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The hyperbolic Gauss map
and quasiconformal reflections

By Charles L. Epstein*) at Princeton

§ 0. Preliminary discussion

Since the results of this paper lie at the intersection of two disparate fields,
hyperbolic geometry and univalent function theory, we begin with a short exposition of
the problems and a discussion of our method of solution. By hyperbolic space we mean
the complete, simply connected manifold with constant, sectional curvature —1; by a
univalent function we mean a one to one conformal map defined over some domain
in S2.

Let v be a holomorphic function defined in the unit disk, D,. Suppose y'(z)+0
anywhere in D, or more geometrically that y is locally one to one. It is reasonable to
inquire after conditions which imply that y is globally one to one. Beginning with
Nehari, many authors have studied answers to this question phrased in terms of
differential inequalities satisfied by v, see for instance [Ahl 1], [Ahl-We], [Be], [Be-Po],
[Ge-Po]. Nehari’s condition states: iy is univalent in D, provided

©. 1) Sup (1 =1E17? 12,012

n\ 2

/AN 1 . .
Here &, (8) = y7 — (¥ is the Schwarzian derivative of y. Another well known
L%

2\y'
condition is that of Duren, Shields, Shapiro and Becker: y is univalent in D, if

©0.2) sup (1—[¢|?)

ﬂ
sup. ¢ v ©

<1.

The proofs of these results were of three main types:
1) Nehari’s original proof used estimates on second order differential equations

and a classical connection between second order linear equations and Schwarzian
derivatives, see [Po].

*) This research was supported by an NSF postdoctoral fellowship.
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2) Proofs involving Lowner chains, see [Be] and [Be-Po].
3) A topological argument via quasiconformal extensions, see [Ahl-We].

Our argument is closest to the third type which was introduced by Ahlfors and
Weill. This argument goes along the following lines:

First suppose that y is holomorphic in a neighborhood of D, and that
Sup (I—1E1* 1L, (O1=2k<2.

Using the aforementioned connection between Schwarzian derivatives and second order
equations, yp was extended as a quasiconformal, locally one to one, map from S? to S2.

It is an elementary fact from topology that the extended map is globally one to one.
The general case is treated by a limiting argument.

The significance of the existence of a quasiconformal extension for functions
satisfying (0. 1) strictly was only recognized later, see [Ahl2]. Using a method that
involved the Lowner equation Becker and Pommerenke proved analogous results for
conditions similar to (0. 2).

In this paper we prove generalizations of these results via a method similar in
spirit to that of Ahlfors and Weill. We show, more or less directly, that the image of y
is simply connected. Since y is holomorphic it is proper and therefore by degree theory
yp must be one to one. Without insisting on technicalities the differential inequality y
must satisfy is:

1161 | g g5 40| -2 60 - P
&3 g% (187 2

I\

1

For g a real valued function in C*(D,), see Theorem 7. 2. If the inequality is satisfied
strictly then i has a quasiconformal extension to S2.

In the last twenty years many connections have been established between
hyperbolic geometry and conformal geometry on S*. Fundamentally, they are connected
because S2 is the geometric boundary of H/* and the isometries of H?* extend to be
conformal automorphisms of S%. The link between the two geometries, which we exploit,
is via hyperbolic analogues of the Gauss map and support function of a surface
immersed in [R3.

Recall that the Gauss map, G associates to a point, p on a surface, X ¢ R3 an
oriented unit normal vector to X at p. This vector is thought of as a point on the unit
sphere in R3. The support function, ¢ assigns to a point pe 2 the affine parameter of
the plane tangent to X at p. Where the Gauss map is locally invertible, the support
function can be thought of as a function defined on the Gauss image. That is, at each
point 8= G(p) we assign a real number, ¢(0) such that the plane:

{xe R*: X - 0=0(0)}

is tangent to X at p. The surface can be reconstructed by forming the envelope of these
planes for 0 € G(2).

52 Journal fir Mathematik. Band 372
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If we model 3 as the interior of the unit ball in R with the metric:
2_ 4(dx*+dy* +dz?)
(1—=r?)?

then geodesics are circular arcs normal to S2. Thus each geodesic defines a unique pair
of points on S? and vice versa.

ds

We define the Gauss map for a surface X ¢, [H® by first choosing an orientation
and then following the geodesic normal to X at p to the sphere infinity in the given
direction:

G(p)

To define a support function we assign to each point p e X the “affine” parameter of the
horosphere tangent to 2 at p on the side given by the orientation. In the ball model a
horosphere is a Euclidean sphere internally tangent to the unit sphere. The “affine”
parameter is the hyperbolic distance from a fixed origin, @ to the nearest point on the
horosphere.

In Euclidean space the Gauss map and support function merely change sign if we
reverse the orientation of the surface; in hyperbolic space the differences are more
significant so we usually speak of two Gauss maps, G, and G_. Near a point where G,
is invertible we can define a map 4 from S? to S? by:

A@O)=G_ - G;1(6).
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G, (p)

G-(p) 46)

The dilatation of this map is expressed in terms of the principal curvatures (k,, k,) of X

by:
1
]

where 0 = G, (p). From (0. 4) it is evident that surfaces whose principal curvatures satisfy

1Fki(p) 1+k,(p)
1+ki(p) 1Fky(p)

. 4) K(4; 0)=r11a§ {

©.5) ki<l i=1,2
play an important role in the construction of quasiconformal reflections.

In the first several sections we prove that a complete surface whose principal
curvatures satisfy (0. 5) is properly embedded, homeomorphic to a disk and its Gauss
maps are one to one onto disjoint regions of S, see Theorem 2.2 and Corollary 4. 5.

To return to the proof of the univalence criterion we think of y as a conformal
map from D, to $>=3dH?. Define a support function locally on y(D,) via:

19" (0)]

m+g o ¢(0);

¢(0)=log

¢ is a local inverse to p. We use this support function to piece together a complete
surface, Z,. In virtue of (0. 3) we can show that the principal curvatures of X, satisfy
(0. 5) and therefore Z,, is homeomorphic to a disk. We have constructed a disk in H 3
whose homeomorphic, Gauss image is y(D,). By the topological result mentioned above
yp must be globally one to one. A limiting argument similar to that in [Ahl 1] completes
the proof. If y satisfies (0. 3) strictly then the map A defined by 2, is a quasiconformal
reflection with fixed curve w(0D,). Thus we obtain a quasiconformal extension of y to
S2, but a posteriori.

This approach unifies the different univalence criteria and construction of
quasiconformal extensions. By recasting these questions as problems in hyperbolic
geometry it gives a new way to think about such problems and brings to bear the
considerable techniques of modern Riemannian geometry.
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§ 1. Introduction

In [Ep 1] and [Ep 2] we introduced a hyperbolic analogue for the Gauss map and
applied it to study several problems in differential geometry and function theory. In this
paper we continue along those lines exploring a connection between surfaces in
hyperbolic 3-space and quasiconformal reflections of S2. As in the previous papers we
will work in the Poincaré ball model of H>.

The surfaces which engender quasiconformal reflections are those whose principal
curvatures, (k,, k,) satisfy:

(1. 1) ki<l i=1,2.

In [Ep1] we demonstrated that such a surface is necessarily imbedded and dif-
feomorphic to a disk; the proof presented there also shows that the imbedding is
proper. In §§2—4 we will prove that both Gauss maps of such a surface are
diffeomorphisms onto disjoint open subsets of §2, and the asymptotic boundary of Z,
0,2 is a Jordan curve.

Let N denote a globally defined unit normal field on the surface X. Recall that
v'(p, X) is the constant speed geodesic with initial point p and initial velocity
X e T, H?. The forward and backward Gauss maps of X are defined by:

(1.2 G.(p)= lim '(p. N).

The limit is taken in the Euclidean topology of MB3. For surfaces which satisfy (1.1)
G, are diffeomorphisms onto disjoint domains Q. <S? We can invert G, and then
define:

(1. 3) A=G_ o G;il.

This map is a difffomorphism from Q, onto Q_. The closure of 2, and Q_ meet along
0, 2. In § 5 we show that A is quasiconformal whenever Z satisfies (1. 1). The dilatation
at a point G, (p) is:

(1.4

K (4, G, (p)) = max {

1—k,(p) 1+ky(p)|} ll+k1(p) , 1—k2(p)‘%}
T+k(p) 1—ky(p)| > |T=ks(p) 1+ky(p)|

As the Gauss maps are difffomorphisms we can invert each of them by
representing X~ as an envelope of horospheres:

Y = Outer envelope of {H(6, 0+ (0)): 6 € Q.}.

