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PREFACE

HarDpY in his thirties held the view that the late years of a mathe-
matician’s life were spent most profitably in writing books; I remember a
particular conversation about this, and though we never spoke of the
matter again it remained an understanding. The level below his best at
which a man is prepared to go on working at full stretch is a matter of
temperament; Hardy made his decision, and while of course he con-
tinued to publish papers his last years were mostly devoted to books;
whatever has been lost, mathematical literature has greatly gained. All
his books gave him some degree of pleasure, but this one, his last, was his
favourite. When embarking on it he told me that he believed in its value
(as he well might), and also that he looked forward to the task with
enthusiasm. He had actually given lectures on the subject at intervals
ever since his return to Cambridge in 1931, and had at one time or another
lectured on everything in the book except Chapter XIII.

The title holds curious echoes of the past, and of Hardy’s past. Abel
wrote in 1828: ‘Divergent series are the invention of the devil, and it is
shameful to base on them any demonstration whatsoever.” In the
ensuing period of critical revision they were simply rejected. Then came
a time when it was found that something after all could be done about
them. This is now a matter of course, but in the early years of the cen-
tury the subject, while in no way mystical or unrigorous, was regarded
as sensational, and about the present title, now colourless, there hung

an aroma of paradox and audacity.

J. E. LITTLEWOOD
August 1948



NOTE

Proressor Hardy, who died on 1 December 1947, had sent the galleys
of Chapters I-X to the press, and read the remaining galleys, before he
felt unable to continue the work. Dr. H. G. Eggleston and I, who had
also been reading the proofs, completed their revision in both galley and
page form. Professor W. W. Rogosinski read the manuscript of Chapters
1-IT and XI-XII, and Miss S. M. Edmonds that of Chapter X; and I also
read the book in manuscript. Dr. Eggleston checked all the references,
drew up the lists of authors and definitions, and drafted the general
index; and I added the note on conventions. My own task has been
greatly lightened by Dr. Eggleston’s help, and also by the care and
consideration of the Clarendon Press.

L. S. BOSANQUET
August 1948
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NOTE ON CONVENTIONS

A FEw conventions and familiar results, not emphasized in the text,
are stated here.

STIRLING’S THEOREM
It is proved in § 13.11 that, for large real z,
logT(@+1) = (x+d)logx—x-+3 log 27+ O(x-2),
and generally
log T'(x-+1) == (x-+})log z--2+1 log 27+-

("""1 _lBr x-2r )y 2
-l_z T 5 2r+1 | O(g-2k-1),

These formulae are used freely in the earlier chapters. The second is
assumed in § 6.10 for complex x (cf. Whittaker and Watson, 251-3).

BinomiAL COEFFICIENTS
For n = 0,1,...,

(a) a(a—1).. (a——n+1)

n n!

(n—l—ﬁ) (B+1)(B+2)...(B+n) _ (n+l3).

B n! n

It follows from Stirling’s theorem that, if B = —1, —2,..., then
n+B) Cq nB-» L O(nb-r-1
("9 = 7 Tyt S cuntr+ 0t

SUMMATION CONVENTIONS

B
%: f(n) denotes ag%:gﬁ f(n);
if B < « this is zero.

0 o0
>, written without limits, usually denotes ), or » if a term of zero
0 1
rank is not defined, but other conventions are sometimes used. Con-

ventions are given on pp. 42, 96, 131-2, 139, 162, 205, 215, 227, 239-40,
320, 350, and 372.

DIFFERENOES
Ay, = Uy —Up 43, Aup, = thy,

New, = ANy (k= 1,2,.).



xvi NOTE ON CONVENTIONS

INTEGRATION CONVENTIONS

‘Integrable in (a,b)’ means ‘integrable in the Lebesgue sense in
(@, b)’. ‘

All functions that occur are assumed to be measurable. Thus, if (a,b)

is a finite interval, ‘f = O(1) in (a,b)’ implies ‘f is integrable in (a,b)’.
b'¢

f denotes lim f , if this limit exists, i.e. if the integral is convergent.
0 X—o 9

o0
f , written without limits, usually denotes f, but other conventions
0

are sometimes used. Conventions are given on pp. 12, 50, 98, 110, 115,
135, 156, 166, 215, 235, 257, 285, 296, 327, 330, and 338.

- THE CLASSES L AND L* (r > 0)

‘f is L"(a,b)’ means ‘[ f is measurable and] |f|" is integrable in (a,b)’.

‘fis L’ means ‘fis L'’. Thus ‘f is L(0, )’ is equivalent to ¢ jfdx is
0
absolutely convergent’.

CONSTANTS
Capital letters, such as H, K,..., are used to denote numbers indepen-
dent of the variables under consideration, but are not necessarily the
same at each occurrence.
0,0;,0g,0 AND ~.
If ¢ > 0, then
> means ‘|f| < H¢’,
] means ‘f> —H¢’ [or << H],
‘f = o(¢)’ means ‘fld—>0’,
‘f~¢’ means ‘fl¢—>1".%
The symbol ~ is also used for ‘has the asymptotic series’, ‘has the
Fourier series’, and ‘is the Fourier transform of’.

SIGN OF x
z/lx| (jz| 7 0)
sgnw ==
{ 0 (lz| =0).
INTEGRAL PART OF 2
[x] denotes the algebraically greatest integer not exceeding .

T Here, of course, ¢ may be negative.
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I

INTRODUCTION
1.1. The sum of a series. The series

2]
; (I/n == ao+a1+a2+...
is said to be convergent, to the sum s, if the ‘partial sum’

8y = Go+ay+...-4-a,

tends to a finite limit s when n» —c0; and a series which is not con-
vergent is said to be divergert. Thus the s.ries

(1.1.1)  1—14+1—1-1.., (1.1.2)  1—24-3—44...,

!

(1.1.3)  1—2-+44—8+..., (1.1.4)  1—1!1421—31+...
(1.1.5) 14141414, (1.1.6)  14244--84...,

are divergent. The series

(1.1.7) 14-ef 20 (1.1.8)  4+4-cosf+4cos26+...,
are divergent for all real 6, and

(1.1.9) sin 8-Fsin 20-+-sin 36-...

is divergent except when @ is a multiple of =, when it converges to the
sum 0.

The definitions of convergence and divergence are now commonplaces
of elementary analysis. The ideas were familiar to mathematicians
before Newton and Leibniz (indeed to Archimedes); and all the great
mathematicians of the seventeenth and eighteenth centuries, however
recklessly they may seem to have manipulated series, knew well enough
whether the series which they used were convergent. But it was not
until the time of Cauchy that the definitions were formulated generally
and explicitly.

Newton and Leibniz, the first mathematicians to use infinite series
systematically, had little temptation to use divergent series (though
Leibniz played with them occasionally). The temptation beeame
greater as analysis widened, and it was soon found that they were
useful, and that operations performed on them uncritically often led
to important results which could be verified independently. We give
a few simple examples in the next section; in Ch. II we shall give others,
of greater importance, from the work of the classical analysts.

B



2 INTRODUCTION [Chap. I

1.2. Some calculations with divergent series. We know that
(1.2.1) 14+ 2+224... = 1-1;
if |#| << 1. It seems plain that, if we are to attribute a ‘sum’, in some
sense, to the series for other x, this sum should be formally the same.
For (i) it would be very inconvenient if the formula varied in different

cases; (ii) we should expect the sum s to satisfy the equations

8 = l4+aw+t2*+234... = 14+z2(1+x+224...) = 1+tas;
and (iii) the left-hand side of (1.2.1) is the result of performing the
division implied by the right, so that there is certainly one sense of ‘="’
with which (1.2.1) may be said to be true for all «.

(1) Let us assume then that (1.2.1) is, in some sense, true for all
(except perhaps for x = 1, which plainly presents special difficulties),
and operate on the formula in an entirely uncritical spirit.

Putting # = €%, where 0 << § < 27 (so that x # 1), we obtain
(1.2.2) 1404204 | = (1—eif)-1 = }-1-3icot 40,
and so
(1.2.3) 34+cosf+-cos20+... =0, (1.2.4) sin6+-sin 204-... = 4 cot 46,
for 0 < 68 < 27. Changing 6 into 8+=, we obtain

(1.2.5) }—cosf+cos20—... =0, (1.2.6) sinf—sin204-... = 1tan 14,
for —m < § < #. For § = 0, (1.2.5) gives
(1.2.7) 1—141—... =}

(2) We now differentiate (1.2.5) and (1.2.6) repeatedly with respect
to 6. We thus obtain

@0

(1.2.8) ; (=) % cosnd =0 (k= 1,2,..; —7 <0 <m),
(1.2.9) S (—1)r-inZiginng = 0,
1
@© 2k
(1.2.10) S (—1y-miksinng — (-—l)k(gé) }tani,

© 2k-+1
(1.2.11) ; (— 1)1+l cognf = (——l)k(a%) ’ $tan 0,

the last three formulae for k = 0, 1,..., —7 < 6 < «. In particular,
putting § = 0 in (1.2.8) and (1.2.11), and 6 = 4= in (1.2.9), and re-
membering that the Taylor’s series for 1 tan 36 is

oL 92k+2_ ]
jtani6 = z __._._(210_1_2),B,c+1 g2k-1,
k=0 '
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where B, is Bernoulli’s number, we obtain

(1.2.12) 1% —2% 4 3% . =0 (k=1,2,.),
(1.2.13) 1%a_gkeiy  — (—pieo—lp (p_01,.)
2k+2 ’
(1.2.14) 126+1_32k+1 L 5%+l =0 (k= 0,1,...).
Similarly, starting from _
(1.2.15) et 310 .80 — T_fgm == }secd,
and remembering that
— B, 0%
sectl = 14 Z—é)‘%)!-,
where E,, is Euler’s number, we obtain (1.2.14) and also
(1.2.16) 12k 3% 52k = H—1)kE, (k=1,2,..).
We observe in passing that (1.2.13), for £ = 0, is
(1.2.17) 1—243—4+4... =},

which is also the result of squaring (1.2.7) by Cauchy’s rule

(1—141—.)(1—14+1—.) =1.1—(1.141.1)+(1.14+1.141.1)—....
(3) If we integrate (1.2.5) from 8 = 0 to 6 = ¢, and then write 6
again for ¢, we obtain

(1.2.18) sinf—}sin20-+3sin3—... =30 (—7 <0 <m).

This series is convergent. A second integration gives

l1—cos28 1—cos3f
(1.2.19) 1-—cos @ — o2 + gr T = 162,
Here we may include the limits,} and 6 = = gives

1 1
(1.2.20) 1+-3—2‘+'5é+... == %772.
Since
1 1 1 1 1 1 1 1 1

1+§§+B—é+... == 1+-2—2-+'§—2+...—“*2‘§“Z-2*—... = (1—-1)(1""‘?“—55""...),
we deduce
1.2.21) 14141 = }n? 1.2.92) 1—141 = Ln?
( oo ) +§§+§—2+... == %77 ’ ( ke ) —-'éé—*--g-é'—'... = ﬂ'ﬂ' 3
and so

cos 26 = cos 36 .

(1.2.23) cosf— 58 + 53

o= Em?—10% (—7m <O ).

t The series being uniformly convergent for all .
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Further integrations lead to the summation of > (—1)*-1n-% cos nf
and Y (—1)*-1n-%-1ginnf by means of the Bernoullian functions.

(4) Alternatively, we could, by a more daring calculation, deduce
(1.2.19) from (1.2.7) and (1.2.12), arguing that

@ [+ o}

n— cosnO (—1)r-1 (n0)2k+2
Z( L= Z”"”_‘ 20 —b* (2k+2)!

1 ne=1

(__ )k02k+2

(—1)*n¥ = 160%(1—1+41—...) = }62
2 (2k+2)! Z

Indeed we could generalize this argument. Suppose that
f(O) == ao+a1 02+a2 04+-..
is convergent for all §. Then the argument suggests that

(1.2.24)

0 @

Z( )n 1f(n9) Z (—l)n—l z n9 2l z algzz § (——l)n-ln”—2
1 n=1 l=

1=0 Nne=l

1 1 1
= “0("1“2 — 5 +5— ,_,)«}—a1 (1—1+1—...) = La,n2+1a, 62
This is plainly not true generally; for example, it is false when
f(8) = e~%": but it is true for quite extensive classes of functions. Thus,
if f(6) is the Bessel function

62 o

Jo(0) =1 —gtor T

it gives
J, (20) Jo(30)

+ —e =t 302 (—7 <0 < 7).

(1.2.25) Jy(6)— 5

(6) From (1.2.4) we deduce

?cos nfsinng = }{cot 3(¢+0)+-cot }(¢—0)} = = sin ¢

2 cos 0—cos ¢’

and so

cosmf—cosme¢ sin ng
cosf—cosd 2 Z in¢

for any positive integral m. If we integrate this equation from 6 = 0

cos nf(cos mf—cos me)

n=1
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to § = = (ignoring any difficulties about the range of 6 over which it may
be expected to be validt), we obtain

fcosm@—-cosmcﬁ 20 — ﬂsinmg{;

(1.2.26) cos 6—cos ¢ " sing ’

0
which may be verified in various ways.
(6) It follows from (1.2.4) and (1.2.6) that
sin 8+sin 36+... = } cosec, sin 20+sin46+... =  cot .
If we multiply these equations by 8, integrate from 8 = 0 to 6 = 4=,
and observe that

i in
i — ,_(“:,.1_)1 ; — -1 7
ofosm<2n+1)o 4 = T ofasm 2 df = (~1)*1.T,
we obtain
i
0 1 1
(1.2.27) 0= 2(1_.334.55_,,,),
0
in
(1.2.28) f 8 cot 6 df = }mlog 2.
0

These formulae also may be verified independently.

1.3. First definitions. The results of the formal calculations of
§ 1.2 are correct wherever they can be checked: thus all of the formulae
(1.2.18)—(1.2.23), (1.2.25), and (1.2.26)—(1.2.28) are correct. It is natural
to suppose that the other formulae will prove to be correct, and our
transformations justifiable, if they are interpreted appropriately. We
should then be able to regard the transformations as shorthand repre-
sentations of more complex processes justifiable by the ordinary canons
of analysis. It is plain that the first step towards such an interpreta-
tion must be some definition, or definitions, of the ‘sum’ of an infinite
series, more widely applicable than the classical definition of Cauchy.

This remark is trivial now: it does not occur to a modern mathe-
matician that a collection of mathematical symbols should have a
‘meaning’ until one has been assigned to it by definition. It was not
a triviality even to the greatest mathematicians of the eighteenth
century. They had not the habit of definition: it was not natural to

t We have to expect trouble with (1.2.4) for § = 0 or § = 2, since the left-hand side
vanishes identically and the right-hand side has an infinity, and here for values of 4
for which cos 6 = cos ¢. But it is not unreasonable to suppose that these difficulties
will disappear when we multiply by the factor cos mé—cos m¢, and the result seems to
justify our expectation.



6 INTRODUCTION [Chap. I

them tosay, in so many words, ‘by X we mean Y’. There arereservations
to be made, to which we shall return in §§ 1.6-7; but it is broadly true
tosay that mathematicians before Cauchy asked not ‘ How shall we define
1—1+1—...2° but ‘What 2s 1—1-+1—...7°, and that this habit of mind
led them into unnecessary perplexities and controversies which were
often really verbal.

It is easy now to pick out one cause which aggravated this tendency,,
and made it harder for the older analysts to take the modern, more
‘conventional’, view. It generally seems that there is only one sum
which it is ‘reasonable’ to assign to a divergent series: thus all ‘natural’
calculations with the series (1.1.1) seem to point to the conclusion that
its sum should be taken to be 4. We can devise arguments leading to
a different value,{ but it always seems as if, when we use them, we are
somehow ‘not playing the game’.

The reason for this is fairly obvious. The simplest argument for
(1.2.7)is ‘¢ =1—1+1—... =1—(1—1+1—..) = 1—s, and s0 s = }":
we thus obtain the value %, whatever our definition, provided only
that it satisfies certain very natural conditions.

Let us suppose, for example, that we have given any definition of
the sum of a series which satisfies the following axioms:

A) of Sa,=s then 3 ka, = ks;
(B)yif Sa,=s and Y b, =1, then Y (a,+b,) = s+¢;
(0) if ayta,+ay+...=38 then a,+a,+az+... = s—ay and con-

versely.
Actually, all definitions which we shall use satisfy (4) and (B), and
most, though not all, satisfy (C). Then, if 1—1-+41—... = s, we have

g=1—14. = 14+(—14+1—.) = 1—(1—1+..) = 1—s:

here we have used only (4) and (C). Similarly, if 1 —24+3—4+... = s,
we have

8§ =1—2+4+3—...

14 (—24+3—4+..) = 1 —(2—3+4—...)
= 1—(1—1+1—...)—(1—243—..) = 1—}—s5,
and so s = }, in agreement with (1.2.17). Here we have used all of
(4), (B), and (C).
We pick out here four of the large number of useful definitions which

we shall have occasion to use later. We shall make systematic use of
the following notations. If we define the sum of 3 a,, in some new

t See § 1.6(2).
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sense, say the ‘Pickwickian’ sense, as s, we shall say that Y a, is
summable (P), call s the P sum of > a,,, and write

Sa,=s (P).
We shall also say that s is the P limit of the partial sum s,, and write
8, > s (P).
Our choice of letters to be associated with different definitions will be
~ determined mainly by convenience, but sometimes also by historical
considerations.

(1) If s, = ay+a,+...+a, and

(1.3.1) Lim S0ttt o
n-+00 n+ 1
then we call s the (C, 1) sum of } a, and the (C, 1) limit of s,,.

(2) If 3 a, 2™ is convergent for 0 < # < 1 (and so for all z, real or
complex, with || < 1), f(z) is its sum, and
(1.3.2) lim f(x) = s,

z—+1-0
then we call s the A sum of 3 a,.

(3) If 3 a, x™ is convergent for small 2, and defines a function f(z) of
the complex variable x, one-valued and regular in an open and connected
region containing the origin and the point « = 1; and f(1) = s; then
we call s the € sum of X a,. The value of s may naturally depend on
the region chosen.

(4) Our fourth definition requires a little more explanation. Suppose
that the series > a, 2™ converges for small , and that

(1.3.3) x = i—-’L—,

so that y = } corresponds to # = 1. Then, for small  and y, we have
Y

xf 2”’ ZnH = gy y+ 1(1 )2+ 2(1 7 5+
i i (p+m)yp+m+1 — z Z ( ) m+1,
p=0 m= p=0 n=p

Inverting the order of summation, we find that

2f(x) = 5: ynH i (n p)a = Z yn+l Z (p)a = Z b yn+1

n=0 =0 =0 n=0
for small y, where

(1.3.4) b, = a, b, = ao+(’l")a1+( 2)a,,+...+a,,.
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If the y-series is convergent for y = 4, to sum g, i.e. if

(1.3.5) 3bg+1b;+3by+... = Y 2-"-1h, = g,
then we call s the (E, 1) sum of 3 a,.

The letters € and E both stand for Euler, A for Abel, and C for Cesaro. The
reasons for these choices, and for the figures in (C, 1) and (E, 1), will appear later.
The ‘(C, 1)’ definition was used by D. Bernoulli in 1771, but only in the special
case when the series is a periodic oscillating series, i.e. when a,,,, = @, for a fixed

p, and g+ @y + oot ay_y = O.

It had been applied to the special series (1.1.1) by Leibniz as early as 1713. But
neither Leibniz nor Bernoulli said in so many words that they were giving a
definition. In modern times it was used implicitly by Frobenius and Hélder in
1880 and 1882; but it does not seem to have been stated formally as a definition
until 1890, when Cesaro published a paper on the multiplication of series in which,
for the first time, & ‘theory of divergent series’ is formulated explicitly. ‘Lorsque
8,, sans tendre vers une limite, admet une valeur moyenne ¢ finie et déterminée
[i.e. when (1.3.1) is true] nous dirons que la série a,~+a, +a,+ ... est simplement
indéterminée, et nous conviendrons de dire que s est la somme de la série.’ Cesaro
goes on to consider series ‘r-fois indéterminées’, and proves a general theorem ¥
which will be prominent in Ch. X. Cesaro’s paper has become famous, and his
language now seems almost absurdly modest: ‘il résulte de la une classification
des séries indéterminées, qui est sans doute incompléte et pas assez naturelle . . .’
In fact his classification is entirely natural. '

The ‘A’ definition is sometimes called the ‘P’ definition, after Poisson, who
used it, in effect, for the summation of Fourier series. It also can be traced
through Euler back to Leibniz. The justification for the ‘A’, which is usual with
English writers, lies in Abel’s theorem on the continuity of power series, which
establishes the ‘regularity’ (§ 1.4) of the method, and will be proved, as a special
case of a much more general theorem, in Ch. IV,

The € method embodies, in modern language, Euler’s famous principle ‘summa
cujusque seriei est valor expressionis illius finitae, ex cujus evolutione illa series
oritur’. We shall have more to say about this in §§ 1.6-7: for the moment we
observe only that Euler was obviously thinking in terms of power series, and that
no mathematician of his period could possibly have expressed himself on such a
subject without very serious ambiguity.

Finally the ¢(E, 1)’ method is derived from ‘Euler’s transformation’, which was
primarily a weapon for transforming slowly convergent into rapidly convergent
series, but which he applied to divergent series also.

It is plain that all these methods satisfy our axiomatic requirements
(4) and (B), and it is easy to verify that the first three also satisfy (C),
provided that the & method is associated with a definite region of
continuation. We denote the partial sums of a,+a,+a,+... and
a;+a;+ag+... by s, and ¢,, so that ¢, = s,,;—a, and write

fiz) = a;tagztagx®+-...,

so that zf,(z) = f(x)—a,.
) t Theorem 41,
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(1) If ay+-a;+a,+-... is summable (C, 1) to s, then

bott ...ty — n+2 30+31+~--+3n+1__
n-t+1 n+1 n-+2
so that a;+a,+... is summable (C, 1) to s—a,,
(2) If ay+a;+... is summable (A) to s, then

filz) = 2 f(x)—ao} > s—a,,
and a,+ay+-... is summable (A) to s—a,.

(3) If f(x) is one-valued and regular in a region including 0 and 1,
and f(1) = s, then f,(x) is also one-valued and regular in the region,
and f;(1) = s—a,.

Thus the direct statement in (C) is tr:ie of each of the three methods,
and the arguments are plainly reversible. It is less obvious that the
(E, 1) method satisfies (C), and we postpone the proof to § 8.3. If we
take this for granted for the moment, then it becomes plain that all
four methods, if they sum (1.1.1), must give the sum 4. It is easy to
verify this directly, since s, is 1 for even and 0 for odd =, so that
So+8+...+8, 18 3(n+2) or §(n+1); since f(x) = (14+=x)-1; and since
by,=1and b, = 0 for n > 0.

We shall see later (or the reader may verify as an exercise) that all
four methods also yield the equations (1.2.2)-(1.2.7), and that the last
three yield all of (1.2.8)-(1.2.17). The (C, 1) method fails with (1.2.17),
since the values of s, are 1, —1, 2, —2, 3,... and s4-}8;+...-}3, is
$(n-+2) for even and 0 for odd n. It will be observed that in this case
a repetition of the averaging process would give the limit .

Methods (1), (2), and (4) give co as the sum of (1.1.5): in the last case
by =1, b, = 2, b, = 4,..., so that the series (1.3.5) is }-+3+34....
Method (3) is inapplicable, since f(x) = (1—x)-!is not regular at x = 1.

Methods (1) and (2) fail for (1.1.3): the values of s, are 1, —1, 3, —5,
11,...; and Y a, 2" is not convergent when x > 4. Method (3) gives the
sum }. In method (4), b, = (1—2)» = (—1)*, and so

3bo+1b,+3by+... = i—¢+4—.. =4,
so that this method also gives 4. This is plainly the ‘right’ sum, since
it satisfies s = 1—2s. ;

It is also instructive to consider (1.1.6). Here method (1) gives co.
Method (2) is inapplicable for the same reason as in the last paragraph.
Method (3) gives (1—2.1)~! = —1. Finally, with method (4), we have
b, = (1+2) = 3n,

3by+10,+30,+... = 3+ 1)+,
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which diverges to oo, so that the method gives co. It will be observed
that in this case there are two suggested ‘sums’, viz. co and —1, and
that the second has an air of paradox, since it does not seem natural
to attribute a negative sum to a series of positive terms.

1.4. Regularity of a method. It is easy to state in general terms
some of the qualities required for a useful method of summation of
divergent series. It should be simple, as, for example, the first two
methods of § 1.3 are simple; and it should be reasonably general, in the
sense of being applicable to a good variety of important series. There
is another requirement which can be stated more exactly, that of
consistency or regularity.

A method will be said to be regular if it sums every convergent series
to its ordinary sum. Thus the (C,1) and A methods are regular, since
> a, = s implies both

g — Sotsite.ts,

A e > 8
and f(z) = Y a, 2" — s, the first by a well-known theorem of Cauchy,
the second by Abel’s theorem on power series.

These methods are regular in an extended sense. If @, is real and
s, > (for example, if > @, is a divergent series of positive terms),
then S, - oo, and the (C, 1) method gives s = c0. For the A method
there are two possibilities. Either > a, x” diverges for some x = z, << 1,
in which case it necessarily diverges to co in the interval (r,, 1), and
f(x) = oo in such an interval; or ) a,2™ converges for 0 < < 1, in
which case f(xr) »co when x - 1. In either case we can say that the
A method gives s = c0. When a regular method has this additional
property, we shall say that it is totally reqular. We shall see (§§ 3.6 and
4.6) that the (I,.1) method is also totally regular. It is obvious that the
€ method is not totally regular, since it sums 14-2-4+4-48+4-... to —1.
In fact it is not even regular, since f(x) need not be regular at z = 1
when Y a, converges.

1.5. Divergent integrals and generalized limits of functions of
a continuous variable. It is natural to give similar definitions apply-
ing to functions of a continuous variable x. Suppose that a(f) is
integrable in every finite interval (0, x), that

s(x) = f a(t) dt,
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and that we have given some ‘Pickwickian’ definition of the limit s of
8(x) when x - 00, or, what is the same thing, of
f a(x) dx.
0
Then we shall say that a(x) is P integrable in (0,00), that s(z) has the
- P limit s, that s(x) - s (P), and that
fa(:v) dz = s (P).
0
Thus the definitions corresponding to the first three of §1.3 are as
follows.
(1) If

(1.5.1) %fﬂﬂ&»s

or, what is the same thing, if

51; f (x—t)a(t) dt — s,

0

we shall say that

[0}

(1.5.2) fm@dxzs(OJy
2) If ’
(1.5.3) fw) = | e~¥%a(x) dx

vog__s

is convergent for w > 0, and f(w

(1.5.4) fmmdx=s(Ay
0
(3) If there is a function f(w) of the complex variable w, defined by
(1.5.3) for large positive w, and one-valued and regular in an open and
connected region containing the origin and the distant part of the
positive real axis; and if f(0) = s; then we shall say that

— § when w — 4-0, we shall say that

(1.5.5) fﬂmdx=8(®¢
0
We can modify all these definitions, if we please, by a change in the
lower limit. There is no useful analogue of the (E, 1) definition.

t The definition does not correspond exactly to the ‘E’ definition of § 1.3, since f(w)
will not usually be regular at infinity.
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Thus if a(x) = em*®, where m > 0, we have

z

3 1—emiz 4
8(x) = —ﬁ(l——e”‘ix), ‘f 8(t) dt = -+ 5 q—n-,
0
80 that
(1.5.6) fem“ dx = : j?cosmx dx = 0 fsinmx de = L
m’ ’ m
0 0 0
all (C,1); and f e~tw-mie gy — L 5 =z,
. w—mi m

so that the A and € methods give the same results. Also

8(x) = 1m~1(1—e™=) -» im-1 (P),
so that

- (1.6.7) emiz . (), cosmz —> 0, sinmx - 0 (P),

where P may be (C, 1), A, or €. We have thus defined various senses
in which ‘cosco = 0 and sinco = 0’.

It will be observed that

[}
1 { cos? sin 2mx 1
x f midt = 3 i dmx 2’
0
so that cos?mx — %, sin?mx - § (C, 1);

and it is easy to show that the A and € methods give the same limits. Itisnot
to be expected that the P limit of the square of a function should usually be the
square of its P limit.

We add some examples of formal calculations with integrals analogous
to those of §1.2. All the integrations are over (0,00). Differentiation
of (1.5.6) with respect to m gives

(1.5.8) fxzpcosmx dx = 0, J'xzp”rlsinmxdx = 0,

. 2p) !
(1.5.9) [z sinme dz = (— 1) 7;2121,
fx2P+lcosmxdx = (—1)p+ (210—}—1)!.

If $(x) = ag+a, 22+a, 24 +-...,
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g .
and we integrate term by term, then we obtain

(1.5.10) qu(x)cosmx dx = aof cosmxdx-l—alfxzcosmx dx +... = 0,

(1.5.11) qu(x)sinm dax = aofsinmxdx Foa=N_ 20, T

As is to be expected, these formulae are sometimes correct and some-
times not. Thus if ¢(x) = Jy(x) they are

. 1 11 1
fJo(x)cosmx dx = 0, fJo(x)81n mx dr = ;,;"*"?j -7-;1‘3-1—... = J(Trﬁé:l')"
and they are correct wher. m > 1. But they are false when m <1,
and (1.5.10) is obviously faise when ¢(x) = e—*',

1.6. Some historical remarks. In the next chapter we shall give
substantial examples ~f the use of divergent series by Euler and other
early analysts. It will be convenient to lead up to them by a few more
miscellaneous remarks.

(1) The earliest analysts were, on the whole, rather severely ‘ortho-
dox’: their work had the arithmetical spirit of that of the Greeks. What
is lacking in the work of Cavalieri, Wallis, Brouncker, Gregory (who
first used the word ‘convergent’), and Mercator is not rigour but
technique. In particular they were handicapped by the lack of service-
able criteria for convergence. Newton was the first analyst who was
the master of a really powerful technique: he regarded infinite series
primarily as a tool for quadratures, and there was so much for him to
do in this field that the rewards of orthodoxy were sufficient. He was
no doubt aware that many of his formulae could be interpreted in
different senses, for example, that

(1.6.1) ‘5%: ag+a, 2+ag,x%+...,

where f and g are polynomials, could be interpreted either in the
arithmetical sense which demands convergence or in the algebraical
sense in which it means that

(1.6.2) f(x)——(ao—j—alx+...+anx")g(x)
is divisible by z"+! for every value of n.

(2) Thus there is little about divergent series before Euler except in
certain passages in the correspondence of Leibniz and the Bernoullis;
and the impression which these leave is that Leibniz missed a great
opportunity. He was on the track of at least one of the standard
definitions, but gave way to the temptation of seasoning the discussion
with metaphysics. The sum of 1—14-1—... is to be 4 on grounds of
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‘probability’: ‘porro hoc argumentandi genus, etsi Metaphysicum magis
quam Mathematicum videatur, tamen firmum est: et alioqui Canonum
Verae Metaphysicae major est usus in Mathesi, in Analysi, in ipsa
Geometria, quam vulgo putatur.’ Such language from so great a
mathematician invited confusion in weaker minds;t and Leibniz’s ‘lex
continuitatis’, ‘unde fit, ut in continuis extremum exclusivum tractari
possit ut inclusivum’—the principle, so often appealed to by the British
mathematicians of the early nineteenth century, that ‘what is true up
to the limit is true at the limit’—was still more unfortunate. It was
nearly 100 years later when Lagrange (referring to an observation of
Callet which we shall quote in a moment) remarked that ‘les géométres
doivent savoir gré au cit. Callet d’avoir appelé leur attention sur
I’espéce de paradoxe que présentent les séries dont il s’agit, et d’avoir
cherché & les prémunir contre 1’application des raisonnements méta-
physiques aux questions qui, n’étant que de pure analyse, ne peuvent
étre décidées que par les premiers principes et les régles fondamentales
du calcul’.

Callet’s remark refers to Euler’s principle ‘summa cujusque seriei . ..’,
which we quoted in § 1.3, and which was the subject of a correspondence
between Euler and N. Bernoulli in 1743. Bernoulli had objected that
the same series might ‘arise’ from two different ‘expressions’ which
yielded different values, and Euler had committed himself to the
assertion that this could not happen. Writing to Goldbach in 1745, he
says ‘ Dariiber hat er zwar kein Exempel gegeben, ich glaube aber gewiss
zu sein, dass nimmer eben dieselbe series aus der Evolution zweier
wirklich verschiedenen expressionum finitorum entstehen konne’.
Callet, forty or fifty years later, observed that 1—1--1—... arises, when
we put x = 1, not only from (14x)-! = 1—x+2%—..., but also from
1424...4am1  1—am™
PR e Sl g
for any m < n, and that Euler’s principle might thus be made to give
any sum m/n for 1—1-+41—....

The explanation is fairly obvious (and was given by Lagrange him-
self). The series (1.6.3), considered as a power series, has gaps: thus
when m = 2, n = 3, it is

1+0.x—1.2241.234+0.22—1.254...;
Euler’s principle does not assign the sum § to 1—1+41—... but to
14+0—1+14-0—1+-...; and there is no a priori reason for expecting

(1.6.3) = l—am}x—gntm4 i

1 Even Euler appealed to metaphysics when he could think of nothing better—*per
rationes metaphysicas . . . quibus in analysi acquiescere queamus’.
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the two series to have the same sum. And, in fact, Euler’s assertion,
when properly interpreted, is correct, since a convergent power series
has a unique generating function.

It is a mistake to think of Euler as a ‘loose’ mathematician, though
his language may sometimes seem loose to modern ears; and even his
language sometimes suggests a point of view far in advance of the
general ideas of his time. Thus, in the very passage in which he
formulates his principle, he refers to the series (1.1.4). The principle,
as we formulated it in § 1.3, does not apply to this series, since
1—1lz+42122—3123+... is not convergent for any x but 0. Even so,
says Euler, ‘ich glaube, davs jede series eir en bestimmten Wert haben
miisse. Um aber allen Schwierigkeite., welche dagegen gemacht
worden, zu begegnen, so sollte dieser Wert nicht mit dem Namen der
Summe belegt werden, weil man mit diesem Wort gemeiniglich einen
solchen Begriff zu verkniipfen pflegt, als wenn die Summe durch eine
wirkliche Summierung herausgebracht wiirde: welche Idee bei den
seriebus divergentibus nicht stattfindet. . . .” This is language which
might almost have been used by Cesaro or Borel: And in another place,
referring more generally to the controversies excited by the use of
divergent series, he suggests that they are largely verbal: ‘quemad-
modum autem iste dissensus realis videatur, tamen neutra pars ab
altera ullius erroris argui potest, quoties in analysi hujusmodi serierum
usus occurrit: quod gravi argumento esse debet, neutram partem in
errore versari, sed totum dissidium in solis verbis esse positum.” Here,
as elsewhere, Euler was substantially right. The puzzles of the time
about divergent series arose mostly, not from any particular mystery
in divergent series as such, but from disinclination to give formal
definitions and from the inadequacy of the current theory of functions.
It is impossible to state Euler’s principle accurately without clear ideas
about functions of a complex variable and analytic continuation.

(3) It is essential to remember that Euler was thinking of power
series; as soon as we admit other kinds of development, all sorts of
difficulties appear. Thus

(1—2x)"! = 1422422823 +...

gives 14244484 = —1;
and (1.2.1) gives (the complex) oo as the sum of 14-1-41-4-.... But
2 2 4 8

W1 e2”+l+e4v+1 +esy+1+°" (y > 0)f

1 1 2
r—1 x+1+m’——1'

t This is a corollary of
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gives 142+4+84... =00
for y = 0, and
{(s) = 1-94-2-843-24... (s> 1)

gives 141414 = {(0) = —}
for s = 0. On the other hand,

-+ (202 —x)+ (33— 22%) + (42t —3a3) ... = 0
and -+ (3% —x)+4 (T2t —32?)+ (1528 — Txd)+-... = O
for 0 << « < 1, and these give

141414, =0, 14+244+...=0
for x = 1.
There are also difficulties, even for power series, with many-valued

functions. It is natural to say that

g44+8—... =log(14+2) = log3,
since log 3 is the value of log(1+4x) when 2 moves to 2 in the obvious
way. But we might also argue that

24484, = log(1—2)~1 = log(—1) = (2k-+ 1),
and here 7t and —m¢ seem equally natural values (though either has
an air of paradox).

The following example might have puzzled Euler. The series
1( 2x )2 1.3( 2z )4
(1.6.4) 1+2 m +m m—é ...
is convergent for small and also for large x, but to different, sums, viz.
(1+2?)/(1—2?),  (2*+1)/(x*—1)
respectively. If = 2¢ we obtain
116 1.3(16)2
FEREE )
Which sign shall we choose ?
(4) It is interesting in this connexion to look at a transformation of the
geometric series which is due to Goldbach and which may be regarded as an

eighteenth-century essay in ‘analytic continuation’. We have simplified and
generalized Goldbach’s actual analysis.

The idea is to transform 1—z+x2—..., by formal multiplication by a series of
the type 1A, — A+ Ay Ayf. = 1,

into a series of negative powers of y = ax4b. We write 4, = «,y" and arrange
the product as

1 e = +3.

oies

1 —x x? —q3
—1 —1 — — — — —
Y —oqy -yt oyt 2Pyt —oy 2yt —oy YT ...
—a — — — —
Y — QY E—op xy? g Y 24 otg 22y R

— - s
agy~3 —agY Py Y
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If now we take a, = (b—a)"(a—y), then it will be foundt that C,, the sum of
the nth column, is a(b—a)"~1y—", and we obtain

l—z+a2—23+... = ay~'+a(b—a)y~?+a(b—a)y—3+...,

which is the expansion required. The first series is convergent for |x| < 1, the
second for |ax+b| > |b—al. If, for example, b > a > 0, then the second region
includes the first. Since both series are convergent, and the transformation valid,
for |x| < 1, the second series gives the continuation of the first.

(5) Mathematics after Euler moved slowly but steadily towards the
orthodoxy ultimately imposed on it by Cauchy, Abel, and their suc-
cessors, and divergent series were gradually banished from analysis, to
reappear only in quite modern times. They had always had their
opponents, such as d’Alembert,} Laplace,§ and (in his later days)
Lagrange: after Cauchy, the opposition seemed definitely to have won.

The analysts who used divergent series most, after Euler, were Fourier
and Poisson (who was almost Cauchy’s contemporary). We shall see
specimens of their work in Chs. II and XIII. The most impor-
tant for us here is Poisson, since he so nearly formulated definition
(2) of §1.3. Poisson, in effect, defines the sum of the trigonometrical

Series 3a,+ > (a, cosnf-+-b, sin nb)
as the limit when r —> 1 of the associated power series
3a,+ Y (a, cosnd-+b, sinnb)rm.

Thus, speaking of the series (1.1.9), he says ‘cette série n’est ni con-
vergente ni divergente| et ce n’est qu’en la considérant ainsi que nous
le faisons comme la limite d’une série convergente, qu’elle peut avoir
une valeur déterminée. . . . Nous admettrons avec Euler que les sommes
de ces séries considérées en elles-méme n’ont pas de valeurs déterminées;
mais nous ajouterons que chacune d’elles a une valeur unique et qu’on
peut les employer dans I’analyse, lorsqu’on les regarde comme les limites
des séries convergentes, c’est & dire quand on suppose implicitement
leurs termes successifs multipliés par les puissances d’une fraction infini-
ment peu différente de I’unité.” This is practically the ‘A’ definition,
but we must not exaggerate the clarity of Poisson’s views. His ideas

t+ By induction from C, = —2Cp_j—oy_ 1y " 1+oa,y™™.
1 ‘Pour moi j’avoue que tous les raisonnements et les calculs fondés sur des séries qui
ne sont pas convergentes . . . me paraitront toujours trés suspects, méme quand les

résultats de ces raisonnements s’accorderaient avec des vérités connues d’ailleurs.’
§ ‘Je mets encore au rang des illusions 'application que Leibniz et Dan. Bernoulli
ont faite du calcul des probabilités. .. (to the summation of such series as 1 —1+41-...).
|| He means, of course, ‘properly divergent’ to co or —co.
4780 o
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about repeated limits are often by no means clear: thus he writes
Fourier’s theorem as

l aw 1 m™ P
f@) == | ft) e~ cos n(t—z) | f() db,
277_:[ 77_” {Z ]
when, of course, he means
% f Fe)dt + % Z f cos n(t—a) () dt.

1.7. A note on the British analysts of the early nineteenth century.
We end this chapter with a few remarks about British work on these subjects
during the years 1840-50, which has been analysed very carefully by Burkhardt
in the article from which we havo quoted. It was a long time before the writings
of the great continental analysts were understood in England, and these British
writings show a singular and often entertaining mixture of occasional shrewd-
ness and fundamental incompetence.

(1) The dominant school was that of the Cambridge ‘symbolists’, Woodhouse,
Peacock, D. F. Gregory, and others. They represented what may be described
as the ‘f(D)’ school of analysis. They started from ‘algebra’, and had something
of the spirit, though nothing of the accuracy, of tho modern abstract algebraists.
They dealt in ‘general symbols’, on which operations were to be performed in
accordance with certain laws: ‘the symbols are unlimited, both in value and in
representation; the operations upon them, whatover they may be, are possible
in all cases; . . . But the foundations of their symbolism were both inelastic
and inaccurate. They insisted on a parallelism between ‘ arithmetical’ and ‘ general’
algebra so rigid that, if it could be maintained, it would effectively destroy the
generality; and they never seem to have realized fully that a formula true with
one interpretation of its symbols is quite likely to be false with another. They
were also very much at the mercy of catchwords like ‘what is true up to the
limit . . .’, and it is not surprising that their permanent contribution to analysis
should have been negligible.

Occasionally, however, they arrived at, formulae which are still worth examining.
Thus Gregory’s formulao

(1L7.1) 3 g@+n) =0, (17.2) 3 (—1g(e+n) =0,
(1.7.3) > S ot n—glo—m) = $10)
1

are true, or true with modifications, when interpreted properly, for interesting
classes of functions.

