2-type estimates. It is certainly true that 8 angles at large scales (indeed, at any scale) determine the
curve up to rotation, translation, and scale, so we could simply require that our denoising method attempt to preserve the
B’s at large scales. However, it seems awkward, for example, to adapt the 8’s to handle local noise, as the 8 angles at large
scales about a single point do not reflect distance between points.

We feel it will be both more practical and illuminating to consider another method, which provides a way of generalizing
“shrinkage toward zero” to geometric situations. Shrinking small 8’s or wavelet coefficients to zero works precisely because
small coefficients are typically due to noise. However, shrinking point locations to zero is obviously pointless. Instead,
a natural analog of zero is provided by the best-fit least-squares arcs identified earlier, when doing geometric feature
detection. Recall that at each point, we identified the best-fit circular arc at various scales and then chose the best scale
based on the R? statistic. One might choose p to be, say, the nearest point to z(n) on the local arc of best fit (or some
average over several local best-fit arcs) and then apply shrinkage: move z(n) towards p(n) if ||z(n) — p(n)|| is below the
local noise threshold. We hope to explore this in future work.

3.3.3. The estimator y is near-optimal
Ultimately we want to construct a curve P, not a collection of angles and approximate point locations. We do so by
projecting the point locations and 8’s onto the space of curves; i.e. we minimize the total distance

d*(n, (b, ) =d5(n, p) + Cd, (By., B)
over curves 7 to define the projection I7(p, B):
11, f) =argmind®(n, (b, B))
for some operator-chosen constant C € R. This, then, is our estimator:
y=m(p,p
From this definition we see that the angles of y will look like the B's, plus an error term which lives in the Sobolev
space H*. Assuming the parameter « is chosen equal to or greater than the exponent of the Sobolev space in which y lies,

we lose essentially no regularity in taking this projection. The following easy estimate shows that y is as regular as B, and
we know § is itself as regular as 8, with high probability by (12).

Lemma 2.

d(7, (v, By)) <2d((h, B, (v, B))

and

R(P, (v, By)) <4R((B, B), (v, By))
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Proof. The first statement is just the triangle inequality:

d(p, (v, By)) <d(P, (. B)) +d((B. B). (v. By))
<2d((. B). (v, By))

where d(y, (p, 3)) <d((p, ;§), (v, By)) by definition of . The second statement is then just the definition of risk:
R(P. (v, By)) =Ed*(P.(y.B)) O

Thus, this result guarantees that the approximate curve is expected to lie near the original curve in the Sobolev-type
sense given by our risk. Further, like wavelet shrinkage for function estimation, this estimator is also nearly optimal, since
our noise model is such that the ideal risk is identical to the case of function estimation.

Remark. Donoho and Johnstone obtained essentially the best possible statement about function estimation. Why are their
methods a “right” thing to do on curves? For example, an important fact in their original development is that white noise
on sampled functions values passes through to a white noise on the empirical wavelet coefficients. Indeed, this follows
immediately from the fact that the mapping from samples to wavelet coefficients is orthogonal. Unfortunately, the transfor-
mation from wavelet coefficients of, say, parametrized curves to 8 angles is not orthogonal (indeed, it is not even linear).
Why should we expect their methods to work for curve estimation?

The justification lies in the results in Section 2: Theorem 3 and Proposition 5 show that the analogy between g angles
and wavelet coefficients is not just philosophical. The mapping from B’s to wavelet coefficients is in fact almost diagonal,
with good estimates for the off-diagonal terms. Hence one may, in principle, view the 8’s as wavelet coefficients. As a rule,
methods which are designed for operating on wavelet coefficients will translate directly into corresponding methods for
operating on f’s, up to some typically very mild error terms.