The support functions, ¢, () are defined in 2, and have one less derivative than
Z. In § 6 we derive a formula for the Beltrami coefficient of A in terms of g,.
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Using the relations from §§ 5—6 we obtain a sufficient condition for a conformal
map defined on the disk to be univalent and to have a quasiconformal extension to the
plane. This condition generalizes one given by Ahlfors in [Ahl 1]. It includes, as special
cases, the classical condition on the Schwarzian derivative:

£, A -1{1?*|=2k<2,

the condition of Duren, Shields, Shapiro and Becker for the unit disk

"

’C_z, Q=g |sk<1,
and for the right half plane
2Rel %(c) <k<1.

Many of the geometric results in this paper are true in any number of dimensions.
For ease of exposition we restrict ourselves to three dimensions.

Notation. The notation is identical to that introduced in [Ep 1] and [Ep2] with
a few additions:

H? — Hyperbolic 3-space as modelled in the unit ball, /B with the metric
s — 4dx*+dy*+dz?)
TTTa=y
0 — The point (0, 0, 0,), considered as the origin in /3.
dH?®  — The ideal boundary of H?, usually identified with the unit sphere
S?=01B>.

dy(p, 99 — The hyperbolic distance between the points p and q.

dg(p,q) — The Euclidean distance between the points p and q.

H(0,0) — The horosphere tangent to S2 at 6 which satisfies:
lel=inf )du(q, 0),

qeH (0,0

0>0 if O is in the exterior of H (0, ¢) and negative otherwise. g is
called the “horospheric radius” of H (6, g).

B(0,9) — The open ball bounded by H (0, g).

[p,0] — The horospheric radius of the horosphere tangent to 6 € S? passing
through p e H?; if pe H(0, ) then
[p, 0]1=ce.
Vpq — The hyperbolic geodesic connecting p to q.
ro — Euclidean polar coordinates in /B> with respect to 0.

53 Journal fiir Mathematik. Band 372
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ow — Hyperbolic geodesic polar coordinates with respect to 0.
b(0,r) — The disk in S? about 0 of radius r in the spherical metric.
— The gradient operator on S? with respect to the round metric.
S — Stereographic projection from S? to C:
2Rez,2Imz, |z]2—1

51yt 2im ')
D, — The disk of radius r in C about z=0.
z, — The parallel surface at distance ¢ to X.
T, X — The space of unit tangent vectors to X at p.
0,2 — The asymptotic boundary of X on dB*=2n 5S>
G, — The forward and backward Gauss maps.
A — The composition: A=G_ o G;.
(ky, k;) — The principal curvatures of X ¢, M.
&,(z) — The Schwarzian derivative of y:

w/r ’ 1 wﬂ 2
0= (3 ) =3 (5
v Y 2\y
Acknowledgements. I would like to thank J. Becker, Troels Jorgensen, Lee
Mosher, Bob Penner, Chr. Pommerenke and Bill Thurston for discussing this work with

me. I would particularly like to thank Prof. Pommerenke for allowing me to include his
observations on Theorem 7. 2.

§ 2. The Gauss maps

In this and the next section we will explore the differential geometry of smoothly
imbedded surfaces in [H® whose principal curvatures satisfy:

(1.1 k<1l i=1,2.

Section 2 deals with the Gauss maps of such a surface. We will prove that the Gauss
maps are diffefomorphisms onto disjoint open sets.

In §§2—4 the surface X will be normalized so that it passes through ¢. We will
use (r, w) to denote Euclidean polar coordinates with respect to ¢. If V is a tangent
vector in T, X then exp(tV) will denote the constant speed geodesic in X with initial
point ¢ and direction V. At times we will use the notation (ry,(t), wy(t)) to denote
exp(tV) in terms of the (r, w)-coordinates, that is

exp(tV)=ry(t) wy(t).
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It follows from Schur’s Theorem for H" (see §4) that the function

F(V, t)=ch {log [(1 +ry () (1 =ry ()"}
. t? . . :
satisfies F(V,t)=1 +7 provided the principal curvatures satisfy |k|<1. Thus we see

that X is necessarily a properly imbedded disk. By the Jordan Brower Theorem X
separates H* into two components, D, and D_. Let Q, and Q@_ denote the asymptotic
boundaries of D, and D_ respectively; these are closed subsets of S2.

Lemma 2. 1. The intersection of Q, with Q_ lies in 0., .

Proof of Lemma 2. 1. Let 0eQ, n Q_; there are two sequences {p, } and {p, }
contained in D, and D_ respectively such that

lim pf=0.

n— o

Let 7y, denote the geodesic from p,f to p,. As X separates D, from D_ y,n X is not
empty. Let g, be a point in this intersection. Since {p, } and {p, } converge to the same
point on 0 H?* the Euclidean diameter of y, tends to zero. From this it is immediate
that:

lim g,=0

n—oo

as well. O

Let O, =0Q,\0,2nQ,. As §?=0, UQ_ U3, X and 9, T is a closed set, it
follows from Lemma 2.1 that Q, are open sets as each is the union of connected
components of the open set S*\ 4, ~X. We will show they are the images of G,.

The proofs in this section make use of the following, well known geometric
construction for a horosphere:

Let S(p, N, r) be the hyperbolic sphere of radius r, passing through the point p,
with inner normal vector N at p. The limit (in the Euclidean topology of B3 of
S(p, N, r), as r tends to infinity is the horosphere, H(0, ), where

0=lim y'(p, N)
and ¢=[p, 0]. Recall [p, 0] is the real number for which
pe H(, [p, 0D);

this number is called the horospheric radius of p relative to 0.
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Through a series of lemmas we will prove the following theorem:

Theorem 2.2. If ¥ is a complete, C° imbedding of D, into [H?* whose principal
curvatures, (ky, k,) satisfy

@ 1) sup max {1k, (p)l, kzI(p)} <1,

then the Gauss maps G, are diffeomorphisms onto the disjoint open regions Q. .

Remark. In the sequel B(6, ¢) will denote the open ball bounded by H(6, o).
The following lemma forms the core of the proof of the theorem:

Lemma 2.3. If H(0, 9(0)) is tangent to X then X n B(0, ¢(0)) is empty provided the
principal curvatures satisfy:

(2.2) Sup max {lky(P)l, lk2(P)I} 1.

Proof of Lemma 2.3. Let N, denote a unit normal vector to X at p, and
S(p, N, r) the family of spheres defined above. Each sphere in this family is tangent to ~
at p and clearly:

H(0, ¢(0)) = lim S(p, N, 7).

In virtue of the smoothness of X and the estimate on the principal curvatures, (2. 2) it is
easy to see that

S(p, N,y 1) 0 Z={p}

for sufficiently small r. As the principal curvatures of a sphere of finite radius are larger
than 1 there is, for each r, a neighborhood of p, U, such that:

2.3) S(p, N, 1) 0 U, = {p}.

If the lemma were false then, for some finite r, S(p, N,, 1) n 2 would contain another
point g. By choosing the smallest radius for which this pertains we obtain a second
point of tangency between S(p, N,,r) and X. Let r, denote this radius, g the second
point of tangency, and N, the normal vector at g pointing into S(p, N, ro). It is clear
that:

(2.4) ve(p, Np)=0=v"(q, N,).

From formulae (2. 3) and (2. 4) it follows that the surface, 2, , parallel to X at distance
ro has a self intersection at Q. However as X satisfies (2. 2) so does X, and thus
according to Theorem 3.4 of [Epl], X,, can have no self intersections. The
contradiction proves the lemma. O
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Lemma 2.4. The Gauss maps are globally one to one if X is a C3-imbedding of D,
satisfying (2. 1).

Proof. Let g, (0) denote the horospheric radius of the horosphere tangent to X at
p and to 0 B* at =G, (p). From Lemma 2.3 it follows that ¢, (f) are single valued
functions on G, (Z) whether or not G, are one to one. For suppose

but that the horosphere tangent to X at p is not the horosphere tangent to X at gq;
denote these by H, and H, respectively. As H, and H, are tangent to d,, /> at the same

point either H,& H, or H,& H,. This contradicts Lemma 2. 3; thus we see that g, (6)
are single valued functions.

If H(0, ¢) is tangent to 2 then the order of contact at points of tangency is exactly
one, for the second fundamental form of ¥ strictly dominates that of H(0, ¢.). We can
therefore conclude that the intersection H(0, ¢ (0)) N X consists of isolated points.

From Lemma 1.4 of [Ep2] it follows that g, (0) are at least C>-functions. In the
derivation of the formula for the envelope of a C'-family of horospheres,

{H(0,0(0): 0e U}

we observed that the equation defining the outer envelope always has a unique solution
(cf. §2 of [Ep 1]). All that this derivation required was that the point of contact between
H(0, ¢(0)) and the envelope X be a differentiable function of 6.