(2) There is one volume of the Transactions of the Cambridge Philosophical
Society (vol. 8, published in 1849 and covering the period 1844-9) which contains
a very singular mixture of analytical papers and gives a particularly good picture
of the British analysis of the time. It contains Stokes’s famous paper ‘On the
critical values of the sums of periodic series’, in which ‘uniform convergence’
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appears first in print; papers by S. Earnshaw and J. R. Young which are little
more than nonsense; and a long and interesting paper by de Morgan on divergent
series, a remarkable mixture of acuteness and confusion.

De Morgan, as Burkhardt rccognizes, was no ‘blosser Algorithmiker’ like
Peacock. He was a prolific and ingenious writer, both on logic and on mathe-
matics; ho invented the ‘logarithmic scale’ of convergence criteria; and his
Differential and integral calculus, which is the best of the early English text-books
on the calculus, contains much that is still interesting to read and difficult to find
in any other book. In this paper he attempts a reasoned statement of his attitude
to divergent series, ‘the only subject yet remaining, of an elementary character,
on which serious schism exists among mathemnaticians as to absolute correctness
or incorrectness of results’. He talks much excellent sense, but the habits of the
time are too strong for him: logician though he is, he cannot, or will not, give
definitions.

‘The moderns’, he says, ‘seem to me to have made a similar confusion in regard
to their rejection of divergent scries; meaning sometimes that they cannot safely
be used under existing ideas as to their meaning and origin, sometimes that the
mere idea of anyone applying them at all, under any circumstances, is an absurdity.
We must admit that many series are such as we cannot safely use, except as means
of discovery, the results of which are to bo subsequently verified. . .. But to say
that what we cannot use no others ever can . . . seems to me a departure from all
rules of prudence. . . .” Would analysis ever have developed as it has done if
Euler and others had refused to use \/(—1)?

He refuses to distinguish between different types of divergent series: if some
are to be used, all must be. ‘I do not argue with those who reject overything
that is not within the province of arithmetic, but only with those who abandon
the use of infinitely divergent series and yet appear to employ finitely divergent
series with confidence. Such appears to be the practice, both at home and
abroad. They seem perfoetly reconciled to 1—1-}-1—... = }, but cannot admit
14+2+44-+... = —1. It is very odd that it should nover have occurred to him
that there might be interpretations (for example, Poisson’s) which apply in the
one case and not in the other.

Later, when he recurs to this point, he is a little inconsistent. There are cases
in which 14-2+44+4-... seems to represent — 1, others in which it secms to repre-
sont c0:t thus the limit of

14-2x 424 ... - 27" - ..,

as x—> 1, is o0 (a well-chosen example). This he can tolerate, but ‘let it come
out anything but —1 or o, and as a result of any process which does not involve
integration performed on a divergent series . . . and I shall then be obliged to admit
that divergent series must be abandoned’.i There is something in his view: —1 is
a root of z == 12z, and there is a sense in which oo can be said to be one also,
while 0 or 1 certainly cannot. We found 0 in (3) of § 1.6, but de Morgan would
certainly have felt that the oxample was unfair, and would not have been
altogether wrong. It is true that —1 and oo are tho only ‘natural’ sums.
Similarly with 1—1-4-1—...: it would be fatal if this came out to be anything

+ See § 1.6 (3).
1 The emphasis on integration is odd, but de Morgan seems to have regarded integra-
tion as an ‘essentially arithmetic’ process liable to destroy any more ‘symbolic’ reasoning.
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other than }. ‘The whole fabric of periodic series and integrals . . . would fall
instantly if it were shown to be possible that 1—1-+1—... might be one quantity
as a limiting form of 4,—4,+A4,—... and another as. a limiting form of
B,— B, + B,—...”; and here there is some quite mistaken criticismn of Poisson.
De Morgan implies that to define ¥ @, as lim ¥ a, " is to assume that ‘what is
true up to the limit is true at the limit’; whereas it is just this distinction which
18 seized upon by, and embodied in, the definition.

He gives curious examples of paradoxes resulting from integration. Here and
elsewhere he shows a good deal of formal ingenuity, but other paradoxes
rest merely on confusion about many-valued functions. He forgets that the
integral of ! is log|x|, not logx, when x is negative, and concludes that

27
j tanz dx = 2mi
0

and that ‘tan?r has —1 for its mean value’—a conclusion which he tries to
reinforce on other grounds. There is also some discussion of the formulae
(1.7.1)-(1.7.3), and of alternating asymptotic series of the Euler-Maclaurin type.
‘When an alternating series is convergent, and a certain number of its terms are
taken . . . the first term neglected is a superior limit to the error of approxima-
tion. . . .1 This very useful property was observed to belong to large classes of
alternating series, when finitely or even infinitely divergent: I do not remember
that anyone has denied that it is universally true. . . . De Morgan shows by
examples that it is not, but without making any substantial contribution to the
subject. Indeed these supplementary discussions merely confirm the impression
left by the earlier sections of the paper, of astonishment that so acute a reasoner
should be able to say so much that is interesting and yet to miss the essential
points so completely.

(3) It is only fair to quote a few instances of British analysts who got nearer
to actuality. . W. Newman protested against the dogma ‘what is true . . .” and
pointed out that, in the case of the trigonometrical scries

cosx—4cos 3x+%cos br—...,

it is plainly false. His analysis is unsatisfactory, but he makes his point sub-
stantially, and his paper is intercsting because it led Wilbraham, a little later,
to the discovery of what is now called the ‘Gibbs phenomenon’. Stokes, in his
famous paper mentioned already, remarked that ‘of course we may employ a
divergent series merely as an abbreviated way of oxpressing the limit of the sum
of a convergent series’, and observed that it did not seem possible ‘to invent a
series so rapidly divergent that it shall not be possible to find a convergent series
which shall have, for the limits of its first n terms, the first n terms of the divergent
series’.] Finally, Homersham Cox, referring to the ‘equivalence’ of the symbolists,
used language entirely modern in spirit: ‘it is said that the symbol “="' here
designates symbolical equivalence. The truth of this assertion depends on the
definition of this phrase, and without doubt many arbitrary definitions might be
given, in accordance with which the binomial theorem might bo considered to
hold for divergent series.’

t Of course this is not true without reservation.
1 Consider X ¢(n)xdm™, where ¢(n) - o0 rapidly.
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NOTES ON CHAPTER 1

§ 1.1. Many writers, particularly in England, have used ‘divergent’ in narrower
senses. Thus Bromwich, Hardy, and Hobson, in their text-books, call > a, diver-
gent only when 8, — o or 8, — — o0, describing other non-convergent series as
‘oscillatory’. In his first edition Hobson had called Y a, divergent if |s,| — co:
thus 1—2-+43—... was divergent.

The narrower use of ‘divergent’ has its advantages in elementary teaching, but
the wider use is almost necessary here. The ‘theory of divergent series’ is essen-
tially a theory of oscillatory series, theorems about series which diverge ‘properly’
to 00 or — oo being usually of the same type as those about convergent series.
See, for example, § 3.6, and the remarks in Hobson, 2, 4.

Cauchy’s Analyse algébrique (Paris, 1821) was the first standard treatise on
analysis written in a genuinely modern spirit. A good deal of his work on the
foundations is to be found, sometimes even in a sharper form, in a series of memoirs
published by Bolzano in Prag in 1817. See Stolz, M A, 18 (1881), 255-79.

§ 1.2. For justification of the results in (1)—(3), (5), and (8) see Appendix I.
As regards (4), if

f(x) = f cosat y(t) dt,
0

where 0 < a < 1, x(¢) is any integrable function, and —7 < 8 < m, then

a

Z (__l)n—lf_(;_"g) f{Z( 1)r- 100&7&08} (¢)d _.f 7,2 02&2 (t)dt,
1

0

which is 572f(0)-+160%"(0), in agroement with (1.2.24). Many other formulae of
the same kind may be proved similarly. The limitations a < 1 and |f| < = are
essential.

For the Bernoullian and Eulerian numbers, and the Bernoullian functions, see
Bromwich, 297 et seq., 370, and Chapter XIII.

The series (1.2.18) seems to have first been summed by integration by Euler,
Novi Commentariv Acad. Petropolitanae, 5 (1760), 203. [Opera (I), 14, 542-84.
He gives another method in Opera (I), 15, 435-97.]

§ 1.3. More detailed information about the early work of Bernoulli and others
on divergent scries will be found in Reiff, Geschichte der unendlichen Reihen
(Tiibingen, 1889), in a paper by Burkhardt in M4, 70 (1911), 169-206, and in
Burkhardt’s article ‘Trigonometrische Reihen und Integrale’ in the Enzykl. d.
Math. Wiss. (IIa12). Reiff’s book is useful but uninspiring and not always
accurate. Burkhardt’s writings arc much more interesting, and contain a mass
of curious information difficult to find elsewhere. The historical discussions here
and in §§ 1.6-7 are based mainly on these sources.

Hutton, Tracts on math. and philosophical subjects (London, 1812), gave what
is in effect the following definition of the limit of a divergent scquence (s,). Define
s for k = 1, 2,... by

.S‘(k) o %.S‘(k 1)+%8(k—l) (n > ()),

with ¥ =0 (>0, s9=s, (n>0).
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Thus sV and {2 are
330, 380+ 3815 381+ 3825-.05 3sp_it38pseees
130, 480+ 4515 280+ 18, -+ 1895000 18y ot 38 t+18nsee. .

Then 8, — 8 (Hu,k) means s® — s

It is easily verified that
1—1+4+1—... =} (Hu,1), 1—-2+4+3—... = } (Hu,2);
and we can show, from the general theorems of Ch. I1I, or those about Nérlund
means in Ch. IV, that any series summable (Hu, k) is summable, to the same
sum, by the corresponding Cesaro mean.

For examples of the use of Euler’s transformation in numerical computation
soce Bromwich, 62-6.

§ 1.4. For Cauchy’s theorem see- Hardy, 167, or Bromwich, 414. It is a case
of Theorem 44. Abcl’s theorem is included, for example, in Thoorems 27 and 55.

§ 1.5. For (1.5.10) and (1.5.11) see Appendix I, § 4, where some errors in &
paper in TCPS, 21 (1908), 1-48, arc rectified.

§ 1.6. The first criterion for convergence formulated cxplicitly seems to have
been Leibniz’s familiar criterion for the convergenco of an altornating series
@y— G, +ay—... with positive decreasing a,,.

(3) The series (1.6.4) converges in two regions bounded by the circles
u24-(v4-1)% == 2, where u+iv = z, the lune inside both and the infinito region
outside both; and diverges in the two remaining lunes. The point 27 is in the
upper of these last two lunes. Tho series represents a single two-valued function of
z = 2z/(1+2?), but two different one-valued functions of . '

(4) For Goldbach’s actual statement of the transformation see M. Cantor,
Vorlesungen tiber Geschichte der Math., 3, ed. 2 (Leipzig, 1901), 641. The account
in Reiff, 89, is incorrect.

§1.7(1). A reader acquainted with the elements of the theory of Fourier sories
will easily verify the truth of (1.7.1)~(1.7.3) for ¢(x) defined by appropriate trigo-
nometrical integrals.

(2) Burkhardt analyses the papers of Earnshaw and Young with moro care
than they deserve. He also says a good deal about minor German work of the
same period, but this is on the whole less interesting.

(3) The papers of Newman, Wilbraham, and Homersham Cox appeared in the
Cambridge and Dublin Math. Journal, 3 (1848), 108 and 198, and 7 (1852), 98.
I*. W. Nowman, Professor of Mathematics in University College, London, was a
brother of Cardinal J. H. Newman.



II
SOME HISTORICAL EXAMPLES

2.1. Introduction. In this chapter we give the examples of the
work of Euler and others which were promised in § 1.6, starting in each
case from a passage in the original writings of the analyst in question.
The subject-matter of these passages is still important, so that they
have more than an historical interest; and we shall therefore analyse
them in some detail, and add the explanations needed to show their
connexion with more modern work.

A. Euler and the functional equation of Riemann’s zeta-function

2.2. The functional equations for {(s), n(s), and L(s). The
Riemann {-function {(s), defined by the series

(2.2.1) {(s) = 178+-2-34-3-84...
when s = o+¢tand o > 1, is a one-valued analytic function of s, regular

all over the plane except for a simple pole at s = 1. It satisfies the
functional equation

(2.2.2) (1 —8) = 2(27)~% cos $sm I'(s){(s).
Near s = 1,
(2.2.3) (o) = v+

where y is Euler’s constant.

The functions %(s) and L(s), defined for o > 0 by
(2.2.4) n(s) = 1-*—2-543-5—.. (2.2.5) L(s) = 1-5—3~54 50—,
are integral functions of s; 7(s) = (1—2'-%){(s), but L(s) is an inde-
pendent transcendent. They satisfy
(2.2.6) (25-1—1)n(1—s) = — (28— 1)7r~® cos 337 I'(8)7(s),

(2.2.7) L(1—s) = 2%7~8gin {sm I'(8) L(s).

These results have usually been attributed to Riemann, Malmstén,
and Schlomilch. It was comparatively recently that it was observed,
first by Cahen and then by Landan, that both (2.2.6), which is equiva-
lent to (2.2.2), and (2.2.7) stand in a paper of Euler’s written in 1749,
over 100 years before Riemann. Euler does not consider complex values
of s, and does not profess to have proved the equations even for real s.
He states them, and verifies them in such a number of cases as ‘ne plus
laisser aucun doute sur la vérité de notre conjecture’. Incidentally his
verifications throw much light on his views about divergent series.
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2.3. Euler’s verification. Euler states (2.2.6) in the form

1—2-143-—.  (s—1)l(2—1)

(2.3.1) 1_2_.3_*_3—8___". - (28‘1——1)778

cos 3sm,

and proceeds to verify this equation (a) for all integral s and (b) for
s = } and s = §. It will be observed that s = 1 is the only one of these
values of s for which both series are convergent.

He needs the formulae

9.3.9 1—9-2k_| §-2k__ =22k—1_1 ok B
( . .._4) + eoe (210)! ks ks
(2.3.3) 1—141—.. = } (A),
(2.3.4) 1—9%4 3% — 0 (A),
o%__
(2.3.5) 1—9mk-143%-1_  — (112 —Lp (A).

2k

Here k is a positive integer. Of these formulae (2.3.2) is familiar, and
the others, apart from the (A), are (1.2.7), (1.2.12), and (1.2.13).

It is important to observe that, here at any rate, Euler is quite
explicit about his use of divergent series: the series are to be summed
by the A definition of §1.3(2). It is easy to verify their truth in this
sense. For from

(2.3.6) eV—eWteW—, . = (1)1 (y >0)
it follows that
(2.3.7)  Imev—omew{ gme-tv_ . — (—1m(-L)"
dy] ev+1

form = 0,1, 2,.... Now

1 < 92k__]

= bdtanhdy = 3= > (1 By,
- !

so that the limit of (2.3.7) is

9% __]
3+ m=0), 0 (m=2k>0), (—1)-1 5%
It follows that the series (2.3.6) and (2.3.7) have the limits required
when y >0 orx = e~¥ — 1.

This proves (2.3.3)-(2.3.5), and also shows that the series are sum-
mable (€) to the same sum: Euler might equally well have used this
definition. We can naturally prove the truth of (1.2.8)—(1.2.11),
(1.2.14), and (1.2.16), in the same senses, in the same way.
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From (2.3.4) n(l—s) =0 (s=3,5,7,..);
and from (2.3.2) and (2.3.5)
n(1—s) _ (—1-Ys—1)i(2—1)
7(s) (27 1—1)m*
If we observe that cos 4s7 is 0 when s is odd and (—1)* when s is even,
then these two formulae verify (2.3.1) for s = 2, 3, 4, 5,....
Secondly, if we take s = 1, and interpret cos §s=/(2¢-1—1), for s = 1,
as its limit when s — 1, i.e. as —n/(2log 2), then (2.3.1) becomes
1—141—.. 1
1—3+3—...  2log?2’
in agreement with (2.3.3).
Thirdly, if we write (s—1)!(2°—1) = s!(2°—1)/s, and interpret this
as 1.log 2 for s = 0, then (2.3.1), for s = 0, becomes

(8 = 2,4,6,...).

L ) )
1—141—...
again in agreement with (2.3.3).
Fourthly, replacing (s—1)! by I'(s), and using
m
2I'(1—s) cos $(1—s)7’
we find that the truth of (2.3.1) for general s > 1 implies its truth for
s < 0. We may then regard the formula as verified for all integral s.
Fifthly, if s = {, and we interpret (—3)! as I'($), then

(s—1)!(2*—1) ') 2t—1)
T TS g e

so that (2.3.1) is true for s = 1. This completes Euler’s programme
except for the value s = 3. For this he has only a numerical verifica-
tion. He sums the divergent series with the help of the Euler-Maclaurin
sum formula, and finds the value -380129.... This gives -496774 for
the value of the left-hand side of (2.3.1), in agreement with the right to
5 figures. ‘Notre conjecture est portée au plus haut degré de certitude,
qu’il ne reste plus méme aucun doute sur les cas ou 1’on met pour
I’exposant s des fractions.’

I'(s) cos tsm =

As Landau remarks, Euler’s computation of 1—~2-+43—... may casily be
transformed into a rigorous determination of its Abel sum. It is worth observing
that the sum may also be calculated by Euler’s transformation of § 1.3(4). In
this case a,, = (—1)"/(n+ 1) and, calculating the successive differences of \/(n+ 1),
we find

bo=1, by = —-4142, b, = —-0964, by = —-0465, b, = — 0285, by = —-0197,
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so that Euler’s series is
1 4142 -0964 0465 -0285 -0197
2 4 8 16 ~ 32 ~ 64 "7

which is 380 to 3 figures. Our caleulation is of course much rougher than Euler’s.

Euler does not discuss (2.2.7) in the same detail, but implies that
he has made similar verifications. He ends by remarking that ‘cette
derniére conjecture renferme une expression plus simple que la pré-
cédente; done, puisqu’elle est également certaine, il y a a espérer qu’on
travaillera avec plus de succés & en chercher une démonstration par-
faite, qui ne manquera pas de répandre beaucoup de lumiére sur
quantité d’autres recherches de cette nature’.

B. Euler and the series 1 —1'x-+-2'22—...
2.4. Summation of the series. The series
(2.4.1) fl@) = 1—1le+4+21x2—31a34...,

which reduces to (1.1.4) for = 1, is not convergent for any x except
x = 0, or summable by any of the methods of § 1.3. For example, when
x = 1, the series (1.3.5) diverges almost as rapidly as the original series.

Euler, however, succeeded in summing the series as follows. If we
suppose x positive and write, formally,

d(x) = xf(xr) = x— 11?213 —.. |
then term-by-term differentiation gives
(2.4.2) 2%’ (x)+P(x) = 241 —2lx+-312?—..)F2x—1la2+... = 2.

This differential equation has the integrating factor x—2¢-%=  and

(2.4.3) H(x) = ell* f E;f di

0

is a solution which vanishes with x.t
If we make the substitution ¢ = x/(1+xw), we obtain

@

(2.4.4) flx) = ‘é.(xf) — f 7 dw;

and it is natural to attribute this sum to the series (2.4.1), the more so
because we come back to the series by expanding (1+4xw)-! in powers
of xw and integrating formally term by term.

1 It is easily verified by partial integration that ¢(z) = O(x) for small =.
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Since x > 0, we have also, from (2.4.3),

x [= ]
1 e~ 1 et 1
2.4.5 x) = —e* | T _dt = el | = du = —-ell]i(e-Vz),
(2:45) f@) = g [ Srdr= eie [ 2 Letielj(e-te)
0 l/x

where liv, the ‘logarithm-integral’ of v, is defined for 0 < v < 1 by

kM [e)

logt
0 log(1/v)
Then
. u p 1 1 d H 1 {7
Cditeny = | du = [ du gfif _ [du f —e"
i(e~?) f - du f . du du f —— -
y 1 0 0
o vy
= =Y logy‘}‘:’/‘—?—“g! 3 gy
and it follows from (2.4.5) that
1 1 1
2.4.6 = —__pllz —_ —-
(2.4.6) o) = —jetelog + 8(3),
where
2.4.7 S(y) = —yev v _Y
( A ) A (?/) - —.7/3 7—y+2.2!_“3.3!+---

is an integral function of . These equations give the analytic continua-
tion of f(x) all over the plane. It is a many-valued function with an
infinity of branches differing by integral multiples of 27tz~1eY*, and has
one branch which tends to 1 when x — 0 through positive values.

If we take x = 1, we obtain the equation

1

2.4.8 1—114-2!1—-314... = —e|ly—14—
(2.4.8) P = —ely—l )

2.5. The asymptotic nature of the series. If x = re®¥, where
—7 < 0 < m, then

(2.5.1) f(x) = f i::wdw = f e~ {1 —xw—+x*wi—...4(—1)"z"w"} dw-+
0 0
—1)nHign+1 e-wwnﬂdw = l—la+22*—.. .+ (—1)"nlz"}+ R, (x
+(=1) s + ( +Ro(@),

0
say. Now [l4-zw| == \(142rwcosf-+r2w?) has the minimum 1 if
cos@ > 0, and the minimum |[sin§| if cosd << 0. Hence |R,(x)| does
notexceed (n-1)!r"+1if (6] < 4w, or (n-4-1)!7"+1{cosec 8] if 3n < 0 < 7,
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and is O(r"+!) uniformly in the angle —7-+38 < 0 < »—38, for any
positive 8. In particular

(2.5.2) flx) = 1—1lax+42122—.. .4 (—1)"n! 2"+ O(x™+!)
for small positive x and given n.

A series ay+a, v+ ayx2+...
is said to be an asymptotic series for f(x), near x = 0, if
(2.5.3) f(x) = ay+a,x+...+a, 2"+ O(x"+1)

for each 7 and small x. We are interested here primarily in positive z,
but the definition applies to complex x also; thus (2.4.1) is an asymp-
totic series for our f(x) in any angle —7+3 << 0 < #—34, i.e. in any
angle issuing from the origin and omitting the negative real axis. There
is therefore one sense at any rate in which the series ‘represents’ f(x).

The definition of an asymptotic series is interesting only when the series is
divergent. If f(x) is regular at the origin, then its Taylor’s series Y a,z" is
convergent for small z and satisfies (2.5.3); but in this case there is no novelty
in the idea. Divergent asymptotic series occur in the works of most of the older
analysts, but the first mathematicians to make a systematic study of them were
Poincaré and Stieltjes, and the first general theory is contained in a famous
memoir of Poincaré on differential equations.

There,will usually be an infinity of diffcrent functions represented asymptoti-
cally by the same serics 3 a,z" Thus if g(x) = e¢%%, wherc a is positive, then
x—"1g(x)—> 0 for every n, uniformly in any angle —}7+48 < 0 < $7w—3 (and in
particular for positive z); so that, for example, the series (2.4.1) gives an asymp-
totic representation of each of the functions f(z)+4 Cg(x). To say that a series is
an asymptotic series for f(x) is not to ‘define its sum’ in the sense of § 1.3. There
are ‘uniqueness theorems’ for asymptotic series, due to Watson, F. Nevanlinna,
and Carleman; but these depend upon the knowledge of exact bounds for the
orror terms such as the R,(x) of (2.5.1), valid for all n and all z of an appro-
priate region.

We shall often use the phrase ‘asymptotic series’ in a slightly extended sense,
saying that 3 a,2"t* is an asymptotic series for f(x) if 3 a,x" is an asymptotic
series for x—%f(x), and we shall sometimes express this by writing

(2.5.4) fl@) ~ 3 a,znte,

2.6. Numerical computations. Euler calculated a numerical
value for the sum of (1.1.4) in various ways. First, we may use (2.4.8).
Secondly, we may use (2.4.5), calculating the integral, for z = 1, by
numerical quadrature. These methods give

(2.6.1) §=1—11421—3l-+.. = -5963....

There is & more remarkable, though less precise calculation (also due
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to Euler) in Lacroix’s treatise. Lacroix writes S for 1—s = 1!—214-..,,
and transforms § as in § 1.3(4), obtaining

8 = {—+§—R+H-¥+.
a series which d_iverges a little less rapidly than the original series. He
then writes § = 1—14 8, and a repetition of the transformation on
S’ gives

, 3 21 99 615
S = “s_z E)G+C)8 :M_l_hé—i“z—__

Finally, he writes §' = 3.2-4—5.2-64 8", and a third transformation
on 8" gives
S 21 15 159 429 5241

99 9127 915 918 T 921

Eight terms of this series lead to the values -4008 and -5992 for § and
s, correct to two figures. It seems at first very remarkable that we
- should get so good a result, since all of the series used are divergent
(and in the end nearly as rapidly as s). We shall see later (p. 196) why
the method should be so successful.

C. Fourier and Fourier’s theorem

2.7. Fourier’s theorem. By ‘Fourier’s theorem’ we mean here the
theorem that, if f(x) belongs to an appropriate class of functions, and
is ‘representable’ by a trigonometrical series

(2.7.1) lao+ > (a, cosnx-+-b, sin nx),
1

in the sense that the series converges to f(x) in the open interval (—m, ),
then

(2.7.2) a, = 1 ff(x)cosnx dzx, lff )sin nx dx.
m ™

Thus the theorem asserts that, if a trigonometrical series converges to
f(x) for —7 < & < m, then it is necessarily the ‘IFourier series’ of f(x).

The formulae (2.7.2) are older than Fourier. Thus Burkhardt, in his
article in the Enzyklopddie, traces the formula for a, back to Clairaut
(1757). They were familiar to Euler, who gave the ordinary deduction
of them, by term-by-term integration, in 1777.

It is to be observed that ‘Fourier’s theorem’, as we have stated it,
is a ‘uniqueness’ theorem, and is true or false according to the class of
functions considered and the sense of ‘representation’. Thus it is true,
after du Bois-Reymond and de la Vallée-Poussin, when f(x) is finite
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and integrable and representation implies ordinary convergence. If we
assume only that the series is summable by one of the standard methods
of the theory of divergent series, then the theorem may be false, even
when f(x) is always 0. Thus

sin 22 sin 223 sin 3x ...

is summable (A) to O for all , but is obviously not the Fourier series
of 0. In any case the theorem is a sophisticated one, which it would
have been quite impossible for Fourier to prove strictly: the simplest
case of it, in which f(x) is 0 and representation implies convergence,
was first proved by Cantor in 1870.

There is a remarkable passage in Fourier’s T'héorie de la chaleur in
which he attempts to prove a special case of the theorem. Let us
suppose that f(x) is an odd analytic function regular for |z| << =, so that

(2.7.3) S SHA0) i
o 2A+1

for |x| < =; and that

(2.7.4) fla) = ?bn sin na

for —m << & <7, the series being convergent in the classical sense.f
These are in effect Fourier’s assumptions; and his object is to prove
that b, is given by the second formula (2.7.2).

2.8. Fourier’s first formula for the coefficients. The ‘natural’
method for the proof of (2.7.2) is that of term-by-term integration,
which had already been followed by Euler, and would have led Fourier
at once to a proof satisfactory according to the canons of the time.
Fourier, who does not seem to have known Euler’s work, follows a quite
different and very surprising course (though he refers to the proof by
integration later). He replaces every sine in (2.7.4) by its Taylor’s
series, and equates the coefficients of powers of x to those in (2.7.3).
He thus obtains an infinite system of linear equations

(2.8.1)  by-22h+1p, 4 32h0p 4 = (—1)if@4D(0) (b = 0,1,2,...)

in an infinity of unknowns. It will be observed that all these series
are divergent even in the simplest cases: thus f(x) = x has the Fourier
series

(2.8.2) 2(sinx— % sin 22+ } sin 3x—...),

T Its sumn for x = —m or = is naturally not f(x) but }{f(—=)+f(m)} = 0.
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and in this case they reduce to
1—141—.. =13  1—-92%43%_  —0 (h=12,..).

We know that these equations are actually true with appropriate
definitions, for example, the A definition. But the fact that they are
divergent, and that (as we saw in §2.7) a slight intrusion of divergent
series will make ‘Kourier’s theorem’ false, will give an idea of the diffi-
culties in Fourier’s way. Judged by modern standards, he was setting
himself a hopeless task.

None the less, Fourier’s argument is more than an historical curiosity
and is still well worth study. Considerable sections of it are correct,
or easily restatable so as to become so0; it contains ideas important for
other purposes; and there are by-products which may still suggest
interesting problems.

Let us write (2.8.1) as

(2.8.3) by 22h-1b,-32h-1p 4 = A, (b= 1,2,..).

Then Fourier’s leading idea is to suppress all but the first » equations
and all but the first » unknowns, thus obtaining a finite system

(2.8.4) S p21p, = A, (h=1,2,...,7),

n=1
to calculate the corresponding values b, , of the b,, and to investigate
the limit of b, , when r —>c0. This is now the dominant idea in the
theory of the solution of an infinite system of linear equations, and it
is in Fourier’s work that it appears first.
Fourier, however, does not do exactly this. He varies the 4, as well

as the b,, replacing (2.8.4) by
(2.8.5) S, = A, (h=1,2,.,7).
n=1

We call this the system (r). Fourier’s idea is that we can, by an
appropriate choice of the A4, ,, secure both that 4,,—> A4, and that
the b, , tend to limits b,,.

He tries to showt that if we choose the A4, , so that

A
(2:5.6) gy = dyy 222,
A A
(2.8.7) 441'2 — Al,a._.__:a_glg’ A2'2 — A2,3 3:;,3,

t+ This part of FFourier’s argument is restated in a more accurate form by Darboux in
a footnote to p. 191 of the reprint of Fourier’s works.
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and generally

A r
(2.8.8) Ah,r - Ah’r+]_ﬁlﬁ? (h = 1,2,..., 7‘),
then we shall have
1

(2.8.9) byy = bm(l _ﬁé),

byy = byg(1— 2 b 2
(2810) 1,2 = Y13 ‘—35 y bz,z = Ugg 1—“5-2' »
and generally

7&2
(2.8.11) bn.r = bn,r+1{l —m} (n=1,2,.,r).
It will follow that, if the 4, , satisfy (2.8.8), then b, , - b, where
n? n?

2.8.12 b {1 1— e=b, .
s s =

when 7 >o00. We have then to calculate b, ;, by,,... in terms of the 4,
(which are ex hypothesi the limits of the 4,,,).

Now b, , = 4,,, by the first of (2.8.5). We express this first in terms
of 4,,, A,,, by (2.8.6), next in terms of 4,5, 4,3, 433, by (2.8.7), and
so on. We find that

A

1 1 A
Ay, = Al,z—“gz‘z'z = Al,a—A2,3(§é+§2‘)+§'2%’g

1 1 1 1 1 1 A
- A"4'~A2’4(’2‘2+§§+Z§) +‘4""4(3242+eﬂz‘ﬁfz'z?)z) - 22342'12 B

and in the limit
(2.8.13) b1,1 =4, = A1P1,1“‘A2P2,1+A3P3,1“‘---,
where
(28.14) Py =1 P,=3m? B,=723mm?,..,
and the summations are extended over unequal values of m,, m,,...
other than 1. This and (2.8.12) give b, in terms of the 4,,.

We can calculate b, ,, byg,..., and o0 by, by,..., similarly. We express
by, in terms of 4,,, A,, from the system (2), then in terms of 4,,,
Ayg, Agg from (2.8.7), and so on. Thus we obtain b,; and we may

obtain b, similarly by starting from the system (n). The results may
be written

1 1
(2.8.15) 61(1_55)(1__—35)... — AP, —Ay Py Ay Pyy— ..,

2
(2°8'16) Inb'n ) (1 ""'7%5) = Al I’l,n'—A2I)2,n+A81)3,n~""
m#£n
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where
(2.817) PB,=1 P,=3m? PB,=>miml..

and the summations are now extended over unequal m,, m,,... other
than n. These equations may be simplified because

[T (1) = i) ) = oo

m#n

Thus (2.8.16) becomes
(2.8.18)  (—1)*Ynb, = A, P,,—A, By, + A, Py —
It is easy to find B, , for all 2 and n. If we write

[ee)

o
11 (1 '_i) =27 — P—B2*+ Bt

me2 2
1

then B, ., = #*/(2h-1)!, and the identity

(1 —-—)(P — B, 4 B —..) = P—Py2+ B

gives the B, , in terms of the P,. Finally, making these calculations
and substituting in (2.8.18), we obtain

1 2 1 1 7® 4
28.10) (=1 mb, = Ayt (=Tl a5 5+ 5y e

This completes the first and most complex stage of Fourier’s argument.
Thusif f(x) =x,4,=1,4, = A; = ... = 0, we obtain {nb, = (—1)*?
and x = 2(sinx— 4 sin 2244 sin 3x—...).

2.9. Other forms of the coefficients and the series. If we
remember that 4, = (——1)’*“1f (2h-1)(0), so that

3
f@) =7nd,—As+..., [f'(m)= —7TA2+§—!A3——..., ve

and rearrange (2.8.19) in powers of n—2, we find that

(—11 = {f( f"(")+f-"f-'~(~’f)—...}.

nt

(2.9.1) by

I

Substituting this series for b, in Y b, sinnx, and rearranging the result-
ing double series by associating together the terms in f(=), f"(),..., we
obtain

= . sin 2x  sin 3z
29.2) dnfl@) = > (—1fo0m){sinz — 5t + s ~.)
h=0

Each of these formulae is interesting in itself, and valid under fairly

wide conditions.
4780 D
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We shall have more to say about (2.9.2) in Ch. XIII. Here we are
concerned with Fourier’s further transformations of (2.9.1). He observes

that x() = f@)—n=2f"(x)+-n-3f" (x)

satisfies the differential equation

n=2x" (@) +x(®) = f(x),

whose general solution is

x(x) = C cos mx+ D sin nx~+mnsinnx f f(t)cosnt dt —mn cosnx f f(t)sinnt dt.
0 0

Since f is odd, x is odd and C' = x(0) = 0. Hence, putting « = 7, and
using (2.9.1), we obtain

b, = (—1)* 1——2—X ff (t)sinnt dt,

which is the second formula (2.7.2). Thus at last Fourier has arrived
at the ordinary formula for the coefficients.

2.10. The validity of Fourier’s formulae. It would no doubt be
possible to determine conditions on f(x) sufficient to justify all Fourier’s
elaborate transformations, but a very careful analysis of his argu-
ment would be required. Here we shall consider two questions only:
(a) whether (2.9.1) is in fact a correct formula for b,, and (6) whether
the b, actually satisfy (2.8.1). The second question naturally pre-
supposes some definition of the sums of the divergent series involved.

(1) First, if f(x) is odd and regular along the stretch —7 < « < 7 of
the real axis,T we have, since f(0) = f"(0) = ... =0,

inb, =ff(x)sinnx dx = (-—1)"—1{_fL"_) J'(m )+ 4+

n

(— 1))

+* ST + f(2"+1) x)cosnx dx},
nett n2h+1

by repeated partial integration. Since the la,st term in the bracket
is O(n—2"-2) for large n, we see that the series (2.9.1) is an asymptotic
series for b,,.

Next, if |feM(m)] < CK?* (h =0, 1,...)
for some (' and K, then the series is convergent for » > K. In particular
this will be true if f(x) is an integral function of order 1 and finite type,

t This is, of course, a more genoral hypothesis than Fourier’s: he assumes that the
Taylor’s series of f(x) is convergent for |z| <{ =
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ie. if [f(x)| < Dell for some D and L. If L < 1, in which case also
K < 1, then the series is convergent for n > 1. In these circumstances
(2.9.1) is true in the ordinary sense.

We can also prove that the series is summable, under wider condi-
tions, in various senses, but this demands some knowledge of the
definitions of the sum of a divergent series associated with the name
of Borel.

(2) We shall now prove that the equations (2.8.1) are correct if the
divergent series which they contain are summed by the A method of
§1.3(2). We again suppose only that f(x) is odd and regular on the stretch
—n < & < w of the real axis.

Since f(z) is regular for —7 < < 7, we have

=-1—_f emxdx*—ff x)eni® dy,
™

where C| is a curve from —= to = a little above the real axis. Hence

e’l.l? -3

1
z bne—b‘n — — f f(x) eniz=8n (g — f f(x) g dx,
Cy

for any positive 6. Differentiating 2h+1 times with respect to 8, and
then replacing the derivative under the integral sign by the correspond-
ing derivative with respect to x, we obtain

Shlpy o—dn ("l)h_lf f?_ 2’LH“€_{T_8 4
> n?htlp e f(x) e | gied dx

o
(05

When & —> 0, the right-hand side tends to

(_:r)h_l J.f (=) (E%;)zm1 1_esz'x dw = L;%rlzf ff (x)((,%;)zh“ cot 3z dux.

1 C

Since f(x) is odd, this is half the same integral round C, a complete
circuit round the origin in the negative direction; and this, by partial
integration, is

e f @49} ot o d = (—1)H@1(0),
C

which is accordingly the A sum of ) »n?+}, . Actually the series are
summable by ‘ Cesaro’ methods, > »n#+}, being summable (C, 24+ 1);7
but the A method is the simplest which will sum all of them.

1 See § 5.4.
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D. Heaviside's exponential series

2.11. Heaviside on divergent series. Our last example is one of
a different kind, since it comes from quite modern times and from the
work of a man who was not a professional mathematician.

Heaviside, in the second volume of his Hlectromagnetic theory
(London, 1899), has a long chapter on divergent series. He is plainly
not aware that, at the time when this volume was published, a scientific
theory of divergent series already existed;{ and his work is always
unsystematic and often obscure. He does not attempt to develop any-
thing which can be called a ‘theory’ of divergent series, his attitude
towards them being, at bottom, that of Euler 150 years before: indeed
Euler had the clearer ideas. But Heaviside, whatever his merits as a
mathematician, was a man of much talent and originality, and what he
says (if often irritating to a mathematician) is always interesting.

It may be advisable to substantiate thcse assertions by quotations from
Heaviside’s writings.

‘T must say a few words on the subject of generalized differentiation and
divergent serics. . . . It is not easy to get up any enthusiasm after it has been
artificially cooled by the wet blankets of rigorists. . . . I have been informed that
I have been the means of stimulating some interest in the subject. Perhaps not
in England to any extent worth speaking of, but certainly in Paris it is a fact
that a big prize has been offered lately on the subject of the part played by
divergent series in analysis. ... I hope the prize-winner will have something
substantial to say. . ..

‘In 0.P.M.%1 I have stated the growth of my views about divergent series up
to that time. . . . I have avoided defining the meaning of equivalence. The
definitions will make themselves in time. . . . My first notion of a series was that
to have a finite value i1t must be convergent. . . . A divergent series also, of
course, has an infinite value. Solutions of physical problems must always be in
finite terms or convergent series, otherwise nonsense is made. . . .

‘Then came a partial removal of ignorant blindness. In some physical problems
divergent series are actually used, notably by Stokes, referring to the divergent
formula for the oscillating function J,(x). He showed that the error was less than
the last term included. Now here the terms are alternately positive and negative.
This seems to give a clue. . . .

‘There aro certainly three kinds of equivalence. . ..§ Equivalence does not mean
identity. . . . But the numerical meaning of divergent series still remains obscure.

T Borel’s memoirs on divergent series were published during the years 1895-9, his
book in 1901. Poincaré’s theory of asymptotic series dated from 1886.

1 ‘On Operators in Physical Mathematics’: a series of three papers presented to the
Royal Society during 1892-4 but never printed in full.

§ Numerical, analytical, algebraical. Heaviside means, of course, that

l+z+at+.. = (1—2)?

may mean (a) that 1+z+ a2+ ... converges to (1—=z)~1, (b) that it is a ‘representation’
of the function (1—=z)~1, (c) that it is the result of the algebraical process of ‘long division’
of 1 by 1—a. Euler would have said the same.
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. There will have to be a theory of divergent series, or say a larger theory of
functions than the present, including convergent and divergent series in one
harmonious wholo. . . .” (Electromagnetic theory, 2, 434-50.)

The ‘rigorists’ whom Heaviside disliked so much had provided what he asked
for, even at the timc when he wrote.

2.12. The generalized exponential series. There is one particular
series which Heaviside uses freely, and which he seems to have been
the first to use, though it is a special case of one stated many years
before by Riemann. This is the series

ki xe-r

(2.12.1) 8 = 8(x,c) = L I;ZE:;‘:-I—WI‘),
where x > 0, c is real, and the coefficient is to be taken as 0 if ¢ is an
integer n and r > n: in this case § reduces to the ordinary exponential
series. Otherwise S is divergent for all z; but, since it reproduces itself
when differentiated formally, it is natural to suppose that it should
have the sum e*, in some sense, for all c.

We suppose that ¢ is non-integral, K integral, and B > c¢. Then it
is easily verified by partial integration, or by differentiation of the
result, that

pc—R+n

M__l__ i ~{fc-R-1 = ] —e—2 S o e
I‘(c—R)wfet db = 1—e ;F(0~R+n+l)'

Hence

[ ]

xc—r xc—R+n
Sp(®, 0) = z I'c—r+1) 2 I'(c—R+n+1)

— p%T__. e—tfe—R-1 — %
y r(c.-.R)f Rl dt — ot Qo

say. The sign of @ is that of —F(c—- ), and

xc—R

1 c—R— —
el < | re—m)] f IS =)

The signs of the terms in § with » > ¢ alternate in sign. If, for
example, up, the last term in Sy, is positive, then I'(c—R) < 0,
0 < Qp < up, and e < 8 < e?up. If uy is negative, then

eCtup < Sp < €%
Thus the series S represents ¢* asymptotically in a sense analogous to
that of § 2.5; its terms, from a certain point on, alternate in sign; and the
error involved in stopping at any term is of the same sign as, and
numerically less than, the last term retained.
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2.13. The series 3 ¢@(x). Heaviside’s series is a special case of the
series

(2.13.1) 8 = S@) =3 $"(x),

where ¢@(x), the rth generalized derivative of #(x), is defined for
r= —s <0 by

T \s
(2.13.2) HNz) = () = (f dt) H(t) = T 1 J (x—12)*-1(2) dt,
0
and for » = —s+ N as the Nth differential coaﬁiment of ¢,(x). If ¢(x)
is a multiple of ¢, and ¢ > —1, then (2.13.1) reduces to (2.12.1).
If

(2.13.3) ( S+ )q5(’)(x SO 5@,
r<0 r_:0
say, then <
(2.13.4) SO = ""“1““ f (@ —t)y-1(t) dt = f el (t) dt
s>o(9— :

for any integrable ¢.
Let us assume for simplicity that ¢(t) is indefinitely differentiable
throughout any finite interval of positive ¢, and that
f e~td(t) di
0
is convergent for r == 0, 1,..., in which case e~'¢®)(¢) - 0, when ¢ - o0, for
r =20, 1,.... Then
[ e di— [ etgri@mdt = ev 3 $9%a),
) r=0

by partial integration; and so

R 00 a0
8P = 3 ¢n(x) = em{ [ et di— [ et dt}.
r=0 x &
Combining this with (2.13.4), we find

[ee] [ee}

(2.135) Sp= 5 $7) = e [ et(e) di—e® f e~ ¢) dt.

r=—ow o
If now | B+ )(x)| < xp.q(®), and x ., (x) > 0, for every R, when x — o0,
then (2.13.5) gives

0

Sp = ¢ [ () dt+-O{xpu(0)} = A" +O0{xpn(®)},

0
and in this sense § is an asymptotic series for 4e®.
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2.14. The generalized binomial series. Heaviside has also a
‘generalized binomial series’, viz.