3.4. The denoising algorithm
We now collect the results above and summarize the algorithm. It works as follows:

(1) Singularity detection:
(a) Choose a largest and smallest distance 0 < Mpin < Mmax-
(b) At each point z(n) and each scale Mpj, < M < Mpax, compute residuals R%(n, M) and Ri(n, M) after fitting least-
squares lines and constants.
(c) At each point z(n) and scale Mpin < M < Mmax, estimate o%(n, M) as the local average of residuals

1 n+2M n—M
62(n,M)=—< Y REG.M+ ) Rf(j,M))

2M\ | ;
j=n+M j=n—-2M

and declare z(n) to be a “corner at scale M” when

RE(n, M) — R (n, M) > 6 (n, M)

(d) For each point z(n), there will be a set of “existence intervals” I j = [ay, j, by, j] where z(n) was identified as a corner

for M e I j. Optionally, reject corners where the largest such interval has log, Z,:—j < 1 (or some other operator-
chosen value). This heuristic tends to eliminate corners which are due only to noise.

(e) Optionally, merge corners which are within distance My, (or other operator-chosen threshold) of adjacent corners.
At large scales, many adjacent points near a corner will be flagged as corners; this step may or may not be necessary
depending on the method of reconstruction chosen. An effective criterion seems to be to choose the “true” corner
to be the one with the largest existence intervals.

(2) Denoising:

(a) Choose a number C € Z of additional scales to add to the curve. If we had N sample points on I" to begin with,
the denoised curve will have 2€N points.

(b) Let S denote the set of upsampled curves:

5= {{w;2N: wj e R?)

Let N be the indices of points not flagged as corners. Let K(n) be the scale of the largest dyadic interval about w,
which contains no corner points. Now choose parameters € R and A € R for k=1,2,3,..., 2€N and solve the
minimization problem
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Fig. 3. Above: Curves from the MPEG-7 shape database. Left: Original curve with corners; black dots indicate corners which appear corner-like at the
smallest detectable scale. Light dots are corners at larger scale. Right: Denoised curves with i, = 1/26;.

K(n) N
. Z Z A 2,2k Z 2 2
w* = arg {IJ/];I;} P (,3(11, k) — /3(”, k)) 2 o + 2 )\.n |Wl+(n7‘1)2C —2Zn (13)

to find the denoised curve w*. The angles B(n, k) are deduced from the curve w.

The weights A, may be chosen by the operator as tuning parameters based on prior knowledge, or they may be
chosen adaptively by the algorithm. A natural adaptive choice, used in our numerical experiments below, is to
choose 1, inversely proportional to the expected magnitude of the local noise, i.e. set A, proportional to 1/6;().

In the final step, the second term in the functional serves to keep the reconstructed curve near the original in a weighted
least-squares sense; allowing A, to vary with n lets us account for the local level of noise (we say more about this below).
The first term smooths by driving the B’s to the estimated /§'s.3

The multiresolution analysis of corner-like features above may be analyzed further to make final decisions about the
existence of corners on the curve. For example, the procedure above may identify a number of corners which are indeed
corners (as opposed to noise), but which only exist at small scales, while there are simultaneously points which are corners
at large scales. There seem to be at least two ways to make use of this information. First, there is information contained
in the corner existence intervals. See Fig. 5 for an example where a simple analysis of the histogram of right-endpoints of
the corner existence intervals contains enough information to identify the two obvious choices of scale for denoising. While
one could look at all possible choices of noise threshold, the existence intervals tend to suggest the few “good” choices.
Another kind of information comes from measures of goodness-of-fit of our models for corners and arcs; in Section 3.2.2
we describe a method using the R? statistic to identify the “best” choices of scale.

Finally, it is worth mentioning that this same algorithm works well for detecting corners at various resolutions whether
the original data has been corrupted by noise or not. Indeed, the small-scale structure of a curve may well be considered

3 It is also effective to replace the first term with the simpler term Y,y S B(n, k)27, This loses some small-scale details, but always gives a

smoother reconstruction which may be preferable and provides a faster algorithm.
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Fig. 4. The corner detector. Black dots indicate corners which appear corner-like at the smallest detectable scale. Light dots are corners at larger scale.