The families of horospheres in question are given parametrically by:
Ry (0, 0)=3(1+r.(0) X(0)+1(1—r.(0) Y (o),
ry(@)=(*@—1)(*®@+1)" 1.
Here X (0) and Y(x) are parametric representations of the unit sphere, with X (0) the

point of tangency between H (6, ¢) and 0 H>.

In §5 we will show that dG, (resp. dG_) is invertible provided k;=1 (resp.
k;+ —1), i=1, 2. Thus the Gauss map can be locally inverted to give parametrizations
of the surface by its Gauss image. Let F(0) denote one such determination of an inverse.
By Lemma 1.4 of [Ep2], F(0) is a C>-function of 0. Thus we can write Y (x, () as:

Y (s (@)=2(1=r (0)" (FO) —4(1+r.(6) X(©)).

The right hand side is a twice differentiable S*-valued function of 0. We can smoothly
invert the coordinate representation Y (x) of S* to obtain:

o, (0)=Y"! [2(1 —r (0)! (F(e)—<~1i12£@> X(G))]
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From this formula it is evident that o, () is a C2-function of 0 for any determination of
an inverse of G, . By the aforementioned uniqueness result the point of contact between
H(0, 0. (0)) and ¥ must be unique. From this the lemma is immediate. O

Remark. The previous lemma is in effect a monodromy theorem for envelopes: if
the generating function for a smooth envelope is single valued and the points of contact
are isolated, then they are unique.

Lemma 2.5. If X is a complete C*> imbedded surface satisfying (2.1) then the
images of the Gauss maps are disjoint from 0, X.

Proof of Lemma 2.5. As the argument for G, is identical to that for G_, we
present the argument only for G,. Let 6,= G, (p). In the previous proof we observed
that G, is an open mapping and thus the image of G, contains an open disk, b(6,, r)
about 0,. For 0 in b(0,,7) let ¢, (0) be the horospheric radius such that H(6, ¢, ()
is tangent to XZ. Evidently ¢, (6) is a bounded function in b(0,, r). From Lemma 2.3
it follows that X is disjoint from each of the balls B(6, ¢, (0)) and thus disjoint from the
set V, defined by:

V= U B(0, ¢+ (9)).

6eb(09,r)

From this it is clear that no point in b<90, %> lies in the asymptotic boundary
of 2. O

The following lemma completes the proof of the theorem:

Lemma 2. 6. For any properly immersed surface X, every point in 0 H>\ 0, X is in
the image of one of the Gauss maps.

Proof of Lemma 2.6. If 0 lies in 8 H3\ 0, Z, then there exists an R such that
H,9)nZ=9
if o > R. The horospheres tangent to d {3 at 0 foliate /* and thus there is a first o, call
it gy, such that the set

A=H(0,00) N2

is not empty. The points in 4 are points of tangency between H(6, ¢,) and X and
therefore 0 is either in the forward or backward Gauss map of some point in A. O
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Now we assemble the proof of the Theorem:

Proof of Theorem 2.2. From Lemma 2. 6 it follows that every point in @, U Q_
is in the image of either G, or G_. From Lemma 2. 5 and the proof of Lemma 2. 3 it
follows that the image of G, (resp. G_) is contained in &, (resp. @_). From Lemma 2. 4

it follows that G, (resp. G_) is a diffeomorphism. This completes the proof of the
theorem. O

In the proof of the theorem we also showed

Proposition 2. 7.  The boundary of Q. (resp. Q_) is contained in 0 X.

Remark. As (, (resp. O_) is the interior of Q, (resp. @_) we will henceforth
denote this set by Q, (resp. Q_).

We close this section with a result on 9, X:

Proposition 2. 8. If X is a complete imbedded surface satisfying (2. 1) then 0, X has
empty interior.

Proof of Proposition 2.8. Let 6, be a point in J,, X and let {p,} be a sequence of
points in X converging to 0,. Set 6F = G, (p,). From Lemma 2.5 it follows that {07}
lies in dH*\ d,, Z. Let y, be the geodesic joining 0] to 0, ; note that p, is a point on this
geodesic. It is convenient, for this argument, to represent hyperbolic 3-space as the
upper half space, {(x, y): xe R? y>0}. Let 6, correspond to (0,0,0) and let (x,, y,)
denote the coordinates of the points p,. Because (x,, y,) tends to (0, 0,0) as n tends to
infinity it is evident that

dn =min {dE (9:’ ©,0, 0))9 dE (0”_ ’ (0’ 0, 0))}
(dg: Euclidean distance in &%) must tend to zero as n tends to infinity. But this implies

that we can extract a subsequence {0, } from {6, 0, } which converges to 6,. As 6, was
arbitrary and {6, } >\ 0, Z the proposition follows.  [J

Corollary 2.9. The asymptotic boundary of X is given by:

0,2=0Q, UIQ_.

§ 3. The asymptotic boundary

In this section we will prove that under an additional hypothesis d,, 2 is actually a
Jordan curve. The additional topological hypothesis we make is that 0,2 is locally
connected; in §4 we will show this is always true. For the argument we will use the
representations of X as envelopes of horospheres. Let ¢.(0) and ¢_(0) denote the



108 Epstein, The hyperbolic Gauss map and quasiconformal reflections

support functions defined on @, and Q_ respectively. In the proof of Lemma 2.4 we
showed that these functions are single valued on their respective domains and have one
less derivative than 2.

As G, is invertible we can map Q, to Q_ by the mapping
A=G_ oGl
Using 4 we can express ¢_ in terms of g, :
Theorem 3. 1. The support functions are related by:

G.1 ¢-(4(0)=log (1+|De. (0)%) — e+ (6).

Proof of Theorem 3.1. In the notation for the horospheric radius introduced in
§ 2, the support functions are expressed by

0+ (0)=[G:'(0),0] for 0eQ,.
Denote the point on S? antipodal to 0 by 0*. If A4(0)=0* then it is clear that:

0-(A4(0)=—04+(0).

As is well known the horospheric radius satisfies the following transformation law under
the action of a hyperbolic isometry, g:

(3.2 lgp, g01=[p, 01+ [g- 0, g 0],
(see [L-P]).

Suppose that g is a parabolic transformation fixing 6 and carrying 4(6) to 6%,
from formula (3. 2) we see that for the point p=G;'(0):

(3.3)  [p, 40)]=1[gp, g40)]—[80, gA(0)]=[gp, 6*]—[g0, 6*].
The point gp is on the geodesic joining 6 to 0* and therefore
(gp, 0*]= —[gp, 0= —[p, 0].
From this and (3. 3) we obtain:
(3.4) [p, 4(0)]= —[p, 01— [80, 0*]= —¢. (6)—[g 0, 6*].

The problem is now reduced to calculating [g@, 0*] for a parabolic transformation g
which fixes 0 and carries 4(f) to 6*. This is a two dimensional problem as 0, 4(6), O
and the intersection point H(6, g, (0)) » H(0, ¢_ () lie in a hyperbolic plane, #. We
can assume without loss of generality, that # = H> {z=0}, 6=(1,0) and A(0)=e".
The parabolic subgroup of SU(1,1) that fixes 0 is:

L+it  —it
= , .
B (it 1—it> ¢ R
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We need to solve equation (3. 5) for t:
(3.5 g e?=—1.

An elementary calculation shows that:

o 2i0t—1
l¢=
¢ 2it+1°
Thus
)
8C="n
and therefore:
) 1—cos ¢
(3.6) [2,0,0%¥]= —log (1+4t*)=log — )

To complete the calculation we need to determine the cosine of the angle < A(6) 00 in
the plane #. Formula (2. 4) of [Ep 1] gives the parametric representation for %, in terms
of its Gauss image as:

[De(O)* +(e*@*?—1)
IDe(O)] + (e +1)*

2De(6)
IDe(O)1* + (™ +1)*

B.-7) Ry (0)= X(0)+

Inserting ¢, for ¢ in (3.7) and allowing ¢ to tend to infinity we arrive at a
representation for A:

Do, (0)1> -1
Do (0)1*+1

2Dg.(9)

X(0)+

To compute the cosine we use the fact that X(6) and A4(X(0)) are unit vectors to
conclude that:

Do+ (0)* —1

(3.9 cos ¢=X(9)'A(9)=W

where X - 4 is the Euclidean inner product in /3. To obtain (3. 9) we have used the fact
that Do, () is a vector tangent to S? at X () and thus Dg_ (6)- X(0)=0.