@141) (L= > awme Pe+l)

8= —00

where m and n are not usually integral. This series, unlike the
exponential series, appears explicitly in Riemann’s earlier work.

If m and n are integral and n positive, then (2.14.1) reduces to the
elementary binomial theorem; if m only is integral, to the ordinary
infinite series,

i g _ I'(n+1)

o0

N U e z an—-r . _ _P(n +,1)~_.r_
s I(m—s+1)(n+s—m+1) L Ler+1)I'(n—r41)°
which conveérges to x*(1+xz-1)* = (14x)* if |¢| > 1. Generally the
series is infinite at both ends, and convergent at one end, divergent
at the other, according to the value of x.
If we separate the positive and negative values of s, and write the
two resulting series at length in the notation usual for hypergeometric

series, we obtain

(2.14.2) F(".‘*il%:’f;;mﬂ)xm—"(wx)n

= F(1, —m,n—m-}-1, »x)+(_%—%§.F(l, —n+m-+4+1,m-}-2, —_slv)
If, for example, 0 << x << 1, then the first series on the right is con-
vergent; the second is divergent, but summable in various ways, and
represents the analytic continuation of the function which it defines
when convergent. The formula may be proved directly or deduced
from known theorems concerning the relations between different hyper-
geometric functions.

NOTES ON CHAPTER II

§ 2.2. Euler, ‘Remarques sur un beau rapport entre les séries des puissances
tant directes que réciproques’, Histoire de I’ Académie des Sciences et Belles-lettres
(Mémoires de I’Académie), 17 (Berlin, 1768), 83-106 [Opera (1), 15, 70-91]. The
volume covers the year 1761, and tho paper had been read in 1749.

Cahon, AN (3), 11 (1894), 75-164 (75-6), secms to have been the first modern
writer to call attention to Euler’s paper. Landau, Bibliotheca Math. (3), 7 (1908),
69-79, gives a full account of it, with the appropriate references to other writers.
It seems that no one before Riemann (1859) gavo a satisfactory proof of (2.2.2), but
that Schlémilch had stated (2.2.7) in 1849 and proved it in 1858. The standard
proofs of (2.2.2) are given in Landau, Handbuch, 281-98: see also Ingham, 41-8,
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Whittaker and Watson, 268-9. Many other proofs have been given by other
writers.

§ 2.3. For (2.3.2) see, e.g., Bromwich, 298.

§ 2.4. Euler’s discussions of the series (2.4.1) seem to have begun in his corre-
spondence with N. Bernoulli: see in particular Opera (I), 14, 585. Other references
will be found in Reiff’s book quoted in the note on § 1.3. The summability of the
series by various methods is discussed by Hardy, PCPS, 37 (1941), 1-8: see § 8.11.

There is a systematic account of the theory of lie* in Nielsen, Theorie des
Integral-logarithmus und verwandter Transzendenten (Leipzig, 1906).

§ 2.5. Poincaré’s memoir was published in 4M, 8 (1886), 295-344. Thero are
accounts of the theory of asymptotic series in Borel, ch. 1; Bromwich, ch. 12;
Knopp, ch. 14; and Ford, Studies.

For the theorems of Watson and Carleman see Watson, PTRS(A), 211 (1912),
279-313; Carleman, Les fonctions quasi-analytiques (Paris, 1926); and § 8.11.

§ 2.6. Lacroix, T'rawté du calcul, 3, ed. 2 (Paris, 1819), 346-8; Bromwich, 336.

§ 2.7. There are short accounts of the relevant parts of the theory of Fourier
series in Hardy and Rogosinski and in other books there referred to, and a very
full one in Zygmund.

The fullest account of the early history of the formulae (2.7.2) is that in
Burkhardt’s Enzyklopddie article quoted under § 1.3.

§ 2.8. Fourier, Théorie analytique de la chaleur, ed. 2 (Paris, 1822), 187 et seq.
(reprinted in vol. 1 of his Wuwres). There are short accounts of Fourier’s analysis
in F. Riesz, Les systémes d’équations linéaires a une infinité d’inconnues (Paris,
1913), ch. 1, and Hardy, Annals, 36 (1935), 167-81; but both are condensed, and
neither author quite does justice to Fourier.

Dr. Bosanquet observes (1) that it is at any rate doubtful whether it is always
possible, under Fourier’s conditions, to choose 4, so as to satisfy (2.8.8) and
Ay — Ap; (2) that we can deduce directly from (2.8.5) that

r T
! n2 ’ B r
nb,, , (1_;{5) = {l | (I_W)}Al.r = > (— l)h_lAh., P;":)",

m=1 m=1
where the dash implies the omission of the value m = n, EA4, , = A4,,,,, and
P =1, PO =3Smi2my2.m2 (h>1),
the summation extending over unequal m,, m,,... from 1 to » other than n. If
we then make r — oo, and suppose that A;, — 4, we obtain (2.8.16) without
using the special relations (2.8.6)—(2.8.12).

§2.10(2). The argument here may be generalized: sec Hardy, l.c. under §2.8,
172. Very general theorems concerning the Cesaro summapbility of derived series
of Fourier series, of which the series considered here are special examples, were
proved by W. H. Young, PLMS (2), 17 (1918), 195-236. Still more general
results, and full references, will be found in Zygmund, 257 et seq, and in Bosan-
quet, PLMS (2), 46 (1940), 270-89.

§ 2.12. Heaviside’s exponential series, and the generalized binomial series of
§ 2.14, are both special cases of a generalized form of Taylor’s series which occurs
on p. 335 of Riemann’s posthumous fragment ‘Versuch einer allgemeinen Auf-
fassung der Integration und Differentiation’ (Werke, 331-44). Riemann’s expan-
sion 18

pmtr
flx+h) = Z Tm+r+1) Dmirf(x),
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where 7 is fixed, and in general non-integral, m runs from — oo to co, and D™+ is
a symbol of generalized differentiation. Riemann does not write down the
exponential series explicitly, and makes no attempt at a rigorous discussion. For
this see Hardy, JLMS, 20 (1945), 48-57.

The fragment is taken from a manuseript dated 14 Jan. 1847, when Riemann
was a student. As the coditors (Dedekind and Weber) remark, it was never
intended for publication; but it contains the first definition of ‘ Riemann-Liouville’
integrals, and no doubt marks the beginning of Riemann’s work on hyper-
geometric series.

The asymptotic character of the serics (2.12.1) was proved by Barnes, TCPS,
20 (1908), 253-79. Barncs’s proof is valid for complex z with |argx| < .

§ 2.13. Pélya has proved that if the series (2.13.1) is convoergent for any x for
which ¢(x) is regular, then ¢(x) is an integral function, and tho series is uniformly
convergent in any bounded region of z (so that its sum is necessarily a multiple
of e%). See Pélya and Szego, 1, 133 and 314.

Hardy, l.c. under § 2.8, discusses the summability of (2.13.1) by methods
of Borel’s type.

§ 2.14. The binomial series oceurs, as formula (3), on p. 336 of Riomann’s
fragment. Ho commonts on its failure for negative integral n.

The formula (2.14.2) occurs, for example, in Barnes, PLMS (2), 6 (1908),
141-77 (146, formula I). It may be proved duuctly by integrating

f (— )M=Y — ) —

round an appropriate contour.



111
GENERAL THEOREMS

3.1. Generalities concerning linear transformations. The
theory of divergent series is concerned with generalizations of the notion
of the limit of a sequence (s,), which are usually effected by an auxiliary
sequence of linear means of s,. Thusin§1.3 we defined the (C, 1) limit
of (s,), or the (C,1) sum of ) a,, as the limit of

. 80+Sl+...+8m
(3.1.1) by = mil
when m —>o0; and the A limit of (s,), or the A sum of > a,, as the
limit of
(3.1.2) Hx) =3 a,x" =Y x(1—2x)s,

when - 1 through values less than 1. In each case the auxiliary
means are of the form

(3.1.3) by = 2 Cun S (M =0,1,2,..)
or
(3°1°4‘) t(aﬂ) = Z cn(x)sn’

where z is a continuous parameter.t Thus in (3.1.1)
Crmm == (m”}‘l)*l (0 < n << m), Copn, = 0 (n > m),

and in (3.1.2) ¢, (x) = x*(1—=z). In one case they depend on an integral
parameter m, in the other on a continuous parameter x; but, as we shall
see, this distinction is not very important. For the moment we consider
means of the type (3.1.3).

We call the system of equations (3.1.3), which we may write shortly as

(3.1.5) ' t = "I(s),

a linear transformation T; ¢, the transform of s, by T; and the matrix
|TI - (Cm,n)’

in which ¢, , is the element in the mth row and nth column, the matriz

of T.

1 Summations arc over 0, 1, 2,... when there is no indication to the contrary. The
variable of summation will not be shown explicitly unless this is necessary to avoid
ambiguity: it is obvious, for example, that in (3.1.3) and (3.1.4) the summation must
be with respect to n, so that, for example, X ¢, , s, moans

o8]

Y\
oy Copan Spe
n==0
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3.2. Regular transformations. The most important transforma-
tions are regular. We say that T is regular if

(3.2.1) tn—>8 (M -—>00)
whenever
(3.2.2) 8, >8 (n—>00).

We regard the first assertion as including that of the existence of ¢,
for every m, i.e. the convergence of all the series (3.1.3). Thus, after
Cauchy’s theorem quoted in § 1.4, the transformation (3.1.1) is regular.
There is an important theorem, due to Toeplitz and Schur, which
states necessary and sufficient conditions for the regularity of T. We
prove this theorem (Theorem 2) in §3.3: it is convenient to associate
it with two other theorems of a similar character concerning different
classes of transformations. We call the class of linear transformations
¥, the class of regular transformations I,.. The class I, is the class
of transformations which transform all convergent sequences into con-
vergent sequences, i.e. transformations such that the convergence of s,
to s implies the convergence of ¢,, to some limit £. Thus T, is the subclass
of T, in which ¢ is necessarily the same as s. The class T¥ is the class of
transformations which convert all bounded sequénces into convergent
sequences, i.e. transformations such that s, = O(1) implies ¢, - ¢. It
is plain that T¥ is also a subclass of T,; but T¥ and I, are, as we shall
see, mutually exclusive. We shall prove the following three theorems.

THEOREM 1. In order that 'T' should belong to I, it is necessary and
sufficient (i) that

(3.2.3) Y =3 lemal <H,
where H 1s independent of m; (ii) that

(3.2.4) Crun = S
for each n, when m — co; (iii) that

(3.2.5) Cm =D Cpum —> O

when m —c0. In these circumstances Y 8, is absolutely convergent, and

(3.2.6) &, —>t=2085+ 3 8,(s,—8) = s(5— 3 8,)+ 3 8,8,,
when m — o0, whenever s, —> s.

Here, of course, the limits 6,, and 3 are finite.

THEOREM 2. In order that T should belong to T, (i.e. that T should be
regular), it 1s necessary and sufficient that the conditions of Theorem 1
should be satisfied, that 8, = 0 for each n, and that 5 = 1.
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THEOREM 3. In order that T should belong to I¥, it is necessary and
sufficient that c,, ,, — 8,, for each n, i.e. that the second condition of Theorem
1 should be satisfied, and that the series 3 |c,, | should converge uniformly
in m. In these circumstances the first and third conditions of Theorem 1
are necessarily satisfied, > 8, = 8, and

ty,—>t=206,8

for all bounded sequences (3,).

nn

3.3. Proof of Theorems 1 and 2. (1) We prove first that the
conditions of Theorem 1 are sufficient. Since s, — s, s, is bounded,
and it follows from (3.2.3) that all the series (3.1.3) are absolutely
convergent.

Next, the series (3.2.5) are absolutely convergent. Also, by (3.2.4),

N N
S 18, = lim Y o, < H
0 m—>wo 0

for every N, so that

(3.3.1) D18 < H

Thus Y 8,, > 8,s,, and the other series in (3.2.6) are absolutely con-

vergent.

Suppose first that s == 0. Then we can choose N = N(¢) so that
(3.3.2) |s,| < e€/4H (n > N).
Now

tm_zsn Sn :2 (Cm,n n z mn +N§1(cm,n‘~8n)8n = U4-V,

0

2

say. Here V)< 4}12 [emal+18,]) < 36,

NT1
by (3.2.3), (3.3.1), and (3.3.2); and U — 0 when N is fixed and m — o0
by (3.2.4), so that |[U| < 4e for m > M(e, N) = M(e). Hence
. |6 “—ZSnSnl <e€
form > M(e), and ¢,, - 3 3, s,. Thus the conditions (3.2.3) and (3.2.4),

without (3.2.5), are sufficient when s = 0.
In the general case we write
Sp = 8,—8, by =1 CppSp.
Then s, - 0 and therefore
b —> D 8, 8.
Hence, now using (3.2.5),

b =D Coun(Sn+8) =t +8C, > > 8, 8,+8s = s(8— 3 8,)+ 38,8, = 1.

Thus the conditions of the theorem are sufficient in any case.
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(2) We have now to prove the conditions necessary. We suppose that
T belongs to T,.

(a) Take s, = 1, s, = 0 whenn 3 k, so that s, - 0. Then {,, = c,,;,
and therefore ¢, ; tends to a limit §, when m —oco. Thus (3.2.4) is a
necessary condition.

(b) Take s, = 1 for all n, so that s, - 1. Then

b = Z Con = Cmp>

and therefore c,, tends to a limit 8. Thus (3.2.5) is necessary.
(¢) It remains to prove (3.2.3) necessary. This is the main point of
the theorem.
First, y,, is finite for every m. For if y,, = c0 we can choose (¢,) so
that
€, >0, €, >0, 2 €plCmn] = 0.1

If then we take s, = ¢, sgnc,,,, we have s, - 0 and

b = E En‘Cm,nl = 00,

in contradiction to our hypotheses.
Thus y,, is finite for every m, and we have to prove y,, bounded.
If not then, given @, we can find an m such that y,, > G. We write

(3.3.3) Ym,n :vgo |Cam,pls (3.3.4) dy, :vgo 19,].

We know already that v,,, - v, when n — oo, and that ¢, , — 3, (so
that y,,, - d,) when m — oo.

Starting from an arbitrary »,, we construct two increasing sequences
My, My, My,... and 1y, 0y, ng,.... We suppose that m,, m,,..., m._,, ny,
Tg,..., N, have been determined already, and choose m, and =, as
follows. Since y,, > @ for any G and some m, we can choose m, > m,_,
so that
(3.3.5) Vm, = 2 |Coppm| > 2rd,, +124-2r4-2.

. Ny Ny
Since % 'cm,n! - % lanl = dn,
when m — 00, we can suppose also that

ny
(3.3.6) Ympny = % Icm,,'nl < dn,+1'

L —_ .
+ For example, we may, with Abel, take ¢, = ( > lcm.,l) !, where Cm.~ 18 the first
v=N
Comw F 0.
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Since y,,, , > ¥m, When n - co, we can then choose 7,,; > 7, so that

(3.3.7) Yoy —Ymnny s = > [Compn| < 1.
Nrp1+1
It then follows from (3.3.5)—(3.3.7) that
Ny 41
(3.3.8) 2 lewnl > rd, +1r24-2r.
n=n,+1
We now take
Sp = =0 (n nl)’ 8p == r-l Sgi E;r:.; (nr <n {1 nr+1)

forr =1, 2,.... Then |s,| <1, s,—>0,and

nr+1

) = > [omnl— Z [Cmn] — Z €yl
nr +1 Ny y1+1

> rY(rd, +r2+42r)—(d, +1)—1 = 7.
Hence ¢,, > o0 when m —> oo through the sequence (m,), and T is not
a transformation of I, The contradiction completes the proof of
Theorem 1.
The only point of the proof which presents difficulty is that of the necessity

of the condition (3.2.3). This may be clucidated as follows. Suppose that we
wished to prove (3.2.3) a noccssary condition for the truth of the implication

I8, < K— |t,| < HK,
a theorem about uniform boundedness instcad of about convergence. We should
take a fixed m and define s, by s, = Ksgnc,,,. Then

tm = K 3 |cm,n| = Kym,
and (3.2.3) follows. The proof of Theorem 1 depends (at the critical point) on

a combination of this device with the use of ‘rapidly increasing’ sequences. Such

proofs are common, for example, in the theory of the ‘convergence defects’ of
Fourier series.

It is now easy to prove Theorem 2. First, the conditions are
sufficient because they include those of Theorem 1, so that
ty >t =084 D 6,(s,—8) = s.
Secondly, the proof of their necessity is the same: the proof of (3.2.3),
indeed, is a little simplified because §, = 0 and so d,, = 0.

3.4. Proof of Theorem 3. If the conditions of Theorem 3 are
satisfied, and s, is bounded, then } ¢, ,, > ¢, , S, are uniformly con-
vergent. Hence

lim¢, =lim Y ¢, ,8, = (limc,,,)s, = > 8,3,
when m — oo, and the conditions are sufﬁclent. In particular, taking

=1 §=1im3c,, =35,



3.4] GENERAL THEOREMS 47

The conditions (3.2.4) and (3.2.5), being necessary in Theorem 1,
are a fortior: necessary here. It remains to prove that

(3'4'1) Ym = z lcm,nl

(which is certainly bounded) must be uniformly convergent.

We show first that it is sufficient to prove this in the special case in
which 8, = 0 for every n. If T belongs to T¥ it belongs to T, so that
> 18,] < oo. The equations

t;n = z (C-m,n n Sn z cm nSn
define a transformation T for which ¢, ,, -~ 0 when m —co. If T belongs
to T¥ and s, = O(1), then ¢, - ¢t and

b > t— > 8, 8y,

so that T’ also belongs to T¥. Hence, if the conclusion has been estab-
lished in the special case, D |c,,,| is uniformly convergent, and therefore
D emal = 2 lemn+8,] is uniformly convergent.

We obscrve next that the condition of uniform convergence may be
stated in a different form by use of (3.2.4). If (3.4.1) is uniformly con-
vergent then

(342) Ym = z Icm,'n! > z lsnl;
and the converse is also true, by a well-known theorem of Dini, because
|cmal| = 0.1 Thus we may replace the condition of uniform convergence

by (3.4.2); and, in the special case which it is sufficient to consider, this
condition reduces to

(3.4.3) Ym = 2, [Cmnl = 0.

t The substance of the theorem, at any rate, is Dini’s, but ho stated it in a rather
different form (for uniform convergenco over an interval of values of a continuous
variable). It may therefore be advisable to insert an explicit proof of what ig actually

wanted here, viz. that if upy = 0, Uy, — Up when m - 0, Zuy, and X U, are
convergent, and

= Uman —> U,
when m — 0, then X Uy, converges uniformly in m.
In fact
) ) ) © N _
X Upap = (Z U — 2 Un)‘JF X Up—2 (ump—Un) = P+Q+R,
N+1 0 0 N+1 0
[ e}
say, so that 0 < E Yman < |P|+1Q|+|R).

We can choose N(e) so that |Q| < €; and, when N(e¢) is fixed, we can choose
M(e, N) = M(e) so that |P| < e and |R| < ¢ for m > M(e). Thus

(a) 0< 3 tpp < e

N+1
form > M(e)and N == N(e), and therefore (since uy, , > 0)form > M(e), N > N(e¢). But
when M(e) is fixed we can choose N,(¢) >> N(¢) so that (a) is also true for 0 <L m < M(e)
and N > N,(¢), and therefore true for N > N,(¢) and all m.

/"/ \
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We have therefore to prove that (3.4.3) is a necessary condition for
a transformation T, with §,, = 0, to belong to T¥.

If (3.4.3) is false, there is a number y > 0, and a sequence (m®), such
that

(3.4.4) Ym = z 'cm,nl >Y

when m = m® and 7 -o0. We shall then define a bounded sequence
(s,,) such that ¢,, does not tend to a limit when m — co through (m®).

We construct increasing sequences (m,) and (n,), the first a subse-
quence of (m®), as follows. Suppose that m,, m,,..., m,_,, and n,, n,,..., n,
have been determined. Since y,, - v and c,, , > 0 when m — 0o, we can
choose an m, > m,_,, in (m®), so that

Ny
(3.45)  lym—y] <27, (3.46) 3 lomal <27
0
Since Y |c,, .| i8 convergent, we can then choose n,,, > n, so that

(3.4.7) z l m,,'nl <2

Ny 1+
and it follows from (3.4.4)—(3.4.7) that

'nrtl
2 Cmml—y| < 3.2
ny+1

(3.4.8)

We now define s, by

(3.4.9) s, =0 (n<m), 8p = (___l)rsgn"d’:r; (m, <N < Myyy)
forr =1, 2,.... Then [s,] < 1, and
(3.4.10) men S -, E Cm o n| <27,
1+
by (3.4.6) and (3.4.7). Also
Ty 41 Ny 11
Crmyn Sn == (—1y 2 lcm,nl
n, ny
by (3.4.9); and so
Ny i1
(3.4.11) 2 Congyn Sn—(—1)y| < 3.2-7
rt+1

by (3.4.8). Finally, by (3.4.10) and (3.4.11),
[tm,—(—=1)y| < 5.277;

and therefore ¢, does not tend to a limit. This completes the proof
of Theorem 3.
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3.5. Variants and analogues. There are many variants of the
theorems of §3.2, which we shall not attempt to enumerate systema-
tically. We mention only a few which will be useful to us later.

(1) The first concerns sequences which tend to zero.

THEOREM 4. In order that s, — 0 should imply t, — 0, it is necessary

and sufficient that condition (3.2.3) of Theorem 1 should be satisfied and
that c,, ,, should tend to 0 for each n.

The sufficiency of the conditions follows from the argument of § 3.3 (1),
with 3, = 0 and ¢ = 0. In this case the condition that c,, should tend
to a limit is not wanted. The argument of § 3.3 (2), (a) and (c), also shows
that the two conditions retained are necessary, but that of (b) is
inapplicable.

(2) There are analogues in which m is replaced by a continuous
parameter x. Thus the analogue of Theorem 2 is

THEOREM 5. Suppose that x is a continuous parameter which tends to
infinity, and that

(3.5.1) tx) = D ¢, (2)s,.

Then the conditions (i) that Y |c,(x)| should be convergent for x = 0, and
(3.5.2) S Jou(@)| < H,

where H 1s independent of x, for x > x,; (ii) that

(3.5.3) c,(x) > 0,

when x — oo, for every n; and (iii) that

(3.5.4) > cu(x) > 1,

when x —> 00; are necessary and sufficient that t(x) should be defined by
(3.5.1) for x == 0, and tend to s when x — 0o, whenever s, — s.

In this case also we call the transformation T defined by #(x) regular.

The theorem may be proved by an argument like that of §3.3. But
it is a corollary of Theorem 2. For, first, the conditions ensure that
t(x) - s when x — oo through any sequence (r,,) tending to co, and so
generally. Secondly, if condition (i) is not satisfied, then either the
series > c¢,(x,,) diverges for some x,, = 0, or

[ S lop,| = I3 [y ()] = 00

when « —> oo through some sequence (z,,) tending to co. But then, by
Theorem 2, there are sequences (s,,) for which s, tends to s and

t(xm) == z Cimn Sn
4780 K
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is either not defined for some z,, or does not tend to s. This proves
the necessity of (3.5.2), and that of (3.5.3) and (3.5.4) is obvious.

There are obviously similar theorems in which x tends to a finite limit
a (or a+0 or a—0). These are derivable by trivial transformations, and
we shall regard them as included in Theorem 5. There is also an
analogue of Theorem 4 with a continuous parameter x, which we do
not state explicitly.

(3) There are similar theorems concerning integral transformations

(3.5.5) (@) = [ e(@,y)s(y) dy;t

but they are a little less symmetrical, since the kernel c(x, y) may behave
in a more complex way for finite x and y than a function of integral
variables. We therefore confine ourselves here to the statement of
suffictent conditions (which are all that we shall actually need), and
suppose s(y) bounded for all y.

THEOREM 6. In order that

(3.5.6) s(y) >s (y —o0)
should imply

(3.5.7) t(x) >s (x—>o0)
Jor every bounded s(y), it is suffictent that
(3.5.8) [ le@,9)l dy < H,

where H is independent of x, that
¥

(3.5.9) f le(z, y)| dy — 0
0

when x — 00, for every finite Y, and that

(3.5.10) f c(x,y)dy > 1
when x — 0.

The proof is like the sufficiency proof in §3.3. We suppose first that
s = 0. Then
Y )
tz) = [ ol@,y9)sy) dy + [ cla, y)sly) dy = U+V,
¥

0

1 Integrations are over (0, o) unless the contrary is indicated. The integral (3.5.5) is
defined, in general, as

Y
lim f c(z,y)sy) dy ;
Y—»0 0

but in Theorem 6 it is absolutely convergent.
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say. We can choose Y so that [s(y)| < ¢/2H fory > Y, when

V1< g [ el dy < des
Y

and U — 0 when Y is fixed and x — 0. Hence t(x) - 0. We then pass
to the general case by replacing s(y) by s;(y) = s(y)—s.

The transformation (3.5.5) includes those considered before as special cases.
If s(y) = 8, c(x,y) = c,(z) for n < y < n-+1, then Hx) = 3 cy(x)s,, the trans-
formation of Theorem 5. If we then restrict « to integral values m, wo obtain
that of Theorem 2.

The form of (3.5.9) is not quite parallel to that of (3.2.4) with §, = 0. The
parallelism would be restored if we wrote the latter condition, as we might, in
the form

n .
Z Icm,vl — 0.
yea ()

(4) We may also frame theorems in terms of series instead of
sequences. There are two in particular which are familiar in elementary
analysis,t and concern transformations of the classes T, and T¥.

TueorEM 7. In order that Y x, a, should be convergent whenever 3 a,
18 convergent, it 1s necessary and sufficient that

(3.5.11) z |Ax,| = E |Xn— Xn+1] < 0O.

TueoreM 8. In order that 3 x,a, should be convergent whenever
8p = Ag+a,+...+a, ts bounded, it vs necessary and sufficrent that (3.5.11)
should be satisfied and that x, should tend to zero.

If t,, is the partial sum of > x,a,, then

m—

m 1
tm = %, Xn Ay = }0, (Xn—Xn+1)8n+Xm Sms

so that
Cn = Axn (0 << m < m), Xm (n=m), 0 (n>m),
and
m:l
(3.5.12) VYm = % |Axn |+ X

We have to show that, for this ¢,,, the conditions of Theorems 7 and 8
reduce to those of Theorems 1 and 3 respectively.

It is plain from (3.5.12) that (3.2.3) implies (3.5.11). Conversely, if
(3.5.11) is satisfied then > (x,—Xn+,) iS convergent, so that y,, tends to
a limit y. A fortiori it is bounded, and then (3.2.3) follows from (3.5.12).

Thus (3.5.11) is equivalent to (3.2.3).

1 So far as the sufficiency of their conditions is concerned.
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Next, ¢,,, = Ax, for m > n, so that ¢, , - Ax, = 8, when m - o0;
and

% —Xn+1 +Xm Xo = 8.

Thus the conditions (3.2.4) and (3.2.5) are satisfied without further
restriction on y,. This proves Theorem 7.

The additional condition for Theorem 8 is, by Theorem 3, that > |c,, , |
should be uniformly convergent, and this, as we saw in § 3.4, is equivalent

to
2 Cunl = 2 184l
_.1 (v o]
But here thisis S [Axallxml = 3 [Axal,
0 0

ie. Y |Ay,| <oo together with x, — 0. This completes the proof of
Theorem 8.

We can naturally prove Theorems 7 and 8 directly without appealing
to the more difficult theorems from which we have deduced them here.

(5) We conclude this section with the observation that the classes
T, and I¥, both subclasses of T,, are mutually exclusive. If T belongs
to T¥ then 3 |c,,,|, and a fortior: 3 c,,,, is uniformly convergent, so
that

> 8, = limc,, = lim } c,,, = limc, = 8.

But this is impossible when T is regular, since then 5, = 0 for all n
and § = 1.

3.6. Positive transformations. In this section we shall be con-
cerned exclusively with regular transformations. There is one parti-
cularly important subclass of such transformations, in which

(3.6.1) Cpun =0

for all m, n or at any rate for n > n,. We call such a transformation
a positive (regular) transformation.

If T is regular then c,, — 0, when m — co, for every n, so that the
Cmn With 7 < ny do not a,ffect the behaviour of ¢,, for large m. It is
therefore of little importance whether we suppose c,,, = 0 for all m
and n or only for n > n,.

THEOREM 9. If T s regular and positive, and s,, real, then
(3.6.2) lims, < lim¢, < lim¢, < lims,

n—o m—»co m—>o n—»o

for any (s,). In particular s, — s implies t,, — s for finite or tnfinite s.
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If lims, = o is finite, then s, > oc—e¢ for n > N = N(¢). We may
suppose N > n,, and then, by (3.6.1), either {,, = o0 or

N ) N o)
b, =>c¢C.. 8+ D>C .8 =DC.,8 o—e¢ Cpp e
m % mn-n Ngl mn°n = % m,n n+( )NZ+1 mmn

The first term on the right tends to 0 when m — co, and the second to
o—e, 80 that ¢, > o— 2¢ for sufficiently large m. Hence

lim¢, > o = lims,.

The proof of the last inequality (3.6.2), when lim s, is finite, is similar.

If lims, =00 (so that s,->c0), then s, > @ for any G and
n = N = N(G) = ny; and either {,, = o or ¢, > 3G for sufficiently
large m, so that ¢, —o0. The case in which lims, = —oo is similar.

The last clause of Theorem 9 suggests a further interesting problem
concerning real transformations. We may say, as in §1.4, that a real
transformation T is totally regular if s, — s implies ¢, > s for all finite
or infinite s. The conditions of Theorem 2 must then be satisfied, and
it is natural to ask for additional conditions necessary and sufficient
for total regularity. The general conditions are rather complex, and
we confine our attention to ‘triangular’ transformations

m

(3.6.3) b == ; Conn S
in which ¢,, ,, = 0 for n > m.

THEOREM 10. In order that a real transformation (3.6.3) should be
totally regular, it 1s necessary and sufficient that ¢t should be reqular and
positive.

After Theorem 9, we have only to prove that, if T is totally regular,
then c,,, = 0 for n = n,.

If the condition is not satisfied, there are negative c,, ,, with arbitrarily
large » and, since c,,, = 0 when n > m, also with arbitrarily large m.
There is therefore a sequence (m,) of m such that (1) ¢, , < 0 for some
n, (2) if n,, is the rank of the last such ¢, ,, then n,,, << m; and n,, tends
to infinity with m,.

In what follows we consider only values of m in (m;), and write m
simply for m;. Starting with an arbitrary m,, we define sequences (m,)}
and (s,) as follows. Suppose that we have determined m,, m,,..., m,,

the corresponding values of 7n,, and those of s, for n <{ m,. Since

mi,n>

t (m,) is naturally a subsequence of what we first called (m;).
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Ny < M, N, tends to infinity with m, and ¢, , - 0 for each » when
m —> 00, we can choose m, 4 so that m,., > n,, > m, and

%
¢ 8
0 m"'l"lpn n
This defines (m,) by recurrence; and we then define s,,, form, <n <m,,,
by
2
M1

8, = n (mr <n {z mr+1’ n 5& nm,H)s Sp = o I (n == nm,H)'
My+1,Nm, 4

< 1.

Then s, — oo (since |c,, | < H), but

me mr+1
tmr-n = % 6mr+1.’n 8"+mz+1 Cmr+1.n Sn
r
me+1 2 9
< I4m, 24 lfcm,..;,l,nl-—mr-l-l < 14+Hmy, y—mi .
mr -

Hence ¢,, > —oo when m = m,_ and r -0, and T is not totally regular.

The following oxamples may help the reader to appreciate the various
possibilities.

(i) The transformation in which ¢, , = 2, ¢pm = —1, and ¢, = 0 other-
wise, is regular but not totally regular. Thus if s, = 27, ¢, = 0 for all m.
If s, = 3", then s,, — oo but ¢, > —co.

(i1) The transformation

2 m—1
= m(so"*"sl _{"""}"8m~1)"’7_n‘_:'1' Sms
which is of type (3.6.3), is regular but not totally regular; for if 8, = n--1, then
8, — o but #,, == 1 for all m.
(iii) The transformation defined by the matrix

t‘m

1 —21 27 93
0 1 —2=2 273
0 0 1 —2%3
o 0 0 1

is totally regular. The conditions of Theorem 2 are satisfied, and
by == 8y —27M g, 4 27Ny a2 s h
If s, — o0, then there are two possibilities. If ¥ 2—"s, is divergent, then ¢, = co
for all m. If 3 2-"s, is convergent, then 2-"~tg = o(1)and ¢, > s,—o(1) — co.
3.7. Knopp’s kernel theorem. There is an interesting generaliza-
tion of Theorem 9 for complex sequences, due to Knopp. We follow
Knopp in stating it for the general integral transformation (3.5.5).
We call the transformation positive if c(x,y) > 0 for all 2, y.t The
conditions of Theorem 6 then reduce to

(@) o(x) = [ cla,y) dy

T The condition strictly parallel to that of § 3.6 would be ‘c(z,y) > 0 for y > Y,
We take Y = 0 to avoid minor complications.
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is bounded and tends to 1 when x — o0, and

g
(b) f c(x,y)dy -0
0

when x — o0, for every finite Y. We shall suppose throughout that
these conditions are satisfied, and call such a transformation normal.

We state our results in terms of the complex plane w = u--¢v with
a single point w = co at infinity. Given any set § of points w
(w # ), we define the least closed convex region K including S (the
‘convex cover’ of S) as follows. If there is no closed half-plane including
S, then K is the whole plane, including co. If there are such half-planes,
then K is their common part. We count co in K when S is unbounded
but not when it is bounded: in any case K is closed. Thus if S is a single
point, K is that point; if S consists of two points, K is the straight
segment joining them; if S is the real axis, K is the real axis with the
point oo; if § is the real and imaginary axes, K is the entire plane.

Suppose now that s(y) = u-+iv is a complex function of the real
variable y, defined for ¥ > 0 and bounded in any finite interval (0,Y).
We define K{(s, y,) as the least closed convex region K including all values
of s(y) for y = y,: thus K(s,y,) is included in K(s, y,) if y, = y,. Finally,
we define K(s), the kernel of s(y), as the common part of all K(s,y);
and K (¢), the kernel of ¢(x), similarly.

If s(y) tends to a finite limit @ when y — co, K(s) is the point a. If s(y)
is real, K(s) is the stretch lim s(y), lim s(y) of the real axis, together

with the point co if either lim s(y) = —o0 or lim s(y) = c0. In any case
K(s) cannot be empty, since it is the limit of a decreasing sequence of
non-empty closed sets; but it may consist of the single point co.

If K(s) is the single point co, we say that s(y) diverges to co. When
8(y) is real, this implies that s(y) - oo or s(y) - —co. The definition
gives an appropriate generalization of the notion of ‘proper divergence’
for complex functions.

We can now state Knopp’s theorem.

THEOREM 11. If the transformation (3.5.5) ts normal, and t(x) exists
for x > 0, then K(t) ¢8 included in K(s).

In particular this is true, with the obvious modifications in the
definitions, for a regular and positive transformation (3.1.3).

We may assume that K(s) is not the entire plane, since in that case
there is nothing to prove. Thus what we have to prove is that any
point w outside K(s) is also outside K(t). If w is outside K(s), it is
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outside K(s,y,) for some y,. Thus we have to prove that if w 1s outside
K(s,y,), it is outside K(t,x,) for some x,. We must distinguish two cases.
(1) Suppose that w 7% co. We may then suppose (making a transla-
tion if necessary) that w = 0. Since K(s,y,) is closed, there is a point
w, of K(s,y,) whose distance from w = 0 is a minimum.f We may
suppose (making a rotation if necessary) that the plane is so oriented
that Wy = We—w = 4d > 0.
Then, since K(s,y,) is convex, all of its points, and a fortior: all points
of any K(s,y) with y > y,, have abscissae at least 4d. Thus Rs(y) > 3d
for y = y,.
Since s(y) is bounded in any finite interval of values of y, there is an
M such that |s(y)| < M for 0 < y <y, Since

VYo @

f c(x,y) dy - 0, f c(x,y) dy —> 1
0

0

when x — c0, we can choose x, so that

Vo d o0
[ewydy <35 [e@y)dy>3
0 Yo

for x > x,. It then follows that
Yo o
(@) = | [ o)) dy|+ 3 [ etz )sto) do)
0 Yo

> —MAM-1)+3.3d = —d+2d = d

for x > x,, and that w = 0 is outside K (¢, x,).

(2) Suppose that w = co. In this case K(s,y,) is bounded; and s(y)
is bounded for ¥ > y,, and therefore for all y. Hence |s(y)| < N for
some N, and

t@)] < N [ ca.y) dy,

so that {(x) is bounded. Thus w = oo is outside K(t,x,) for any x,.
This completes the proof of Theorem 11. In particular, {(x) diverges
to oo if s(y) does so.

3.8. An application of Theorem 2. Any transformation (3.1.3)
may be used to define a method of summation of series: if
8, = ay+a,+...+a,,

+ Actually, since K(s, y,) is convex, there is just one such point; but this is not
required for the argument.
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t, is defined by (3.1.3), and t, - s, then we may say that Y a, is
summable (T) to sum s, and write
s, >s (T), >a, =s (T).
We call the method regular if T is regular, so that a regular method is
one which sums every convergent series to its ordinary sum.
We shall use Theorem 2 in the next chapter to prove the regularity
of the methods of summation most useful in analysis. Here we apply

it to the proof of a theorem, which we shall need later, about methods
of less general importance.

If
(381) P = 0, Po > 0, zpn = 00
(so that B, = py-+py+...+p, - 00), and
(3.8.2) B R XN

" Po+pit-tp,
when n - co, then we say that
(3.8.3) 8> 8 (N, p,).1
We prove first
TurorEM 12. The method (N, p,) is regular.

Here
Cn = pn/Pm (n < m)’ L 0 (n > m)’
z Icm,nl = Z Conn = 1,
andc,,, — 0 for cach n. Thus the conditions of Theorem 2 are satisfied.

mn
In particular, the (C, 1) method, in which p, = 1, is regular.

In what follows we suppose, to avoid minor complications, that
p, > 0 for all n. We prove first

TaeEOREM 13. If p, > 0 and s, — s (N,p,), then
Sp—38 = 0(F,[Dy).
For
DPnSn = ])n tn"‘anl b1 = S(Pn"_I)n—-l)_f—o(Pn) = L"'pn,—,—o(l)'n)

In particular, s, —>s (C,1) implies s,—s = o(n), and so s, = o(n),
a, = o(n). The theorem is one of an important class which we may
call ‘limitation theorems’. There is a limitation theorem associated with
any useful method of summation, asserting that it cannot sum too rapidly
divergent series. ‘

The next theorem, which is the main theorem of this section, concerns
the relations between the methods corresponding to two different
sequences (p,) and (g,).

1 The reason for this notation will appear in the next chapter.
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THEOREM 14. If p, > 0,¢, >0, p, =00, Y q, =0, and
either (a)

(3'8'4) qn+1/Qn < pn+l/p'n’
or (b)
(3°8'5) .pn+1/p'n < Qn+1/q'n
and also
(3.8.6) Bo/pn < HQp /gy,
then 3 a, = s (N,p,) tmplies 3 a,, = s (N, q,).
If
(p080+p181+ +pm8m / m? um = (QOSO+QI81+"°+Qm8m)/Qm’
then
PoSo = Poto, PmSm = Pmtm'—'Pm—l tn—1 (m > 0)’
and so
B87) = P Rita+ 1 (B Bte) o 22 (B = Pt
Thus u,, = 3 Cppntn where
¢ qn qn+1)P:. Qum —_—
3.8.8) ¢,,= (n <m), AmIMm (n=m),
( ) ™ (pn p n+1 (b)m ) .'p m Qm (

and 0 for n > m. Since @,, -, ¢, , > 0 when n is fixed and m —oco. If
8, = 1 for all n, then ¢,, = 1 and w,, = 1, so that

(3.8.9) Dy =1
for every m. Hence the transformation (3.8.7) satisfies conditions (3.2.4)
and (3.2.5) of Theorem 1, with §,, = 0 and 6 = 1.
1t remains to verify that it also satisfies (3.2.3). In case (a), ¢, = 0,
S Cmnl = 2, > and (3.2.3) follows from (3.8.9). In case (b), ¢,,, < 0
except when n = m, while c,,,, > 0. Hence
m—1 qu

20: ,Cm,n’ = Z cmn+pm Qm

< q
= %cm,n = Z cm n+ L m

Do @’
g P
so that S lemal = 250271-@1"--_1 < 2H-1,

by (3.8.6), and (3.2.3) is satisfied with 2H—1 for H. Thus in either
case (3.8.7) is regular, and the result of the theorem follows.

Roughly, in case (a) Y ¢, diverges less rapidly than ) p,, while in
case (b) it diverges more rapidly, but not too much more rapidly. If
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Pn = n% g, = nf, then the first condition is satisfied if « > > —1,
and the second if 8 > o > —1 (since P,/p,, and @, /q, are each asymp-
totic to a multiple of =n). If p, =1, ¢, = 2% then P,/p, ~ n,
@,/q, — 2, and the theorem fails.