0 50 100 150 200 250

Fig. 5. Are the small bumps on the starfish signal or noise? There is no right or wrong answer. This curve contains 4480 points and looks quite smooth
at small scales, as shown in the lower left detail view. However, the histogram of corner scales (upper left) screams “there are exactly two good choices”.
Denoising with all corners yields the middle pictures; large-scale only yields the right-side pictures. The corner existence intervals can be used to prune
out corners at scales one is not interested in. Upper left: the histogram of largest corner-like scales. Upper middle: corners at all scales. Upper right: corners
at scales above 200 points. Lower left: original curve detail view with corners. Lower middle: denoised curve when using all corners. Lower right: denoised
curve using only corners at scales above 200 points. In both denoisings, A, was chosen with the same rule of A, = 1/26,. More displacement is allowed in
the second case since estimates for local noise increase.
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Fig. 6. Above: An upsampled beetle from the MPEG-7 shape database without corner detection. To create this image, all but 100 of the original 2232
sample points were discarded. The green points and dashed line are the low-resolution polygon which was upsampled by three additional scales to create
the smoother blue curve. Below: Closeups of a leg, a horn, and an antenna; the smooth overshoot is a result of running the algorithm without corner
detection. Corners would be difficult to detect accurately in this situation given the scarcity of sample points. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

noise when the curve is viewed at large scales. In this case, the most reasonable choice of parameter p for the noise seems
to be p =0, or white noise, with the assumption that the variance is relatively small compared to the scale. The idea is
that small-scale structure on an arc which is smooth at large scales often looks like noise whose variance is independent of
location on the arc; consider the graph of sin(x), which looks like a straight line at large scales, for a motivating example.

4. Examples

We present some examples of denoising curves obtained from the MPEG-7 shape 1b dataset in Figs. 3-6. This dataset
consists of a number of binary images at various sizes and resolutions; to obtain curves we used the MATLAB built-in
function “bwboundaries”. Thus, our contours contain noise typically from two sources: pixelation noise at fine scales, arising
from our use of a naive boundary-tracking algorithm, and additional noise at larger scales, intentionally added during the
creation of the dataset. We emphasize that all examples shown were constructed with identical choices of parameters: we
used the adaptive method for choosing weights A, with constant of proportionality 1/2, and the noise variance parameter
was p = 0 (white noise). The solutions were obtained with a straightforward gradient descent algorithm based on the
functional (13). In these examples, the sample points were taken at arc-length with respect to the noisy curve, not with
respect to the original (unknown) curve. In order to accommodate this we allowed the reconstructed points to lie at non-
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uniform distance along the reconstructed curve. As we remarked above, the arc-length assumption is made primarily to
simplify the exposition; up to constants, the theory carries over to the non-uniform case as long as the original curve was
sampled at a rate which was bounded above and below. In all examples we tried, no special care was needed to enforce
this additional requirement on the reconstructed curve.

5. Conclusion and comments

We have presented a novel and effective method for denoising plane curves. The results are scale-invariant when working
in the Sobolev space H3/2, and the denoising method is essentially free of tuning parameters. In future work we plan to
extend these methods in several ways:

(1) Extension to surfaces. While the algorithm we designed here is tailored for curves (in particular, we rely on the natural
arc-length parametrization on curves), the underlying theory passes over to handle curves and surfaces in higher dimen-
sions (see [1,2], for example). In higher dimensions, the theory tells you that it is possible to denoise by fitting pieces of
planes, low-order polynomials, or other simple geometric objects at each point and scale, and studying the L? residuals,
which behave in some sense like wavelet coefficients. We also observe that the second differences in Theorem 1 could
be used directly to construct a version of our current algorithm for curves in higher dimensions.

(2) Improved corner detection. Currently, the corner detector considers 8 over all scales, but only at each point taken
individually. This generally works well, but occasional mistakes are made. It would be better, and not much more
difficult, to consider the behavior of 8 in the neighborhood of a potential corner and extend the likelihood ratio test
to work on this data. Since the behavior of 8 in a neighborhood of a corner is easy to compute, this should increase
statistical power significantly with only a mild increase in algorithmic complexity.