Putting the evaluation of cos¢ into (3. 6) we obtain

(3. 10) log (1;;"53>= _log (IDe, O) + 1).

By combining (3. 4) and (3. 10) one completes the proof of (3. 1). O
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The formula for the action of A4 on $? is worth noting as a separate proposition:
Proposition 3. 2. If g, is the support function of the smooth surface X(o,) with
Gauss maps G, and G_ then the map A=G_ oG, is

1D (6)1*—1
1D (0)1* +1

2Dg.(9)

X(0)+

Remark. In this paper as in [Ep 1] we will frequently use X (6) to denote a point
on S? which we will often identify with 6 itself. Though this is somewhat imprecise it
should cause no confusion.

In Proposition 2. 8 we showed that d, X has empty interior. As

$2=Q, 11 3,2 1L Q_
it follows that the points of 02 are divided into three disjoint sets:
0o 2=A, L B1l A_.

A point 0 is in A, (resp. A_) if, for sufficiently small r, b(6, r) N Q_ (resp. b(0, r) N Q,) is
empty. The points not in 4, U A_ are in B. We will show that 4, U A_ is empty when
X satisfies (2. 1). The proof is effected by a series of lemmas; the argument for A, is
identical to that for A_ so we present the argument only for A,.

Lemma 3.3. If 0,€ A, then there is a sequence of points {0,} in Q, tending to 0,
such that

lim o, (6,) = co.

Proof of Lemma 3.3. Suppose the Lemma is false, then for some r>0
b0, 1) N Q_=0
and

sup 0. (0)=M< 0.
96b(90,")r\9+

From Lemma 2.3 it follows that X is disjoint from the open set V' given by:
V= U B(6, M).

0eb(00,r) N 2+

The set 0,2 has empty interior; therefore 2, N b(f,, r) is dense in b(6,, r). From this it
is evident hat

V= B, M
961’%0,') ( )

‘as well. It is clear that if £ N V is empty, then 6, cannot be in the asymptotic boundary
of 2. The contradiction proves the Lemma. 0O

By combining Lemma 3. 3 with formula 3.1 we can now prove:

Proposition 3. 4. The set A, is empty.
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Proof of Proposition 3.4. 1If the proposition is false then there exists a point
0,e0,2 and an r>0 such that

Q_ by, r)=0.

Let {0,} be a sequence of points in 4,, whose existence follows from Lemma 3. 3, such
that

{0,} =,
and

(3.12) lim 0+(0,)=00.

As D, is open and disjoint from D_ and furthermore H(0, ¢_(0)) lies in D_ for every
0 e Q_ it is easy to see that ¢_(0) is bounded from below. Thus it follows from formula
(3. 1) that:

lim |Dg. (0,)|= oo

as well. From formula (3. 12) we easily derive that
(. 13) d(4(0), 0)=2(1 + Do, O)) .
From (3. 12) and (3. 13) we conclude that
lim dy(0,, 4(0,)=0.
For sufficiently large n, 4(0,) must lie in b(6,, r). However 4(0,) lies in Q_ and thus

b6y, 1) N Q_+0.

As Q_ N Q, =0 this contradiction completes the proof of Proposition 3. 4. O

Altogether we’ve now proved:
Theorem 3.5. If X is a complete, embedded surface satisfying (2. 1) then
aQ+ =aQ_=a®E.
If we make stronger topological assumptions we can show that 0% is a Jordan
curve:
Theorem 3.6. If 0,2 is locally connected and satisfies the hypotheses of the

previous theorem then 0, X is a Jordan curve.

Remark. The topological conditions 0Q, =0Q_=0,2 do not suffice to show
that 2 is a Jordan curve. A simple modification of the well known “dragon’s teeth”
example gives a set A which is a common boundary of two complementary disks but is
not locally connected and therefore not a Jordan curve (see Figure 1).
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111

L

Figure 1

Proof of Theorem 3.6. In this argument we use some well known facts about the
boundaries of simply connected regions in S2. These results can be found in Chapter 9
of [Po]. The set 0Q, =0Q_=0,2 can be divided into two disjoint subsets 4 and B. A
point, 0 is in A if 0,2\ {6} has at least two components and in B otherwise. As 0, X is
locally connected it is a Jordan curve if and only if A is empty. The points in 4 are
called cut points.

Suppose 0,€0,2 is a cut point. Let {y,} be the connected components of
00,2\ {0,}. At least one of the arcs y,u {6,} contains a simple closed curve for
otherwise $2\ 8, X would have a single component. On the other hand only one of the
arcs y, U {0,} can contain a simple closed curve for the complement of d,, ~ has exactly
two components.

Let y, u {6} be the arc which contains the simple closed curve. Each of the other
arcs lies in one of the components of S*\ 'y, U {6,}. Evidently the points on these arcs
are only boundary points of one of the sets, Q, or Q_. This contradicts Theorem 3. 5
and shows that A is empty. O

Proposition 3. 7. If X is a complete embedded surface satisfying (2. 1) then |D g, ()]
tends to infinity as 0 tends to 09,.
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Proof of Proposition 3.7. Formula (3. 1) states

log(L+[Do. (0)]*)= e+ (0) +¢-(4(0)).

To prove the proposition it suffices to show that

(. 14) lim ¢, (0,) + ¢ (4(6,)) = o

n— oo

for any sequence {0,} tending to 0Q,. If lim ¢, (0,)= + oo or lim g_(4(f,))=co then
(3. 14) follows for both ¢, and ¢_ are bounded below.

Suppose {6,} is a sequence tending to Q. such that
lo+ (O <M.

There are points {p,} on X such that

G+ (pn) = On :

It is clear that p, tends to 0,X as n tends to infinity. Otherwise we could extract
subsequences {p, } and {0, } converging to p*e X and 60*€0Q,. As 0Q,=0,2 it
follows that G, (p*) € 0, 2. This contradicts Lemma 2. 5.

Let Hy = H(G+(p,), 0+ (G+(p,)). Evidently
H} ~n H, =p,.

If |0+ (0,)] <M then H, is a sphere tangent to the unit sphere and a sphere, tangent to
the unit sphere, of radius at least M’ (for some M’ > 0). The point of tangency tends to
the unit sphere and therefore the Euclidean radius of H, must tend to zero. From this it
is immediate that

lim ¢_(A4(6,)= . O

n—*o

§ 4. The asymptotic boundary continued

In this section we will show that 0,2 is a locally connected set by realizing it as
the image of a continuous map. It then follows from the results in the previous section
that 0,2 is a Jordan curve. The argument uses a hyperbolic analogue of Schur’s
Theorem proved in [Ep 4]:

Theorem 4. 1. Let c(t) be a smooth arclength parametrized curve in [H?* with
curvature K(t). If |K(t)| <1 then
t2

4.1 cosh [d(c(0), c(t))] 21 +7.
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Proof of Theorem 4.1. The analogue of Schur’s theorem states:

Theorem A [Ep4]. Let c¢,(t) be an arclength parametrized curve in H* with
curvature K, (¢) and c,(t) a planar curve in H/* with curvature K,(t), finally let &, (t) be
the planar curve with curvature |K,(t)|. Suppose that all curves have length L and that
¢y (t) along with the chord from ¢, (0) to ¢,(L) and c,(t) along with the chord from ¢, (0)
to c,(L) bound convex regions and that:

K (O] = K, (2)
then
d(c1(0), ¢y (L)) 2 d(c2(0), c,(L)).

We can apply this to prove Theorem 4. 1 because of the following fact:

If c(t) is a complete curve in [H? with curvature K(t) satisfying 0K <1 then

1) lim c(t) exist,
t—t o0

2) {c(t): te(— o0, )} bounds a convex region.

The fact that {c(t)} is properly embedded follows easily from the fact, proved in
[Ep 1], that

ch d(c(0), c(2))
is a convex function. We will prove the fact under the simplifying assumptions that

1) K(t)>0,
2) K@t)=1 for [t|>T+1.

From the second assumption it is evident that

lim c(¢)

t—>+
exist and as {c(t)} is a Jordan arc separating H/? into two simply connected regions.
Let D denote the “convex” component. For each p on dD there is a neighborhood N,
on 9D such that if g € N, then y,, has in D. To prove that D is convex it clearly suffices
to prove that N,=0D for every pedD. By the strict local convexity it is clear that
N, + @; it is also clear that N, is a closed set. We will be done if we can show that N, is
open. Suppose not. Then we can find a sequence {g,} = N; such that

lim g,=q€N,,.
n—* o

On each geodesic y,, there is an arc y, , < D¢ such that {r,, s,} cdD. We can extract a
subsequence such that r, converges to r and s, converges to s. Either r=s or not; if not
then the arc y,,€ D n D°=0D, but K >0 and therefore this is not possible. If r =s then
d(r,, s,) tends to zero and so we can find arbitrarily nearby points (r,, s,) such that
Vr,.s, < D°. For p in a compact subset of 9D, diam(N,) is uniformly bounded from below
which contradicts the assertion that y, , < D° as n tends to infinity. Thus N,=4aD for
every p.
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We remove the hypothesis that K >0 by choosing a function ¢ € Cy° (/) such that
1) ¢20,
2) 0<K+o¢=1.