In fact, when Y ¢, diverges rapidly, the method (N,gq,) becomes
trivial, in the sense that it will sum convergent series only. This is
shown more precisely by the following theorem.

THEOREM 15. If Q,.,/@, = 148 > 1, then Y a,, cannot be summable
(N, q,,) unless it s convergent.
For @, «,, = 9480+ ...+, ;> &0 50

(3°8°10) S == (Qm “m Qm 1% /qm = Z Conon %y
where
(3811) Conm—1 == _—Qnr]/qm’ Conm = Qm/qm’

and the remaining c,, , are 0. Plainly ¢, , - 0 when m -> 00, and

m,n

z Con = (Qm"‘Qm._l)/qm = ],

Also ¢, = 60),,_;, and so

S emn! = (@1 @) /T = 2@par/Tm) +1 < 287141,

Hence the transformation (3.8.10), from «,, to s,,, is regular, and s,, > s
whenever u,, —

Thus the series 1—1-+1—..., which is summable (N, 1), i.e. (C, 1), is
not summable (N, 2?). The theorem illustrates a general principle, of
which we shall find many other illustrations later, that foo violent a
method of summation tends to defeat its own object by becoming
‘trivial’: the more delicate methods are often the more effective. Thus
the means defined by p, = (24 1), for which

1
m—- 1) logm m—H)
are more effective than the (C, 1) means. They sum any series sum-

mable (C, 1), and also series such as } n-1-¢ for which the (C, 1) method
fails. We shall return to these means (‘logarithmic’ means) in § 4.16.

14

(so+a+ -+ (0+ +ot

m - P

m

3.9. Dilution of series. One simple application of Theorecm 14 is to what
Chapman has described as the ‘dilution’ of series. The convergence or divergence
of a scries is not affected by the insertion of zeros as extra terms: if cither of the
series ag+a,+ay+... and 04+04-...+4ay+0+4...4+a,+0+... converges, then tho
other converges to the same sum. But such a change may destroy tho summa-
bility of a divergent series, or change its sum. Thus the series

I—1+1—., 1—1404+1—14-041—...

are summable (C, 1) to the sums 4 and } respectively.
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Let us consider, for example, the relations between the (C, 1) summability of
> a, and that of

(i) 3 b, = ag+a;+0+0+a,+040+0+0+ag+...,
(ii) 3b, = 0+a,+a,+0+a,+0+04-0+a;+0+...,
in which a,, occurs in ranks m? and 2™ respectively.
(i) If m? < n < (m+1)? then
ty :vgnbv —-:m;gnam = Styn)-

Hence, if M2 - N < (M +1)?% we have

fothttiy _ 8+38 4. +CM— Doy, (N—M+1
N+1 = N+1 Ny1 M
The left-hand side of (3.9.1) tends to s if and only if 3 b, = s (C,1). Also
N-+1 ~ M2, and so the first torm on the right tends to s if and only if
Sa, =38 (N,2n+1),

and this, by Theorem 14, is equivalent to > a, = ¢ (C,1). Finally, if either of
these hypotheses is satisfied, spr = o(M), by Theorem 13, so that the last term
in (3.9.1) is o(M .M .M™2?) == o(1). It follows that 3 b, s summable (C,1) to s if
and only if 3 a, is summable (C,1) to s.

(ii) In this case a similar argument shows that the summability of 3 b, implies
that of 3 a,; but the converse is not true. Suppose, for example, that a, = (—1)",
when 3 a, is sunmable to 3. Then it is easily verified that

Lottty 4.+, = H2*™—1)
for 22m—1 - n < 22m—1, so that the (C, 1) mean changes from about % to about 3}
when n increases over this interval.

It is natural to ask what is true of the corresponding Abelian limits. We shall
provo in § 4.10 that, if @, = (—1)*, the series (i) is summable (A) to . We shall
also prove that —x%- 2% — ..., where a is greater than 1, does not tend to a limit
when x — 1, so that, in particular, the serios (ii) 18 not summable (A).

It is easy to prove directly that

Sa,x™ —>8—> 3 a,x" — s,
whenever 3 a, 2" is convergent for |xz| < 1; and we shall prove more gencral
theorems of this kind, due to M. L. Cartwright, in Appendix V.

(3.9.1)

NOTES ON CHAPTER III

§ 3.2. The most fundamental theorem, Theorem 2, is due in substance to
Toeplitz, PMF, 22 (1911), 113-19. Toeplitz considers only ‘triangular’ trans-
formations in which ¢,, , = 0 for n > m. Tho extension to general transforma-
tions, which involves no difficulty of principle, was made by Steinhaus, ibid.
121-34.

Theorem 1 was proved for triangular transformations by Kojima, TMJ,
12 (1917), 291-326, and independently, for general transformations, by Schur,
JM, 151 (1921), 79-111. Schur also proved Theorem 3 in the same paper.

A numbor of other general theorems will be found in Dienes, ch. 12.

§ 3.4. For Dini’s theorem, in its usual form, and connected theorems concerning
uniform convergence, see Dini, QGrundlagen fiir eine Theorie der Funlktionen einer
verdnderlichen reellen Griosse, 148-50; Bromwich, 138-41; Hardy, PCPS, 19
(1918), 148-56.
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We have supposed in the text that the series for t,, converges for all m. We
may if we please allow it to diverge for a finite number of values of m, i.e. suppose
it convergent only for m > m, Here m, may prima facie be m(s), i.e. depend
upon the sequence (s,); but it follows from a theorem of Agnew, BAM S, 45 (1939),
689-730, that if the series converges for m > my(s) whenever s, tends to a limit,
then 3 [c,..| < o for m > m,, so that we may replace my(s) by a number m,
independent of (s,). See also Rogers, JLMS, 21 (1946), 123-8, and the note on
§3.6.

§3.5(3). It may be advisable to add a note about necessary and sufficient
conditions for the regularity of the transformation (3.5.5), though the further
points at issue, depending as they do on the behaviour of ¢(x,¥y), s(y), and (x)
for finite x and y, belong to the theory of functions of a real variable rather than
to that of divergent series and integrals. There is a much fuller discussion of
them in Agnew, l.c. supra. The materials required for the discussion will be
found in Hobson, 2, ch. 7, and are due in part to Lebesgue and in part to Hobson
himself.

In the text we assume s(y) bounded for all y, and prove that the conditions

(A)  p(x) == f le(e, y)| dy < H, (B) fc(x,y) dy 1,
Y
(C) f le(x,y)| dy — O for every finite Y
0

are sufficient. It is plain, since #(x) need exist only for large x, that wo may
replace (A) by

(A") y(x) < H for sufficiently large x.
It may be proved that (A’), (B), and
Y
(C") fc(x,y) dy — 0 for every finite Y,
0

are necessary conditions. The argument 1s much like that of § 3.3 (in the case
o, = 0,8 = 1), but, as Dr. Bosanquet has pointed out to me, an additional lemma

is needed, viz. if
Y

¢, Y) = [ e(z,y)sly) dy
0

exists for every finite Y and bounded s(y), and ¢(x,Y) — 0 when x ~> o, then
Y
[ letz.9)| dy < K(Y),
0

where K(Y') depends only on Y, for sufficiently large x. This result, which is true
also if s(y) is restricted to be continuous, is a corollary of what is proved in
Hobson, 2, 432 and 441-3.

This, however, leaves a gap between (C’) and the stronger condition (C). The
gap disappears when c¢(z,y) > 0; and in the general case we may fill it as follows.
If we consider any bounded measurable set E of positive y, and take s(y) = 1 in
K and 0 outside K, then s(y)— 0; and therefore, if the transformation is regular,

(C”) f c(x,y) dy— 0 for every bounded measurable E.
E

This necessary condition is stronger than (C’) but weaker than (C), and it can
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be shown that, with (A’) and (B), it is also sufficient. For, by another theorem of
Hobson and Lebesgue, (A’) and (C”) imply

Y

() [ eley)sty) dy — 0

0
for every finite Y and bounded $(y); and this is all that is nceded to complete
the proof of sufficiency. The theorem required, which is one of the cases of
Hobson’s ‘general convergence theorem’, will be found in Hobson, 2, 431.

Thus (A’), (B), and (C") are necessary and sufficient conditions for the regqularity
of (3.5.5), when we restrict ourselves, as in the text, to bounded s(y). This is
proved by Hill, BAMS, 42 (1936), 225-8. Since we are concerned primarily with
the behaviour of s(y) when y — oo, there is no real loss in the restriction.

If we restrict s(y) a littlo more, wo can replace (C”) by the weaker condition (C’).
Let us suppose, for example, that the only discontinuities of s(y) are jumps. Then,
by another case of Hobson’s convergence theorem (p. 432), (A’) and (C’) imply (a),
so that (A’), (B), and (C’) are necessary and sufficient when s(y) is restricted in
this way. 4

Wo may also make (C’) one of a necessary and sufficient set of conditions by
rostricting ¢(x,y) instead of s(y). If, for example, ¢(x,y) is bounded, then by a
further case of Hobson’s convergence theorem (p. 423), (C’) alone implies («),
and (A’), (B), and (C’) are again nccessary and suflicient for regularity. In this
case 8(y) need not be bounded.

Finally, as Dr. Bosanquet has also pointed out to me, we may get rid of all
theso restrictions on either s(y) or ¢(x, y) by using yet another theorem of Hobson
and Lebosgue (Hobson, 2, 422-3 and 438—41), and adding a fourth condition to
(A), (B), and (C’), viz.

(D) +f C(=,Y) is the essential upper bound of |c(x,y)| in (0,Y), i.c. the upper
bound when sets of measure zero are neglected, then C(x,Y) <= L(Y) for every finite
Y and sufficiently large x.

In fact (A’), (B), (C’), and (D) are necessary and suflicient conditions that
{(x) —> s whenever s(y) is any function of y which is integrable in every finite
interval and tends to 8 when y —» co.

This problem was considered first by Silverman, TAM.S, 17 (1916), 284-94,
and Kojima, TMJ, 14 (1918), 64-79 and 18 (1920), 37-45. Kojima proves an
analogue of the more general Theorem 1. Both Silverman and Kojima suppose
8(y) bounded and restrict ¢(x, y) more severcly, assuming it continuous, uniformly
in x, in any finite (0,Y). This assumption cnables them to replace (C’) by the
much more drastic condition

(C™) c(x,y) — 0 wuniformly in any finite (0,Y):

& condition stronger even than (C).

(4) The sufficiency parts of Theorems 7 and 8 are classical and will be found
in all the text-books: see, for example, Bromwich, 58-60; Hardy, 379-80.
The necessity of the conditions was first proved by Hadamard, 4AM, 27 (1903),
177-83. There are, of course, corresponding theorems for integrals.

Similar theorems for double series were proved by Hardy, PCPS, 19 (1917),
86-95, and Kojima, T'MJ, 17 (1920), 213-20. All these theorems have been
generalized widely in different directions: see Moore, Convergence fuctors, and

Ch. VI.
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§ 3.6. Theorem 10 was proved by W. A. Hurwitz, PLMS (2), 26 (1926), 231-48.
The more complex conditions for total regularity of the genoral transformation
(3.1.3) were found by H. Hurwitz, BAMS, 46 (1940), 833-7.

The definition of total regularity is to be understood in a sense like that
cxplained for the A method in §1.4. If, for example, 8, — oo, then the scries
b == 2 Cm.n8n Must, for each m > gy, where m, = my(s) may depend on the
sequence (8,) in question, either converge or divergo to oo; and tho values of ¢,
when the series is convergent, must tend to co with m. H. Hurwitz shows that
then ¢, , > 0 for m > m,; and n > N(m), i.c. that there can be at most a finite
number of negative coefficients in any sufficiently advanced row of the matrix
of T; but this condition is (as an addition to those of Theorcm 2) necessary only
and not sufficient. Incidentally it follows that my(s) may be replaced by a number
m, independent of (s,).

§ 3.7. Knopp, MZ, 31 (1930), 97127 and 276-305.

§ 3.8. Theorem 14 is due to Cesaro, Aty d. R. Accad. d. Lincei [Rendiconty
(4), 4 (1888), 4562-7]. It was rediscovered by Hardy, QJ M, 38 (1907), 269-88
(271), and is attributed to Hardy in Borel’s book (p. 115). Seco also Bromwich, 427,

The condition Y p, = o is not used explicitly in the proof, and is in fact
implied by the other conditions. If condition (a) is satisfied, then 3 p, obviously
diverges at least as rapidly as 3 ¢,. If conditions (b) are satistied, then the
divergence of Y ¢, implies that of 3 (¢,/@,) by a familiar theorem of Abol [sece,
for example, Hardy, 421, 442]; and this, by (3.8.8), implics the divergenco of
> (pn/P,) and so of 3 p,.

§ 3.9. If 3 a,z" is convergent for |x| < 1, and

¢<y) = Eane—m” lﬁ(y) = zan e~ (y > 0),

then it follows from the formula

2NV ,2__ P A e VI (_if
m 2
2 o
that ¢(2y) = ;—/;T-J\lp(yztz)e 1/t 72’

and the theorem stated is an easy deduction. Compare the proofs of Theorems
28 and 30 (§4.8).
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SPECIAL METHODS OF SUMMATION

4.1. Norlund means. Our main object in this chapter is to enu-
merate some of the methods of summation which have proved most
useful in analysis and to establish their regularity by means of Theorem
2; but we shall add a good deal of additional matter. Some of the
most important methods, for example Cesaro’s, will be considered in
much greater detail in later chapters, and these we shall dismiss shortly
here.

The (C, 1) method of §1.3 is the simplest of what are usually called
Norlund methods, though a definition substantially the same as Nor-
lund’s had been given previously by Voronoi.

We suppose that

(4.1.1) Pn=0, P> 0  P=petpito+p,
and define t,, by

(4.1.2) = N@(s) = PmOo T Pma 5170 TP Sm.
Pot+D1+ - Do

If t,, > s when m — o0, and s, = a,+a,+...+a,, we shall write

(4.1.3) 8y —> 8, >a, =s (N,p,).

If p,, = 1 for all n, then ¢, is the (C, 1) mean of s, ; if
_ [n4-k—1 I'n+k)
2= (")) = vy
where k£ > 0, then it is the (C, k) mean.f Usually, as in these cases,
> p, will be divergent, but this is not essential. Thus, if py = p, = 1,
and the remaining p, are 0, then
bn = %(Sm_1~|—8m),

and we obtain the means s’ referred to on p. 21.

4.2. Regularity and consistency of Norlund means. We begin
by determining the conditions that the means (4.1.2) should be regular.

THEOREM 16. The condition
(4.2.1) Do/, —> 0
18 necessary and suffictent for the regularity of the (N, p,,) method.

1 This last condition is convenient, though not essential. If, e.g., po = 0, p, > 0,
and we write p, = q,_1, t,, = %,,_,, then u,, is an (N, ¢,) mean of s, with ¢, > 0.
1 See § 5.5.
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For, if ¢, = 3 ¢, , 8,, then
n = .pm~n/Pm (n \<\ 7n): Cm,n = 0 (n > m):
Cmn == 0and 3 ¢, .| = 3 ¢, , = 1. Thus the first and third conditions
of Theorem 2 are satisfied in any case. The second is that ¢, , —> 0
when 7 is fixed and m ->c0. Taking n = 0 we obtain p,, /P, - 0, so

that the condition (4.2.1) is necessary; and, since Cnn < Pm-nlDn—ns it
1s also sufficient.

We say that two methods P and Q are consistent if s, —> s (P),
8, = 8" (Q) imply &' = s, i.e. if they cannot sum the same series to
different sums.¥

THEOREM 17. Any two reqular Norlund methods (N,p,) and (N,q,)
are consistent: if s, — s (N,p,) and s, - s" (N,q,), then 8’ = s.
We write 7, = pyq,,+019,-2+---+P,9 Then

N(r)( ) ’po% 1n+(pOQI+I)IQO) m-— 1_" +(p0q"z+ +])m(I0)‘50
I’o%+(1’o’11+]’1%)+ +(p0qm+ -+ Pin o)

po(?osnz+ +‘]m boH‘ ’*Y’m 1(90*91+Q180)+I’mqo%

270(9'0+ +Qm)+ +pm 1((10”*‘9'1)4“1)»;9'0
Po Qn NP (8) ..+ Qo NEV(5)
— Y0 m , \©) m 0 \0) nnNgI) 3),
pOQm_I‘"'—FPm Qo g‘% ’ ( )
where y,, ., = Dy, Qn/( %pm_y Q,,) if n<<m and y,,=0if n >m.
v=0

Here Ym,n =0, Z I'ym,nl = z Ymn — 1, and
Dim—n @n _ Pun @

Ymn =
i (pm—n+p7n n—1+ +p0)q0 Pm -n 90

when m — 00, so that the means with coefficients y,,, are regular.
Hence s, — s’ (N, g,) implies s, > s’ (N,r,). Similarly, s, —s (N,p,) im-
plies s, — s (N,7,); and therefore, when both hypotheses are satisfied,
s and s’ must be the same.

There is an interesting alternative proof which embodies an irnportant principle,
and which depends upon

TaroreM 18. If (N,p,) is regular, and 3, a, == s (N,p,), then the series 3 a,x®
has a positive radius of convergence, and defines an analytic function a(x) which is
reqular for 0 < x < 1 and tends to 8 when x — 1 through real values less than 1.

We write

p(x) = anx"’ P(z) = Ean", T(x) == 2 Pytyxn,

whero ¢, is defined by (4.1.2), with s, = ay+a,+...+a,. Since p,/F, —> 0, i.e.
P,_,/P, — 1, P(x)isconvergent for |x| < 1, and p(x) also converges, to (1— x)P(x).

+ This is a much weaker assertion than that of equivalence (§ 4.3).
4780 P ‘
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Since ¢,, is bounded, 7'(z) also converges for |z| < 1. Since p, > 0 and p, > 0,
p(x) > 0and P(zx) > 0 for 0 < =z < 1.

The function T'(x)/p(x) is regular at the origin, and expansible in a power series
w(x) = 3 w,x" convergent for small z. Since T'(x) = p(x)w(x),

Pty = pywy+pr@uqt..+ppw,
for all n. But P,t, = Do8pn+D18p_1+---+Dsn8

for all n, and therefore w, = 8,. Hence Y s,2™ and Y a,x" are regular at the

origin. Also

T T
a(z) = 3 a,x" = (1—x) 3 82" = (l—x)—}-o-z(—%) = 1—3%,

and T'(z) and P(x) are regular for (x| < 1. Hence a(x) is regular for |z| < 1,
except for possible poles, none of which is on the line (0, 1).

T(x) 3 Pt,x"

P(x) = P(.’IJ) = z Cn(z‘)tn9

where c,(z) = P,xz"/P(x). This is a transformation from ¢, to a(x), which plainly
satisfies the conditions of Theorem 6.t Thus ¢, — & implies a(x) — s, and this
completes the proof of the theorem.

Theorem 17 is a corollary, since the sum of > a,, if it exists, does not depend
on the special values of p,,.

Theorem 18 may bo regarded as ‘Abel’s theorem’ for a regular Noérlund
method. We cannot say that 3 a, = s (N, p,) implies s, — s (A), since > a,z"
will not usually converge for 0 << xz < 1; but the Abelian limit exists in a
generalized sense. Wo may also regard the thoorem as embodying a ‘limitation
theorem’, viz. a, == O(e‘™) for somo c.

Finally, a(x) =

4.3. Inclusion. We now consider questions of inclusion and equiva-
lence. We say that Q includes P if s, — s (P) implies s, — s (Q), and that
the methods are equivalent if each includes the other. If Q includes
P, but is not equivalent to P, then we shall say that Q is stronger than
P. Here we are concerned with the case in which P is (N, p,) and Q

is (N, ¢,).
If (N, p,) and (N, g¢,) are regular, then p,/P, - 0 and ¢,/@,, > 0, and
the series

(4.3.1) p(x) =Dp, 2", Px)=D B a" qx)=>q¢,2" Q)= Q2"
are convergent for |x| << 1. The series

(4.3.2) k(x) = 2 k,x" = ¢(@)/p(x) = Q(x)/P(),

(4.3.3) z) = 3 I, 2" = p(x)/q(x) = P(x)/Qx),

are convergent for small z, and

(4.3.4)  koputetbupo=au  kFt+..t+k, B = @n,

(435) l09n++lnq0 = Pno lO Qn+"°+ln QO = Pn

1 In the form with 0 < ¢ < 1, # - 1: see the remark on p. 50 after the proof of
Theorem 5. We shall take such variations of the theorem for granted later.
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Tugorem 19. If (N,p,) and (N,q,) are regular, then, in order that
(N, ¢,) should include (N, p,,), it is necessary and sufficient that

(4.3.6) kol But1 Ry | By g+ Ry [Py < HQ,,
where H 1s independent of m, and that
(4.3.7) k,/Q, — 0.

If B, - co, the second condition may be omstted.
If s(x) = X s, 2™, then

2 QuND(s)a™ = 3 (QoSp+---+s 8)2™ = q(x)s(x)
for small #, and similarly > P, NP)(s) = p(x)s(x). Hence
> Q. NP(s) = 3 kx> P, NP)(s)a™,
Qn NiP(s) = ke B, N{P(s) +kn 1P NP (8) ... +-kg B, NiP(s).
Thus N@D(s) = 3 ¢, , NP(s),

where ¢, . is k,_ F,/Q, if » g n and O if » > n. The first condition of
Theorem 2 is (4.3.6). The third is satisfied automatically because of
(4.3.4). Finally, @, _. ~ @,, for any fixed r, by Theorem 16, when n ~> o0,
and the second condition reduces to £, _./Q,,., — 0, which is (4.3.7).

If P, - oo then, given (¢, we can choose r so that P. > @. If also
(4.3.6) is satisfied, then

v | ks . H
GI n~rl HQn’ lim IQn_,I G 1 m Q?l - == ”G’s
and (4.3.7) follows from (4.3.6). Thus (4.3.7) may be discarded when
> p, = .
If p, =1, B, = n+1, then
p(x) = (1—2)7, k(x) = (1--2x)q(x), kg = qo, ky, = qp—qn (n>0),
and (4.3.6) becomes

(n+1Dgo+n|qy—qo|+ oo +|qn—qna| < HQp,
which is plainly satisfied if g, increases with n. Thus we obtain

TaroreM 20. If (N,q,) 18 a regulur Norlund method with increasing q,, then
8, — 8 (C, 1) tmplies s, — s (N, q,).

4.4. Equivalence. We next prove

THEOREM 21. In order that two regular Norlund methods (N,p,) and
(N, q,,) should be equivalent, it ts necessary and sufficient that
(4.4.1) >k, < oo, S| <oo.

(1) The conditions are necessary. Since p, > 0 and g4 > 0, ky > 0
and J, > 0. Since (N, g,) includes (N, p,), it follows from Theorem 19
that k,P, < HQ,. Thus P,/Q, is bounded, and similarly @,/F, is
bounded.
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By Theorem 19,
k41l 2 1l Tr < B

for r << n. Fixing r, and ma,kmg n — 00, we see that

kol =+ kg | ..+ k| < HIm (Q,/F).
Thus 3 |k,| < oo, and similarly » |I,| < 0.

(2) The conditions are sufficient. If > |k,| <oo then k, -0 and
k,/@, - 0. Also

-Pn = Qoln+Q1ln—1+'°'+in0 < Qn Z ,lnl’
P kol +Bpalley |+ .+ Bk, | < Q@ 3 [Knl 2 11,1

Thus the conditions imply those of Theorem 19, with H = > |k, | > |7,
and (N, ¢,) includes (N, p,). Similarly (N, p,) includes (N, g,).
It is plain that the conditions cannot be satisfied when p(x) and g(x) are

rational and one of them has a zero, inside or on the unit circle, which is not
a zero of the other. If, for example, p, = 2n-1, q, —= n-+1, then

142 1 1
p(x) = T—ap’ g(x) = T—a) Uz) = 1+=x,  k(zx) = Tz’
go that ¥ |k,| = c. Also
[o| Pyt eee 4Ry | Py = Py-.c4 B,
is of order n3, so that (4.3.6) of Theorem 19 is not satisfiod, and (N, ¢,) does not
include (N, p,). We shall return to this example in § 5.16.

4.5. Another theorem concerning inclusion. We now apply
Theorem 19 to the proof of a criterion for inclusion of a more special
kind. We are here interested primarily in cases in which P, tends slowly
to infinity, and p, will be a decreasing function of n.

We shall use a lemma of independent interest.

TurorEM 22. If p(x) = > p, " is convergent for |x| < 1, and

4.5.1) po=1, p,>0, Lot Pu ()

n n—1

then
(4.5.2) {p@)} ! = l—c,x—Coa%—
where ¢, =0, > ¢, < 1. If > p, =00, then 3 ¢, =
It follows from the conditions that p,.,/p, increases with », and

tends to a limit which cannot exceed 1. Hence p, decreases with n.

We suppose that
@)} = yotyi 2ty 2®+...
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for small . Then y, =1, and it is only necessary to prove that
¢, = —y, = 0 for n > 0, the remaining clauses of the theorem being

corollaries, since p(x) > 0 for 0 <« < 1.
We have

(4.5.3) YoPnt -t VDo =0, YoPni1F -t ¥Vna1Do =0
for n > 0. It follows from (4.5.3) that

Pri1V1Pu1 o F Y0 00) = Pu(y1PpF o FVnr1P0);
and so that Yn+1 = An )’1+a’2,n 72+"'+a’n,n Yno

where

a’m, n

— Pr+1 Pun-m __pn—m+1 — pn—m(pn+1 ____pn—-m+1) > 0.
Pn Do Po Po \ Pn Pn-m

Thus if y,, ys,..., ¥, have the same sign, v, ,, has the same sign also.
Since y; = —yoP1/Po = —pP1 < 0, it follows that y,, << 0forn =1, 2,....
Incidentally it appears that ¥ y, 2" is in fact absolutely convergent
for x| < 1.
We can now prove
TaEOREM 23. If (i) (N,p,) and (N, q,) are reqular Nérlund methods;
(ll) Py satisﬁes (4'5'1); (“1) (In > O’. and (IV) pn/pwrl ‘\\i qw/qn--»l ("’ - "’0);
then (N, q,) includes (N, p,).
We suppose first that n, == 0, i.e. that (iv) is satisfied for all n > 0.
Since
(@ot+q 2+ )A—c 2—...) = ko+ky2+...,
(pot+pr2t+..)(l—cyz—...) = 1,
we have k, = g, and

©—C19n-1—+-—Cpq0 = kn? Pn—CiPp—17—+-Cp Py == 0

for n > 0. Hence

kn —_ 11— 9rn—1 9o />/ l——Clpn_l-——...—— Po — 0’

2= l—c ——.—Cpy
Tn

Y g, Tn P D

and k, > 0 for all n. We can now verify at once that the conditions
of Theorem 19 are satisfied. For the first

and for the second
knpo < kopn+~-~+knp0 = qn’

so that k, = 0(g,) = 0o(@,), by Theorem 16, This proves the theorem
in the special case n, = 0.
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Passing to the general case, we have
PulPra1 < Cpltn—y (0= Ny+1, No+2,...).
We write T = Pn (0= my, ny+1,...),
and increase p,,_,, if necessary, to a value 7, _, such that

rno/rno-—l < rno+1/rno’ no/rno -1~ Qno/Qno—l’
then p,, _, to a value 7, _, such that

rno—l/rno—z < rno/rno—l’ n.,—1/7'n.,—2 qno—l/Qno—‘a»
and so on down to p, and 7,. Then

rn/rn—l < rn+1/rn’ n/r -1~ qn/qn -1
for n > 0; and p,, = r,/r, satisfies

po =1, Pn >0, Prt+1/Pn = PulPn-1s PulPrn-1 < 9n/qn-
for n > 0. It follows from what we have proved already that (N,g¢,)
includes (N, p,,), or, what is the same thing, that (N, ¢,,) includes (N,r,,).
It is therefore sufficient to prove that (N,r,) includes (N, p,). We

write 7= pot8, (n=0,1,.,m—1)

0o—1
so that r(x) = D rpat = p(x)—}-nz 3, 2" = p(x)+8(x),
0
say. By Theorem 22,
{p(x)}"l = l-_ Z cn xn = z )/n xn’
where Y |y,| < 14 3 ¢, < 2. Thus, if
k(x) = r(z)/p(x) = 3 k, 2",
we have gknx" = 1+M = l+mz—18nx"§:ynx"
0 p(x) 0 0
and so Dk, < 14+28, > vl < 142338, = H,
say. Hence, first, k, = o(1) = o(R,); and secondly,
|ko| B+ ...+, | Py < HP, < HR,.
These are the two conditions of Theorem 19, with r for ¢, and therefore

(N, r,) includes (N, p,,)-

4.6. Euler means. We defined > a, = s (E, 1), in §1.3(4), as mean-
ing > 2-7-1p, = s, where

Here by == i by
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and we can express {,, in terms of s, as follows. If F is the operator
defined by Fu, = u,,, then b, = (1+ E)"a, and

)
=%z(1+’3) ay.

Now
1 m 1—{—37 n . 1 1_{%(1+x)}n1+1 . 2_m_1(1+1)m+1__(1+x)m+1
E; 2 ) T2 13142 l—x
m+1 n m+1
—gm1> (m:—l) D) (m+l)(l+x+w9+ pan-i);

n=1 n=]31
and, since this is an identity between polynomials, we may use it with

E for 2. Thus

m+1

by = 9-m-1 Z (m+l)(l+E+ __l_En l)a
n=}
ol o 1
= 1;( n )8”“_2 IZ(nH)
Hence ¢, = > ¢, , $,, Where

Crmyn = 2-m= 1(7::/111) (n < m)) Cn = 0 (n = m)s

Cmn = 0, Dlemnl = Cpp = 1—2"7"1> 1,

and ¢, , < 2-™-}m-1)"+1 > 0 when m — co. Thus the conditions of
Theorem 2 are satisfied, and

THEOREM 24. The (E, 1) method is regular.
4.7. Abelian means. If

(4.7.1) 0 A <A <Ay <, A, —> 00,
> a, e~ is convergent for all positive x, and
(4.7.2) fl@) =S a,eM*>s

when  — 0, then we say that > a, is summable (A,A,), or (A,]), to
sum s, and write
(4.7.3) >a, =3 (AN).
When A, = n, the (A, A) method is the A method of §1.3(2). We shall
sometimes write (A, k) for (A, nk).

It will be convenient to consider a more general method of summa-
tion. We suppose that (¢, (x)) is a sequence of functions defined in an
interval 0 << x << X, and that

(4.7.4) al) > 1,
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for each 7, when x — 0. If

(4.7.5) $) = 2 a, dp(x)

is convergent in some interval 0 < 2 < X, < X, and ¢(x) - 8 when
x — 0, we say that > a, is summable (¢) to sum s.

THEOREM 25. In order that the ‘¢’ method should be regular, it is
necessary and sufficient that

(4.7.6) 2 (@) —ppnle)|] < H,

where H is independent of x, in some interval 0 < x < ¢. In particular
this condition is satisfied if

(4.7.7) 0 < @) < $ula).
(1) The condition is sufficient. 1t follows from (4.7.4) that |y(x)| < H,,
say, in some interval (0, ), and from (4.7.6) that

@) < |A@I+ S 1yale)—ho(e)| < H+H,

in some such interval. Thus the system (¢,) is uniformly bounded in
such an interval.
Suppose first that s,, — 0. Then

N N—1
(4°7°8) % Ay, ¢"n = g 8n(¢nm¢'n+1)+SN qSN'
The last term tends to 0, and so
(4.7.9) (ﬁ(x) = E Sn{¢n(x)*¢n+1(x)} = z Cn(x)sn’

say. It follows from (4.7.4) that c,(x) — 0, for each n, when x — 0, and
from (4.7.6) that Y |c,(*)| < H; and hence ¢(x) - 0.}
If s, > s, ag = a,—s, and a,, == a, for n > 0, then s, - 0 and

(@) = 2, an by(x) = P(x)—spo(2) > 0

when x — 0. Hence, by (4.7.4), ¢(x) - s.

(2) T'he condition is necessary. It is enough to prove that it is satisfied
if s, > 0 always implies ¢(z) - 0. We consider first a small fixed .
Since Y a,, ¢, is convergent whenever s, — s, it follows from Theorem
7 that Y |¢,—,1| << o for each such xz. Hence ¢,(x) is bounded for
such an x, and we can deduce (4.7.9) as under (1). It then follows from
Theorem 5 that Y |c,(x)| << H for small 2, and this is (4.7.6).

Finally, if ¢,, satisfies (4.7.7), then

Z |¢n_¢n+1| = 2 (¢1z'"¢n+1) = ¢0’_hm¢n < 950 < Hl,
since ¢, is bounded in (0, £).
1t Here we appeal to the analogue of Theorem 4 mentioned on p. 50 but not stated

explicitly. We cannot appeal to Theorem 5 because 3, cq(x) does not necessarily tend
to 1.
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There is plainly a variant of the theorem in which x is replaced by
an integral parameter m which tends to infinity.

We add a remark about the special case in which ¢, is a positive decreasing
function of n. There is a simple but useful theorem which we shall need later
and which it is convenient to prove here.

THEOREM 26. If b, increases to infinity with n, and Y u, ts convergent, then
(4.7.10) Vo == vo+0 e k0, = bory+byu+...4-b, u, == o(b,).

If w, = u,+u,+..., then w, - 0. Also

n
Vn = %bm(wm m+1) =b o Wot Z m 1) —b nWnis
and so V, = T,b,-}-o(b,), where
b b, —b, b,—b
Tn = b—gwo+ L wy .. +J’"6‘J£:‘ Wy, — > 0,
n »

by Theorem 12.
It follows from Theorem 26 that (4.7.9) is true whenever ¢, decreases to 0 as
n— oo and Y a,¢, is convergent. For, taking

by = éat ty = Qs Vp = @y == by g,
in Theorem 26, wo sce that sngbn -> 0, and (4.7.9) follows from (4.7.8).

The conditions of Theorem 25 are plainly satisfied when ¢,,(z) == e~=.
Hence

THEOREM 27. The (A,X) method ts reqular. In particular, the A
method s regqular.

There is no general theorem for Abelian methods corresponding to
Theorem 17: different methods may well sum the same series to different
sums. Thus 1—1+41—... is summable (A) to sum 4, but summable
(A, ), when (},) is the sequence 0, 1, 3, 4, 6, 7,..., to 4: sec § 3.9.

4.8. A theorem of inclusion for Abelian means. In this section
we prove one theorem of inclusion for two systems of Abelian means.
Others will be proved in Appendix V. As is to be expected after the
last remark of § 4.7, all these theorems have a very special character.

'THEOREM 28. If (i) Ay = 1, p, = logA,,

i) >a, (A, Q),
Sa,ebnt =Y q, eV8h =N g AV
18 convergent for y > 0, then > a, = 8 (4, p).

We need two preliminary theorems (the first of which is important
in itself).
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THEOREM 29. Suppose that fo(x), fi(x), fo(z),... ts a sequence of functions
defined in an interval of values of x; that
(4.8.1) |fol2)| <H, (4.8.2) 3 [fu@)—fon(@)| <K,
where H and K are independent of x; and that > b, is convergent. Then
3 b, f(x) is uniformly convergent.

In particular the result is true if f,(r) is monotonic in =, and
uniformly bounded, since then

3 fa—funl =13 (Fa=furi)| = |fo—limf, |

n—w

We might replace the interval by any set of real or complex .
We note first that, after (4.8.2), Y (f,—/fs+1) is convergent for each z,
so that f,(x) - f(x), say, when n —c0. Also

(4.8.3) 1 S U4 S i—fral < H+E.

We suppose that > b, = B, and write
B, = by+by+...+b,, B,= B,—B,

with the convention B_;, = 0, B_, = —B. Then B, > 0, and we can
choose N, so that |B,] < eforn > N,—1. Also

N’ N’ "—
(4-8-4) g bnfn = g (Bn_ﬁnr—l)fn = '_BN~1fN+N§ lﬁn(fn'_'fn+1)+BN'fN’
for N’ > N > 0. It follows from (4.8.2)—(4.8.4) that

PANAE

for N’ > N > N, and each x; and this proves the theorem.
When N = 0 and N’ - o0, (4.8.4) gives

(4.8.5) 2 b.fu = Bfot+ 2 Bulfa—Su+1) = Bfot+ 2 (B~ B)fo—Suns1)-

Since fy == f+ 2 (fu—Sn4+1)» Wo have also the simpler formula
(4.8.6) 2 onfn = Bf+ X Bu(fn—Fnpr)-

But the series on the right of (4.8.6) is not usually uniformly convergent. Suppose,
for example, that

%e(H+K)+eK = (2H-+3K)e

fo =1, fo=2" (n >0, 0<<ax<1),

so that f-= 0 for x < 1 and f = 1 for x = 1, that b, == 1, and that b, = 0 for
n > 0. Then B, == 1, B, = 0 for n > 0, and (4.8.6) becomes

1= f+ 3 (ah—am),
The last series is neither uniformly convergent nor continuous, having the sum 1
for x < 1 (when f = 0) and 0 for x = 1 (when f = 1).

The conditions of the theorem are plainly satisfied when
fal®) = ez (£ 0) or e (23> x).
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If ¥ b, is convergent, then > b, e~ ig uniformly convergent for x > 0;
and if the last series is convergent for z > 0, then it is uniformly
convergent in any interval x > x, > 0.

Our second preliminary theorem is

THEOREM 30. If Xy = 1, d(w) = D a,e ™, and ¥ a, A;¥ is convergent
for y > 0, then

1 [« o]
4.8.7 — -V - y-14(. .
(4.8.7) ) =S¥ = s Of () duw

If w and y are fixed, then MY e~** decreases from a certain =, so that

Sape =3 (Newv.q,ATY)

is convergent for w > 0. Hence it is uniformly convergent in any
interval 0 <ow <w < W < o0, and

w w
(4.8.8) f wr-1p(w) dw = 3 a,, f w¥=le=Mw dp,

We wish to replace w and W here by 0 and co. For this, it is sufficient
to show that the series

w s
(4.8.9) z a, f w”‘lC“An“’ dw, Z a, f wV—1e-2Anw dop
0 w

are convergent and tend to 0 when w — 0 and W — co.
The first series (4.8.9) is

/\,.w

a, 1a—u o (ln L
z Xny f u?~te=" du = Z ﬁX7¢(w) == Z bn Xn(w)’
0

say. Here Y b, is convergent, by hypothesis, while y,(w) is positive,
increases with n, and is uniformly bounded for all n and w. It follows
from Theorem 29 that > b, x,(w) converges uniformly in w, and there-
fore tends to 0 when w — 0. The proof that the second series (4.8.9)
tends to 0, when W — o0, is similar.

It is now easy to prove Theorem 28. We may suppose s == 0, so that
é(w) - 0 when w— 0. Then

) ®
1 » _
Yly) = f@(! +J )w $(w) dw = P+-Q,
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say. Since ¢(w) > 0, we can choose & so that |¢(w)| < efor 0 <w <3,

and then 5

| P| < < fw”*ldw= €? < 2
I(y) ) yI'(y)

for sufficiently small y. Also 3 a, e-%—2w ig uniformly convergent for
w > 8, so that |[p(w)| < He=*», where H is independent of w. Hence

H
IQlém

J e=w dw —> 0
3

when ¢y — 0, and |(y)| < 3e for sufficiently small y.

It is easy to give examples of series summable (A,logn) but not
summable (A): we shall see, for example, that > n-1-¢{ where ¢ > 0,
is such a series.¥

4.9. Complex methods. It is often important in applications to
consider the limit of a series > a, e~? when z - 0 along a path in the
complex plane, usually a straight line making an acute angle with the

positive real axis.
If z = x4y, Y a, e is convergent for > 0, and

(4.9.1) f) =3 a,e Mg

when z— 0 along any path lying in the angle |y| < xtan«, where
0 <* « < 4=, then we shall say that

(4.9.2) >a, =s (AN ).

This method also is regular.

TreorEM 31. If ¥ a, converges to s, then > a,e=™% — s when z >0,
uniformly in the angle |y| < xtana.

We may suppose s = 0. If z > 0, then
f2) =3 a,eM =3 g, (eMz—e—Dnir?),
or f(z) = Y c,(2)s,, where

cn(z) — =M% g 1% — Ae—-/\,,z.

Also \
n+1
D len(z)) = |Ae—2| = > f ze dt'
An
An+1

< |7| z f e=tr df — .IZ_‘ z Ae—z < e~MTgec q.
An

T See § 7.9. When we speak of summability (A, log n) we suppose our series to begin
with the term in a,, so that A, is replaced by A,.



4.9] SPECIAL METHODS OF SUMMATION 71

Hence, if we choose N = N(¢) so that |s,| << € for x > N, we have
N
Ig cn(z)snl < esec

for N’ >> N, so that > c,(2)s, is uniformly convergent. Since c,(z) —> 0
when 2 — 0, f(2) - 0 uniformly in the angle.

We have proved the theorem directly: it might also be deduced from
appropriate modifications of Theorem 5 or Theorem 29.

4.10. Summability of 1 —1+1—... by special Abelian methods. Tho series
1—1+4-1—... is summable (A) to }. It is instructive to consider its summability

by other Abeclian methods.
It is familiar in the theory of elliptic functions that

(4.10.1) 1-2q+2q4—2¢° ... = [T {(1—¢2" F)2(1— g2}
for |g| < 1, and the product plainly tends to 0 when ¢ — 1 by real values. Tt
follows (writing e~* for ¢) that
l—e*4e 3 —e ... -1,
so that 1 —1+41—... is summable (A, n?) to §. It isalso summable (A, n*) for any

positive k (compare Appendix V).
On the other hand, if @ > 1, then

(4.10.2) | Ple) = o—atpam— |
does not tond to a limit when « > 1. To seo this, we observe that F(x) satisfies

the functional equation
F(x)4- F(x®) = z,

(=D (1 1)"
and that O(x) = Z m log‘; 3

is another solution. Hence ¥ (x) == F(x)—OD(x) satisfies ¥ (z) = —V(a*), and is

therefore a periodic function of loglog(1/x) with period 2loga. Since it is plainly

not constant, it oscillates between finite limits of indetermination when x -»> 1,

log(1/x) — 0, loglog(1/x) — —oc0. But ®(x) — §, and therefore I'(x) oscillates.
It follows that 1—1--1—... is not summable (A,A) when A, = a® (¢ > 1).