We also wish to make one remark in the case where one is given simply a set of sample points from a curve or surface,
rather than a parametrization of the object. In this case, we could still denoise, but we would need to solve a manifold
fitting problem, either prior to or concurrently with denoising. In the case of a plane or space curve, this is very much like
the second author’s solution to the traveling salesman problem [11,15]. Adapting that proof to our situation would amount
to locally approximating the sample points with straight lines at all locations and scales and using the ¢2 residuals to infer
a curve containing (or simply near, when denoising) the sample points. Other variants are possible, say by fitting circles,
and initial experiments seem promising. For a simple curve it appears that this problem will not be especially thorny,
but if the curve has many self-intersections, or near-intersections, this quickly becomes difficult. In the case of surfaces,
the possible kinds of singularities and self-intersections are even more troublesome. Still, similar techniques seem to show
promise in high-dimensional problems [20,13]. We look forward to extending the methods described here to broader classes
of problems.

References

[1] G. David, S. Semmes, Harmonic analysis and the geometry of subsets of R", Publ. Mat. 35 (1991) 237-249.
[2] G. David, S. Semmes, Analysis of and on Uniformly Rectifiable Sets, American Mathematical Society, 1993.
[3] D. Donoho, 1. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 81 (1993) 425-455.
[4] David L. Donoho, De-noising by soft-thresholding, 1994.
[5] David L. Donoho, Xiaoming Huo, Beamlets multiscale image analysis, in: Multiscale and Multiresolution Methods, Springer, 2001, pp. 149-196.
[6] David L. Donoho, lain M. Johnstone, GZrard Kerkyacharian, Dominique Picard, Wavelet shrinkage: Asymptopia? 1995.
[7] M. Grayson, The heat equation shrinks embedded plane curves to round points, ]. Differential Geom. 26 (1987) 285-314.
[8] L.M. Johnstone, B.W. Silverman, Wavelet threshold estimators for data with correlated noise, ]. Roy. Statist. Soc. Ser. B 59 (2) (1997) 319-351.
[9] P. Jones, T. Le, Local scales and multiscale image decompositions, Appl. Comput. Harmon. Anal. 26 (3) (2009) 371-394.
[10] Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, in: Springer Lecture Notes in Math., vol. 1384, 1989,
pp. 24-68.
[11] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1) (1990) 1-15.
[12] Jean Luc Starck, Emmanuel J. Candes, David L. Donoho, The curvelet transform for image denoising, 2000.
[13] M. Maggioni, Intrinsic dimensionality estimation and multiscale geometry of data sets, in: Applied Mathematics Seminar, Yale University, February
2010.
[14] B. Merriman, J.K. Bence, S. Osher, Diffusion Generated Motion by Mean Curvature, Dept. of Mathematics, University of California, Los Angeles, 1992.
[15] K. Okikiolu, Characterization of subsets of rectifiable curves in R", ]. Lond. Math. Soc. (2) 46 (1992) 336-348.
[16] S. Osher, L.I. Rudin, Feature-oriented image enhancement using shock filters, SIAM ]. Numer. Anal. 27 (4) (1990) 919-940.
[17] L. Rudin, S. Osher, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D 60 (1-4) (1992) 259-268.
[18] K. Siddiqi, B.B. Kimia, Chi-Wang Shu, Geometric shock-capturing ENO schemes for subpixel interpolation, computation, and curve evolution, in: Inter-
national Symposium on Computer Vision, 1995, p. 437.
[19] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[20] Teng Zhang, Arthur Szlam, Yi Wang, Gilad Lerman, Randomized hybrid linear modeling by local best-fit flats, CoRR, abs/1005.0858, 2010.



	Curve denoising by multiscale singularity detection and geometric shrinkage
	Introduction
	Overview

	Background
	Characterizations of differentiability
	β angles and Sobolev norms
	The mapping from β's to wavelet coefﬁcients


	Denoising: Feature detection, local scales and near-optimal estimation
	Noise on piecewise smooth curves
	β angles

	Singularity detection and local scales using β angles
	Detecting corners
	Local scales and local noise

	Shrinkage methods and near-optimal estimation
	Regularity and β angles
	The l2 term
	The estimator γ̂ is near-optimal

	The denoising algorithm

	Examples
	Conclusion and comments
	References