This implies that
2y 0<K+ep=1, e€(0,1].

Let {c*(t): te(— o0, )} denote the curve with curvature K +¢¢ normalized so
that

¢(0)=c(0) and ¢(0)=¢(0).

Standard estimates for ordinary differential equations imply that {c*(¢)} tends locally
uniformly to {c(t)}. If p, q are a pair of point in int(D) then p, g are in int(D®) for
sufficiently small &. Thus y,,<D° for small enough ¢ and so also in D. From this it
follows that D is a convex set.

We can therefore apply Theorem A to compare chordal distances on {c(t)} to a
horocycle, which is a curve of constant curvature 1. The estimate is:

ch [d(c(0), c()]= 1 +;.

To complete the proof of the fact we need to remove the hypothesis that |K(t)|=1 for
t>T+1. This is easily done by considering curves c’(t) with continuous curvature
given by:

K(t) [t|=T,

K'(t)=
1 [t|2T+1

and such that cT(0)=c(0); ¢T(0)=¢(0). From the uniqueness theorem for ordinary

differential equations it follows that:

cT®)=c@t) |t|<T
thus we obtain
2

ch [(c(0), c(e)] =ch [d(cT(O), TON 2 1+, [1|<T.

As T is arbitrary we obtain the estimate for all t. The proof that lim c(t) exist follows

t—+ o
from this estimate as in the proof of Proposition 4. 2. Theorem 4. 1 follows easily for the
hypothesis that |K,(t)]<1 implies that the planar curve ¢,(t) with curvature |K,(t)|
bounds a convex region and thus we can apply Theorem A to conclude that

t2

ch [d(c,(0) ¢, ()] 2 1+

a
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Let ¢(t) be an arclength parametrized geodesic in 2. If the principal curvatures of
X satisfy

ki1 i=1,2,
then the curvature of c(t) as a curve in [H? is at most 1. This follows because

where N is the normal to X, hence
IK|=|<{Veé, ND|=|r( = 1.

We will represent c(t) in hyperbolic polar coordinates:

c(t)=o0(t) w(t).

The radius, a(¢) is related to the Euclidean radius by:

_ 14+r(t)
o(t)=log (1 —r(t))’

As the curve is parametrized by arclength we have:
4.3) |6|12+sh?c |@]?=1.

As usual we normalize X so that it passes through . Let V, denote an isometric
map from the unit circle in C to the unit tangent space to X at . Let

Oy,(t) Wy, (t) =expo(t V)
(expy is the exponential map T,2 — 2).

We will show that w,(t) tends to a limit as ¢ tends to infinity and limit depends
continuously on Vj:

From Theorem 4.1 and (4. 3) it follows that for t> T,

@9 v 1S 5

uniformly in V, for some fixed C. Clearly:

4.5) lwvg(Tz)“wvg(Tx)l =

T
| dp,(s)ds
T,

T
< [ oy, (s) ds
T,

1 1
< e
=C<T1 T2>.

From (4. 5) it is clear that w,(t) tends to a limit. Define
¢(V9)= lim wyo(t).
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Proposition 4. 2. If X is a complete embedded surface in H?* such that
ki<l i=1,2

then @ is a continuous map.

Remark. @ is thought of as a map from the unit circle in T, X to the unit sphere
in [R3.

Proof of Proposition 4.2. The proof follows easily from (4. 5):

|D(Ve) ~ D(Va,)| =y, (T)—wy, (T)+ T y,, (5) =y, (5) ds|

2C
<y, (T) =y, (D) +

Given ¢>0 we choose T so large that ZTC<%, then we choose 6 >0 so that

€
@y, (T) = oy, (T)] <
if
Vo, — Vo, <6.
If |V, — Vo, | <8 then |B(V,)—B(V, )| <e. [

Corollary 4.3. If 2 satisfies |k;|<1 then X is the image of the unit disk by a
mapping which is continuous in the closure of the disk.

i(se®)y=ry, <log (%)) Wy, (log <i tz>>

The continuity in the closure follows easily from (4. 1), (4. 3) and Proposition 4. 2. O

Proof. Let

Corollary 4. 4. The asymptotic boundary of X is the image of ®.

Proof. Let 0 be a point in 0,2 and let {p,} be a sequence in X converging 0. We
can represent each point p, as:

Pn="¢€XPy (tn Vn)

The sequence {t,} tends to infinity, whereas {V,} has a convergent subsequence; call it
{V,} as well. Let V* be the limit of {V,}. Because & is continuous:

lim |®(V*)— &(V,)| =0.

As r(p,) tends to one:
lim |@(V,)—p,| =0.

The conclusion follows by applying the triangle inequality. O
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Corollary 4.5. If X is embedded in H?> and

k<1 i=1,2

then 0, 2 is a Jordan curve.

Proof. This follows immediately from Theorem 3. 6 as the previous corollary and
Proposition 4. 2 imply that 0, 2 is locally connected. O

Corollary 4. 6. If X is an embedded surface in H?> with
ki<l i=1,2
then A extends continuously to 0Q, as the identity.

Proof. From Proposition 3.7 it follows that there is an exhaustion of Q, by
relatively compact subsets {Q,: n=1, 2, ...} such that

. 6) Do, (0)|=n for 0 in Q,\Q,.

From formula (3. 8) for 4 we see that:

@.7) 40) - 4@ =X O~ X (@)
| X0 X ’
Do, @F +1 Do, @) +1
+2‘ De. (6) De. 0) \'

Do, (O)>+1 [Dg,(0)1>+1

From (4. 6) and (4. 7) it is clear that if we extend 4 to 0, as the identity then 4 is
continuous in Q,. O

Remarks. 1) If the curvatures satisfy a stronger estimate
|kl|§ﬂ<1 i=112’
1—-p2\}

then one can show that & is <W> Holder continuous. The proof uses Schur’s

theorem and the Toponogov triangle comparison theorem.

2) If |k =1 on a sufficiently large set then 0, 2 may fail to be a Jordan curve.

§ 5. The dilatation

The distortion of the map A is intimately connected to the curvature properties of
the surface which defines it. In this section we will derive a formula for the dilatation of
A in terms of the principal curvature of 2. As a byproduct of this analysis we will also
find a formula for the Jacobian determinant of A.
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Recall that the dilatation of a smooth map between Riemannian manifolds:
@: (M, g)— (N, h),

is defined at a point pe M by:

1

2

max [(¢*h) (X)/g(X)]

_ XeT,M
Ko D= | i o h ) /g (0]

XeT,M

This quantity is invariant under composition with conformal maps (see [L-V]).

To compute the dilatation of 4 we normalize X so that the point p = G;!(0) is the
origin in /H* and the unit normal vector at p is (0, 0, 1). Effecting this normalization will
lead to a conjugation of 4 by an isometry of H?>. These maps act conformally on dB3
and thus the dilatation is unchanged.

Let {X;, X,} be an orthonormal frame of principal directions at p, corresponding
to the principal curvatures k, and k,, respectively. Let {X,(t), X,(¢)} be the image of
this frame under the linearization of the parallel flow, p+ y'(p, N). According to
equation (3. 7) of [Ep 1]

5.1) X(0)=5 [0 —k) ¢+ (1+k) e~ £,

Here X,(t) is the hyperbolic parallel translation of X;(0). The hyperbolic geodesic
y'(p, N,) is also a Euclidean geodesic and the Euclidean and hyperbolic metrics agree at
O; thus we can express X;(¢) in terms of the Euclidean parallel translate of X;(0), X;(¢)

by:
5. 2) ()= (ch (%»_2 X.(0).

Putting together (5. 1), (5.2) and the fact that X;(t) = X;(0) we see that:
(5.3) li£n X;(t)=2(1Fk;) X;(0).
t— + oo

If k;#1 we can use (5. 3) to compute the linearized action of A in the basis of X;(0):

(5. 4) dAlo(X,-)=<—ij:—l;':> X;.