4.11. Lindel6f’s and Mittag-Leffler’s methods. There is one
(A, A) method which is particularly important in the theory of analytic
continuation. In this
(4.11.1) Ay = 0, A, =mnlogn (n > 1).

If then Y a, e > s, we write > a, = s (L).

A power series > a, 2" convergent for small 2, defines an analytic
function f(z) with a branch regular at the origin. In what follows we
use f(z) to denote this branch of the function, made uniform by an
appropriate system of cuts in the plane of z. The ‘Mittag-Leffler star’

of f(z) is the domain formed by drawing rays through 0 to every singular
point of f(z) and removing from the plane the parts of the rays beyond
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the singular points. Thus the star of ¥ 2” = (1—2)~1 is the plane cut
along the line (1,00). The importance of the L method arises from
the fact that it sums 3 a, 2™ throughout the star of f(z). We shall see
later (§8.10) how this general theorem may be reduced to the special
case in which f(z) is the function (1—=z)-!: here we consider the special
case only. It will be convenient to change our notation, writing é for x.

THEOREM 32. If D s any closed and bounded region which has no
point on (1,00), and A, s defined by (4.11.1), then
(4.11.2) S edzn 5 (1—2)-1
when & — 0, uniformly in D.

We define A(7, R) as the region in the plane of z = re# in which
(4.11.3) 0< << 2m—n, r<R;
and, since (4.11.2) is plainly true in any circle r < 1—{ << 1, it will be
sufficient to show that
(4.11.4) gs(z) = $ gre=dnlogn o o /(]1 —2) = ¢(2)

uniformly in A.

We define a contour C in the plane of u = pe’® by the circular arc
p=2%, |4 < ¢y <3m and the two rays p >}, || = ¢,. We shall
suppose, as plainly we may, that ¢, and 5, are chosen so that
(4.11.5) sing, > 4, tand, > (4log R)/n, 8ydy < &7;
and we consider the integral

du

ezﬂiu —_— 1 ’

(4.11.6) Is(z) == f Zue—dulogu
round C, where
2% = eulogz log z = log r-10, logw = logp+td,
and C is described so as to leave the origin on the right. Since
|e-dulog¥| — |exp{—38p(cos -1 sind)(log p+id)}|
= exp(—3dplogpcos $-}-8psin ),

it follows from Cauchy’s theorem that Ij(z) = gs(z) for 8 > 0 and z in

A.f We now prove that Ij(z) is uniformly convergent for 0 < 8 < 3,
and z in A.

On the upper ray of C, we have

|e-dulog | — exp(—3&p log p cosd,+Spdysin é,),
t The integrand is dominated at infinity by the factor exp(—8p log p cos ¢).
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2% = |exp{p(cos ¢y+1 sin ¢,)(log 7+10)}|
= exp(p log 7 cos $,—pbfsin ¢;) << exp(p log R cos dy—pn sind,),

1 1 1
At ]| S ] g-ampeinge = [ gmin

It follows from these inequalities and (4.11.5) that the integrand in

(4.11.6) is majorized by a constant multiple of
exp(plog R cos ¢y—32pnsing,) < e-tPnsinge - o—ipn,
and that this part of the integral is uniformly convergent.

The proof for the lower ray of C is similar.}

Since the integrand is uniformly continuous with respect to 6 and =2
on any finite stretch of the contour, and Iy(2) is regular in A for 6 > 0,
it follows that "

Is(z) > 1(z) = f omin ]
o
uniformly in A, and that the right-hand side is an analytic function
of zregular in A. Itisg(z) when —1 < z < 0, and therefore throughout
A; and the theorem follows.

There are other methods of summation, not (A,A) methods, but of
similar type to the L method, which have the same property. The
most important is Mittag-Leffler’s method, which we call M, and in

which } a, is defined as

du

. a,
fis 2, vt sm)
It is easy to prove, by a variant of the method used above, with
I'(1+5u) in the place of e’“18¥ that Y z” is summable (M) to (1—z)~1
uniformly in A. The details naturally depend on the asymptotic
properties of the gamma-function of a complex variable: an alternative
proof will be given later.} Yet another method with similar properties
is Le Roy’s, in which } a,, is defined as
I'(1+4-Zn)

{-»1 0 P (14mn) -

4.12. Means defined by integral functions. We consider next an
important class of methods of which the best known is Borel’s. Let us

suppose that J(z) = Y p, 2" is an integral function, not a polynomial,
with non-negative coefficients p,. If

S(x 8, X"
(4.12.1) ( )z_—zpn n
J@) 2 ppw
t |e®miu| = e2mpsind, iy large for large p: 2m—0 takes the place of 8 in the argument,
and 27—60 > 7.
1 See p. 199 (note on § 8.10).
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when x — 00, then we write
(4.12.2) >a,=s(J).
The simplest definition of this type is Borel’s, in which p, = (n!)1,
J(x) = e*: if
n

(4.12.3) e8(x) = e Z sn% >

when x — o0, then we write
(4.12.4) Sa,=s (B)
There is an alternative definition of Borel which we shall consider in

§4.13 and Ch. VIII.
Here tx) =Y c,()s,,
Cn(®) = Pp @[ 2 P 2 0, ¢,(@) >0, Jlcy(x)] = Z c,(w) =1,
and the conditions of Theorem 5 are plainly satisfied. Thus
THEOREM 33. The J method is reqular.

The J method provides a convenient opportunity for a more explicit
statement of a general principle which we have referred to alreadyt
and of which we shall find many applications later. A method may be
said to be ‘powerful’ if it can sum rapidly divergent series: thus Borel’s
method is more powerful than the (C,1) or A methods, which will
not sum » 2" outside its circle of convergence. Borel’s method, on the
other hand, sums it in the half-plane Rz << 1. For in this case
8, = (1—2z"*1)/(1—=z), and

S(x) 1—gntlgn ] ze~(1-2)x 1

J(x) IZ 1=z al 1=z 1—2  1—2’
provided only that Rz << 1. In particular it sums the series for all
negative z.

In this sense the J method is the more powerful the more rapidly
p, tends to 0. Thus Borel’s method sums 1—a+4a2—a3+... for all
positive a, but it will not sum the series for which s, = (—1)"n!a®
because } (—1)*(ax)" is not convergent when ax > 1. If we take this
Sy, and p, = (n!)~2, then

n n
S@) = > (-1)n%‘”_!)ﬂ =e,  J@) = > (_7‘%55 — I(2v),}
and S(x)/J(x) — 0.

We shall, however, find that, usually, the delicacy of a method decreases

as its power increases, and that very powerful methods, adapted to the

T Sce § 3.8.
T I,(x) being Bessel’s function with imaginary argument.
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summation of rapidly divergent series, are apt to fail with divergent
series of a less violent kind (such as we encounter, for example, in the

theory of Fourier series). Thus we shall find in §4.15 that the J method
with p, = e~ fails to sum 1—141—....

We supposed in (4.12.1) that J(x) is an integral function and that x-— co.
There is a modification in which the radius of convergence of (4.12.1) is finite.
In this case wo may take it to be 1, and must suppose > p, divergent. The
definition is still oxpressed by (4.12.1), but now x - 1, and the method then re-
sembles the ‘ Abolian’ methods of §§ 4.7-10. Thus, ifp, = 1,then J(x) = (1—=z)7?,
and the definition becomes (1—z) ¥ s,2%-—>s, i.e. > a,2"—s. This is the A
definition.

If p, = (n+1)71, the definition becomes

(10 __1._)-~1 z Bn_ omt1 g
o n+1

@

Q) 1
(4.12.5) T dt 310g1~x’

or

0

where f(x) = Y a,x". Itis plain that f(x) - s implies (4.12.5), so that the method
immcludes the A method.

4,13. Moment constant methods. A moment constant p, is a
number of the form

(4.13.1) p, = fxn dy,
0

where y = x(z) is a bounded and increasing function of « such that the

Stieltjes integral (4.13.1) converges for all n. If ¢ is the lower bound
of numbers x for which

f dx(u) = 0,
then f dx(u) = 0, fdx(u) >0 (x<¥§)
£+0 z
© £-0

and P = fx" dx = f z* dy +{x(£40)—x(§—0)}¢",
0

0

when ¢ is finite. Usually, however, ¢ will be c0; and we shall suppose,
when ¢ is finite, that y is continuous at £.7

If
(4.13.2) a(®) = 3 (@ )"

t See the note at the end of the chapter.
4780 G
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then formal term-by-term integration gives
[ a@) dx = 3 (@/pn) [ 2mdx = 3 a,,

and this suggests that we take the integral on the left as the basis of
a definition of the sum of > a,,.
We write

(4.13.3) f a(x) dy = s

if either (i) ¢ = oo, the series (4.13.2) converges for all z, and

hm a(x) dxy = s,

e%

or (ii) £ < o0, x(§+0)—x(£—0) = 0, (4.13.2) converges for 0 < z < ¢,

and
£E-o0
fa(x x = lim J.a(:v
o X—£-0

and
(4.13.4) Sa,=s (k)
in either of these two cases.
THEOREM 34. The (u,) method s regular.
If ¥ a, is convergent and 0 << X < X, < ¢ < o, then

[= o]

(4.13.5) fhy = fxn dy > X7 f dy > 0
o X
and (4.13.2) converges uniformly for 0 << x <{ X. Also

X
s fa<uiZ) af [
l‘l"ll

0

when n—>oo, for X << X, and so for X < ¢. In particular, taking
8, =1,

(4.13.6)

X
(4.13.7) L zndy—>o.
Hn o

It follows from the uniform convergence of (4.13.2) that

X X
= J(S2e)- 32 e
0 n no
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and from (4.13.6) that
. b'¢ ) b q
(4.13.8) ¢(X) = sn(—— f " dy — f xn+l dx) = Cn(X)S,,
( Z K : X Hn+1 3 z

say. Plainly ¢,(X)—> 0 when X - ¢, Also
© X X

fx"“dxfx"dx—— fx"*ldx fox"dx
0 0 0 0

= j antl dy jcx” dx — jx““ dxxf x™ dy

[o0]

X X o
= X[ | a*d ndxy — | a*d ndy) = 0.
(fw x [ardy — |2 xxfx x) f

X 0 0
Hence cu(X) 2 0,
1 F 1
S lea(X)| = S en(X) = - [ dy— lim - f ndy — L f Iy,
0

by (4.13.7), and > ¢, (X)—>1 when X — ¢ Thus the 0011d1t10ns of
Theorem 5 are satlsﬁed, and the method is regular.
The most important case is that in which
x(@) = 1—e=" (a > 0).
Then p, = 1 f e~ go)-1gn gy — f e~*u™ du = I'(na+1),

(0.4

and the definition is

e
(4.13.9) f e-u f“(?z&?f)‘ du = s.
In these circumstances we write
(4.13.10) da, =3 (B, a).
In particular, when o = 1, we write
(4.13.11) S a, =s (B).

We shall see in Ch. VIII that the definitions (4.13.11) and (4.12.4) are inti-
mately connected and ‘all but’ equivalent. We were led to them in quite
different ways, and their close connexion is due to the special propertics of the
exponential function.

If« = 1, a, = 2" then

f % z (zaz)”dx — fe—m(x—-z) dr — 1
n! 1—2

when Rz < 1. Thus the B’ method, like the B method, sums 3 2® in this half-plane.

T If ¢ < o, the upper limit 0 may be replaced by §—0 throughout.
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We make the moment method more ‘powerful’ by increasing the magnitude

of u,. Such an increase of power carries its disadvantages with it. Thus, if

(4.13.12) dy == ekl )g—1dz (k > 0),

then

@ )
(4.13.13) P, = fe—k(locm)’mnﬁl do = f e—kuttnu g, — j(%)e““/‘k,
0 -

and the definition becomes

(4.13.14) @ J(S) f e kul(y gnu—nijakg ) du = s.

-—00

We shall see in § 4.15 that this method will not sum 1—141—....
If =1 x== for x <1, x=1 for > 1, then u, = (n4 1)~ and the
definition is

1—¢
lim f {3 (n+1)a, x"} dx = s.
>0 hy

This is plainly equivalent to the A definition.

4.14. A theorem of consistency. There is no general theorem of con-
sistency for moment constant methods: different methods may sum the same
series to different sums. But there is a special theorem of consistency which is
sometimes useful, in which we suppose that £ = oo and

(4.14.1) x(@) = jgs(t) dt.
0

THEOREM 35. Suppose (i) that $(x) is positive and decreasing; (ii) that
M = J.w"dr(x) dx

i8 convergent for n > 0; and (iii) that ¢({x)/d(x) is, for every fixred { > 1, a decreasing
Sfunction of z; or at any rate that conditions (i) and (iii) are satisfied for x > x,.
Suppose further (iv) that > a,z" is convergent for small z; and (v) that

(4.14.2) J (z i—:w")ﬂw) de = s,

sothat 3 a, is summable (u,) to 8. Then 3 a,z™isuniformly summable for0 < z < 1;
80 that it represents an analytic function f(z), which is regular on the segment (0, 1)
and tends to s when z — 1 through real values less than 1.
This is a theorem of consistency because it shows that the sum s is fixed by
the function f(z) independently of the special ¢(x) and p,, used in the definition.t
It is plainly sufficient to prove the series uniformly summable in any interval
0 < & < z < 1. The series g(x) = ¥ (a/u,)z" converges for all z, and

[ 9@)p(@) dz = s,
by (4.14.2); and the sum of Y a,2" is

(4.143) [ s as = [ org(Z) s

1 Compare the second proof of Theorem 17 in § 4.2,
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if this integral is convergent. Now if X > z, then

’ xﬁ

23() dz = [ g2)d(z) 22 a = BELR) [ i) do
ng( 8(2) o xf i) S <)ﬁ(;,()ifg< ) da,

where X < X” < X', by condition (iii). The outside factor does not exceed 1,
and the second is numerically less than € for X > X (e). Hence the integral
(4.14.3) converges uniformly for 0 < § < 2z < 1, and the theorem follows.

The conditions are satisfied, for example, if d(x) = e~4*%x%-1, where 4 > 0
a>0,a>0.

As an application, suppose that

> ay2t == 1—az+a(a2—§- L

for small z. If we take ¢(x) = €%, as in Borel’s method, we obtain the sum

. a+1
fe e e

and the value of the integral is not obvious. It is much more convenient to take
$(x) = 2*1e~®, when u, = I'(n+a) and we obtain

= (1+2)

—Z -1 _ff xzzz_ ) — 1 —2(142) a1 Jp ... o) —a
I’(a)f x l —|— TR dx = () e 23 dy == (1-]-2)
provided only that Rz > —1.

4.15. Methods ineffective for the series 1—1-+1—.... In this soction
we illustrate the general principle stated in § 4.12 by showing how two ‘violent’
methods, one of ‘integral function’ and one of ‘moment constant’ type, fail to
sum 1 —1+41—...F

(1) Let us take p, == e~°"*, where ¢ > 0, in the definition (4.12.1), and write
e* for . Then, since s,, = 1 and s,,,,, = 0, we have to determine whethor

z e—dcm?-3um / z e—cnitun

tends to a limit when u — co. It is plain that we may replace this ratio by
Fy(u)/Fy(u), where F, and F, are the sums extended from — oo to co. Now

4ic) . (iu ic)
o ’ Fz(u) - '9'8 '2; - ’
and Fs(v+nr|T) = e~Mnir—naivg (y|7); :
and it follows from these formulae that F,(u)/F,(u) has the period 4c. Sinco it is
plainly not constant, it does not tend to a limit.

(2) Let us suppose x and u, defined as in (4.13.12) and (4.13.13). Then the
sum of 1—1+41—... is defined as

Fiu) = 8,

151 JE [ § - tpeominn) a

if this integral is convergent; and it is plain that the convergence will not be
affected by replacing the lower limit of summation by —co. But

P = § e =0 (215) <o,

t See also § 4.10, for the failure of a violent method of Abelian type.
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and it is easily verified that

nf2k)+a a
e PP F(u) du = (—1)» j e~ku B(vu) du
n/2k 0
for any a. It follows that the integral (4.15.1) is not convergent and the series
not summable.

4.16. Riesz’s typical means. The ‘typical means’ of M. Riesz are
generalizations of certain means which we shall consider in §5.16, and
a full discussion of them would be more in place in a book dealing
specially with the theory of Dirichlet’s series. We therefore dismiss

them very shortly here.
Suppose that A, satisfies (4.7.1), that

Ay(z) = agFay,+...4a, =35, A, <Tr<A4), Axx) =0 (x < Ay),
that « > 0 and that

(4.16.1) AP(w) = f Ay(@)(w—a)t de — s

when w —-co. Then we say that > a, is summable (R,A,«) to s. We
have also, by partial integration,

An<w
We can write (4.16.1) as
AP (w) = [ ¢z, w)dz(@) de,

where
¢ = ko *(w—z)1 O<r<w), ¢=0 (=>ow).

Then ¢ > 0, § = O(w™?) for large w, uniformly in any finite interval
of x, and

flqb(x, w)| de = % fw(w~x)"~1 dx = 1.

Hence, after Theorem 6,
THEOREM 36. Riesz’s typical means are regular.

It is easily verified that the (R, n, 1) method is equivalent to the (C, 1)
method. We shall prove more than this in § 5.16.

Another interesting case is that in which A, = log(n+1), « = 1.
We prove
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THEOREM 37. In order that Y a, should be summable (R,A, 1), with
A, = log(n--1), to s, it is necessary and sufficient that

(4.16.2) (o+ 12 2. +_-) s.

1
log(n+- log(n}-1) n+1
In other words, the means are then equivalent to the logarithmic

means of § 3.8.
Ifw= log(q+1 n = [q], then the definition (4.16.1) reduces to

m—+-2 q+1

log(q+1) Z m gm—}—l_i_log(q—}—l)log s

(4.16.3) T

and we have to prove this equivalent to (4.16.2).
Let us assume (4.16.2), and write

Sn
u, = —2—,
n-4-1
Then U, ~ slogn, so that u, = o(logn) and s, = o(nlogn). Hence the
last term in (4.16.3) tends to zero. Also

2 1 1 1
og™t2_ t 1 ol
Ogm—}—l m-4-1 2(m—}—1)2+0(m3)’
so that the sum in (4.16.3) is

U, = wy+uy+...+u,.

- Un Un Un-1 _
- gm—f—l_ . (m+1)(m+2)+ n = 0()

because U, = O(logn), and R, is plainly O(1). Hence (4.16.3) reduces
to P, ~ slog(g-1), which is equivalent to (4.16.2).
The proof of the converse is similar but simpler, since we may take

w = log(n+1).

4.17. Methods suggested by the theory of Fourier series. The
series

(4.17.1) 3+4-cos0+cos 204-... = 3’ cosnbt
is fundamental in the theory of Fourier series. Its partial sum is
(4.17.2) s,(0) = f cosvh = Sf‘-{‘("'%)—o = D,(0),

0

t The dash implying that the term with n = 0 has a factor §.
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and its means defined by (3 1.3) and (3.1.4) are

(4.17.3)  £,,(0) = D Cpn Dol (4.17.4) t(x,0) = D c,(x)D,(6)
In particular the (C, 1) and A means are
1 sin (m--1)60)?
(4.17.5) ta(0) = 2(m+1){ sin 10 } ,
(4.17.6) t(r,0) = 1—r*

2(1—2rcos04-7%)° 1
The ¢,,() defined by (4.17.5) has the properties that

¢ (6) > 0, ;.17 f ¢ (0)do =1,

-
and that ¢,(6) - 0, when m — co, uniformly in any closed sub-interval
of (—m,7) which does not include the origin; and the ¢(r, ) of.(4.17.6)
has similar properties. It is on these properties that the applications
of the methods to Fourier series are based, and other choices of a ¢,,(6)
with the same propertics lead to valuable methods of summation. Thus

 (6) = T v

i1 3) (1+4-cos @)™
has the properties required. Since
m ... 9Ql-m . _Mlnw(f'i )
(1+4-cos 8) 2 (m’ {%—F +1 os 6 (- 1)(m +2)00820+ }

we are led to de la Vallée-Poussin’s definition (VP)

m(m—1)
>a, ~hm {a0+ i) 1+(m+1)(m+2) 2—{—...}.
In terms of s,
1 3m S5m(m—1)
tm = m—1 °+(m+1)('m+2) 1+(m+1)(m+2)(m+3) St

and it is easﬂy verified that the method is regular.
In these methods the coefficient of s, is non-negative. There are
other methods, important in the theory of general trigonometrical

series, in which this is not so. The most fundamental is Riemann’s, in
which we define > a,, as

] 2
lim ¢(k) = lim an(sm nk) :
h—>0 h—>0 nh

1 It is usual to write r for x here, and % for z in the ‘Riemann’ definitions.
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the coefficient of a, is interpreted as 1. It is familiar that this method,
usually called the (R, 2) method, is reO'ula.r In this case

t(h, 6) — ..(_W'e') 16| < 2), 0 2h<O<m)

and #(h,0) has the properties corresponding to those of (4.17.5) and
(4.17.6).
More generally, summability (R, k), where k is a positive integer, is

defined by . .
S ),
nh

The method is regular for £ > 1 but not for £ = 1.
Another method, closely connected with the (R, 2) method, but not
equivalent to it, is the (R,) method defined by
2 < sin’nh
) =22, = o
where the coefficient of s, in the sum is 1nterpreted as h. This method
also is regular.

4.18. A general principle. Most of the definitions which we have
considered in the preceding sections may be presented as illustrations
of a general principle.

Let us suppose that F = F(«,B,v,...) is a function of certain para-
meters «, B, y,... which tend to limits «, By, 7,,...; that 4, B, C,... are
the limit operations « — oy, B — By, ¥ = Vo-..; that

PF = ABC...F = lim { lim ( lim ...)| F;
a—ap \ f—>fo \ y—>yo
and QF = A'B'C'...F, where A', B’, (',... are A, B, C,... in a different
order. We may ask whether

(4.18.1) PF = QF,

and the theorems which assert that this is true under appropriate
conditions include many of the most important in analysis.

We may also look at the equation (4.18.1) from a different point of
view. Suppose, for example, that

F = F(n,x) = i a,, x™,
0
that o« = n, B = x, and that 4 and B are the operations n —»co, x — 1.
Then
n n
BF = lim Y a,2™ = Y a,,
0

=1 0
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and PF = ABF =1lim > a,, =

n—0 0

oM
[
3

if and only if 3 a,, is convergent. On the other hand,

AF = lim 3 a, am

n—o (0

i

;ﬁ a,a" = f(z),

say, whenever this last series is convergent for x << 1; and
QF = BAF = lim f(x)

is Abel’s limit for the series 3 a,,. If PF exists, then @F exists and is
equal to PF, but QF exists in many cases in which PF does not. In
these circumstances we may take QF as the definition of the symbol
PF, and agree to write PF when we mean @QF. The utility of such
a fiction is, of course, to be judged by its results.

Again, for the J definition of §4.12, with p, > 0 for all n,

= (5 pntma)/(5 20e).

Aisn-—->o0, Bisx »>ow; BF = 3,, ABF = s if and only if s, — s; and

n’

BAF is the limit which we took as our definition. For the ‘moment
constant’ definition of §4.13 (with ¢ = o),

r-[(Surju-3inf ~u

Aisn—>o00, Bis X - o0;
n o0
BF = im fxmd = > a,,
zum X = E

so that ABF = s if and only if ) a, converges to s; and

X 0

BAF =lim [ a(x)dy = f a(x) dy.

X—o0 o 3

We may sometimes wish to connect the operations 4, B,... by relations

between «, B,.... Suppose, for example, that
N (n+D)/p
F=Fmnp=>>1-10
=3 ()

N—>00 P—»00

Then lim F = f @,  lim lim F = Za
D> 0
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when the series is convergent; and it is easy to prove that, when n — oo,
F — 3 emirq,, whenever the last series is convergent ; so that

lim lim F = hm 2 e-mirq, |
P—>0 N—>00 :

which is Abel’s limit, whenever this hmlt exists. Thus the ordinary sum
and Abel’s limit correspond to the two repeated limits of F.

On the other hand, we may make n and p tend to infinity together.
For example, if we suppose that n-}1 = p, then

S8yt t8y,
= Z( Tt

and we obtain the (C, 1) definition. If we suppose that n-+1 = kp, we
obtain what is very nearly the (C, k) definition of Ch. V.t

NOTES ON CHAPTER 1V

§ 4.1. The general definition of a ‘Nérlund mean’ occurs first in Voronoi, Proc.
of the eleventh congress of Russian naturalists and scientists (in Russian), St. Peters-
burg, 1902, 60-1. There is an annotated English translation by Tamarkin, Annals
(2), 33 (1932), 422-8. Voronoi’s article was a short note in a rare publication, and
was unnoticed until Tamarkin called attention to it. A number of special cases
of the definition, such as Cesaro’s, were, of course, already familiar.

Nérlund gave the definition independently in Lunds Universitets Arsskrift (2),
16 (1920), no. 3. He (explicitly) and Voronoi (tacitly) assume that p,/F, — 0, so
that the method is regular.

§ 4.2. Of the two proofs of Theorem 17, the first is Norlund’s. The second,
depending on Theorem 18, was given independently by Zygmund, Mathesis
Polska, 1 (1926), 75-85 and 119-29, and by Silverman and Tamarkin, M Z, 29
(1928), 161-70. Voronoi states the theorem, and his short indications show that
his proof was on the lines followed by these later authors.

§§ 4.3—4. Theorems 19 and 21 are due to M. Riesz, PLMS (2), 22 (1923),
412-19.

The condition (4.3.7) is also unnecessary when both 3 p, and ¥ ¢, are con-
vergent, but the question remains open when 3 p, < 0, ¥ q, = .

§ 4.5. Theorem 22 is proved, with a different purpose, by Szego, MZ, 25
(1926), 172-87 (177). Szcgd attributes the result to Kaluza. Theorem 23 seems
to be new. I had originally inserted the additional condition p, = o(g,), but
Dr. Bosanquet showed me that this condition is unnecessary.

§§ 4.7-8. Theorem 26, and a generalization for complex b,, were proved by
Kronecker, CR, 103 (1886), 980 and 106 (1888), 835. Sce Pringsheim, Vorlesungen
tiber Zahlen- und Funktionentheorie (Leipzig, 1916), 1, 308-10 and 938.

Theorems of the type of Theorems 25 and 29 are familiar, and have been
generalized by many writers in many directions. For these particular theorems
see Dienes, 394-7; Hardy, PLMS (2), 4 (1906), 247-65; and Perron, M Z, 6 (1920),
286-310. We can prove, a little more generally, that (4.7.4) and (4.7.6) are neces-
sary and sufficient conditions for ¥ a, = s to imply ¢(z) — s.

t See in particular § 5.16.
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Theorems 28 and 30 were proved by Hardy in MM, 39 (1910), 136-9 and
PLMS (2), 8 (1910), 301-20 (318).

§ 4.9. For A, = n, Stolz, Zeitschrift fir Math. 29 (1884), 127-8: see Stolz und
Gmeiner, Einleitung in die Funktionentheorie (Leipzig, 1905), 2, 287-8, or Brom-
wich, 252-5. For general A,, Cahen, AEN (3), 11 (1894), 75-164 (86-7): see
Landau, Handbuch, 737-8, or Hardy and Riesz, 3—4.

§ 4.10. For (4.10.1) sec Tannery and Molk, 2, 10-13, or Hardy and Wright,
280-2.

Hardy, QJM, 38 (1907), 269-88, discusses the series (4.10.2) in detail, and proves
the formula

~V__ =0V | g% S (—bry® LS T (2n A 1)mi (zn41)mijlog a
eV—e Wie — e = a1 oyt T()E-c_tz {—_W}y ,

which shows the oscillations when y — 0 explicitly. The argument here is due
to Maclagan-Wedderburn.

§ 4.11. The appropriate references to the work of Le Roy, Lindelsf, and
Mittag-Leffler are given in the note on § 8.10. The proof of Theorem 32 is
Lindelof’s.

§ 4.12. Borel gavoe the general definition (4.12.1) in his earliest work on the
subject: see Borel, 95. The regularity of the B definition was proved first by
Hardy, TCPS, 19 (1902), 297-321 (298-300).

§ 4.13. There is a very clear account of the simpler proporties of the Stieltjes
integral in Widder, ch. 1.

Theorem 34 is proved by Good, JLMS, 19 (1944), 141-3, except that he
supposes x absolutely continuous. We have ignored the caso

£ <o, x(+0)—x({—0)=D >0,
which actually leads to a ‘ trivial’ method, i.e. one summing convergent scries only.
In JLMS, 21 (1946), 110-18, Good proves a further theorem of the same
character.

§ 4.14. Theorem 35 is a corrected version of one stated by Bromwich (1),
301-2. The conditions which he gives are unnecessarily strong in one way and
inadequate in another. The example at the end of the section is his.

Mr. Eggleston observes that we can dispense with condition (iii) if the integral
in (v) is absolutely convergent.

§ 4.15. The formulae used for the transformation of theta-functions will be
found in Tannery and Molk, 2, 263 (Table XLIII).

§ 4.16. For the general theory of Riesz’s typical means see Hardy and Riesz.

§ 4.17. There are general accounts of the theory of the summation of Fourier
series in Hardy and Rogosinski, ch. 5, and Zygmund, ch. 3.

De la Vallée-Poussin’s method (VP) was defined by him in Bulletin de I’ Acad.
Sc. de Belgique (1908), 193—-254, and applied to the summation of the successive
derived series of Fourier series. Gronwall, JM, 147 (1917), 16-35, proved that
any series summable (C,k) is summable (VP). He also proved that the series
> 2™ is summable (VP) to 1/(1—2) in the interior of the outer loop of the limagon

(1) [1+2[* = 4|2,

from which it follows that the VP method is stronger than the aggregate of the
(C, k) methods.
The VP method has very close relations to the (A, 2) method. Thus Hardy
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(Le. under § 2.8) proved that the methods are equivalent for Fourier series; and
Hyslop, PLMS (2), 40 (1936), 449-67, extended the equivalence to all series for
which a,, = O(nK). He also observed that Y z" is summable (A, 2) inside the
curve

(2) r=dl (6] <m),

which includes the curve (1), except for the point z = 1, in its interior, so that
there are series summable (A, 2) but not summable (VP). Later, Kuttner, PLMS
(2), 44 (1938), 92-9, proved that (VP) —» (A, 2) in all cases.

Another method with very similar properties has been defined by Obrechkoff,
CR, 182 (1926), 307-9.

The Riemann methods are fundamental in the theory of trigonometrical series.
Thus the regularity of (R, 2) is ‘Riemann’s first lemma’ and that of (R,) is his
second. A good deal has been written recently about the relations of (R, k) and
(C,1). Thus Verblunsky, PCPS, 26 (1930), 34-42, proved the implication

(C,k—S) -> (R’k+1)9
and Kuttner, PLMS (2), 38 (1935), 273-83, proved (R,1)—= (C,1+38) and
(R, 2) = (C, 2+38): here § is any positive number. Kuttner gives other references.

Marcinkiewicz, JLMS, 10 (1935), 268-72, proves the ‘incomparability’ of
(R,2) and (R,). See also Kuttner, PLMS (2), 40 (1936), 524-40; Hardy and
Rogosinski, PCPS, 43 (1947), 10-256 (where it is shown that the methods are
incomparable even for Fourier series).

§ 4.18. For all this see Hardy and Chapman, QJM, 42 (1911), 181-215.
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ARITHMETIC MEANS (1)

5.1. Introduction. The simplest method of summation of a
divergent series is the first method of § 1.3. There are many important
generalizations of this method, and in this chapter we shall discuss
some of them more systematically. We shall find it convenient to
change our notation, writing 4, instead of s,, and 4 for the sum of
the series instead of s. Thus } a, = 4 (C, 1) means

. Agt+A,+...+4,

lim | = A.
We shall also sometimes use A for the series, as well as for its sum,
and say, for example, that ‘4 is summable (C, 1)’ (naturally to sum 4).

5.2. Holder’s means. The most obvious generalization is that first
made by Holder, who defined a sequence of methods which we shall
call the (H, £) methods.

The (H, 1) method is the same as the (C, 1) method: thus

1—1+1—... =} (H,1).
The method fails for 1—24-3—4--..., since here the 4, are 1, —1, 2,
% B and g Avtdite.t4,
" n1

is $(n+-2)/(n+1) if n is even and 0 if n is odd. We can, however, obtain
a limit by repeating the averaging process; for the first of these values

is $+o(1), and so e Htl,—f—H}—}-.v._.jl—H}l_}l

n+1 4
Similarly, three averagings will give } as the sum of 1—3+6—10+-....
We are thus led to define summability (H, k), for any positive integral
k, as follows. We define H% for k = 0, 1, 2,..., by H} = 4, and
grer _ HoHH A H
" n-+1
If HE > A when n — co0, then we say that 3 a, is summable (H, k) to
sum A, and write
(5.2.2) ayt+a,+ag+... = A (H, k).
By summability (H, 0) we mean convergence.

(5.2.1)

t+ We write H}, Ha,... rather than HY’, H{?,... for convenience in printing: the indices
cannot be read as powers.
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5.3. Simple theorems concerning Holder summability. We
shall find that Holder’s definitions, although the most obvious
generalizations of the (C, 1) definition, are for most purposes not the
most convenient. They have, however, certain advantages. In parti-
cular, if we write HE(A) for the H® formed from the partial sums 4,,
and denote the sequence (HE(A4)) by H¥(A), then it is obvious from the
definitions that

H{HY(A)} = H,{H¥(A)} = HiH(A);
and this makes the proofs of some theorems particularly simple.

TaeorEM 38. If > a, = A (H, k), where k > 0, and k' > k, then
Sa,=AMHK). '

This follows at once from the definitions and Cauchy’s theorem of
§1.4.

THEOREM 39. If > a, = A (H,k), then 4, = o(n*) and a, = o(n*).
For H: = A+o0(1) and so
HiY= (n+1)HE—nHE_, = o(n), HE-?2= (n4+1)HE-1—nHE~1 = o(n?),
vy  Ap,=H)= n+1)HL,—nH._, =o(n*), a,=4,—A4,_,=o(nk).
This is the ‘limitation theorem’ for the (H, k) method. It shows, for
example, that (as we saw directly in §5.2) the series 1—24-3—4-...
cannot be summable (H, 1).

The next theorem reveals some of the inconveniences of the Holder
methods.

THEOREM 40. The (H, k) method has the properties expressed by

2 Ca, =C3a, B) 2 (a,+b,) =2 a,+ 2 b,
(y) aptay+as4... = ay+(a,+ay+...),
(8) ap+(a,+ay+...) = ayta,+ay+....

Here each equation is to be interpreted in the sense ‘if the right-hand
side has a value, in the (H, k) sense, then the left-hand side has a value
in the same sense, and the values are equal’. Thus (8) means ‘if
ay+a,-+... is summable to 4, then a,+a,+... is summable to 4 —a,’.

The properties («) and (B) are trivial (and true of any linear method).
If *=1andb, = a,,,, then B, = 4,,,—a, and
By+Bi+..+ B, _ 0424+ A+ A+ 4 ).
n-+1 T n1 n-+2 o)
and (y) and (3) follow. But the relations between the means of the a,

and the b,, are not simple for higher values of k, and we postpone the
rest of the proof to §5.8.
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5.4. Cesaro means. The Holder means were defined by a process
83 .83 .83 ..., where 3 is summation from 0 to » and § is division

by n-+1, operating on 4, 4,,.... The Cesaro means are averages defined
by k& summations followed by a single division.
We write

(5.4.1) A = A, = ag+a,+...+a,,., A= AE1pAR-14 4 Ak-

and K% for the value of 4% when a, =1 and a, = 0 for n > 0, i.e.
when 4, = 1 for all n. If

(5.4.2) CkA) = Ak/Ek > A
when n — 0o, then we say that Y a, is summable (C, k) to sum A, and
write
(5.4.3) ayF+a,+a,+... = A4 (C,k).
It is easy to express A% explicitly in terms of 4, or a,. We have

. n —Pp no__ n+p—1 n.
d (I“x)p_z(w”(n)x —Z(p—l )x
an
> Akgn = (1— —2) 1 Y Ak-1n = (1—x)-2 3 Ak-2n..
=(l—2)* Y A,a" = (1—2)*1 3 a,z"

Thus > Akan = z (n+k 1) Z A,z

and

. n—y+4-k—1 . v+k—1
(5.4.4) Ak = Z ( i )A,, - Z ( e )An_y.’r
Similarly,

(5.4.5) =3 (”‘“ZH‘) a= ("*k"‘) ay_,

If a, = 1 and the remaining a, are 0, then A% reduces to (n—};k)
Hence
pan = () o DD
k
Also (n-’rk) (DD k)
so that summability (C, k), to sum A, may also be defined by
(6.4.7) kln*4k > A.

1 Here wye use a natural extension of the convention of §3.1. A sum X «, Bp_,,
without limits, is extended over those v for which v and n—v are non-negative, i.e.
over 0 < v { n.
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More generally, we have
D AFxm = (1—x)*-0 Y Akgn 3 Akan = (1—z)¥'-* 3 AKxn;
and so

",4,8 K — v+k"‘_k—"l k

(') ) An Z ( kr__k___l An-—w
k'—k

5.4.9 k__ 1w 4 .

(5.4.9) Ay =S (74

These formulae are essentially the same, since

[FH =

so that (5.4.9) is (5.4.8) with £ and %’ interchanged; but the forms
given are the most convenient when ¥’ > k. Since the coefficient in
(5.4.9) is 0 when (X" and k are integers and)v > k'—k > 0, it may also
be written as

K —k 'k

(5.4.10) Ak = z (—1)v(k )A;g’_,,.

v=0
We can use (5.4.10) to define 4% for negative k. Thus, if k = —p
and k' = 0, it becomes

AP =A4,— (ﬁ))An—1+ (g)An—z'—"' = (_l)pApAn—p'

1 4

In particular
(5.4.11) A;l= —AA, ,=A4,—4, , =a,;
and it is often convenient to use this convention.

5.5. Means of non-integral order. We have supposed so far
(except in the last paragraph) that k£ is a positive integer, but the
formulae (5.4.4)—(5.4.7) remain significant for non-integral &, and enable
us to give more general definitions.

If k£ is a negative integer, and we define E¥ either by (5.4.6), or as
the coefficient of z” in (1—x)~%-1, then E*¥ = 0 for n > —k—1, and
definition (5.4.2) fails. We must therefore exclude these values of £, and
it proves best to suppose that k > —1. We then define A% by (5.4.4) or
(5.4.5), E¥ by (5.4.6), and summability (C, %) by (5.4.2). The asymp-
totic formula for E¥ is still valid if we interpret k! as I'(k+1), and we
can use (5.4.7) with this interpretation.

To show the desirability of the restriction £ > —1, we suppose

2 apa® = (1—x)2,
where p is positive and non-integral. Then

0 = pet+l)(ptn—1)  no7
" n! I'(p)’
4780 H
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so that 3 a, is a divergent series of positive terms. But 3 Akx" = (1—x)~*-1-7,
and in particular 3 A~?~1z" = 1. Hence 4,7~! = 0 forn > 0, and so (if we do
not restrict k) > a, is sumnmable (C, —p—1) to sum 0. It would be very incon-
venient for most purposes to attribute a finite sum to a divergent series of positive
terms.t

We shall therefore suppose generally that & > —1; but it is sometimes con-
venient to use a special definition of summability (C, —1). We shall say that
> a, is summable (C, —1) to sum A4 if (i) it converges to 4 and (ii) a, = o(n™?).

If Ak = O(n*) then we shall say that A4, is bounded (C, k), and write

A, = 0() (C,k).
More ge;wrally, by
A, = o(nt) (C, k), A, = 0O(n!) (Ck),
we shall mean Ak = o(nltk), Ak = O(nltk),
And we shall use similar notations for other methods of summation: thus
> a, == O(1) (A) will mean that ¥ a,z" = O(1) when z —> 1—0.

In what follows we shall sometimes work with a general £ and sometimes
restrict k& to integral values. Most of the theorems with which we shall be
concerned are true for all £ > —1, but the proofs are often much simpler for
integral k. Thus we have often to use the difference

k k
AFy, = u,— (l)u,,+1+ (2) Upyg— e s

This is a finite sum when £ is integral, but the generalization for non-integral %
is an infinite series, and this often leads to serious complications. In such cases
we shall usually suppose k integral.

5.6. A theorem concerning integral resultants. The sum
(5.6.1) cp= 2 a,b,=3%ab, ,=3a,,b

ptr=n
and the integral

(5.6.2) c(x) = f a(t)b(x—t) dt = f a(w—t)b(t) d¢ }
are called the resultants of a,, b, and a(x), b(x). There is one pair of

theorems concerning such resultants which we shall use repeatedly, and
which will be particularly important in Ch. X.

THEOREM 41. Ifr > —1,s8 > —1, and

n+r nr n+s n

5.6.3 ~ ~N —, b, ~ ~ B,
M s R o L e

en

n+r-+s+41 nr+é+l

5.6.4 ~/ ~y o .
( ) On ( r4s+1 )aﬁ F(r+8~l—2)aﬁ

1t Though some definitions do this: thus 14-24-4+4.. = —1 according to the &

definition of § 1.3. See also §§ 13.10 and 13.17,
1 Here wo use a convention similar to that of § 5.4: the range is 0 < ¢ < 2. The
German equivalent of resultant is Faltung.
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THEOREM 42. If r > —1, s > —1; a(x) and b(x) are integrable over
any finite interval of positive x; and

(5.6.5) a(x) ~ ox’, b(x) ~ ﬂxs
when x — 00} then
(5.6.6) o) ~ = (;?;-1125 g‘f;l) ofar o4,

r

as a, = o(n"),..., a(x) = o(x"),... if « or B is 0; we leave the necessary
modifications of the proofs to the reader. There are similar theorems in
which hypotheses and conclusions involve O instead of o.

In these theorems a,, ~ (n+r) ®y.evy A(T) ~ ox’,... are to be interpreted

Theorem 41 may be deduced from Theorem 42 by taking a(x) = a,
and b(x) = b, for n < & < n+1, when ¢(n-}-1) reduces to c,.

In proving Theorem 42 we may suppose a = B ==1. We choose
8 = d(e) so that
(5.6.7) 0 <d <, ol < (r+1)e, 8%+l < (s+1)e,

and also

1 1-8
Ter+H0s+D) _ [, ] ) duc:
(5.6.8) y= T(r+s+9) fu(l u)® du < ! u'(l1—u)® du-te;
0

and write
oz (1-9d)x x
(6.69)  c@)=[+ [ + [ =e@) o) es®).
0 8z (1-8)z
When § is fixed we can choose xy = (3, €) = x,(e) so that
1-8)x a-9dx
(1—e) f u(x—u)® du < cy(x) < (14-¢) f u'(x—u)® du,
3z 3z
1-8 1-8
(1 —e€)xr+e+l f w(l—u)® du < co(x) < (14-¢€)am+e+! f u'(1—u)® du,
S o
for x > z,. It follows, after (5.6.8), that
— @) _ 1-8
lirn:l?r2+s+1 < (1+¢) ! u’(l-——-u) (1+€)
cal®) e
lim —22% > (1—) f w(l—u) du > (1—e)y—e.



100 ARITHMETIC MEANS (1) [Chap. V

On the other hand, there are numbers H and K such that |a(x)| < Kzr
and |b(x)| < Ka® for x > H. Hence if, as we may suppose, éx, > H
and (1—38)x, > H, we have

oz H oz
ley(x)| < Ka? f la(u)| du < Ka? f la(u)| du + K%z j w du
0 0 H

< Ko [ |a(u)] du +- K25 arvens
< xbf|a(u)] u -+ mw .
It follows from this and (5.6.7) that
6y (®)] or+t
Lim T8+l < K2r+l < K%,
and there is plainly a similar inequality for |c,(x)].
Collecting our results we see that
o C : Cq(T
lim = (x .)+.1 < im 2( )1+ | rlJEszll l{v_:}:r(,g;).ll < (1+€)y+2K2€,
. c(x . Cylx i cq(
hm xf-(i-ﬂz-l 2 I_Ln—l-xrz-fs-!-)l hm lx:-{(-szl! hm Ixffszl! > (1 ) _—(1+2K2)€’

and so that c(x) ~ yar+s+l,

We can, of course, prove Theorem 41 directly in a similar way, the part of
the formula

Dr+1)'(s-+1)

Y as)8 grtiatl

fu (x—u)? du = Tirtat2)

being played by an identity between binomial coefficients, viz.
u+r)(n——v+3) _ (n+r+s+ 1)

(6.6.10) Z( r 8 T\ r4s41 )

- 5.7. Simple theorems concerning Cesaro summability. We
begin by proving the theorems for Cesdro means corresponding to
Theorems 38-40.

THEOREM 43. Ifk' >k > —1 and > a, = A (C, k), then
Ya,=4 (Ck).
For, if ¥’ = k-8, then

A¥ — Z (v+8 1) E

by (5.4.8); and A% ~ (n—k}_k)A. It follows from Theorem 41 that

W n+k4+8\ . [n+k
4z ( k-3 )A—( k' )A'
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In particular, taking & = 0, and writing k for &', we have
THEOREM 44. If k > 0, then the (C, k) method is regular.

Since the coefficients in C%(4) are non-negative when k > 0, it follows
from Theorem 9 that the method is totally regular in the sense of § 3.6.
It is instructive to deduce Theorem 43 from Theorem 2. If we express Ck'(4)in
terms of C%(A) from (5.4.8), with k¥’ = k-}-§ and v, n—v interchanged, we find that
CK(A4) = 3 ¢, CKHA),
n—v+06— 1)(V+k)/(n+k+8)
§—1 k k48

forv < nandec,, = 0 forv > n. Then ¢,, > 0, ¢,, = O(n~*1) when v is fixed
and n — o0, and ¥ ¢, , = 1 by (5.6.10), so that the conditions of Theorem 2 are
satisfied. Also, since ¢, , > 0, C%(A) — co implies Ck'(A4) — co.

where Cpy = (

Theorem 43 remains true for k¥ = —1, if we use the definition of
summability (C, —1) given in §5.5, but it needs a different proof.
Actually rather more is true.

THEOREM 45. If ) a, converges to A, and a, = O(n71), then
Sa, =4 (C,—1+9)

for every positive 6.
We may suppose 4 = 0 and § << 1. We write

(5'7'1) A;1+8 = Z (v—;-ajl)a‘n—v =le+ g = S1+S21
- 0

v=0

where N = [wn], 0 < w << 1. Then

=l S sof) ol =ofo)

uniformly in w. We can therefore choose = so that

(5.7.2) 18] < end-.
Next, if u, = (v_;_s_-; 1), U, —Uy,_y == (v—;——b\——;2) = 0(*-?); and
(6.7.3) 8 = Uy, Nt UN BN a Tt UL
= A (U —Up—1) F A3 (11— Up_g)+o.+ Ay (Ui —Un) +An_y iy
- n i\’ n3“2)+0(1)0(n8“1) — 0(%8—1).

Finally, it follows from (5.7.1)~(5.7.3) that n1—34,;1+% > 0, i.e. that Y a,
is summable (C, —1+38) to sum 0.

THEOREM 46. If k > —1 and Y a, = A (C, k), then AL = o(n¥) for
k' < k.
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This is the ‘limitation theorem’. It is not necessary here to suppose
k" > —1; in particular the result is true when ¥’ = —1, 4¥ = q,,.

We take A = 0, so that 4% = o(n*), and write ¥’ = k—3, so that
8 > 0. Then, after (5.4.8) and (5.4.9),

Ay =3 (0 b = 3 =)k, = S dak,

say. If & is an integer then, by (5.4.10), A¥ is a linear combination of
d-+1 of the Ak, with coefficients whose moduli are all less than
(14+1)% = 28; and so A¥ = o(nk¥).
If & is not an integer, then I'(—38)d, ~ n-3-1 and 3 |d,| < oo. We
then write
[in]
A =(2+ > )ddb,=8+5

[n]+1 )
Here

8,1 < S 14 I14% 1 =3 14 ]lo(4)] = o(w 3 1d,)) = otub),

n —[§n]
S < 3 14145, = 0(n-3" 3" uk) = 0wk ) = o(n)

n}+1
since £k > —1 and § > 0; and the theorem follows.

THEOREM 47. The (C,k) method has the properties (x)—(8) of
Theorem 40.

It is only necessary to prove (y) and (5). We have to show that, if
b, = @,,,, then either of > a, = 4 (C,k) and > b, = A—a, (C, k) im-
plies the other. But

> Aker = (1—2)* 1Y a, 2" = (1—z)*Ya,+x 3 b, 2").

Hence A% = E¥*a,+ Bk_, for n >> 0, and the conclusion follows.

TuroreM 48. If > a, is summable (C, k), where k > —1, then
Ay = (U= 1)+ (T 11— Cppg2) .. (C, ).

We may suppose, after Theorem 47, that m = 0. If b, = a,—a,
then B, = ay,—a, ., = a,—u,, say, and

—v+k—1 k
P i P L e

Now ¥ u, is summable (C,k), by Theorem 47, and Uk~ = o(n*), by

Theorem 46. Hence Bk ~ (n}tk)ao, and Y b, is summable (C,k) to

sum a,.
The theorem may be stated in the form if > a,, is summable (C, k) then
a, - 0 (C, k), and is also true (and trivial) for £ = —1.



5.8] ARITHMETIC MEANS (1) 103

5.8. The equivalence theorem. Our next theorem is distinctly
more difficult.

TurorEM 49. The (C,k) and (H, k) means are equivalent: if 3 a, is
summable (C, k), then it is summable (H, k) to the same sum, and conversely.

Here naturally £ is integral, since we have defined Holder means only
for integral k. We begin by proving

TrEOREM 50. If
(5.8.1) _ SoS1t. 8y

my, n1 ’

then the hypotheses
(5.8.2) s, >3s (C, k), m, —>s (C,k—1)

are equivalent.

We define sk as we defined A% in § 5.4, so that
(5.8.3) o — ("+k)0k( ):
and mk, Ck(m) similarly. We have, by partial summation,
3 (+p), = (n+phu g = (n-Fp+1)ul—ul,
for any p and n. Hence, since s}, = (n41)m,, we derive successively

=3 (rl)m, = (nt-2mi—m2, 3 = (n-+-3)md—2md,...,
0

(5.8.4) s = (n+k)ymE—1—(k—1)mk;
and from (5.8.3) and (5.8.4) it follows that
(5.8.5) C¥k(s) = kC*~Y(m)—(k—1)Ck(m).

First, Ck~1(m) — s implies C%(m) — s, and so C%(s) - s.
Secondly, suppose that Ck(s) - s. Since m%—1 = mk—mkE_, (5.8.4)is

sp = (n+1)mi—(n+k)mz_,

or

(5.8.6) Ck(s) = (n+1)CE(m)—nCE_y(m).
From this it follows that

(5.8.7) (n-+1)CE(m) = Ck(s)+C¥(s)+...+Ck(s),

and therefore that C%(m) — s. Finally, (5.8.5) shows that CE~1(m) - s.
This proves Theorem 50: and it is easy to deduce Theorem 49. For,
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applying Theorem 50 % times in succession, we see that the hypotheses
Ck(d) > A, C:kY{HYA)}—~>A, .. CiH*YA)}>A, HEA)->A

are all equivalent.
It is plain that Theorem 40 (§ 5.3), the proof of which we postponed,

now follows from Theorems 47 and 49.

5.9. Mercer's theorem and Schur’s proof of the equivalence
theorem. Schur’s proof of Theorem 49 is similar in principle, but
makes the relations between the various matrices involved more explicit.
It depends on an important theorem of Mercer.

THEOREM 51. If o > 0 and
(5.9.1) t, = as,+(1—a)m, —> s,
then s, — s.

We define m_, as 0. Then s, = (n+1)m,—nm,_, forn =0, 1, 2,...,
and
(5.9.2) t, = (an+1ym,—amm,_; (n = 0,1, 2,...).

We choose ¢,, ¢,, ¢5,-.- S0 as to satisfy
% =1, ¢o—ag; =0, (at+1)1—20g; =10, (2a-+1)g3—3ag; =0,

Then
_ 1 a4l 2041 (n—1l)at1  T(ntp) i

" a2 3a na rB)Tn+1) TR’
where 8 = 1/«; and ]
(6.9.3) Qo+ +...+9, ~ W@—T——l—) ~ (an-+1)g,.

Multiplying the equations (5.9.2) by ¢,, ¢,,..., adding, and using (5.9.3)
and Theorem 12, we obtain

_ Dbttt Fnty
(Om'_l"l)Qn
and it follows from (5.9.1) and (5.9.4) that s, >s. This proves

Theorem 51.
We use the following notation. If the transformations T and U are

the same, i.e. have the same matrices, we write T = U. If T and U
have coefficients c,, ,, and d,, ,,, then o'+ 8U is the transformation with
coefficients ac,, ,+Bd,, . Ift = T(s), as in §3.1, and u = U(¢), then we

write u = U{T(s)} = UT(s).
If UT = TU, we say that T and U are commutable. We write T? for
TT, T3 for TT?, and so on. '

(5.9.4) m, - 8;
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If T has an inverse, i.e. a transformation S such that ¢ = T(s)
implies s = S(¢) and conversely, we write T-1 for S. If E is the identity,
i.e. the transformation ¢, = s, then T-'T = TT-! = E. A triangular
transformation in which ¢, ,, % 0 for all m has an inverse.

We write H® and C® for the (H, k) and (C, k) transformations, and
H, C for H®, C®. Thus H = Cand H® = H*, If (m+-1)t,, = sy+...+ 3y,
then s, = (m--1)t,—mt,_,. Thus the matrices of H and H-! are

1000 . . 1 0 00
gt o0 .. Haj_| -1 2 00
Hi=13y 110 ,  [HY 0 -9 3 o

Since A1 = Ar—A7,_, and (”;”) Cr(4) = A7, we have

rOr-1(4) = (n+r)O4(A)—nCh_y(4)
— {(n+1)03(A)—nC_(A)}+(r—1)C4(A) ;
and so rCr-0 = H-1CO 4 (r—1)C0,
(5.9.5) HCr-Y = pCO-(1—p)HCO = SOCH,
where p = 1/r and S® is the transformation
8 = pE+(1—p)H.

Hence H¥-r+1Cr-D = Hk-rSOCM for 0 <r < k. But H*- is com-
mutable with H and with E, and so with S®; and therefore

(5.9.6) HE-r+10r-D = SWHE-CH (0 < r < k).
We define T® by
(6.9.7) T = H—CO (0 < r < k),

so that T® = C® and T® = H*. Then (5.9.6) is T~V = SOT®; and

therefore

Ly 1\ ¢+ + ..
5.9.8 fr=1) _ _§(r) 1—=]" i n
® ) " r " n-+1

’
t& being the result of operating on 4, with T®. Hence, by Theorem 51,
the hypotheses £’ — A and t{~') - A are equivalent. That is to say,
T and T¢-Y are equivalent, and therefore T® and T® are equivalent.

Tt will bo observed that here we use the transformations C*), HC*-1, H2C*-2)
HF¥, whereas in § 5.8 we used C*®), Ck-1VH, C*-9H2,,.., H¥. Actually H? is com-
mutable with C@ for all p and ¢, so that H'C*-7" = C*-"H", and the two sets
of transformations are the same. This is not difficult to prove directly, but the
full reason for it will not appear until §§ 11.3—4.

b
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5.10. Other proofs of Mercer’s theorem. From the many other proofs of
Theorem 51 we select two.

(A) Knopp’s proof. One proof, due to Knopp, has the merit of avoiding all
algebraical calculations. We may suppose without loss of generality that s, is
real; and it is sufficient to show that s, tends to a limit.

Given n > 0, we distinguish the two cases (a) s, < m,, (b) 8, > m,. Since
8, = (n+1l)ym,—nm,_,, 8, < m, implies m,_, > m, (and s, > m,, 3, = m,
imply m,_, < m, and m,_; = m, respectively).

(i) Suppose that
(5.10.1) limm,, = oo.

Then, given @, there is a p for which m, > G. If n = p is in case (a), then
My_y > my, > Q. If also p—1isin case (a), then m,_, > m,_; > G; and so on.
If all of p,p—1,...,2 are in case (a), then m, > @, and this is impossible for
large @. Hence one of these numbers must be in case (b), and there is a ¢ such
that s; > m; > G. But then

ty = asg+(l—a)ymy = mg+toa(s;—my) > G,

a contradiction for large @, since t, is bounded. Hence limm, is finite; and
similarly limm, is finite, so that m, is bounded.
(i1) Suppose that (m, 18 bounded and)

(5.10.2) ! = limm, < limm, = L.

Then there are numbers 2 and H such that » < H and each of m, < h, m, > H
is true for an infinity of n. Suppose, for example, that

(5.10.3) my, < h, m, > H, q > p.

If ¢ is in case (a) then, as before, m,_; > m, > H. If all of ¢,q—1,...,p+1 are
in case (a), then m, > H > h, in contradiction to (5.10.3). It follows that there
is an r, greater than p, for which s, > m, > H and

(5.10.4) t, = a8+ (1—a)ym, = m,+«afs,—m,) > H.

And, since p may be as large as we please, (5.10.4) is true for an infinity of r.
Similarly ¢, < h for an infinity of »; and this and (5.10.4) together contradict
the hypothesis that ¢, tends to a limit. It follows that (5.10.2) is false, and that
m, tends to a limit; and therefore, by (5.9.1), s, tends to a limit.
(B) Hardy’s proof. Another proof, by Hardy, gives rather more, in particular
the extension of the theorem to complex «. It is convenient to begin by a trivial
transformation of the theorem.

We write Upp1 = (8438 +...+8y), a = (a—1)/a.
Then (5.9.1), with n—1 for n, becomes
(6.10.5) Up—Upy_y— QUL [N —> 8,

and positive values of « correspond to values of a less than 1. Mercer’s theorem
asserts that w,—wu,_, and u,/n then tend to s/(1—a). We prove, more generally,

THEOREM 62. If a = a+if and « 1, then (5.10.5) implies

. (n+1) s
Yn = OP(n+ 1—a)+1——a+0(n)°

If o« << 1, then C = 0.
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We may suppose that s = 0. We write

_ T@m+1)
u'n I‘\(n+l ¢n fn‘ﬁn'

Then f, ~ n% and f,—fn_1 = afp/n. Hence
fn~1(¢n"¢n—1) = fn‘?l’n”"fn—-l‘lsn-l—(fn“fn_ﬂ‘ﬁn
= Up—Up_y—aUL/N = 0(1),
and so ¢, —d, ; = o(n~*). If « < 1 then

n = Bot $<¢m~¢m_1> = Bt >’;:o<m~«) — o(ni—)

and u, = O(n*)o(n*~*) = o(n). If o > 1 then the series ¥ (¢,,—¢p,_,) 18 con-
vergent, ¢, tends to a limit C,

o= O— §:(¢m+1—¢m) — ot ?o(m—«) — C4ont-),

and u, = Cf,+o(n).
There are theorems of the same kind concerning ‘asymptotic differential
equations’, and one particularly simple theorem which we shall use later, viz.
TeEOREM 53. If f(2)+f'(x) — O when x — o0, then f(x) — 0.

This may be proved directly as follows. If f’ is of fixed sign from a certain x
onwards, then f is monotonic. Thus f tends to a (possibly infinite) limit I, and
f’— —1I; and these conclusions are contradictory unless [ = 0. If, on the other
hand, f’ assumes values of either sign for values of  beyond all limit, then f — 0
when x — oo through the values which make f a maximum or minimum, and
therefore when x — oo in any manner.

5.11. Infinite limits. It is natural to ask whether the equivalence theorem
extends to the case in which the limits are infinite. Here the answer is negative.

TaEOREM 54. If 8, — 0 (C, k) then s, — o (H, k). The converse is false when
k> 1.

Here again k is integral. It follows from (5.9.5) that
H = CW, H? = HCW = }C® 4 3HC®,

H? = JHC® 4 1H2C? = }CO 4 }HC® 4- 3 H2C®),
and generally

k—1
(6.11.1) HF == 3 a;, , HPCH),
=0
where a;,, > 0. Hence
k—1
(5.11.2) HE(s) = 3 ay, HR{C®)(s)}.
=0
Also
n
(5.11.3) H2{C%)(8)} = > "’n.v,a CH(s),
2=0
where k,, , , > 0; and it follows from (5.11.2) and (5.11.3) that
n
(5.11.4) Hﬁ(s) = z bk,n,qogk)(s),
a=0
k—1
where b,ma = E @,phn,p,q > O

Consideration of the case in which s, = 1 for all n shows that 3 b, = 1.
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The equivalence theorem shows that the transformation (5.11.4) is regular,

and, since by ,, > 0, it satisfies the conditions of Theorem 9. Hence

(5.11.5) lim Cf#)(s) < lim H¥(s) < lim Hi(s) < lim C{P(s),

and s,, — oo (C, k) implies 8,, — oo (H, k). This proves the positive half of Theorem

54.
To prove the negative half, suppose that k > 1 and C§)(s) = 2m, O} ,(s) = 0.
These equations define a sequence (8,) for which

lim C)(s) = 0,  [im O (s) = oo,
and H,{C®)(s)} — co. By (5.11.2), HE(s) > a;,,H,{C*)(s)}— c0. Thus s, — o (H, k),
but ¢, — o (C, k) is false.

5.12. Cesaro and Abel summability. Theorem 43 shows that
the strength of the (C, k) methods increases with k. Our next theorems
show that the A method is stronger than any of them.

Taeorem 55. If > a, = A (C, k), for some k, then 3 a, = A (A).

THEOREM 56. There are series summable (A) but not summable (C, k)
for any k.

We need a lemma, important in itself.

Targorem 57. If d, >0, Yd, =00, >d,x" i3 convergent for
0z <], andc, ~ Ad,, where A # 0, then

Clx)=Dc,a" ~AD(x) =43 d, a"
when x —> 1.

We may suppose ¢, real and 4 = 1. Then ¢, /d, lies between 1—e

and 1+¢ for n > N = N(¢). Hence, on the one hand,

N 0
x) = > c,x+ Y c 2™ < (14-€)D(x)+ 2 le, |2™,
0 NT1
and on the other
N
C(z) = (1—e)D(x)— zd zr— 3 e, ™.
0
Since
lim D(z) > lim Z d,x™ = Dy
0
for every N, and so D(x) — o0, it follows that

— < 1
wive ST EE ~
and therefore that C(x) ~ D(x).
Theorem 55 is a corollary. We may suppose 4 5 0. Then, as in

§6.4, S Akan 3 Akan,
(x) Ea T = (1 a:"’“l ZEkxn’

and AX ~ AEk, so that f(x) > 4

= 1—e¢,
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To prove Theorem 56, we define a,, by
(5.12.1) flx) = elll+D) = %" q

Then f(x) is regular except for x = —1, so that the series is convergent
for |x| < 1; and f(x) - et when - 1. On the other hand, a, is not
O(n¥) for any k; for this would involve

fl@) = O(X n¥lz|) = Of(1—|x|)~*-1},
uniformly in the circle || << 1, whereas f(x) tends to infinity like
el1-12D) when x — —1 by real values. It follows from Theorem 46 that
> a, is not summable (C, k) for any £.

A more elegant example of a series with the properties desired is 3 (—1)%ec¥",
where ¢ > 0. The a, of (5.12.1) is roughly of this type, but the proof of this is
more troublesome.

5.13. Cesaro means as Norlund means. The (C, k) means are
the (N, p,,) means with

= {"T5) w0 =3 (M e = 0o

The (H, %) means are not Norlund means (except when £ = 1). It is

interesting to find examples of Norlund means (@) stronger than any

Cesaro mean and (b) weaker than any Cesaro mean of positive order.
(@) We suppose k integral, and take

n-+k—1
pnz( ;L——-—-l ): ane’/n:

when P, = O(nk), @, ~ 2+ne'™; and define «, by
q(x)
k() = Y k2" = 21 = (1—2x)kq(x),
@ =3 e a@),t
so that K, = (—1)kAkeV(n-k)  Q—Fkp~tkegin
forn > k. We have to show that summability (N, p,) implies summability
(N, ¢,), and we use Theorem 19. The second condition of the theorem is
plainly satisfied, and it is enough to prove that
Y en=m(pn—m)~tkmk = O(vne'™),

the summation extending over 0 <m <m. The terms in which
m > 4n give O(e*'™) with a ¢ < 1. Finally,

Nn—A(n—m)

m
V(n—-m) ngp—gmivn
= 24n’ ¢ < ere ’

+ We use « for the k of § 4.3, since k is required otherwise,
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and the remaining terms give
O(e¥mn -tk z mke-tmiVn) — Qfevnp-tk(1 __e—m-i)—k-l}
= Ofe/"n-tepik+D} = O(vn e'n).
(b) The means for which p, = (n-1)-1 have been called by M. Riesz

‘harmonic’ means. We take ¢, = (n—}c_k.;l), where & < 1, so that

(N> Qn) is (C’ k) Then p?z <pn-—1pn+1’ and pn/pn—l < Qn/Qn—-l if
(n+1)(n+k—1) > n? ie. if » > (1—k)/k. Thus the conditions of
Theorem 23 are satisfied, and summability (N, p,,) implies summability
(C, k) for every positive k.

5.14. Integrals. The definitions for integrals corresponding to those
of §§5.2-5 are as follows. We take the lower limit of integration to
be 0, and suppose, to avoid minor complications, that a(x) is bounded
in every finite interval (0, X).t

We write
x

HOw) = A(x) = f at) dt,  He) = L f He1(0) d

oz
0
If H¥(x) - A when x — c0, we write
A@) >4 (Hk), [a@ds=4 (HE)}]
and say that the integral is summable (H, k) to 4. If

Ayw) = A@),  Ayw) = [ Ay (0) dt

and kla—kd4,(x) > 4,
then we write

A(z) > A4 (C, k), fa(x)dx =4 (C, k),

and say that the integral is summable (C, k) to 4.
These definitions are for integral k. If £ is integral, then

(.141)  Ay(x) = f A, () dt = f (x—t)A,_y(t) dt
0 0

= (7_._1_1_)' f (x—t)k-1A(t) dt _—_7}! f (x—t)ka(t) dt,
0 0

by repeated partial integration; and these formulae suggest the exten-

T See the note at the end of the chapter.
I Integrals without limits being as usual over (0, ).
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sion of the definitions to non-integral k. We say that the integral
f a(x) dx is summable (C, k), where & > 0, to sum 4, if

(6.14.2) i .
(k+1 _ ]c%f t)e-1A(t) dt = f(l—-i)ka(t) dt > A.
0

ok
0
The second form, with a(t), may be used for all £ > —1.
If 4,(x) is defined by (5.14.2), and &k > —1, 1 > 0, then

T

1 [ (x—t)-1dt f (t—u)ka(u) du

1 ¢ B .
ﬁz‘sof @A %= rarg)

0
[ a(u) du f (t—u)k(x—1t)-1 dt

u

1
~ D+ 1)T()

8 [~

x—u)eta(u) du.

(lﬂ+l+1) f
Thus

(5.14.3) A, () = I,tl) f (@—t)-1d,(t) dt (k> —1,1 > 0).

0
This is the analogue of (5.4.8).

5.15. Theorems concerning summable integrals. There are
theorems for integrals corresponding to most of those of §§5.3-11, and
the proofs are usually a little simpler than those of the theorems for
series. There is, however, one important difference. If X a, is con-
vergent then a, — 0, whereas there is no corresponding theorem for
integrals. Thus there is no limitation theorem such as Theorem 46,
and this destroys the analogy in some ways.

We summarize the main results, leaving the proofs, for the most part,
to the reader, and emphasizing only what points of difference there are.

If f a(x) dx is summable (C, k), where k¥ > —1, then it is summable
(C,k') for k' > k. The proof depends on (5.14.3), and is otherwise
similar to that of Theorem 43.

The methods have the properties analogous to those of Theorem 40.
In particular

(5.15.1) a(x)dxr = | a(x)dx + | a(x)dx (C,k)
S e
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if the last integral is defined as _[a(c-l—y) dy and either side of the
equation has a meaning.

The (H, k) and (C, k) definitions are equivalent. This is most easily
proved by a modification of the proof of § 5.8. We have to show that, if

Sx(x) is defined like 4,(x) in §5.14, and
T
f s(t) dt,
0

then the assertions

(5.15.2) Ck(x, s) - s, Ck-Y(x,m) — s

are equivalent. Now s,(x) = am(x), sy(xr) = xm,(x) —my(),..., where

Ck(x, s) = klx—*s,(x), m(x) =

8| -

my (2 fm 8, my(r) = 0ffml(t) dt,...,

and generally

(5.15.3) $4(®) = wmy_y () — (k— Lymy (@),

by repeated partial integration; and this is equivalent to

(5.15.4) C*(x, s) = kC*-Y(x,m)—(k—1)C*(x, m).

From this it follows that the second of (5.15.2) implies the first.
Next, (5.15.3) gives

s(x) _ d (mk(x))’ my(®) _ f Si(?) dt,

0

T
and so Ck(x,m) = }v f Ck(t,s) dt

Hence C*(x, s) - s implies C*(x, m) - 8, and so, after (5.15.4),
Ck-Y(x,m) — s.

This proves the equivalence of the two assertions (5.15.2), and the proof
of the main theorem then follows as in § 5.8.

5.16. Riesz’s arithmetic means. The formulae (5.14.2) suggest a
modification of the definitions of §§5.4-5. If k is integral then, in the

notation of §5.4,
n+k\-1 <= (n—v+k
YDA

v=0

I

Cr(4)

= 2, (=)l s O

y=
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If here we replace all of n+1, n+2,..., n+k by n, we obtain a new mean

(5.16.1) R¥(A4) = z (1 ..;L.)ka,,

more strictly analogous to the integral mean (5.14.2); and this led
M. Riesz to suggest

(5.16.2) Rk(A) > A
as a new definition. We may plainly allow & to have any positive value,
but negative k are inadmissible.

Riesz found, however, that this definition did not lead to satisfactory
results; the means RE(A4) have, for the larger values of k, properties
quite unlike those of the corresponding Cesdro means. He was therefore
led to modify the definition by the introduction of a continuous para-
meter w. The means thus obtained are the typical means of § 4.16, with

An = Nn.
We write
k k
(5163 Rw) = B, d) = =2 = > (1-2]a,
w w

r<w
where £ > 0. If R¥(w) > A when w —oc0, then we say that ) a, is
summable (R, n, k) to sum 4. We then find that summability (R, =, k)
is equivalent to summability (C, k). We confine our attention to integral
k, the proof for general k being rather troublesome.

THEOREM 58. If k is integral, and ) a, is summable (C, k), then it is
summable (R, n, k) to the same sum; and conversely.

We may suppose the sum zero. We have then to show that the
hypotheses
(5.16.4) Ak = o(n¥), (5.16.5) T*(w) = o(w*)
are equivalent. We suppose that w = n-+0, where n is an integer and

0<O<1.
(i) Assume (5.16.4). Since T%(w) = Y (n—v+-0)¥a,, we have

S THw)a® = Y (n+-0)ka™ 3 a, a™ = g(x, 0) 3 Ak 2™,

where

k41 0Yexn — (1 k41,0 dkxo_k 0\t
o(6,6) = (1) 3 (net0far = (—apie(a ) o = 5 ey
and the coefficients c;(6) are polynomials in 6 of degree k. Hence

® k ) k
D> T*w)xm = > c;(0)ad > Ak g, Th(w) = 3 ¢, (0)A%_,
n=0 §=0 n=0 0

= y=

and (5.16.5) follows, with the necessary uniformity in 6.
4780 I
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(ii) Assume (5.16.5), and suppose that 0 <6, < 6,.. <0, <1.
Then we can determine g,, qy,..., g;, so that

) = S gt

identically. For, if we equate the coefficients of different powers of =,
we obtain a system of equations > 8ig, = C;, where j =0, 1,..., k, in
the ¢,, and the determinant of the coefficients is

011 =TT 6—0p) # 0.
We then have

e = (n—v-k _k i
An - Z ( k >a‘v _rgo%' T (n+0r),

v=0
and (5.16.4) follows.

We add a few remarks to show the inadequacy of the definition (5.16.2).

When k£ = 1,
1

— — 1
P z (n+1—v)a, = B, ,(4),

so that the definition is equivalent to Cesaro’s; but there is no such equivalence
for larger k. Suppose, for example, that k = 2. Then

2 (n+1)ER; (A)e™ = 3 (n41)%® 3 a, 2" = (—ll—j_g)—a z a, z".
If we define a, by
S et = (l—2)(14+2)3 = 3 (—1)n(n-1)%n,
then a, is of order n? and so 3 a, is not summable (C, 2); but
3 (n+1)2RE, (A)a" = (1—22)~2 == 14 2a2-4 3t +...

and R%(A4) = O(n™1) = o(1).

When k = 3, (5.16.2) does not imply the summability (C, k) of the series for
any k, or even its summability (A). For

S (n+1)32m = (L—x) 41 +4x+22)

has a zero at # = —2+,/3 = o, inside the unit circle. If we define a, by
S a,x® = (1—=z)/(a—=x), then R3(A4) = o(1), but Y a,a” is convergent only

for || < o < 1.
It is instructive to consider this question in the light of §§ 4.3—-4. The (C, 2)

means are the (N, g,) means with ¢(x) = X ¢,2" = (1—2)~%; and
THn+1) = (n+1)°R3,,(4)

Ci(4) =

is the coefficient of 2™ in

Sn+12r T axt =3 par S A, 2%,
where  p, = (n+1)*—n* = 2n+1, p(@)= I p,a" = ("Ilj“::)z',

so that R2, ,(A) is the (N, p,) mean for this p,. In the notation of § 4.3 we have
k(x) = (142)! = 1—x+422—..,, so that Y |k,| == co. The equivalence is
destroyed by the zero of p(x) at * = —1, and it naturally fails more completely
when p(z) has a zero with |z| < 1.
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5.17. Uniformly distributed sequences. We end this chapter by

a short excursion into a different field.
We suppose that 0 < s, <X 1 for every n, and denote the interval

0<a<<z<b<1byl Ifn;isthe number of s, s,,..., s, which fall
in I, and n; ~ nl when n—> o, for every I, then we say that the
sequence (8,) is uniformly distributed in (0, 1).

We' denote the characteristic function of I, 1 in I and 0 elsewhere,
by I(x). If f(x) = I(x) then

J(8o) FSf(s1)+ .- +S(3a) _ " , ff(x) de = 1.}
n+1 n+1

Thus the assertion of uniform distribution is equivalent to the assertion
that

(5.17.1) f(sn)—>ff(x) dz (C,1)

for every f(z) = I(x). We now prove

THEOREM 59. If (s,) 18 uniformly distributed, then (5.17.1) is true for
every Riemann integrable f(x).

We may plainly suppose f real. If (s,) is uniformly distributed, then
(6.17.1) is true for f(x) = I(x). 1t follows by multiplication and
addition that it is true for any finite step-function. If f is Riemann
integrable, then there are finite step-functions f; and f, such that

Hhi<f< /[ and

lim - gﬂsm) > lim >, i) = [frde> | sy de—e,
fim gf(s,,a <lim— 2, ilon) = [ fotw < [ 1) ax 44

and therefore limn—ll—l Z f(8y) = f f(x) d,

which proves the theorem.

't We use the same symbol for an interval and its length. In what follows an integral
without limits shown is over (0, 1). )
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We can find another criterion for uniform distribution as follows. If
fl@) = etz = effz),
where k is a positive integer, then f f(x) dx = 0. It follows that

(5.17.2) S e(ks,) = o(n) (k=1,2,3,.),
0
if (s,) is uniformly distributed, or, what is the same thing, that

(5.17.3) S T(s,) = o(n),

where T'(x) is any trigonometrical polynomial without constant term.
Thus (5.17.2) or (5.17.3) is a necessary condition for the uniform distri-
bution of (s,). We now show that the condition is also sufficient.

THEOREM 60. If (5.17.2) us true for every positive integral k, then (s,)
18 uniformly distributed.

First, (5.17.3) is true for every 7'(zx). If
k
7(x) = $ay+T(x) = @+ > (a;c08 2lmz+b;sin 2nx)
=1
is any trigonometrical polynomial, then plainly

n+1 z )~ la,+ f T(x f (z) da,

and (5.17.1) is true for f(x) = =(x).

Next, if f(x) is any real continuous function, there is a = such that
|f—7] <ein (0,1). If 7, =7—¢, 7= 7+¢, then 7, <f <7, and
[71dw, [ 7de differ by 2. It then follows, as in the proof of
Theorem 59, that (5.17.1) is true for f. Finally, if f(z) = I(x), then
there are continuous functions f; and f, such that f; < f<f, and
f fidz, f fa dx differ by less than ¢; and a repetition of the argument
shows that (5.17.1) is true also for this f. Hence (s,) is uniformly
distributed.

Perhaps the most interesting case is that in which

8p = Na—[na] = {na},
where o is irrational. If « is a rational p/q, then s, repeats the cycle of
values 0, 1/q, 2/q,..., (g—1)/¢, in some order, indefinitely. It is there-

fore natural to expect (s,) to be uniformly distributed when « is
irrational. In this case

i e(ksm) — i e2kmmat
0 0
for £ = 1,2,3,.... Thus (s,) is uniformly distributed, and we have

1— e2k(n +Dmrat

= 0(1) = O(n)!
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THEOREM 61. If « is irrational, then the sequence ({na}) is uniformly
distributed in (0, 1).

5.18. The uniform distribution of {n%}. There are important
generalizations of Theorem 61. In particular, Weyl has shown that
{P(n)} is uniformly distributed whenever P(n) is a polynomial

CXO np+a1 np—1+...+(xp_1 n

with at least one irrational coefficient. The proof is a good deal more
difficult, and we confine ourselves to a special case, which is sufficient
to illustrate Weyl’s main idea.

THEOREM 62. If « ts irrational, then the sequence ({n%«}) is uniformly
distributed in (0, 1).

We have to prove (5.17.2), with s,, = {m?%}, and, since k« is irrational
when « is irrational, it is sufficient to prove that

n
S, = Y emimai — o(n).
m=0

NOW ISnI2 — i i e2(q’-p’)1ro¢i — ﬁ nzp e2]'(j+2p)mxi,
p=0 q=0 =0 j=-~p

on writing p-+-j for g. Inverting the order of summation, we find

IS |2 — z ezyﬁmxz E e4p71ron+ z e2i*mad .%‘., je4pjmxi — T1+T2°

j=-n p==

n n—j i n 1 — e4n—j +Djmai n
H?I‘G ITll g I Zoe PITOEL| == ;,Zo 1 — edimai = ,-;owj’
and w; satisfies both the inequalities
0w < n—)+1 < nitl, w; < [cosec 2jma|.

Now [sin 2jma| = 2)\,-, where A, is the distance of 2ja from the nearest
integer, i.e. of {2ja} from the nearer of 0 and 1. Since the numbers {2j«}
are uniformly distributed, the number of them with j <<= and A; < 9,
and so lying in one of the intervals (0, ) or (1—, 1), is less than 3xn,
for sufficiently large n; and then w; <{ (25)~! for more than n4-1—3xn
of the j, while w; < n+1 for the remainder. Thus
T n+1  3npn(ni1
i 2 < i [ O] o,

n—rw0 n n—»w

and T} = o(nz).‘ Similarly 7}, = o(n2); and so S, = o(n), which proves
the theorem. '
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NOTES ON CHAPTER V

§§ 5.2-3. See § 1.3. The papers of Frobenius and Holder were published in JM,
89 (1880), 262-4, and MA, 20 (1882), 535-49; and that of Cesdro in BSM (2),
14 (1890), 114-20. Cesaro is concerned primarily with the multiplication of series:
see Ch. X,

§ 5.5. The definitions for general k were given independently by Knopp,
Sitzungsberichte d. Berliner Math. Ges., 7 (1907), 1-12 [printed in Archiv d. Math.
(3), 12 (1907)], and by Chapman, PLMS (2), 9 (1911), 369-409.

There are general accounts of the theory in the books of Borel, Dienes, Hobson
(2, ch. 1), and Knopp, and in the monographs of Andersen, Bohr, and Kogbetliantz.
There is also a very clear account of the fundamental theorems in a lecture by
Andersen (Cesdro’s Summabilitetsmetode, Copenhagen, 1919). The monograph of
Kogbetliantz is the most complete, but is & summary of results without proofs.

1t is sometimes difficult to assign particular theorems to their discoverers, since
most of them have been found by a process of gradual generalization; and we do
not attempt to do so systematically, though we give the most obvious references.

§ 5.6. The substance of the theorems of this section is Cesaro’s. More general
theorems of the same character will be found in Knopp, RP, 32 (1911), 95-110.

§ 5.7. Theorems 43 and 46, in their general form, are due to Chapman and
Knopp. Theorem 45 was proved by Hardy and Littlewood, PLMS (2), 11
(1912), 411-78 (462, Theorem 37).

§ 6.8. Knopp, Grenzwerte von Reihen bei der Anndherung an die KKonvergenzgrenze
(Dissertation, Berlin, 1907), proved the implication (H, k) = (C, k), and Schnee,
MA, 67 (1909), 110-25, the converse implication. The proof here is due to Ander-
sen, MZ, 28 (1928), 356-9, and is a simplification of one given earlier by Knopp,
ibid. 19 (1924), 97-113. See also Knopp, 481.

Theorem 49 is a special case of the theorem that the three hypotheses

(a) CPH{OB(A)}-> A,  (b) CP{C(A)}— A4, (o) Cp+P(4)—~ 4

are equivalent. This has been proved in various ways by Andersen, Faber,
Hausdorff, and Kogbetliantz: references will be found in Andersen’s paper. It
should be noted that the cquivalence of (¢) with (a) and (b) lies deeper than that
of (a) with (b), the transformations C®C® and C®)C(* being identical with one
another, but not with C(e+8),

The identity of C(=)C®)and C®)C(*) is a corollary of Hausdorff’s work (Ch. XI),
and may also be proved independently. It is casily verified that

C{CBNA)} = 3 cp,p Ay,
where ¢, , is 0 for p > n and

P(n+1)(a+1) D(p+1)I'B+1) F'n—p+ta) F( p+1l, —n+p, B )

Pntatl)  TE+B+1) Tr—p+1)T«)* *\p+B+1, —n+p—a+1
for p < n, the argument of the hypergeometric series being 1; and it follows
from Bailey, 21, formula (1), that this is symmetrical in « and B.

§ 6.9. Mercer, PLMS (2), 5 (1906), 206-24; Schur, M A4, 74 (1913), 447-58.
Schur’s proof is also given in Landau, Ergebnisse, 43-51.

§ 5.10. Knopp, M4, 74 (1913), 459-61; Hardy, QJM, 43 (1912), 143-50.
Hardy proves a number of extensions of Theorems 52 and 53. The simple proof
of Theorem 53 given here is due to Hobson.
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Pitt [PCPS, 34 (1938), 510-20] and Rogosinski [ibid. 38 (1942), 166-92 and
344-63] have proved much more general theorems by deeper methods. These
depend on the use of Fourier and Mellin transforms in the manner of Wiener
(Ch. XII).

§ 5.11. Theorem 54 is due to Schur, l.c. under §5.9.

It follows from the analysis here and Theorem 11 that the (H, k) kernel of (s,)
is included in the (C, k) kernel. Knopp, l.c. under § 3.7, gives a simple example of
a roal (s,) whose (H, 2) and (C, 2) kernels aro the intervals (4, 1) and (0, 1).

Bosanquet, JLM S, 21 (1946), 11-15, has shown that s, — oo (H, 2) does not
imply 8, — o (C, k) for any k, or s, — o (A), even when Y a,x" is convergent
for |x| < 1.

Basu, PLMS (2), 50 (1948), 447-62, has proved that Theorem 54 remains true
for general £ > 1 and for —1 < k < 0, but that the relations are inverted when
0<k<l

§ 5.12. Theorem 57 is due to Appell, Archiv d. Math. 64 (1879), 387-92. The
example used to prove Theorem 56 is Landau’s (l.c. under § 5.9, 51).

§ 5.13. For the ‘harmonic’ means see M. Riesz, l.c. under § 4.3.