As {X,, X,} is an orthonormal frame at 6 we can compute the dilatation of 4 at 6:

(5.5) K(4 0)=max{ L+k(p) 1-ko(p) |} Il—kl(p) 1+k,y(p) %}_

1=ki(p) 1+k;(p)| °~ [1+ki(p) 1—k;(p)
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In this normalization 0 =(0, 0, 1) and 4(6)=(0, 0, —1). We have tacitly identified
all the tangent spaces along the z-axis by using {X,(0), X,(0)} as a basis for these
tangent spaces. It is important to note that this basis gives one orientation for the
tangent space to S2 at (0,0, 1) and the opposite orientation at (0,0, —1). If

(I=k)(A—=ky)(1+k)(1+ky)>0
then A reverses orientation and it preserves orientation otherwise.

As remarked above the normalization of X~ does not effect the dilatation so we’ve
essentially proved:

Proposition 5. 1. If X is a C? surface in [H> such that k;+1, i=1,2 then the
forward Gauss map, G, is locally invertible and the dilatation of the composition is given
by:

L+k,(p) l—kz(p)‘% ’1~k1(p) , 1+k2(p>|%}
’ (| |

K(A,G+(P))=max{ 1—k;(p) 1+ky(p) 1+k(p) 1-k,

Proof of Proposition 5. 1. We’ve proven everything except the local invertibility of
G, . This follows easily from the inverse function theorem. For the hypothesis k;+ 1 and
(5. 3) imply that dG, is invertible. O

For surfaces defined as envelopes the restriction k; =+ 1 is not important.

Proposition 5. 2. Let ¢ be a C? function on a domain U < S2. Suppose the envelope
of {H(6, 0(0)): 0 U} given by:

_ Do) + (e~ 1)
Do (@) + (e + 17

2Do(0)
[Do(0)|* + (e? + 1)?

(5. 6) R,(0) X(0)+

is an immersion, then neither principal curvature of X(g) ever attains the value 1.

Remark. If ¢ is a C? function then for a given 0 the map 6+ R, (0) is an
immersion at every value of ¢ with at most two exceptions; this result is proved in § 5 of
[Ep 1]. The condition k;# 1 is invariant under the parallel flow.

Proof of Proposition 5.2. Let X, denote the parallel surface at distance ¢ from X.
In light of the results in §5 of [Ep1] it follows that each e U has an open
neighborhood V such that the map

¥Y:Ux(—¢ ¢ — H?
defined by:
¥(0,0)=Ry+,(0)
is a homeomorphism for some choice of ¢>0 as the differential d ¥ is an isomorphism
at (0,, 0). If G, denotes the forward Gauss map from the surface X then:
5.7 G,-¥(6,0)=0.
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The linearization of ¥ carries 0, to the unit normal vector to X(p) thus (5. 7) and the
inverse function theorem imply that d G, must have rank two everywhere on X(g). If
ki(p)=1 for some i and some pe Z(g) then (5. 3) implies that:

4G, 1, Xi(p)=0.
This contradiction proves the proposition. O

Remarks. 1) By combining the calculation leading up to Proposition 5.1 and
that used in the proof of Theorem 3. 1 one can easily show that the action of d 4 on the
orthonormal basis {X,, X,} of T,S? arising from the principal directions of X is given

by:
2.0 1+hwrw»]
dAX)=-—F 3
() u+w94w0[1—hmvw» Y

Here {Y,, Y,} is an orthonormal frame for the tangent space to S* at A(f). The factor
by which A distorts the spherical area element can be calculated from this:

J eter (14+k 1+k,
(1+|Dg4) \1—ky 11—k, )

2) The calculation also substantiates the claim made in an earlier section that in
compact regions of X the Jacobian determinant of dG,, J, satisfies:

c l(1F k) A F k) S J: S [(1F ko) (LF o)1,

for some positive constants ¢, and c,.

As an easy corollary of Proposition 5. 1 and Corollary 4. 6 we have:
Corollary 5.3. If X is a complete surface in H?> with

lki|<1 i=1,2,
and

sup K(4, G, (p) <K

peZ

then A is a K-quasiconformal reflection from Q. to Q_ fixing 0, 2.
Corollary 5.4. If X is as in the previous corollary then 0,2 is a quasicircle.

Proof. Follows immediately from the previous corollary and the theorem of
Ahlfors characterizing quasicircles as fixed points of quasiconformal reflections [Ahl 2].

§ 6. The Beltrami coefficient

The Beltrami equation
6. 1) b, = pvs

is a powerful method for studying quasiconformal maps. This method requires a
complex parameter and so it is convenient to work with the map

w=SoAdoS"!
instead of A; S is stereographic projection from S to C:
S™1(z)=(2Rez 2Imz |z|2—1) (1 +]z]?) 7.
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We work with equation (6. 1) instead of the more familiar

Uz= UV,

because our maps generally reverse orientation.

In this section we will derive a formula for

W,

Wz

in terms of the support function, ¢,. This formula is an algebraic consequence of
formula (3. 11) for A4:

|DQ+|2—1 2DQ+
3.1 A X))o ——— XO)+—5——.
G- 10 T RS R AT TN ES
The operator, D is defined by
(6.2) (Df, Y)=df(Y).

Here and elsewhere in this section - denotes the Euclidean inner product; {,) is the
induced inner product in T'S% Y is a vector field on §2; fis a differentiable function.
The complex coordinate vector fields induced by stereographic coordinates are:

d,=(1-2% —i(1+2%,22) (1 4|2/

6.3) 0:=(1—22 i(1 +2%), 2 2) (1 +]2|2) 2.

From (3. 11) we easily derive:

_A—-4-X)X
6. 4) Do = T4 X

From the definition of w it follows that

6.5 A-S7'(z2)=(2Rew(z),2Imw(2), |w(z)|>—1) (lw(z)|>+1)" 1.
From (6. 2) and (6. 4) we see that

A0,
dQ(az)=m,

A -0z

@I=T"1.x

(6. 6)

as X-0,=X"0;=0.

From (6. 5) and (6. 6) we derive the formula for dg in the stereographic coordinate
system; it is:

6.7 dQ=2Re(1+wz dz >

w—z 1+]z)?
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Since
do=9,dz+0;dZ

it follows from (6. 7) that

2) _ 14+wz

T w1+
(6. 8)

_z(l+]z1?) o, +1
O = ez

Formula (6. 8) leads to:

Theorem 6. 1. The Beltrami coefficients p of w is given by:

(4122 (g 0D+ 2 70,1 + 120D
6.9 = A+ 127 oo '

Proof of Theorem 6.1. We differentiate (6. 8)a) with respect to z and Z to obtain:

a) 0,,= _wz(w_z)—2+<1+w2> w—=z2)" =1 +]|z/>)!

w—z 1+]z)?

b

(6. 10)
b) 0z=—wiw—2)"2+(1+]z|>) 72

Substituting from (6. 8) into (6. 10) a) and using the equation w,=puw; we get:

(6 11) sz:gf_ '—,qu—(W—Z)_Z.

Solving for w, in (6. 10) b) amd then substituting this expression into (6. 11) we obtain
(6.9). O

The formula for p becomes neater if we eliminate the factors arising from the
spherical metric. To that end we define:

f=o0—log (1+]z]?).

In terms of f, formula (6. 9) becomes:

fzz - fzz
6.12 =
(6.12) H=
and (6. 8) b) becomes:
1
(6.13) w=z+—.

S
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In the next section we apply these formulae to find sufficient conditions for a
conformal map defined on the unit disk to be univalent and have a quasiconformal
extension to C.

§ 7. Sufficient conditions for univalence and quasiconformal extension

Let Q be a simply connected domain on S? and Q its stereographic image. Let ¢
be a conformal map from Q to the unit disk and let p be the inverse of ¢. If h is
sufficiently smooth then

.|
1-|¢)?

(7. 1) QOS_I(Z)=10g< >+h(z)+log(1+|z|2)

will generate a surface X in /> whose asymptotic boundary is dQ. As before G, will be
the Gauss maps of X and

A=G_oG;!, w=SoA.81.

z

w, . . .
First we need a formula for u=—= incorporating the special form of g:

z

Lemma 7.1. The Beltrami coefficient of w is

(=191 (1 duh, _2>_2$(1—|¢|2)h,

BT VA .
(=197 s

6.7

(7.2)

1+

The pullback of p to the unit disk via vy is:

1
; (1—|c|2)2(gcg—gz——z—%)—zm~|c12)g;
7. = o —_— = ;
(.3 v=revsy ERIETE .

here g(()=how({) and ¥, is the Schwarzian derivative:
n”\' 1 n\ 2
#0-(%) o-3 (%) o

Proof of Lemma 7.1. To prove (7.2) one simply applies formula (6. 12) with

f=log <——I—(&|——)+h.