§§ 5.14-15. It is difficult to give useful references for theorems concerning
summable integrals, since they have been often dismissed as ‘obvious analogues’
of theorems about series. The equivalence theorem was proved first by Landau,
Levpziger Berichte, 65 (1913), 131-8. Landau’s proofis modelled on Schur’s of § 5.9.

M. E. Grimmshaw, JLM S, 9 (1934), 94-102, proves the analogue of Theorem 45.
Some further references are given in the notes on Chs. VI and X.

In the text we suppose for simplicity that a(z) is bounded in every finite (0, X).
The analysis for Hélder means is valid for all integrable a(x). The same is true
for Cesaro means with & > 0, but the integrals which occur may sometimes diverge
when k& << 0. Thus | (z—t)*a(t)dt diverges for x = nsr when a(x) == (sinz)~% and
—1 < k  —%. This is unimportant here, since the means of negative order are
only interesting in themselves when a(r) tends to a limit.

There is a full discussion of the formula (5.14.3), for a(x) integrable in the more
general Denjoy-Perron sense, in Bosanquet, PLMS (2), 31 (1930), 144-64.

The A(z) of the text, being the integral of a(x), is absolutely continuous. But
wo may plainly define A(x) —» A(C, k) by (5.14.2) whenever A(x) is integrable,
provided that k& > 0 and we use the first form of the integral. On the other
hand, the intogrability of 4(z) down to 0 does not necessarily imply that of H(x):

-2

-1
thus H(z) = :c*l(log %) when A(x) == x—l(logi—) . We must therefore impose

some additional restriction on A(x) for small z. Since we are interested primarily
in large x, this is no serious drawback.

§ 5.16. The equivalence of the (R,n,k) and (C, k) means was first proved by
M. Riesz, CR, 152 (1911), 1651-4: the lines of the proof are indicated rather shortly.
There is a complete proof in Hobson (2), 90-8. A more concise version, by Ingham,
has not been published; this reduces, when k is an integer, to the proof in the text.

§ 5.17. Theorem 59 was proved independently, at about the same time, by
Bohl, Sierpinski, and Weyl: references will be found in Koksma. We follow Weyl,
MA, 77 (1916), 313-52.

There is an ‘elementary’ proof of Theorem 61, depending on simple properties
of continued fractions, in Hardy and Wright, 378-80.
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Weyl proves much more, in particular the uniform distribution of the points

Bn)}, {B(n)}) .., {F(n)}
in r-dimensional space; here P,(n),... are polynomials linearly independent in the
sense that no combination A, P+ Ay Py+...+A, B, with integral A, is congruent to
a constant (mod1).
A number of special cases of Weyl’s theorems had been stated earlier by Hardy

and Littlewood. Thus they state [Proc. fifth international congress of mathema-
ticians, Cambridge, 1912, 1, 223-9 (226); AM, 37 (1914), 1556-91 (164)] that

(a) S e(mPa) = o(n)
0

forp = 1, 2,... and irrational «, and that the points {n?a} are uniformly distributed.
In a second paper in AM (ibid. 193-239) they prove (a) for p = 2 by a special
method, and more precise results for particular types of irrationals. A third paper
which was to contain the proofs of their more general assertions was never com-
pleted because of the appearance of Weyl’s more compact and powerful analysis.

In their first paper in AM Hardy and Littlewood prove, by more elementary
reasoning, that the points {n?a} are dense in (0, 1): this is, of course, a weaker
assertion than uniform distribution. Their argument was simplified and extended
by Kakeya, Science reports Téhoku Univ. 4 (1915), 105-9.
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6.1. Tauberian theorems for Cesaro summability. We re-
marked in §3.8 that there must be a ‘limitation theorem’ for every
method of summation, since no useful method will sum too rapidly
divergent series. Thus the limitation theorem for the Cesaro methods
is Theorem 46, with ¥’ = —1.

There is another limit, of a less obvious kind, to the effectiveness
of these methods, and of all that have proved useful. Every method
will fail to sum series which diverge too rapidly; and it will also fail
to sum divergent series whose divergence is too slow. The theorems which
embody this principle belong to the class which (for reasons which will
appear later) are called ‘Tauberian’. They assert that if a series is
summable (P), and satisfies some further condition K, (which will vary
with the method P, but will in any case imply a certain slowness of
possible divergence), then it is convergent. For the Cesaro methods the
most characteristic form of K, is a, = O(n-1), though this form may
be generalized in various ways.

We shall prove the following two theorems.

TaEorEM 63. If > a, = A (C,k) for some k, and
(6.1.1) a, = O(n1),

then Y a, is convergent, and indeed summable (C,—1-+38) for every
positive 8.

THEOREM 64. I fa, isreal, 3 a, = A (C, k) for some k, and
(6.1.2) na, > —H,
then 3 a, is convergent.

We can simplify the argument by a few preliminary remarks. First,
after Theorem 43, we may suppose k integral, replacing k by &' = [k]+1
otherwise. Next, we need only prove the series convergent, since if it
is convergent, and satisfies (6.1.1), it is summable (C, —1+8), by
Theorem 45. Finally, we may suppose a, real, otherwise considering
real and imaginary parts separately. Thus it is sufficient to prove
Theorem 64, with £ integral.

We base the proof on two preliminary theorems of some intrinsic
interest. We write b, = na,, and B,, B},... for the sums formed from

b, as 4,, AL.... are from a,,.
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THEOREM 65. If Y a, is summable (C,r41), where r > —1, then a
necessary and sufficient condition that it should be summable (C,r) s that
Br, = o(n"+1),

THEOREM 66. A mecessary and sufficient condition that Y a, should be

summable (C,r+1), where r-+1 > —1, is that
n+r+1\2 By —1)! .
(6.1.3) Z( r-41 ) (r+-2) (r-l—‘-i (n+r+l)B"

should be convergent; or, what is the same thing, that > n~—"-2B", should be
convergent.

It is easily verified that
(n—l—r—l—l)(WH) (T+l)(V+r+1) _ (n_v)(v;}-r),

r-+1
V+7‘+1 V"‘l—?' . . V+7' )
n( il )—(n+r+1)(r+1) = (n v)( , ),
and hence (comparing the coefficients of a,,_, in (5.4.5)) that
(6.1.4) (n4r+1)45— (r~l—1)A'+1 Br,
(6.1.5) ndArtt—(n+-r+1)Ar+l = Br,

From (6.1.4) and (6.1.5) we deduce

(6.1.6) n-tr —IAT__(n~l—r+l -1 AT+ n-t+r4+1\-1 B

o r " r+1 r+1 r1’
n—+r-1 —IA’“ n-+r —1 n-+tr-+1\-1 B

r-+1 n r+1 4% r-41 '’

and addition of the last equation for n = 1, 2,..., N gives

NA+r+1\"1 ., n-+r+1\-1 .Br
(6.1.7) ( i1 ) Al\#l——ao—{—Z( 1 ) -2,

Theorem 65 is a corollary of (6.1.6), and Theorem 66 of (6.1.7). The
two forms of Theorem 66 are equivalent by Stirling’s theorem. If r is
an integer, then the series (6.1.3) may be written in the alternative form

Z (r+1) .
n(n41)...(n4-r+1)" "

We can now prove Theorem 64: we may suppose k an integer r--1,
and H = 1. If B}, £ o(n™+!), then there is a positive C' such that one
or other of the inequalities
(6.1.8)  BL > Cn™, (6.1.9) B, < —Cnr+!
is true for an infinity of n. Let us suppose, for example, that (6.1.8)
is true for an infinity of values N of n.
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If n > 1and N << n << 9N, then

(6.1.10) Br— By, — Z{( “”“L”) ( ‘:‘”)}by-;- i (”’_:J”)by.

v=N+1
Hence, since the coefficients are positive, and b, > —1,

= 3T S )

y=N+1
Here the right-hand side is what stands in (6.1.10) when b, = 0,

b, = —1 for v > 0, in which case

S Byat = (1—2)"1 3 byan = —a(l—2)"%, B = “(n+r);

r+41
r _ [ntr N+r
and hence B,— By > (r+1)+(r+l)'
Also (n—l—r)N___“n”l Nar\ AN
r1)  (r+1)0 (r+1) (r+1)
and therefore
1
Bi—Byy > — gy i— (g

for any positive €, any » > 1, N < n < 9N, and sufficiently large V.
We can choose € and % so that B;— B} > —31CN"+, and it then
follows from (6.1.8), with n = N, that Bj, > {CNr+ for N < n < 9N,
and so
nN

B:l 1 r+1 1 r+1( I)N — 0(7)——1)
S 5o jowa 3L S jowntr b

for sufficiently large N. But if this is true for an infinity of N, then the
series (6.1.3) is divergent, and > a,, is not summable (C,r--1).

It follows that (6.1.8) cannot be true for an infinity of », and a similar
argumentt shows that (6.1.9) cannot. Hence B}, = o(n"+!); and there-
fore, by Theorem 65, > a,, is summable (C,r). Repeating the argument
r+1 times, we see that > a, is convergent.

It will be observed that Theorem 63 goes farther than Theorem 64, in that
it asserts summability of the series for negative k. No such extension of Theorem
64 is possible, since the conditions are satisfied by any scries of positive terms,
and, after Theorem 46, ¥ @, cannot be summable (C, —1) unless a,, = o(n™).

There are generalizations of these theorems for Riesz’s typical means
of § 4.16. We shall not consider these here, except for one theorem which

1 Using a range ({N, N), where [ < 1, of values of n.
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we shall have to use later. This is a generalization of the case £ = 1
of Theorem 63.

THEOREM 67. If0 <Ay <Ay < .oy A, > 00,

(8.1.11) a, = 0(5"—;5&1) (n > 0),
and "
1 1
(6.1.12) ifA(u)du;—_Ef (Z a,n) du - 8,1
0 0 An<u

then Y a, converges to s.

We may suppose that s = 0 and |a,| < (A,—A,_;)/A, for n > 0. If
t>xand A, <& <Ay, Ay << A, then

(6.1.13) |A(t)—A(@)| = @41+ Cpizt ooy
Api1—A Apir—A Apir—A t—A
< Tmil Tm ... “mAr mtr=1 - ‘mtr m - m.
h Am + + Am+r h ’\m h ’\m

If A(x) does not tend to 0, then there is a C > 0 such that one or other
of A(x) > C, A(x) < —C 1is true for a sequence of values X of z
tending to infinity. If, for example, A(X) > C and Ay, < X < Aypyq,
so that A(X) = A(A,,), then, by (6.1.13),

A(t) > C—(t—Ay)/Ay > 3C

for Ay, <t < (1+3C)Ay, and hence
(1+30)Ay
A(t) dt > 0%,
Ay

in contradiction to (6.1.12). Similarly 4(X) < —C leads to a contra-
diction, and so A(x) - 0.

We cannot replace (6.1.11) by a, > —H(A,—A,_;)/A,, without some
further restriction either on A, or on a,,.}

6.2. Slowly oscillating and slowly decreasing functions. A
function f(x), defined for x > 0, is said to be slowly oscillating if

(6.2.1) fy)—f(x) >0
whenever
(6.2.2) x > 00, y >z, yle—1;

and to be slowly decreasing if it is real and
(6.2.3) lim {f(y)—f(x)} > 0

t A(u) here is equivalent to the A4,(u) of §4.16.
1 See the note on this section at the end of the chapter, and that on §7.7.
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in the same circumstances. If f(z) is differentiable, and f'(x) = O(x-1),
then

v y___ x
f)—f() xff (t) dt = (x)—->0
under the conditions (6.2.2), so that f(x) is slowly oscillating. Thus
w2 = 311082 jg gslowly oscillating. Similarly, if f(xr) is real and
f'(x) > —Hax1, then f(x) is slowly decreasing: thus -} cos - cos(a log x)
is slowly decreasing.

We shall say that a sequence s, is slowly oscillating, or slowly
decreasing, if s(x) = s is slowly oscillating or slowly decreasing. If
8, = @y+a,+...4a,, then s(x) is the sum-function of ) a,. It is easily
verified that s, is slowly oscillating when a,, = O(n-1), slowly decreasing
when a, > —Hn"1.

If f(x) is slowly oscillating, then | f(y)—f(x)] < e when y > x > X(¢)
and (y—z)/x < k(e). If it is slowly decreasing, then f(y)—f(x) > —e
under similar conditions.

There is one simple corollary which we shall require in Ch. VII. If
f(x) is slowly decreasing, and ¢ > 0, p > ¢ are fixed, then there are an
H and an X such that

(6.2.4) flpr)—f(qz) > —H
for x >> X. For there are a U and a « such that
fO)—fw) > —1 (qu > U, 1 <t/u < k).
If r is the integer for which «"-1 < p/g < «", and
Xy = q¥, Xy == KQL,..., X,_; = K" lqx, x, = px,

then we may take t = x,,,, 4 = z, for s = 0, 1,..., r—1, and

Sf(px)—f(qz) = E{f Tgpr)—f(2,)} > —

so that (6.2.4) is satisfied with X = U/q, H = r. If also f(x) is bounded
in every finite interval (0, X), then (6.2.4) is satisfied, with an appro-
priate H, for x > 0.

There are important generalizations of Theorems 63 and 64 in which
the condition on a, is replaced by the more general condition that s,
is slowly oscillating or slowly decreasing. These will be included in the
more difficult theorems proved in Ch. VII, but we illustrate the ideas
here by proving the simplest theorem of this kind.

THEOREM 68. If > a, is summable (C, 1), and s, is slowly decreasing,
then > a, is convergent.



126 ARITHMETIC MEANS (2) [Chap. VI

We are given that s, - s (C, 1) and that
lim (s,,,—8,) = 0
when n —> 00, p > 1, and p —» 1; and it is sufficient, after Theorem 65,
to prove that
(6.2.5) U, = 0+ 2a,+...4+na, = o(n).
Let us suppose, for example, that
(6.2.6) u, > On

for a positive C' and an infinity of n, in contradiction to (6.2.5). Given
any positive n, we can choose N and p > 1 so that s,—s, > —n for
n = N and n < v < pn; and we may suppose that pn < 3C. Then

= (m+1)s,—8g—8;—...—8p,
Uy — Uy = (n+1)(8v-“8n)+(8v”sn+1)+"'+(Sv—8v—1) = - = —pn,

and u, = u,+u,—u, > Cn—pyn > {Cn
for any n > N satisfying (6.2.6) and n < v < pn. Thus

(pn] (on]

U 1 1 1 1
r— > §C —_— =1 > 10[1—=
;v(rf*l) k n;v(v+l) Zon(n [pn]+1) 0( p)

Hence the series Z ol u+1) is not convergent, and so, by Theorem 66,
n

with r = 0, > a, is not summable (C, 1).

Similarly, we can show that the hypothesis u,, << — Cn, for an infinity
of n, leads to a contradiction. Thus %, = o(n), and the theorem
follows.

The corresponding theorem for functions of a continuous variable is

if f(2) -1 (C, 1) and f(¢) is slowly decreasing, then f(t) — 1:T
the proof is left to the reader.

6.3. Another Tauberian condition. There are conditions of other types
which enable us to infer convergence from summability. As an example, we prove

THEOREM 69. IfY a, is summable (C,1) for somel,p > 1,and 3 n?~1|a,|? < oo,
then Y a, is convergent, and indeed summable (C, k) for k > —(p—1)/p.

The result is trivial when p = 1, and we may suppose p > 1. It is sufficient,
after Theorem 65, to prove that

(6.3.1) Bt = j (n_;;+k)va,, = o(nk+1) (k > —-1+2-1)-).

y=0

t This is what, in the notation laid down in Ch. VII, we should call Theorem 68a.
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N n
+ z ) - S1+Sap
0

v=N+41

Now Bk = O{Pi (n—v+ 1)ku|a,|) - 0(

n
- P

say. Here

n
IS:] < 3 v@WP|a,|. A P(n—v41)*
v=N41

n 1/p n
= ( & v‘”“ﬁ“vl”) { 2 D (n—y- 1)Ie-D
v=N+1 o= N+1
by Hoélder’s inequality. The second factor is O(n?), where
kp 1 ) p—1
= : 1 =k+1,
1= (52450 +1)E

and the first is loss than e for N > Nye). Henco |S,| < Cen*t!, where C in
independent of n, for N > Ny(e); and 8, is plainly o(n¥*+1) when N is fixed. This
proves (6.3.1), and thorefore the theorem.

}(1’~1)/1’

6.4. Convexity theorems. If Y a, is summable (C, k) then, by
Theorem 43, it is summable (C, k') for any k' > k; and if it is bounded
(C, k) then it is bounded (C, k'). But boundedness (C, k) does not imply
summability (C, k'), for any k£’. There is, however, a slightly more subtle
theorem.

TueorREM 70. If > a, ts bounded (C, k,), and summable (C, k,), where
ky > ky > —1, then it is summable (C, k) for kb, < k <k,

We prove this here only for integral k,, k,, k, when ky, = k,--1,
k == k;+m, [ and m being integers and 0 < m < l. It is sufficient to
prove the theorem when ! = 2, m = 1. For suppose the theorem proved
in this case, and also for general I, m with I = 2, 3,..., L—1; and con-
sider the case | = L. Then Y a,, being bounded (C,£,), is bounded
(C, ky+ L—2), and therefore (by hypothesis) summable (C, k,+ L—1);
and hence (again by hypothesis) it is summable (C,k,+m) for
0 <m < L.

We may also suppose that the sum (C, k,) is 0; and we have there-
fore to prove that AX = O(n*) and Ak+2 = o(n*+2) imply AE+! = o(nk+1);
or, writing B, for A¥ that B, = O(n*) and B2 = o(n*+?) imply
Bl = o(n*+1).

Suppose that 0 <& <1 and N = [dn]. Then

Bi—BY = By i+ By att By = (a—N)Bi— > (Bi—B})

= (n—N)Bi—{By,s+2By.3+...+(n—N—1)B,},

B:—B% B 2B —N—-1)B
Bl — ,:_NN+ N2 N+3'j;—_;(n ) n— P4Q,

Q = 0{ 1 .nk z v} = O{(1—0)nk+1},

(1—3)m v<(1—0)n
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uniformly in &, and
P = o(n~1.nk+2) = o(n*+!)
when & is fixed. Hence (taking & near 1) we deduce that Bl = o(n*+1).
Theorem 45 is the form assumed by Theorem 70 when k, = —1,
k, = 0. In this special case we have proved the theorem for non-
integral k.

6.5. Convergence factors. A familiar theorem of Abel and
Dirichlet, included in Theorem 8 of §3.5, states that if (i) X a, is
convergent or bounded, (ii) f, decreases steadily to 0 when n — 0, or,
more generally, f, - 0 and > |Af,| <o, then ¥ a,f, is convergent.
There are many important generalizations of this theorem for summable
series.

These generalizations are of two types. In the first, we impose on f,
only the natural extensions of condition (ii), and infer the summability
(C, k) of > a,f, from that of 3 a,. In the second, we impose stronger
conditions on f,, and infer that > a, f, is summable (C, k—s) for some
positive s: thus a typical case would be that in which f, = (n4-1)-2,
Both types of theorem present considerable difficulties when the para-
meters are unrestricted, and we shall confine ourselves here to integral
k and s, for which the proofs of the main theorems are comparatively
simple.

The principal theorem of the first type is

TueoreM 71. If (i) D a, is summable, or bounded, (C, k), where k is
an integer; (ii) f, - 0; and (iii)

(6.5.1) > (n 1) A*+f | < c0;
then 3 a,f, is summable (C, k), and
(652) z a’nf'n = z Al‘z Ak+1fn’

the last series betng absolutely convergent.
We require two lemmas.
THrorREM 72. If f, satisfies the conditions of Theorem 71, then

(6.5.3) (m+1YAf, >0 (I=0,1,..,k),
(6.5.4) S (n4+1HAMY, | <o (I =0,1,..,k).
We can write (6.5.3) and (6.5.4) in the equivalent forms
(6.5.5) (”;rl)zvfn 50 (I=0,1,.,k),
(6.5.6) z (njl)mmfn[ <o (I=0,1,.,k).

The conditions given are (6.5.5) for [ = 0 and (6.5.6) for | = k.
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Since f,, - 0, A¥f, - 0, and so

A¥f, = i Aks1f

(n4-1)F[AK, | < (na 1) S (AR | < S (r-H1)E|ARS, | > 0,

n

by (6.56.1). This is (6.5.3), or (6.5.5), for [ = k.
N

ext,
Z(”‘*’“ i < Z(”"“‘ )ZIA"“fI
=i Ak+lfV|Z("+k 1) z(" H‘)lA’“rlfyl <.

=0

It follows that (6.5.6) is true for I = k—l and therefore, by the argu-
ment of the preceding paragraph, that (6.5.5) is also true for [ = k—1.
Repeating the argument, we conclude that both assertions are true
generally.

Turorem 73. If ), = a, f, then

(6.5.7) 2 2 (k+1)(n——i—tlz.c—i)Ak+1—ifj+i,

with the convention that any f,, occurring in A*+1=if, . is to be replaced
by 0 when m > n.

If U; = ug+uy+...+u;, U}, U},... are defined as usual, and v; with
4 > m are treated as 0, then

n n n 1 A2

H

n
2 UjArtg
0

and henco
ko n—j+k N kk1n9+k}
34 ,zw{( /
k+1
But Al+i(e, ) = Z( “1‘ )Atc ARSI
1=0
Since here . . .
Nig, = AP ITE) _ (raHE g <y,
1 k k—e

and A*+lc; = 0, we obtain (6.5.7).
Passing to the proof of Theorem 71, we divide (6.5.7) by (n—]{c—k) and

make n — co. First, we may discard the convention. For it affects only
4780 K
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the terms in which j > n—Fk; the number of such terms is bounded;
and each involves an A¥ which is O(n*), an f,, which is o(1), and a
bounded numerical coefficient; so that their aggregate is o(n*). We have
therefore to find the limit of

(n—li—k)—liA;_cz": (k-i-l)( —?if )Ak+1 if, 0 = Z »
i=0

i=0
where .S, ; contains the terms involving a given .

If 7 > 0 then
n ) —gt—2 , n
Sp = 0417 > G LT ok} = 0 30,
i=o
where

5] < H(n+1)F(G+1)6(n Lt ARR=,

— H(%l) (J4 D4 ak=if | < H (G 1)F~1| AR |

and H is independent of n. Also ﬁ( JH1)EE| AR, | < o0, by
=0

Theorem 72. Hence ) u,; is majorized by a convergent series with
terms independent of n; and u,; — 0, for any fixed j, when n - co.
It follows that S, ; = o(1) for s = 1,2,..., k.

It remains to find the limit of

Sn,om(n—‘—k) 2 (—‘J"f‘k)Aknfj

This is majorized by D |Ak||A*HIS |
-
for every j, when n - co. Hence

0> 2 Alc Ak+1f

and this completes the proof of Theorem 71.

We may modify Theorem 71 by supposing (i’) that 3 a,, is summable
(C, k) and (ii’) that f, is bounded. The last condition, with (iii), ensures
that f, tends to a limit f, not necessarily 0. The conclusion then follows
from Theorem 71 on replacing f, by g, +f.

Theorem 71, and the modified theorem, may also be deduced from
Theorems 1 and 3, and it may be shown that the conditions are also
necessary, in the sense that, if they are not satisfied, there are series
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2. a, which are bounded (C, k), or summable (C, k), while ¥ a,f,, is not
summable (C, k).

If f, = (n+c)=%, where ¢ > 0, s > 0, then A*+1f, = O(n-*-*-1); and if
(6.5.8)

ck‘+1 + 1 }
+ Y (S I
then A*+lf — O(n—*-2). In either of these cases condition (iii) of
Theorem 71 is satisfied. We thus obtain

TreorEM 74. If Y a, is summable (C,k), then 3 (n-+c)—*a, is
summable (C, k).

THEOREM 75. If Y a, is summable (C, k), and f, is of the form (6.5.8),
then Y a,f, ts summable (C, k).

In particular
(6.59) fn — (n+a1)(n+a2) (n+al)
(n-+By)(1n-+Ba)...(n+By)’
where the o and B are positive, is of the form (6.5.8), and so is f;1; thus
the summability of either of

Z a, ’ 2 a,
(n+ay)...(n+oy) (n+By)...(n--B,)’
for any k, involves that of the other. We shall use this case of Theorem
75 in the next section.

6.6. The factor (n+1)-%. The principal theorem of the second
type is

THEOREM 76. If Y a, ts summable (C, k), and

0 <s<<k+1,
then the series

(6.6.1) > ("js)—lan, > (njf‘l)s

are summable (C, k—s).

We suppose k and s integers, all proofs for non-integral values being
a good deal more troublesome. Some preliminary remarks are required.

(1) If either of the series ay-+a,+a,-+... and 04ay-+a;+... (i.e.
0-+b,+b,+..., where a,, = b,,,,) is summable (C, k), then so is the other,
by Theorem 47. It is therefore indifferent whether we state Theorem 76
in terms of ay-a, ... and the series (6.6.1), or in terms of a,-a,+...
and the series

(6.6.2) > (n“‘sl“)_lam %
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summed over 1 to co. It is plain that, if we do this, we may suppose
any of the « or B of Theorem 75 to be 0.

n——1+3) _ 1 (n+1)(n+2)...(n+s—1)

S 8! ns-1

(2) Next, n“s(

is of the form (6.5.9), with n—1 for n and / = s—1. Thus the summa-
bility (C,r) of either of (6.6.2), for integral r, implies that of the other.

We consider the second series (6.6.2), with s=1. If Ya, is
summable (C,k), then Y n-la, is summable (C,%), by Theorem 71.
In order that it should be summable (C,k—1), it is necessary and
sufficient, by Theorem 65, that Q%-1 = o(n*), where Q%! is formed from
g, = n(n'a,) = a,; i.e. that A¥-1 = o(n*). But this is true because
Ak-1 = Ak __ Ak and n-%AE tends to a limit.

Thus the series > nla,

is summable (C,k—1). It follows, by Theorem 75, that } (n+«)-1a,,
where « > 0, is summable (C,k—1). Hence, repeating the argument
s times, the series (6.6.2) or (6.6.1) are summable (C, k—s).

It follows from Theorems 71 and 76 that, if > a, is summable (C, k),

(6.6.3)

a 1 . Ak
n___ ARAR__Z . — (k41! o O,
2 n-41 Z nh n41 (k1) Z (n++1)(n+2)...(n+k+2)’
the first series being summable (C,k—1) and the last absolutely con-
vergent; there is a similar formula for the sum of the first series (6.6.1).

6.7. Another condition for summability. We saw in §6.6
(Theorem 76) that the summability (C, k) of ) a, implies the summa-
bility (C, k—1) of > (n+1)~la,. The converse is false: for the last series
is (absolutely) convergent whenever a, = O(n-!), and then, after
Theorem 63, > a, cannot be summable (C, %), for any k, unless it is
convergent. There is, however, a more subtle connexion between the
two series.

TuroreM 77. If k is integral then, in order that Y a, should be sum-
mable (C, k), it is necessary and sufficient that there should be a solution
b, of the equations
(6.7.1) a, = (n+1)(b,—b,:) (n=0,1,2...)
such that Y b, is summable (C,k—1). In these circumstances

e a’n a’n+1 .
(6.7.2) b,,_n+1 R (C, k—1),

and the sums of the two series are the same.
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It is plain, first, that we can solve (6.7.1) by recurrence; that if b,
is any solution then the general solution is b, = b,—#A, where 4 is an
arbitrary constant; and that the conditions of the theorem can be
satisfied by one solution at most.

(i) We begin by proving that, if b, is any solution, then
(6.7.3) Ak = (k+1)BE—(n+1)BEL (k> 0).

Here B, ! means b,. First, if £ = 0, then
A3 = A = by—by+2(by—b)+ A (1 1)(by—by 1) = By—(n+ )by,
which is (6.7.3). Next, assuming (6.7.3) for a given %, we have

AB#L = (b4 1)(BY+BY+..+ BY)— Bi-1— 2B —...— (n+1) BT

= (k+1)BE+1—(n+1)Bk, 4+ (n+1) BE-1+4-nB¥-14- ...+ Bk-1
= (k+2) B3 —(n+1)Bg,,,
which is (6.7.3) with k+1 for k.

(i) Next, we prove that ¢f B = > b, is summable (C,k—1), then
A = a, is summable (C, k), and 4 = B. First, if k = 0, then B, > B
and (n+1)b,., - 0, so that 4,, > B. Secondly, if £ > 0, then

n—l—k—l) B-to(nk-1)

k-1 _
B = (0

and so, by summation,

B — (n—li_k)B+o(n").

Hence, by (6.7.3),

4 = (40" T)— 0 (1)) Bomhy = ("1F) Botnt)

and 4 is summable (C, k) to sum B.
(iii) Thirdly, we prove that if 3 a, ts summable (C, k), then

(6.7.4) Bkl = (n‘]‘;k)th("Jrk—1)A+o(nk—1) (k > 0),

k—1
(6.7.5) b, = h+o(n-t) (k=0),
h being a constant. We may suppose without loss of generality that
A = 0.F
We have
(6.7.6)

(n-+k+2)BE—(n+1)BE,, = (k+1)BE—(n+1)BE} = Ak = o(n¥),

t Ifb, is a solution of (6.7.1), a; = a,— 4 and a, = a, for n > 0, then the b, defined
by by = b,— 4, b, = b, for n > 0, is a solution of a, = (n+1)(by—by ;). The effect of
n-k— I)A

diminishing @, and b, by A4 is to diminish 4%~1 and B:~1 by ( o1
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by (6.7.3) and our hypothesis. If
(6.7.7) (n41)(n4-2)...(n+k+1)p, = BE,
then (6.7.8) gives
(nF 1)(+-2)... (0 k+-2) (B —p1a) = A% = o(n¥),
and 80 ¢, —¢,.; = o(n~%). Hence ¢, tends to a limit ¢, and

@ Ak
(6.7.8) ¢n=¢+g(v“+1 Yw-+2)...(v+k+2) ¢+O(5li)’

(6.7.9) BE = (n++1)(n-+2)...(n+k+1)d+o(n¥).
Finally, from (6.7.6) and (6.7.9) it follows that

n+1

and this is (6.7.4), with 4 = 0, h = (k+1)!¢, and n-+1 for n. The
proof is valid, and gives (6.7.5), for &k = 0.

(iv) It is now easy to complete the proof of the theorem. In the first
place, the condition is sufficient, by (ii). Sccondly, if > a, is summable
(C, k), b, is any solution of (6.7.1), and b, = b,—#h, where A is the A of
(6.7.4), then b, is also a solution; and

BE-1 — B-1_ (n—}-lc)h_:_ (n+k~1)A+o(n’°-1),

B,’;:_]i — k+1 B"«l—o(n"“l) — (k+1)'(n+2+1)¢+o(nk-l),

k k—1

by (6.7.4) or (6.7.5), so that ) b, is summable (C,k—1) to sum 4,
the result holding for £ = 0 since 4 is plainly independent of £. Hence
the condition is also necessary.

Finally, since > b, is summable (C,k—1),

b, — gb —by) = > - (G k1),

by Theorem 48. For b, the k and ¢ of (iii) are 0, and (6.7.7) and (6.7.8)
give

k
by = B = (k+1)!1 ¢y = (k-+1)! > (,,+1)(V+53 (Hk+2)
Thus

a, Ak .
Zn+1 (k-+1)! z(n+1)(n+2)...(n+k+2) (C,—1).

This is (6.6.3). Our proof here is independent of Theorems 71 and 76.
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A corollary of Theorem 77 is

THEOREM 78. A necessary and sufficient condition that > a,, should be
summable (C,k) is that there should be a system of numbers a, ,, where
= 0, 1,..., k+1, such that
Apo = Ay, Aps—1 = (n+1)(an,s_a’n+1.s) (8 > O)s
and that Apiy =2 Qppery
18 summable (C, —1). In these circumstances

n,s’

— a’n,s—l an+1,s—-1 .
Oy = tatp 2 ()

Jor s =1, 2,., k+1; 4, =3 a,, is summable (C,k—s); and the sums
of all these series are the same.

We have only to apply Theorem 77 k41 times in succession.
Theorems 77 and 78 may be used to obtain instructive proofs of the
equivalence theorem (§ 5.8) and of other standard theorems in the
subject.

6.8. Integrals. There are ‘Tauberian’ thcorems for intograls like those of
§ 6.1. If

(6.8.1) J'a(x) dz = A (C, k)t

for some k, and a(x) === O(z~!) for large x, then (6.8.1) is true for all ¥ > —1:in
particular, the integral is convergent. If (6.8.1) is true for some k, a(x) is real,
and za(x) > —H, then the integral is convergent. The analogues of the pre-
liminary Theorems 65 and 66 are: (i) if tho integral is summable (C, 74 1), then
a necessury and sufficient condition for summability (C, r)is B,(x) == o(2™+!), where
B,(z) is formed from b(x) = wxa(x) as 4,(x) is formed from a(x); and (i1) a necessary
and sufficient condition for summability (C,r-+1) is that fx—f‘zB,(x) dx should
be convergent.

There is an analogue of Theorem 71: if (6.8.1) is true, f(x) — 0, f ®)(x), the kth
derivative of f(x), is absolutely continuous, and j x¥| f %+ (x) | dx < o0, then

(6.8.2) [ at2)f@) do = (=141 [ Ay () fE9() ds (C, ),

the last integral being absolutely convergent. In particular this is true if
f(x) = (x+4-1)3, where s > 0. On the other hand, there is no analogue of Theorem
76; the introduction of a convergence factor like (x+1)~* does not necessarily
decrease the order of summability needed. Thus if a(x) = e**cose® then

x
A,(x) = —Hz+cos1—cose®+ fcose‘ dt ~ —Hz,
0

where H = cos 1 4 sin 1, and so

(6.8.3) f e?*cose®* dx = —cosl—sinl (C,1).
e**cos e®
But f Wi—— dx

is not convergent, and indeed not summable (C, k) for any £ < 1.

t As in § 5.14, integrals written without limits are over (0, c).
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If

(6.8.4) J(8) = [ e*a(x) do

is convergent for § > 0, and tends to A when § — 0, then we write

(6.8.5) J = fa(:c) dr = A (A)

and say that J is summable (A) to A. It would be natural, after § 5.12, to expect
surhmability (C, k) to involve summability A, but this is one of tho points where
the analogy between serics and integrals breaks down. The summability of J
does not involve even the convergence of J(3). Thus the integral (6.8.3) is
summable (C, 1), but | e(*~9%cos e® dx is not convergent if § < 1. '

However, if J is summable (C, k), and J(3) is convergent for every positive 3,
then J is summable (A). For then

Ad(x) = fe‘“a(t) dt -= 0(1)
0

for every positive 8, and
F o das g
A(z) = f 0t ""_dt(t) dt = e52A8(z)— f ePA1) di = O(e)
0

for every such 8. It follows that A;(x) = O(e®) for each k; and so, by k- 1. partial
integrations, that

o o0
(6.8.6) J(S) = f e=8g(x) du == S+l j e=02 4, (x) da.
0 0
But kla—*A4,(x) — A, and therefore
Sk [
J(6) ~ A4 i f ek dy = A.
0

We can obtain a moro satisfactory theorem as follows. The integral | a*e=%% dx
is convergent for every k, so that, after (6.8.2), the summability (C, k) of J involves
that of J(8), and the truth of (6.8.6), the integral on the left being summable (C, k)
and that on the right absolutely convergent. It then follows that J(3), interproted
as a (C, k) integral, tends to 4.

The integral j et@+V gy where a > 0, b > 0, is summable (A), but not (C, k)
for any k.

6.9. The binomial series. In the rest of the chapter we study the
summability of some particularly important special series. We begin

with the series
n
zan —_ z( -l_a)zn,

where a=B+iy, z2=c¢€9 |8 < m.
It is familiar that the series is (1) absolutely convergent when 8 << —1,
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(2) convergent, but not absolutely,f when —1 <{ 8 < 0 and 6 5 0,
(3) divergent when B > 0, or when —1 < 8 < 0 and 6 = 0;7 and that
the sum of the series, when convergent, is

(1—2)-*1 = exp {—(a+1)log(1—2)},
the logarithm having its principal value, for which |Jlog(1—z)| < .
We shall determine the conditions under which it is summable (C, k),

for any £ > —1.
We suppose first that

=1, k>-—1, |6|<wm  0#0, z#1
Then

Saut = (1—zu)=*1, 3 Akur = (1—u)~*-(1—zu)->-1,

Ak — 1 du
" %m0 ] (1 —u)e (1 —zu )iy’
C

where u = pei®, (' is the circle p = p, < 1, and the powers of 1—u and
1—zu have their principal values. Hence, by Cauchy’s theorem,

k1 du _
An — % + (l—u)k""]'(l-—Zu)"“flu"Jrl - Jl‘!‘Jz,

Cy C,
where C; and C, are two contours surrounding the points « = 1 and
u = 1/z = { and going to infinity in the directions ¢ = 0 and ¢ = —0
respectively. We may suppose C; and C, formed by circles round » = 1
and u = {, and straight lines with arguments 0 and —0, these last
described twice in opposite directions.
We write J; in the form J; = J{V'+J{?, where

JO — Q:f:lfjf( du (n+k)(1———z)-—a—1,:t

2me 1——u)7°+1u”+1= k
G
J(2>___:__1_ 1 1 - du L
VU om ) \(1—ue)e . (1—2) Y (1—u)etiyn it
1

We suppose that n > |1—{|-* and take the radius of the circular
part of C; to be n-1, so that u~"-1 = O(1) on the circle. Also

(1—uz)=*-1—(1—2)=21 = (a4 1)z | (1—wz)*2 dw
1
is O(ju—1[) on the whole of C;, and O(n-?) on the circle. Thus the

T Except in the trivial case 8 = —1, y = 0, a1 = 0, when the series reduces to its

first term 1.
1 Evaluating the integral by deforming C, back into C.
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contribution of the circle to J® is O/n-1,n-1,n*+1) = ° (n*¥-1), and that
of the rest of C, is

«© [e o]

x—1 . t dt
0{ (},}"_:Tycﬁw ldx} - 0{ f l+1 (1+t)n+1}

1+n-1 n—1
— ke [t _ of } _ _
O{"’ ' (l+t)n+1} - O{n(n—l) = Om*).
Hence Jy = (n—]i.k)(l——z)-“"lﬂ— O(n*-1).

Similarly we write J, = J{ 4 J@), where
Jo (1=~ f o dw
2 2m (1—zu)x+lynil
. C,
_ (e 2 (ne) e
T\« JA=0E T« [J(1—e)k+1’

J® — 1 1 1__} L
2mi ) \(1—wtrt  (1=)e+f (1—zu)atunst’
and we can prove that J@P = O(nB-1) by an argument like that which
we used for J{?.

Collecting our results, we find that
Ak — (n—]{;k)(1_eia)-a_1+0(nk_1)+(n+a) enif(1 —e-i0) k-1 O(nB-1),
0.4

The first term here is the dominating term when £ > B, the third when
k << B; if k = B then these terms are of the same order of magnitude.
We thus obtain

THEOREM 79. If o = B+iy, B = —1, k > —1, |0] < 7, and 0 £ 0,
then the series z (n+ )e"“9 is summable (C,k) when k > B, to sum

(0.4
(1—e®)-2-1 [t oscillates finitely (C, k) when k = B, and infinitely when
k <B.
It is plain that the argument will prove uniform summapbility in any
closed interval of § which does not include § = 0.

When 6 = 0,2 = 1, a, = ("+“),

(04
kon — (1 —a\-a—Fk— e [ntoatk+1
3 Ak yn = (1—u)-a-t-g An~( Fer i )
ntk\"t g o De+1) o
( k ) A~ Fathrg™

and
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Thus we obtain

6.4
k, unless B < —1, in which case it converges absolutely to 0, or B = —1,
y = 0, vn which case it reduces to its first term 1.

THEOREM 80. The series Z (n+<x) s never summable (C, k), for any

6.10. The series > n%"¥ From Theorems 79 and 80 we can deduce
corresponding results for the series Y’ ne".1 We suppose for the present

that B > —1, leaving the case 8 = —1 to the next section.
If y = 0 and B is integral (so that « is integral) then
n n-+4o—1
(6.10.1) ""‘=Po( i—a)ﬂ,l( jf_l )+...+pa,

where p,, py,... are independent of n. If « is not an integer then

(n+a—v) — Cy,yna—v+cv,v+1 n"‘“"-l—}—...—}—cv’hn““"—}-O(nﬁ—h—l),

x—v
where k is arbitrary, v = 0, 1,..., A, and ¢c,, % 0; and, combining those
equations, we can express n* in the form
6.10.2) o= po(" )b (" TO T  to (T ) OBy,

@ /| a—1 a—h
Combining Theorem 79 with (6.10.1) or (6.10.2), we obtain
THEOREM 81. If a« == B+iy, B> —1, k> —1, |0| < 7 and 0 # 0,
then the series >n%e™® is summable (C,k) when k > B, oscillates finitely
(C, k) when k = B, and oscillates infinttely (C, k) when k < B.

6.11. The case B = —1. The case in which 8 = —1 is in some ways
particularly interesting. The series
n"‘"" 1 "‘f'—?:)/ -0 1417 .0
A1, R A n-1+vyeniV
(6.11.1) Z(-—l—}—z'y) )
where y s 0, are convergent unless § = 0 (mod 27). In that case they

oscillate finitely, since

(n-—1+iy) _ Ttiy) _ntvw 0(1-.)
n2|’

—1+iy)  T@EyTn+1) Ty
"f m-teiy "]
1 vy
n—1 n n_1m+1
— Z m-1+Y — J‘t—1+iy dt = Z f (m—1+iy_t—-l+iy) dt,
1 1 1 m

t The series starting from n» = 1 when g < 0.
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and the general term of the last sum is O(m~2).1 Since the series (6.11.1)
are not convergent, and their general terms are O(n-1), it follows from
Theorem 63 that they are not summable (C, k) for any k.