(1-1¢1%
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For the convenience of the reader we include the important steps in the calculation:

1

¢
_2 i ¢z$
=g e
._l _?}i ¢zz{5(1_l¢l2)+¢3$2
f”_2<¢z>z+ I—lgP =
and
6,17

fz;=m+ h.s.

Inserting these expressions into (6. 12) we obtain:

! y¢_<ii>£+ 24,8

)h,+hn—h3

EPYE
27, |¢>l|2 6]
—lgPE Th=

Algebraic simplification then leads to (7. 2). The transformed formula (7. 3) follows from
(7. 2) by using the fact that

1 2
Lo Q)=—-,0) (-—-)

Yy

and the chain rule to evaluate the other terms. O

Remark. Formulae (6.9), (6.12), (7.2) and (7. 3) result from a local calculation.
Hence y need not be univalent in Lemma 7. 1. If y is conformal the image of v is a
non-schlicht planar region and the inverse, ¢ is locally defined. The formula (7.2) is
only valid locally, however formula (7. 3) is valid globally (see proof of Theorem 7. 2).

The mapping v({) =w o p({) satisfies the equation:
vc =V UC—'

The map, v carries the unit disk onto the image of w. If X is such that G_ is a
homeomorphism onto the interior of Q° then v is a homeomorphism onto the interior of
Q¢ if, moreover,

sup K(4, 0)=K(A4)

fe

is finite then v is a quasiconformal map. As is well known (see [L-V]) the maximum
dilatation of A, K(A) can be expressed in terms of the sup norm of u (or v) by:

e T+ vl

Sl 1=Vl

K(A)

63 Journal fir Mathematik. Band 372
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126
If A is continuous in € and reduces to the identity on 09 then we can extend y to C
via:
(@) (eDy,
¥ ()= <1>
v|+=) (eDjy.
Z— 1
This gives a continuous extension of y to € which satisfies:
off of dD,. The Beltrami coefficient ¥({) is defined by:
0 {eD,

RO

The unit circle is a removable set for a quasiconformal map and therefore ¥ is a

P+ v e . i
1:%_-quaswonformal extension of .
— ]l

This construction can be reversed to obtain a sufficient condition for ¢ to be
univalent and have a K-quasiconformal extension to C:

Theorem 7. 2. Let vy be a conformal map on D,. Suppose there exists a real valued
function, g({) in C3(D,) such that:

1
(-2 [ggc—gz——z— Vw]—Zé’(l—lCIZ) gc
g TH (=107 gz
) 14+(1—C1 gg>0

<k fora k<1

and

1
3) g (Ol (1 —[¢1?) < k max [ICI, m] .

1+k
then v is univalent and has a ( 1 b k)-quasiconformal extension to C.

Proof of Theorem 7.2. First we give an outline of the proof:
I) We first assume that y is conformal in a neighborhood of D, and argue as

follows:
Locally, we construct a surface using the function:

e S71(2)=g(¢(2) +1log (1 _|_d|)2)|2 ) +log (1 +1z|%)

where ¢ is a local inverse for $™!oy. We show that the principal curvatures satisfy:

a)

(7. 4) k<1 i=1,2.
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b) We piece together a complete surface, ¥ which satisfies (7.4) and conclude
that ImS~' oy is a Jordan domain and y is univalent.

¢) Using the reflection A constructed from X we obtain a quasiconformal
extension of .

II) We use an approximation argument of Ahlfors’ to remove the hypothesis
that ¢ be conformal in a neighborhood of D,.

1+k
Let K—m

Part 1,a. Since we are assuming that v is conformal in neighborhood of D, |y/|
is bounded above and below on D;. Thus there is a finite cover of D,, {U,,..., Uy} such
that y|y, is invertible. Let V;=S"" o y(U;) and let ¢; denote the inverse of S™' o y|y,.

Define:

|9i(2)|
—l:(2)1?

on S(V). If do? is the round metric on $? then

2g 2

eiOS"(Z)=g°¢.~(Z)+log[ ]+log(1+1212)~

From this it is evident that
(7. 6) 0:(0)=¢;(0) for OeV,nV,.

For each t we can construct the envelope X(g;+t). Following the proof of
Proposition 5. 2, we locally parametrize points on these surfaces by their Gauss images:
{Ry+:(0): 0V}

From (7. 6) it is evident that

7.7 R, +:(0)=R,+.(0) for OeV,nV,.

Using (7. 7) we can piece together the local representations to obtain a map:
i,: D, — H3.

Denote the image of this map by X,. We will show that i, is an immersion for every t by
showing that the principal curvatures of X, satisfy (7. 4). Locally the Gauss map G} is
defined by:

G, (Ry,+4(6) =0.
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We can define the backward Gauss map via:
GL(0)=lim R, ..(G% (p))
and define 4,=G. - (G})™ L.

Since ¢; is a C° function it follows that for each 0, R, ,,(6) fails to be an
immersion for at most two values of ¢ (see §5).

Fix a 0, € V; and choose t, such that R, ,,(0) is an immersion at t =t, and 0=0,.
Let (ky, k;) denote the principal curvatures of X(g;+t,) at p,=R, +,(0,). From
Proposition 5. 2 it follows that k;(py)+1 for i=1, 2.

Since 4; is given terms of g; by formula (3. 11), formula (6. 12) for the Beltrami
coefficient of w'=S0o A4, S~ ! and hypothesis 1) apply to show that K(4;, 6,)<K. On
the other hand we can apply Proposition 5.1 to calculate K(A4;, 6,) in terms of the
principal curvatures (k,(po), k»(po)); putting together these observations we obtain:

L —ki(po)  1+ks(po) ’l—kl(po)  1=ka(po) }SKZ.

L+ky(po) 1—kz(po) 1 —ky(po) 1+k;(po)

From (7. 8) it follows that k;, = —1 and k, + — 1 cannot occur for in this case the
dilatation would be infinite. We now exclude the possibility k, =k, = —1. In this case
the curvature of the metric e*¢da?, K,, would equal zero at G (p,). We can assert this
for if g; is C° then the curvature of this metric is expressed in terms of k, and k, by:

ki(po) ka(po) —1
(1 =k (po)) (1 —k2(po)) .

This is the statement of Proposition 5.3 in [Ep1]. Formula (5. 11) of [Ep 1] also
expresses the curvature of this metric in terms of g:

(7. 10) K, (05)=(1— A5:0:(0,)) e~ 22

(7. 8) max {

(7.9) K. (G (po) =

An elementary calculation shows that the right hand side of (7. 10) is a negative multiple
of

(1+ (1 =1201)? gez(o))

where y({,) = S(0,). From hypothesis 2) it follows that K, <0 and therefore from (7. 9)
it follows that k, =k, = —1 cannot occur. Thus we’ve shown that

k1 i=1,2.

The principal curvatures of X(g; +t,) at p, satisfy two inequalities:
K(4;, G, (po)) =K
(k1(po) k2(Po) —1) (1 — k1 (po)) (1 —k;(po)) <O.

and

The region where these two inequalities are satisfied simultaneously is indicated by the
shaded region in Figure 2:
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(1,1

(_15 —l)

Figure 2

. 1
Region shown for K =5

By considerations of orientation we can exclude the possibility that (k,, k,) lies in one of
the non-compact components. This is because w; satisfies the Beltrami equation:

P
W, = pw;.

K—1 . ; .
By hypothesis 1), |u| .~ <———. The linearization of z > w'(z) has the matrix:

K+1 -
. [(HWr Wi
dw'=(_‘ >
Wy pwy

The determinant of this matrix is non-positive and therefore w' reverses orientation.
Note that as |k;| + 1 the Jacobian determinant of w' never vanishes. By the remarks after
the derivation of the formula (5. 5) it follows that 4; and hence w' preserve orientation if
(ky, ky) lies in one of the noncompact shaded regions in Figure 2. Therefore we’ve
established that

lki(p)l <1 i=1,2.
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Since 6, and hence p, were arbitrary points it follows that this holds everywhere on
2 (0; +to). The focal manifold of X(g;) is empty and thus X(p;) is a smoothly imbedded
surface in H* with

k<1, i=1,2.

Part I,b. From part a it follows that i, is an immersion; to use the results of
§§ 2—4 we need to show that X, is a complete surface. Let ds?(t) denote the induced
metric on X, and let d§?(t) = i*(ds*(t)) be the pullback to the disk. Clearly it suffices to
show that d3*(t) is a complete metric on D,. Since i, is an immersion d§* is locally
positive definite and smooth, hence it suffices to show that

fds(t)= o0
Y
for any curve, y: [0, 1] — D, such that y(1)e dD,. This will certainly be the case if i,(y)

tends to d H*. We may suppose that y = U; for some i. If we can show that e?% tends
to infinity as ¢;(0) tends to 0D, then it follows that i (y) tends to @ H?>. Hypothesis 3)

1
implies that for |{|>——:
/2

k||
lg;(C)|§‘1‘:—m—2

implies that
1
<C+klog| —— ).

Thus
e?9 C
17122 4,
(1 |C|) (1_|C|2)K 1

v

and therefore tends to infinity on 0D,.

As remarked above

29 2
Zqid 2= * € ldCI >~
etdom =9, ((1 “1e

If X is a vector in TyS? of unit do>-length then the |d{|* length of ¢, (X) is
uniformly bounded from below for 6 € V;. Thus the e?%do*-length of X tends to infinity
as ¢;(0) tends to 0D;. Therefore e*%® also tends to infinity as ¢;(6) tends to D,. As a
consequence we obtain that X, is a complete surface whose curvatures satisfy (7. 4).

We can apply corollary 4. 5 to conclude that d, %, is a Jordan curve. Let Q, and
Q_ be the components of $2/d_, Z,. The image of S™' oy lies in one of these sets. If this
were not the case then we could find a disk U €D, such that S™1op(U)nd,Z, +0. If
0y(0) denotes the corresponding, locally defined support function then it follows from
Lemma 2. 3 that:

2N ﬂeS‘uw(U) B(e’ QU(B)):' 0.
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Therefore 0,2, N S~ o p(U)= ¢, an obvious contradiction. We can suppose that
ImS lopcQ,.

In fact Im S™' oy =Q,. This is because X, is complete and so G, is a diffeomorphism.
If a point in int Q, were omitted by S™! oy then we would find a smooth curve y(s) in

D, with y(1)e @D, and i,(y(s)) tending to a point in X, This is in contradiction to the
argument given above and thus

S~ op(D)=Q,.

We’ve shown that S™! oy is a local homeomorphism from a closed disk to a closed disk
hence y is one to one.

Part 1, c. The reflection A generated by X, is clearly K-quasiconformal and the

map:
S7 o) {eD,
T(C): AOS_1°IP<%> CEDci

defines a homeomorphism from € to S2. This map is K-quasiconformal off of D,. As

above the dD; is a removable set for quasiconformal maps and thus ¥ is a K-
quasiconformal extension of S o .

Part 1I. To complete the proof we need to remove the additional smoothness
hypotheses made on y. Hypothesis 3) allows us to show that if () and g({) satisfy 1)
then so do p(r{) and g(r{) for any r < 1. The argument in part I clearly applies to y(r{)
for any r < 1. We obtain a sequence of quasiconformal reflections, {4,} defined by y(r{)
and g(r{). These maps have uniformly bounded dilatation and thus we can use a
standard normal families argument to extract a uniformly convergent subsequence:

A —A.

All that remains is to verify hypothesis 1) for y(r{) and g(r{). We need to show:

w1y | [ggg(ro—gf(rc)—i‘:—g-‘—@—ly (r{)]‘

=g 27

From hypothesis 1) we have:

2 1
A satr0-g200-3EE S0

,(K—1 1
i) [0+ =i}

(7. 12)

lIA
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We will show (7. 11) holds if g satisfies either:

1
A lg: (DI (1 =1C1%) <k (ﬁ)

B lg: (O 1 =1L1%) <k L.

or

Both of which are implied by hypothesis 3). The proofs begin in the same way:

Following Ahlfors’ we apply the triangle inequality to show that (7. 12) implies
(7. 11) provided:

1 ~ 1 ’

1
k li(l——l_W + r2 gc;—(r C):l .

lIA

Rewriting (7. 13) we obtain:

IIA

1 2
(714 12rlgr0)| [1 T _’Mlz} k [(—I—:IICI—Z)i_,zu —|r4’|2)2:|.

First we prove A:

Rewriting (7. 14) we obtain

(7. 15) [2rlg (rOI (1 —erIZ)ékG-l:_%%lj)

An easy calculation shows that the right hand side of (7. 15) is strictly increasing
for |{|€(0, 1). In order for (7. 15) to hold it suffices that A holds.

To prove B we go back to 7. 14 and apply Ahlfors’ inequality:

4 2

1 r 1 r
7.16 2 - < —
.16 K [1—4£P (l—wrmzfiy—(l—wazf (T = IrlPy
on the right hand side of (7. 14) to see that it suffices to show that:

gl <K~1> L4r—2r2 )2
5 =\kr 1) a=em a—ay

(7. 17)

For (7.17) to hold it suffices that
_ 2
(7. 18) (1—[rt|?) Igg(rC)|§<K 1>r +1 .

Ir{ =\K+1) 27

If hypothesis B holds then (7.18) is clearly satisfied for any r<1 and therefore the
estimate in (7. 11) holds as well. This completes the proof of the theorem. O
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Remarks. 1) It is clear that hypothesis 3) can be replaced by:

(110 g0 = <max<|<r| m))

kl

for a k'<1. If k'>k then at the end of the approximation argument we have a ltk’
quasiconformal reflection, 4. However 4 is given by formula (3. 8) and so the Beltraml
1+k

coefficient is given by (6.9) or equivalently (7.3), hence A is actually a 1—%

quasiconformal reflection.

2) The conditions given in Theorem 7. 2 reduce to known conditions for special
choices of g. For instance if g=0 then we obtain the classical condition [Ahl-We]:

1, (=117 1<2k

If g({)=clog(1 —|{|?) then we obtain the sufficient condition of Ahlfors’ given in
[Ahl 1]. In this case his condition is more general in that ¢ is allowed to be complex.

3) A very interesting special case was pointed to the author by Prof. Pomme-

renke. He suggested taking g to be a harmonic function of the form g =Re log ¢'. Here
¢ is a locally univalent function which must satisfy:

"O_ . B
¢'(C)| k' max {2|C| i‘:l}

The univalence criterion takes the form:

(1-1¢1%)

20 ¢ 2k

In a latter publication we will show that these conditions are sometimes sharp and
produce the possible non-Jordan region which arises when (7. 19) is satisfied with k=1.

Further specializing to ¢ =y we obtain:

(7. 20)

k
Ol ey

This is the sharp form due to Becker of a result of Duren, Shields and Shapiro, [Be]. By

. -1 .
changing variables in (7. 19) via ZZ(:——* we obtain

(+1

(7. 21) 2Rez

n

? (2)

<k.

This was proved by Gehring [Ge].
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In [Be-Po] (7. 20) and (7. 21) are shown to be sharp.

4) The reflections which are generated by surfaces in /> satisfy an additional
relation. In terms of the map

w=8o040.8"1
it can be expressed by the equation
Re (dw A dz/(w—12)*)=0.

In [Ep 3] we investigate the consequences of such a relation on the topology of a line
field in H>.

5) If y does not satisfy the hypotheses of the theorem but rather:

2
L+(1=11%) g

(11122 [g;;—gf—l%}—2f(1 —181%) &

IIA

for a g which satisfies:

1+(1—11%)? gz>0
and

1
(1=1¢1%) 1g:(0)] = max {m ICI},

then y(r{) and g(r{) will satisfy the hypotheses of the theorem for some constant k,.
k, tends to one as r — 1. From this we conclude that y is univalent in the disk. In fact
one can show that p is continuous in the closed disk and that y(dD,) has a logarithmic
module of continuity. We will treat this in a latter publication.

If g=0 then we would have:
(A=[1?)? 1%,1<2

d¢|? . . . .
and ¢* ((l—l—“—%f)?) is the hyperbolic metric on Im . From the standard estimates on

this metric we can conclude that the surface X, generated by

log |¢']

P +log(1 +|z|?)

is complete and satisfies
ki<l i=1,2;

thus we obtain:

Corollary. If y is conformal in D, and satisfies (1—|(|%)* |F,(O)t<2 then y is
univalent and y(D,) is a Jordan domain.

This corollary was obtained in [Ge-Po] using different techniques.
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Added in proof. After this work was completed it came to the author’s attention
that K. Uhlenbeck had obtained similar results to those in §2 in his paper: Closed
minimal surfaces in hyperbolic 3-manifolds, Ann. Math. Studies 103 (1985).

[Ahl 1]

[Ahl 2]
[Ahl-We]

[Be]
[Be-Po]
[C-E]
(Ep1]
[Ep2]
[Ep 3]
[(Ep4]
[Ge-Po]
[L-P]

[Po]
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