It is interesting to investigate certain other properties of these series,
and in particular to prove their partial sums bounded uniformly in 6.
More generally, we prove

THEOREM 82. If
(6.11.2) A4, = ay+ay+...4a, = 0(1), Aa, = O(n-%),
then
(6.11.3) [8,(2)] = lz amzml < H

0
for |z| < 1, H being independent of z and n. In particular this is true
when a,, ts (n—ll_i-_};.w) or n~1+% (with ay = 0 in the second case).
- Y

We note in passing that the hypotheses (6.11.2) imply a, = O(n™?).
In what follows we shall be dealing with functions of » and 2, and O’s
will be uniform for |z| << 1. It is sufficient, by the principle of the
maximum modulus, to prove (6.11.3) when z = ¢ and 0 < |0] < =.
We suppose 6 > 0, and write p = [n/0], so that p > 1.

If p > » then

"‘ . n"l . 3
8,(2) = z a,, emil —— 2 Am Aesz+Anen10
0 1]

n—1
= (1—e) % O(1)40(1) = Onb)+0(1) = O(1).
If p < n then
8,(2) = ﬁ a,, emi9 | i a,,em? = 8 -8,
0 p+1

and the argument just used shows that 8; = O(1). Also

n n
p p

n
= 0(29‘1)+p2+10(m‘2) = O(p~) = 0(0),
since a,, == O(n-1), and so S, = O(1).
It follows from Theorem 82 that, for example, the series

n—1+iy
logn
is uniformly, though not absolutely, convergent on the unit circle.
m~—1+iy) _ (n-{—i-y
—1+iy )\ iy )

(6.11.4) 2 (n=2,3,., y #0)

n
T Altornatively, we may use the identity Z (
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We leave it to the reader to prove

THEOREM 83. If —1 < B <0, a, = o(l), Aan = O(nf-1), then
(6.11.5) [8,(2)| < H|1—z|-B-1
for [z2| < 1. If a, = O(1), A%, = O(n-2), then (6.11.5) s true for B = 0.

6.12. The series > n-%4°, The series
(6.12.1) S a, = 3 n-tedin®
where A4 >0, 0<a<l, b = By,
is particularly interesting and may be used to illustrate many points
in the theory of summable series. It is absolutely convergent if 8 > 1,
and we shall suppose throughout that 8 < 1.

The order of a,, is decreased, by a factor n2-1, by differentiation, so
that the series is adapted for study by means of the Euler-Maclaurin
sum formula; but the discussion of its summability on these lines is

rather tiresome in detail, and we shall use a different method depending
on & direct use of Cauchy’s theorem.

THEOREM 84. The series (6.12.1) ¢s summable (C, k), where k > —1,
of and only <f
(6.12.2) (k+1)a+p8 > 1.
We write
u(z) = z-bedi", Uy = 0, u, = u(n) (n >0),
2~ and 2% having their principal values in the half plane R(z) > 0, and

I'(n—m~+k+ l)u
Fn—m-+1) ™

6123)  S=TE+DUE= S

We have to show that n—*S tends to a limit if and only if &k satisfies
(6.12.2).

We denote by C the rectangle (3—:Y,n—:Y,n-+41Y,{+41Y),shown in
Fig. 1, by C, and C, the two half-rectangles formed by the lines L, to
L, and Ly to Lg respectively. If

flz) = P(n—z+k+1)

I(n—z41)
then Cauchy’s theorem gives

(6.12.4) 8 = 8—3f(n) = —2—17;—?-/ f 7 cot wzf(2) dz,
5,

u(?),
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where the integral along (n—:Y, n+-¢Y) is a principal value.t Also

. 1 .
(6.12.5) 271{@ f nif(s)dz =0, oL f (—i) f(2) dz = O.
C]_ C‘ﬁ
34+iY n4i¥
L,
C, Ly
Ly |
Ly —>
3 - b L A
Lg
L, Cy
Ly
$—1iY n—Y
Fia. 1.

Hence, combining (6.12.4) and (6.12.5), we obtain

1
2

©126) 8 = o [ wEfE b=+ [ e de +
L, 8

7
L
¥ 1 1
+ [reav [ erad g, [ e
) 2m
¥ Ly+ L Le+ Ly
where H(2) = m(cot mz-1)
according as y = J(z) is positive or negative. The integral along L;+ L,

is a principal value.
Now

b = O, ZEEERED oy, et = oot

t We apply Cauchy’s theorem to C modified by a semicircular indentation round
z = n, and then make the radius of the indentation tend to zero.
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for fixed n, 3 < x < », and large |y|. Hence the integrals along L, and
Lg tend to 0 when Y — o0, and (6.12.6) gives

6127) 8= [ferdz —g- [ dA+fG+in) dy +
3 -~

+% f P(ntiy)fintiy) dy = J—Jy -+,

say, the last integral being a principal value.
The integral

[+ o}

wT(n+3+k— z'y)} 'Y RY.
f {n “T(n+i—iy) (3+oy)b(3+1y) dy
is majorized by an integral with integrand independent of n, and the
function in curly brackets tends to 1 when n — co, for every y. Hence

(= o}

(6.12.8) n"%»% f u(}+1y)p(d+1y) dy

— 0
a0

=4 f (%-{—iy)-bem(iﬂw"e;i? j{j dy = i1,
say. As regards J,, we have
2772 2m1
P(n-tiy) = T (y > 0), al ppecvr (y <0);

and so
(6.12.9) ©

— 4 [ Dkt+1l—gy) sgny

']2 - i f F(l"-?/y) (n+ y) e2mvl ] dy
. I‘(kﬂ—_lgdzy) L(k+14-2y), . } dy
*“dfnh> R R P
0
the last integral being absolutely convergent. It follows that
J2 = O(n—ﬂ)’T

t We divide the range of integration into (0, §) and (3, o), where 0 < § < 1. It is
clear, on grounds of ‘dominated convergence’, that the part of the integral over (3, o)
is O(n—#). In (0, §) we may expand
I'(k+1—1y) y

TO=w) ’ e2m |
as uniformly convergent power series P(y/n), Q(y), B(y); and it then becomes plain that

nbu(n-+1y),

S
w [ AP(Yew—P(~L)e—v)rw) dy = 0gs)
0
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and from (6.12.7) and (6.12.8) that

(6.12.10) 8 = —in*I+4o(n*)+J+0(n-"H).
Now
_ [ T(n—2+k+1) _ T
(6.12.11) J = f ~F(n_z+1~)—~u(z) dsz — f = L—1I,,
¥ M; M,

where M, and M, are the lines through } and n parallel to the positive
direction of the imaginary axis. On M;, z = re®, where 0 < 0 < 1,
6 — }r; and |e4%*| = g-4r*sinal Tt followst that

(6.12.12) I ~ ink f (3 +1y)~bedit+v)® dy = ik [*.
We now take a (small) fixed §, and write
(6.12.13) :
[ Tkel—iy)
I, = zf P(.l;z{/)ﬂu(n-{—zy) dy = zf —HJ = Iy+1,.
0 n

In I, y > n, and 2 = ntiy = rei%, where 0 <w < 6 < br and w
depends only on 3. Hence
[eAiz"l — p—4r®sinaf < e—Br“,
|27t = r-Fer? < Or-6, dy = cosecbdr < D dr,
and

[> o]

(6.12.14) I, = 0( f rk-Be~Br® dr) = O(e~En%),
on
B, C, D, and £ being positive functions of 3.
Finally, if 0 <y < 6n, we have
edin+iy)* — pdin®—dan®ly+.. 0(6~Fn"‘1/),
where F is a positive function of . Hence
1

on
(6.12.15) Iy = O{n"ﬁ(fe—F”"‘ly dy + f yre—Tnly dy)}
i

0
— O(n_ﬁ)-}—O(n“ﬁfyke‘FW’“y dy) — O{n—ﬁ+(k+1)(1—a)}’
0

since (k+1)(1—a) > 0.
Finally, S and 8’ differ by }f(n) = O(n—F). Hence, collecting our
results from (6.12.10)~(6.12.15), and remembering again that
(k+1)(1—a) > 0,
we find that
8 = ink(I*— I)4-o(nk) 4 Ofn-B+E+Dd-a},

1t Again by a simple argument based on majorization.
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If k satisfies (6.12.2) then —B-+(k-+1)(1—a) < k and n—*S — §(I*—1I),
so that the series (6.12.1) is summable (C, k), to sum ¢(I*—I).

To prove the negative assertion of the theorem, we must estimate
I, more precisely. If we replace (n+iy)-* by n-?, and Ai(n-iy)* by
Ain®— Aan®-ly, we obtain

o qins [ T(k+1—2y) a1
bpdin 7] p—Aan
1n-be T(—i) e v dy.

When n is large, n*-1 is small, so that the integral here is dominated

by the part in which y is large; and we are thus led to replace the

quotient of gamma-functions by (—sy)*. This leads us to the conclusion
that

— I, ~ —in-bedin® f (—3y)ke—4an*"'y gy
— e—i(lc+1)m‘]_"( k._l__ 1)( Aa)*"‘ln“b +(Ic+1)(1——a)eAin"‘

There is no particular difficulty in making this conclusion rigorous,
and we suppress the details of the proof. It follows that, when
(k+1)a+B < 1, § involves an oscillating term whose order is at least
n¥*, and that the series is not summable.

NOTES ON CHAPTER VI

§ 6.1. Theorem 63 was proved by Hardy, PLMS (2), 8 (1910), 301-20, ecxcept
for the clause concerning summability by means of negative order, which was
added by Hardy and Littlewood (l.c. under § 5.7); and Theorem 64 by Landau,
PMPF, 21 (1910), 97-177 (103-13). The method of proof here, based on Theorems
65 and 66, is Hardy’s. A good many other proofs have been given, particularly
for the special case £ = 1, which is important in the theory of IFourier series. See,
for example, Bromwich, 423-6; de la Vallée-Poussin, Cours d’analyse infinitésimale
(ed. 6, Louvain, 1926, ii, 109); Kloosterman, JLM.S, 15 (1940), 91-6; Mordell,
JLMS, 3 (1928), 86-9, 119-21, 170-2.

Theorem 67 was found by Hardy, PLMS (2), 12 (1913), 174-80, in the more
general form in which Y @, is given summable by Riesz’s typical means of some
order. A gap in Hardy’s proof was filled by Ananda Rau, PLMS (2), 17 (1918),
334-6. The form of the proof here for £ = 1 is due to Bosanquet.

Hardy states erroneously that a, > —H(A,—A,_;)/A, is a sufficient condition:
the mistake was corrected by Ananda Rau, PLMS (2), 30 (1930), 367-72. On
the other hand, the two conditions

(1) Gy > "'H(’\n")‘n—l)/)‘m (2) _l_'_HBan >0
are sufficient: in this case A(x) is slowly decreasing in the sense of §6.2. This
theorem is included in one due to Szész, Miinchener Sitzungsberichte (1929), 325-40:
see the note on § 7.7. If A,,,,/A, — 1, then (1) implies (2) and is sufficient in itself.

§ 8.2. The definitions of slowly oscillating and slowly decreasing functions and
sequences are due to R. Schmidt, MZ, 22 (1924), 89-152 (127-42). We shall uso
two forms of the definitions, the first appropriate to the interval (0, ), the second
to (—o0,00): see § 12.2. Tt is the first form which is relevant here.

4780 L
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§ 6.3. Hardy and Littlewood, MM, 43 (1914), 134-47. Actually the convergence
of 3 n?-1|a,|? is a sufficient condition for the corresponding theorem concerning
summability (A).

§6.4. Thcorem 70, for integral parameters, is proved (though not quite
explicitly) by Hardy and Littlewood, PLMS (2), 11 (1913), 411-78 (437). The
theorem is the case 8 = 0 of their Theorem 19, with ‘bounded (C, »—k), summable
(C,7)’ in the hypotheses. They state their result only for 8 > 0, but the proof is
valid for B = 0.

There is a considerable literaturo concerning the general form of the theorem
with unrestricted parameters, and oxtensions of it important in the theory of
Dirichlet’s series. See, for example, Ananda Rau, PLMS (2), 34 (1932), 414-40;
Andersen, Studier, 55 ct scq.; Bosanquet, JLM.S, 18 (1943), 239-48; M. Riesz,
MTE, 29 (1911), 283-301, and AUH, 1 (1923), 104-13; Zygmund, M Z, 25 (1926),
291-6. Bosanquet gives further references.

§§ 6.56-6. Theorem 71 was proved independently by Bohr [CR, 148 (1909),
75-80; Bidrag, 61-9] and by Hardy [PLMS (2), 6 (1908), 255-64; and 8 (1910),
277-94 (278-81), where a mistake in the earlier paper is corrected]. A number
of special cases had been proved earlier by various writers, e.g. by Bromwich,
MA, 65 (1908), 350-69, and by Hardy [PLMS (2), 4 (1906), 247-65 and M A,
64 (1907), 77-94]. ,

The theorem was extended to general k by Andersen, Studier, 44-55. Simplified
proofs of the generalized theorem, and further extensions, have been given by
Andersen, PLM S (2), 27 (1928), 39-71, and Bosanquet, J LM S, 17 (1942), 166-73.

The necessity of the conditions (in the sense explained on pp. 130-1) was proved
for integral k by Feketc, M1'E, 35 (1917), 309-24, and for general k£ by Bosanquet,
l.c. supra.

There are a number of theorems which include both of Theorems 71 and 76,
ospecially for integral parameters. Thus Bosanquet, PLMS (2), 50 (1948), 295
304, has proved that if k and I are integers, —1 < | < k, and p is any real number,
then, in order that 3 a,f, should be summable (C,l) whenever Ak = O(n*+?), it is
necessary and sufficient that

fo = o(nl—p-k), Z‘ nzz~1-7c|A7c+1fnl < oo.

If, for example, p = 0, we obtain necessary and sufficient conditions that ¥ a, f,
should be summable (C,I) whenever 3 a, is summable or bounded (C, k). This
case of the theorem was stated without proof by Schur, JM, 151 (1921), 79-111
(106), and proved by Bosanquet, JLMS, 20 (1945), 39-48. It reduces to
Theorem 71 for [ = k; and there is a variant in which 3 a, is summable (C, k)
and f, = O(nl-k),

The special case I = 0, p = 0 is considerably older. The sufficiency of the
conditions in this case was proved by Bromwich, l.c. supra, for integral k, and by
Chapman, l.c., under § 5.5, generally; and the necessity by Kojima, TMJ, 12
(1917), 291-326. See Moore, Convergence factors, 45—6.

More recently Bosanquet, PLM.S (not yet published), has extended his theorem,
with the slightly narrower conditions 0 < I < k, p > 0, to non-integral k£ and /.

Theorem 76 was stated (at any rate for integral k) by M. Riesz, CR, 148
(1909), 1658-60; and proved, for general k, integral s, by Chapman, l.c., under
§ 5.5, 388-9. There is a proof for gencral k and s by Zygmund, BAP (1927),
309-31; and another by Ananda Rau, left incomplete at one point in his paper
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referred to under § 6.4, has been completed by Minakshisundaram, JIMS (2),
2 (1936), 147-55.

There are analogues of these theorems for ‘absolute summability’. The series

3 a, is said to be absolutely summable (C, k), or summable |C, k|, if

S |0K(A)—Ch_,(4)] < oo
Thus summability |C, 0] is absolute convergence: the definition is Fekete’s. We
shall not be concerncd with absolute summability here, but theorems corre-
sponding to Theorem 71, and others of these sections, have been proved by
Bosanquet, Feketo, and Kogbetliantz. References will be found in Kogbetliantz
and in Bosanquet’s papers quoted here.

We add a remark about the argument in the toxt. We deduce Theorem 76
(for integral k and 8) from Theorems 47, 71, and 65. Alternatively, wo may deduce
it from Theorems 47 and 66. It is trivial if & = 0. If &k > 0 then, in order that
3 n—la, should be summable (C, k— 1), it is necessary and sufficient that > n=¥4k-2
should be convergent, and this is easily proved by partial summation. The proof
is valid for non-integral k.

We can also vary tho proof so as to avoid an appeal to Theorem 47.

§ 6.7. Theorems 77 and 78 were proved by Hardy and Littlewood, MZ, 19
(1924), 67-96: they are closcly connected with others proved independently by
Knopp, ibid. 97-113. Later, Andersen, PLM S (2), 27 (1928), 39-71, and Hardy
and Littlewood, ibid. 327-48, transformed and generalized them in various ways.
See Kogbotliantz, 33.

§ 6.8. It is, as usual, difficult to give precise references for the integral theorems.
For the equivalence theorem, see Landau, Leipziger Sitzungsberichte, 65 (1913),
131-8; for the analogue of Theorem 71, Hardy, MM, 40 (1910), 108-12; for the
points discussed at the end of the scction, M. E. Grimshaw, JLM.S, 9 (1934),
94-102.

§§ 6.9-10. The substance of the results here is due to Chapman and Knopp,
l.c., under § 5.5.

§ 6.11. The bounded convergence of the series (6.11.1), and the uniform con-
vergence of (6.11.4), were proved, less directly, by Hardy, QJM, 44 (1913),
147-60. See also Landau, Ergebnisse, 68-9.

The most interesting case of Theorem 83, in which Y a,2z" = (1—z)=#-1, is
equivalent to a theorem of M. Riesz, AUH, 1 (1923), 114-26. It is stated more
explicitly by Fejér, M Z, 24 (1925), 267-84 (269). Szegd, MZ, 25 (1926), 172-87,
gives a different proof, based on Kaluza’s Theorem 22, and a generalization to
the case B > 0.

The proof of Theorem 83 is a little more complox when B = 0 than when
B < 0. Itis worked out in detail for the case a, = n' by Hardy and Rogosinski,
0QJ, 16 (1945), 49-58.

§ 6.12. The main result is due to Hardy, PLM S (2), 9 (1911), 126-44; but the
discussion there is not quite satisfactory for our present purpose, since it is based
on the restrictod form of Riesz’s means of § 5.16 in which w assumes integral
values only. It is not difficult to modify the argument so as to take account of
non-integral w, and prove that theseriesissummable (R, n, k) when (k+1)a+8 > 1;
but then we need the troublesome Theorem 68 (proved in § 5.16 only for integral k)
in order to infer summability (C, k).
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TAUBERIAN THEOREMS FOR POWER SERIES

7.1. Abelian and Tauberian theorems. We shall be concerned
throughout this chapter with a set of theorems of the kind usually
called ‘Tauberian’. We used this word in §6.1, and gave a short
explanation of the nature of a Tauberian theorem. The theorems which
we prove here are more difficult, and our exposition of them more
systematic, so that it will be best to begin by a more precise definition
of the meaning of the word and of the word ‘Abelian’ with which it is
contrasted. It is convenient to use notations differing in some points
from those which we have used hitherto.

We denote the series and integral

(7.1.1) S a, fa(t) dt

by § and J, and their values, when they are convergent, by s and j
(so that, for example, 8 = s means that Y a, converges to s). We write

8, = ag+a,4...4a,, jit)= fa(u) du,
and ’

St) =S a,e,  Jy) = [a@)evd,

when y > 0 and the series and integral are convergent. By § = s(A)
or J = j(A) we mean that S(y) ->s or J(y) -7 when y - 0, and by
S = ¢(C) or J =35(C) we mean that the series or integral (7.1.1) is
summable (C, 1) to s or j: we shall not have occasion to consider Cesdro
summability of any other order. We denote the hypotheses

S=s J=j, §=s(A), J=j(A), S§=s(C), J=j (C)
by K, K', K,, K, Ko, Ky
respectively.

An ‘Abelian’ theorem is, roughly, one which asserts that, if a sequence
or function behaves regularly, then some average of the sequence or
function behaves regularly. Thus ‘if s, — s then

o — So+81+...+3, -
" n-1

or ‘K implies K’ and its integral analogue ‘K’ implies K’ are Abelian.

8’
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Abel’s theorem on the continuity of power series is an Abelian theorem
(and it is from this that the name is derived). For

_ SoFs xtsy a4
14+t

when 0 < x < 1and the series are convergent; the right-hand side is a
certain average of the s,; and Abel’s theorem asserts that this average
tends to s, when x — 1, if s, itself tends to s. Generally, any theorem
asserting the regularity (§3.2) of a method of summation is an Abelian
theorem.

The direct converse of an Abelian theorem is usually false. It is
obvious, for example, that, if the regularity theorem for any method of
summation is reversible, then the method is trivial in the sense that
it will sum convergent series only. There are, however, many important
theorems which may be called corrected forms of the false converses of
Abelian theorems. Thus we saw in §6.1 that the false theorem ‘o, —> s
implies s, - ¢’, or ‘K, implies K’, becomes true if we subject s, to an
appropriate additional condition, such as a¢,, = O(n-!). Such theorems
are called ‘Tauberian’, after A. Tauber, who first proved one of the
simplest of them; and the supplementary condition is called a ‘ Tauberian
condition’.

The most important Tauberian conditions with which we shall be
concerned here are

(0) a, =o(n1), (0) a,=0(n"), (O;) a,>—Hn"1,
(OR) 2% < Hnﬁla
and their integral analogues
(o)) a(t) =o(t7), (0) a@®)=0@"), (07) alt)>—Ht™,
(0}3) a(t) < Ht-L.
Here H is a positive constant, and the conditions on a(f) are supposed
to be satisfied for large t. The behaviour of a(f) for small ¢ will be

irrelevant; we shall usually suppose only that it is integrable down to 0.
We shall also use two generalizations of (o) and (0’), viz.

(w) a,+2a,-4...+na, = o(n),
t
(w’) f ua(u) du = o(t).

0

agta, x+a, 2%+ ...

7.2. Tauber’s first theorem. The first of Tauber’s theorems was

TurorEM 85. If > a, is summable (A) to sum s, and a, = o(n71),
then Y a, converges to 8
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or ‘K, and o imply K’. The integral analogue is ‘K, and o’ imply
K’’. We call this Theorem 85a, and use this notation for integral
analogues generally.

We begin by proving Theorem 85a, and deduce Theorem 85 as a
corollary: we might also prove Theorem 85 directly by an argument
running parallel to that used in the proof of Theorem 85 a.

It is plain that (o’) implies the absolute convergence of J(y) for y > 0.

Also .
J (%) —J(y) = | a(t) dt — f e~Vla(t) dt

0
ly @

(1—e=Y)a(t) dt — f e~va(t) dt = P—@Q;

1ly

- \

|

!

1/y 1/y

f O(yt)o ( )dt =y f o(1)dt = o(1),
0

since 0 < 1—e~¥ < yt; and

e o] o]

Q= f e—”’o(-:—) dt = o(yf eyt dt) = o( f e~ du) = o(1).
1/y 11y 1

Hence j(1/y) = J(y)+4-o0(1) —j when y - 0, i.e. j(t) - j when t - c0.
To deduce Theorem 85 we take a(t) = a, for n <<t << n-+1. Then
n+1

1
— -yt Jp — —-nyY__g—(n+1)y
J(y) Zanl e~V dt ; Ean{e e }
1—e-v 1—e-v
= a, e~ =— S( ),
Y n Y Y

so that S(y) - s implies J(y) > s. Also a,, = o(n-1) implies a(t) = o(t-1);
so that Theorem 85 follows from Theorem 85 a.

7.3. Tauber’s second theorem. In Tauber’s second theorem the
hypothesis o0 is replaced by w. This changes the character of the’
theorem; for the convergence of § implies w, by Theorem 26, so that
w is a necessary condition for K.

TuroreMm 86. If 3 a, is summable (A) to s, then w s @ necessary and
sufficient condition for its convergence to s.

The integral analogue is ‘if K is true, then w’ is necessary and suffi-
ctent for K”. It will be convenient, here and later, to prove the main
theorem and its integral analogue together, as special cases of a theorem
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concerning Stieltjes integrals. We take for granted the definition and
elementary properties of the ‘Riemann-Stieltjes’ integral

| 70) dage),

where (u, T') is finite. In particular we assume that the integral exists
when one of the functions is continuous and the other of bounded

variation, and that
T

(7.3.1) f f(t) da(t) = f(T)A(T) —f (@)o(a) - j o(t) df ¢).

We shall always suppose that «(t) is of bounded variation and that
«(0) = 0. We shall also use the equatlon
T

g(t)

t
where B(t) = [ g(u) de(u), f and g are continuous, and g > 0.

(7.3.2) f () dat) = [0 da(),

a
We define the Stieltjes integral over (w ) by
f 1(¢) do(t) = lim f f(t) doit).

The integrals with Whlch we shall be concerned are of the type

o0

(7.3.3) I(y) = f e~ du(t).
0
We shall always suppose I(y) convergent for all positive y, in which

case «ft) = o(e¥) for all such y. If «(f) is absolutely continuous, and
«'(t) = a(t), then I(y) reduces to J(y). If «(t) is the step-function with
jumps @, at the points ¢ = n,} then it reduces to S(y). Thus any
Abelian or Tauberian theorem concerning I(y) will contain one for J (y)
and one for S(y).

TurorEM 87. If a(t) — l when t — oo, then I(y) s convergent for y > 0,
and I(y) — 1 when y — 0.

For .
I(y) = lim { [ en da(t)}

T—o

T @®
= lim {e—”Ta(T)—l—y f e~Vlu(t) dt} =y f e~Vio(t) dt
T 0 0
and so I(y) > limly f e~vidt = 1.
y—0 " ¢

t And a(+0)—(0) = o(+0) = go.
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Next, we prove a theorem which includes Theorems 85 and 85a.

THEOREM 88. If I(y) is convergent for y > 0, and I(y) > 1 when
y —> 0, then a necessary and sufficient condition that f da(t) =1, i.e. that
a(t) - L when t — o0, is that

(7.3.4) B(t) = f u do(u) = o(t)
when t — co. ’

First, the condition is necessary because

t
Bt) = ta(t)— | «(u)du
|

¢
gg_) = a(t)__-} f c(u)du —>1—1=0
if at) > L. ’

Secondly, if (7.3.4) is satisfied, then (7.3.2) and (7.3.4) give

a(t)—a(l) = fd“(“ fdﬂ(u B(t _B()+ fﬁ(u

= 0(1)4«0(1)+o(f ‘%) = o(log?) = o(?)

1
4

and so y(t) = f (u+1) da(u) = B(t)+a(t) = o(?).
0

Now

f eV doe(t) — ftf_% dy(t) = y f 20 vy + f (tV“ e-vh dt,

The first term on the right is o(y f e~¥ dt) = o(1), and so
)
S(t)e~v dt = f YO g 51,
J e i+
But 8(t) = o(t-1), and therefore, by Theorem 85 a, f 8(t) dt converges to .

Finally,
ay(t) _ [ _v(t) _
fd (t) = 1= ) G Lt = f 3(t) dt = 1.

Thus (7.3.4) is a sufficient as well as a necessary condition. Specializing
«(t) as stated, we obtain Theorems 86 and 86a.
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7.4. Applications to general Dirichlet’s series. (1) If A, > 0,
Ay > Ay, A, >o00, and «ft) is a step-function with jumps a, at the
points A, then
(7.4.1) Ity) = 3 a, eV,
and this specialization of «(¢), in any of our theorems, leads to a theorem
about such a Dirichlet’s series. Thus Theorem 87 leads to the regularity
theorem for the (A,)A) method of summation. We shall not consider
the properties of the general series (7.4.1) in any detail here, but we
illustrate our remarks by proving the Tauberian theorem for Dirichlet’s
series which corresponds to Theorem 85.

TurorEM 89. If S(y) = Y a, e is convergent for y > 0; S(y) - s
when y - 0; and

(7.4.2) a, = O(Aﬂ:@:l);
An
then > a, converges to s.
We apply Theorem 88, taking
l) = .
o(t) A"Zd Ay

Then I(y) = S(y) - s. Also, if A, is the last A, less than ¢, then
t

Bl) = [udn(w) = 3 Mo,

= Nayt 3 oy —A, 1) = o(A) = o(0).

Thus the conditions of Theorem 88 are satisfied, and «(f) > s, i.e.
>a,=s.

(2) The condition (7.4.2) is, roughly, the stronger the more slowly
A, tends to infinity: thus it is @, = o(n~!) when A, =u, and
a, = o{(nlogn)-1} when A, = logn. A divergent series which satisfies
the first condition cannot, after Theorem 85, be summable (A), but it
may well be summable (A,logn). The latter method is not, in the
language of §§ 3.8 and 4.12, so ‘powerful’ as the A method, since it can
apply only to series > a, such that ¥ n-va, is convergent for all posi-
tive y. Thus it is not applicable to such a series as 1—2-+3—...; but,
as is shown by Theorem 28 of § 4.8, it is at least as effective within its
limits of applicability; and the example of the series > n-1-% shows
that it is sometimes more so (§ 7.9).

7.5. The deeper Tauberian theorems. We pass now to a series
of theorems of a more difficult character, of which the best-known and
in some ways the most typical is
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THEOREM 90. If Y a, is summable (A) to sum s, and a,, = O(n1), then
> a,, converges to s.

That is to say, ‘K, and O imply K’. This theorem is a direct
generalization of Tauber’s theorem 85, the condition o being replaced
by O. Some prefatory remarks will be useful.

(1) If 3 a, is summable (C, k), for any k, then, by Theorem 55, it
is summable (A). Hence Theorem 90 includes Theorem 63 of Ch. VI.
Generally, any Tauberian theorem for A summability includes one for
(C, k) summability, though an independent proof of the latter is usually
easier.

(2) There are naturally variants of the theorems of §§ 7.2—4 in which
‘o’ is replaced by ‘O’ vn both hypotheses and conclusion, and the proofs
of these are trivial variants of those of the ‘0’ theorems. Thus Theorem
85 has the variant

“if 8, = O(1) (A), i.e. if S(y) is bounded when y— 0, and a,, = O(n-1),
then s, = O(1)’,
and the proof, being a slightly simpler variant of that of Theorem 85,
need not be set out in detail. We shall sometimes use such theorems,
and shall indicate them by an [O], Theorem 85 [0], for example, being
the theorem just stated; but we shall take the proofs for granted. The
significant theorems of the next sections will be those in which, as in
Theorem 90, ‘O’ occurs in one of the hypotheses but ‘o’ in the conclusion.

Similarly an integral analogue, Theorem X a, will have an ‘O’ form,
Theorem X a [O].

(3) We shall sometimes use one-sided order conditions of the types
a, > —Hd¢(n) or a, < Hep(n), where a,, is real and H and ¢(n) are posi-
tive. We shall write these as a, = O {(n)} or a, = Op{é(n)}. Thus
a, > —Hn"! or a, = Op(n?!) is the condition O; of §7.1. Actually,
only O, will occur in our theorems, since a theorem with an Op may
be deduced by a change of sign from the corresponding theorem with O;.

We now state a series of theorems which we shall consider together
with Theorem 90.

TurorEM 91. If 3 a, = s(A), a, is real, and a, = Og(n1), then
da,=s.

TureorREM 92. If Y a, = s(A), and s, = O(1), then Y a, = s(C, 1).

THEOREM 93. If Y a, = s(A)and s, > 0, then Y a, = s(C, 1).

THEOREM 94. If Y a, = s(A), a, is real, and s, = O(1), then
>a, =s(C1).
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THEOREM 95. If

(7.5.1) f(x) — z a, L’ ~ f.%

when x -~ 1, and a, = O(1), then s, ~ Cn.
THEOREM 96. If (7.5.1) is true, and a,, > 0, then s, ~ Cn.

Turorem 97. If (7.5.1) is true, a, is real, and a, = Or(1), then
s, ~ Cn.

In the last three theorems (7.5.1) is to be interpreted as (1—x)f(x) — 0,
and s, ~ Cn as s, = o(n), when C = 0. Since 1—e~¥ ~ y when y - 0
(7.5.1) is equivalent to S(y) ~ Cy-1.

All these theorems are of the same depth, and it is comparatively
easy to deduce any one of them from any other: the most interesting of
these deductions will be found in§§ 7.7 and 7.8. In some cases the deduc-
tions are quite trivial. Thus Theorem 93 is obviously a special case of
Theorem 94, and Theorem 96 of Theorem 97. Theorems 90, 92, and 95
are special cases of Theorems 91, 94, and 97 respectively when a,, is
real, and may be reduced to special cases of them in any case by con-
sidering real and imaginary parts scparately. Thus we have only to
prove Theorems 91, 94, and 97.

Next, Theorem 94 is a corollary of Theorem 97. For if the conditions
of Theorem 94 are satisfied, then

> 8, 2" = 1_1:5 Z a,xr" ~ T—S?x-
and s, = O0.(1). Hence, assuming the truth of Theorem 97, and apply-
ing it to D s, 2", we obtain
So+81+ .48, ~ sn
or > a, =s (C,1).

Finally, while Theorem 96 is a special case of Theorem 97, the latter
is a corollary of the former. For if the conditions of Theorem 97 are
satisfied, and a, > —H, say, then b, = a,H > 0 and

Hence (assuming Theorem 96) we have
by+b1+4-...+b, ~ (C+H)n,
and therefore s, ~ Cn.

Thus it is enough to prove Theorems 91 and 96. The set of integral
analogues of the theorems may be reduced in the same way. Actually,
we shall prove Theorems 96 and 96 a directly and deduce Theorems 91
and 91 a from them.
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7.6. Proof of Theorems 96 and 96a. We shall prove Theorems 96
and 96a as special cases of a theorem concerning Stieltjes integrals.

THEOREM 98. If «(t) tncreases with t,
I(y) = [ evda(t)
s convergent for y > 0, and I(y) ~ Cy=1, where C = 0, when y — 0, then
a(t) ~ Ct.
We need two lemmas.

THEOREM 99. If g(x) is real, and Riemann integrable in (0, 1), then
there are polynomials p(x) and P(x) such that p(x) < g(x) < P(x) and

1 -]

[ {P@)—p@)} de = [ e{Ple)—ple )} dt <.

0 0

(i) Suppose first that g is 1 in («, ), where 0 <« <8< 1, and 0
outside («,8). We can plainly find a continuous At such that

g <h, f (h—g) dz < e.

By Weierstrass’s theorem, there is a polynomial ¢ such that [2—@Q| <e.
If P = Q-}¢€,theng < h < P and

f(P_g) dr < f (P—Q) dz + f |Q—h| da + f (h—g) dz < 3e.

Similarly there is a p such that p < g and I (9—p) dx < 3¢; and p and
P satisfy the requirements of the theorem (with 6e for ¢). Thus the
theorem is true for this special g.

(ii) It follows by multiplication and addition that the theorem is
true for any finite step-function.

(i) If g is any Riemann integrable function, then there are finite
step-functions g, and g, such that

gl \<\ 9 ‘g 921 f (92—-91) d:L‘ < €.

We associate polynomials p,, P, with g¢,, and p,, P, with g,, in the
manner prescribed by the theorem. Then p, < g < B,

[B—g)de<e  [@—p)dr <e,
and [ (B—py) do = [ {(B=02)+(g2—02)+G1—p1)} do < 3e,

which proves the theorem.

+ Which may be g in («, 8). In what follows integrals with respect to z, without
limits shown, are over (0, 1), and those with respect to ¢ over (0, ).
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In our second lemma we require a little more knowledge of the
Stieltjes integral than we have presupposed up to the present. We
assume that, if f and g are of bounded variation, but not necessarily
continuous, in a finite interval, and have no common points of dis-
continuity, then each is integrable with respect to the other. The
formula for partial integration is still valid, but we shall not need it.
Integrals up to co are defined as limits, as in § 7.3.

THEOREM 100. Suppose that «(t) increases with t, that I(y) is convergent
for y > 0, that I(y) ~ Cy-1, and that g(x) is of bounded variation in
(0,1). Then

x(y) = [ eviglev!) do(t)

exists for all positive values of y except values t/w, where w is a discontinuity
of « and T a discontinuity of g(e~t); and

(7.6.1) x(y) ~ gf etg(e~t) dt
when y — 0 through any sequence of positive values which excludes these

exceptional values.

The values of y excluded are those for which g(e%!) and «(f) have
common discontinuities: x(y) is not defined for such y. Since the w and
the 7 are at most enumerable, we exclude at most an enumerable set
of values y,, of y.

Since a function of bounded variation is Riemann integrable, we can,
by Theorem 99, choose polynomials p and P so that

pP<g<P, [e{Pleh)—pleh)dt<e.
Then fe-‘p(e*‘) dt < f elgle) dt < f e~tP(e ) dt;
and f e~vip(e¥) du(t) < f e~Yg(e) du(t) < f e~V P(e-v!) du(t),
for y # y,, because «(t) increases with {. Now

fe—ﬂle—nyl da(t) = f e—(n+luyt da(t) ~ (nfl)y — _g f e—te—m dt,

and therefore
f e~ VP (e~¥) du(t) ~ -:;/C- f e~tP(e~) dt.

Hence, if y - 0 through any sequence free from values y,, we have

(7.6.2) limy f e~vig(ev) do(t) < limy j e~V P(e—!) du(t)
y—0 y—0

=C f etP(et)dt < C f e~tg(e~?) dt --Ce.
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Similarly, using p instead of P, we obtain

(7.6.3) lim y f e-vig(e=) da(t) > C f e~g(e~t) dt — Cle;

and (7.6.1) follows from (7.6.2) and (7.6.3).
We can now prove Theorem 98. We suppose, as always, that «(0) = 0.

We take

gle) =t (<< ), gr) =0 (0 <z <el),
o that g(e~?) = e for 0 <t <{ 1 and g(e*) = 0 for ¢ > 1. Then
0 1/y 1
x) = [ evgle dat) = [ da) = aof )
0 0 Y
o) 1
Also e-tg(e~t)dt = | dt = 1.
! |

Hence, by Theorem 100, «(y~!) ~ Cy~* when y — 0, i.e. a(f) ~ Ct when
t — co, exception being made in either case of a certain enumerable set
of values. Here there is just one 7, viz. 1, and the values of ¢ excluded
are the discontinuities of «(f). Thus «(f) ~ Ct when ¢ -+ o0 through
points of continuity of «(). Finally, since «(t) increases with ¢, it is true
without reservation.

Theorem 98 includes Theorem 96 and its integral analogue Theorem
96a. If «(t) is a step-function with jumps a, == 0 for ¢ = =, then

I(y) = S(y) = 2 a,e™,

and S(y) ~ Cy~! implies s, ~ Cn. This is Theorem 96. Similarly, if
«(¢) is absolutely contmuous and «'(t) = a(t), we obtain Theorem 96 a.

7.7. Proof of Theorems 91 and 91a. We can now prove a theorem
which includes Theorems 91 and 91a. We require two further lemmas.

THEOREM 101. If f(y) is twice differentiable for positive y, and
(7.7.1)  f(y) =1, (1.7.2)  f"(y) > —Ky=2,
when y — 0, then yf'(y) - 0.
The theorem is one of an important type, and it will be instructive

to give two proofs.
(1) If y and y+» are positive, then

(7.7.3) S+ —f) = 0f (y)+ " (y+07),
where 0 << 6 < 1; or

(7.7.4) f/(y) =

f(?/+’7 f(?/ 1 f”(y+077
7
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We choose 8 so that 0 < 6 < 1 and
K$
21— =
and apply (7.7.4) with n = 8y and » = —Jdy.
First, taking n = &y, (7.7.1), (7.7.2), (7.7.4) and (7.7.5) give
1 K 1 Ks _ (1 €
Fo < 0(8?/) +2'(§475y8§72 <° (Sy) Ty ( ) y’

and so Efﬁyf’(y ) L e

(7.1.5)

Secondly, taking » = —38y, they give

, 1 Ksy 1 KS 1\ e
Y e B I P ] ot LA
) O(Sy) 5(y—65y)? ‘?(Sy) o(1—8)% "(Sy) y

and so limyf'(y) = —e.
Hence yf'(y) - 0. o
(2) We observe first that if é(y) = f'(y)— Ky~ then
¢'(y) =f"(y)+Ky=* > 0.
Thus ¢ is an increasing function which has a finite derivative ¢’ for
each y, and is therefore the integral of ¢’.+ Hence f’is the integral of f”.
If yf'(y) 4> 0, then one or other of the inequalities

(7.7.6) f'y) > Hy™t,  f'y) < —Hy™?

is true for some positive H and a sequence of values of y tending to 0.
Let us suppose, for example, that the first inequality (7.7.6) is satisfied
for the values y = Y. If

S =HPK, Y <y<Y+5Y,

then v
Y . H U
) =+ [ o> g - f&-
Y Y
H 4w H K5 _H
>y~ X f =y~ Y ~aw
Y
and therefore ety
Y H ., H?
fY+8Y)—f(¥) = J f'w) du > 5587 = 7,

which contradicts (7.7.1). Similarly, considering an interval

Y—sY <y <7,
we obtain a contradiction from the second inequality (7.7.6). Hence
f'y) = oly™).

1 See, for example, Titchmarsh, Theory of functions, 368.
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We can now prove

TueorEM 102. If (i) I(y) ¢s convergent for y > 0, and I(y) — I when
y — 0; (ii) there s a function B(t) such that B(0) = 0, B(t) ~ ¢, and

t
(7.7.7) v(t) = LB@E)+ f w do(w)

18, for some positive L, an increasing function of t; then «(t) - l.

It follows from the definition of B(¢) that it is the difference of two
bounded and increasing functions, and therefore of bounded variation,
in any finite interval (0, 7'). ‘

We observe first that

1
7.7.8 e~V dB(1) = e—VIB(1) dt ~ te~vt dt — =
(1.78)  [evdpt) =y [evBR)dt~y | v

(7.7.9) f eVl dB(t) = f e~vi(yt—1)B(t) dt

2 1 1

~ 20Ut —_— -yt T e T e

yfteydt fte”dt AT
I'(y) = — f tevida(t), I'(y f t2e—vt do(t).

Hence, first,
" — — — M
I'(y) = fte vt doy(t) the v dB(t) > _Lfte v dB(t) > —

for an appropriate M. It follows, by Theorem 101, that I'(y) = o(y~?).

But
I'y) = — [ e dy®)+L [ e ap(;
and therefore, by (7.7.8),
L
7.7.10 e~V dy(t) ~ —.
(7.7.10) Jerdyn~

Since y(t) increases, it follows from (7.7.10) and Theorem 98, that
y(t) ~ Lt; and so that
; |
(7.7.11) f u do(u) = y(t)— LB(t) = o(t).
0
Finally, it follows from (7.7.11) and Theorem 88 that «(t) — [.
This proves Theorem 102. If «(t) is the step-function of § 7.4 (1), with
A, = n, and na,, > —H, we may take

Bt) = %1.
Then y(t) = LB()+ 3 na, = 3 (na,+ L)
n<t n<t
increases with ¢ if L > H, and we obtain Theorem 91. If «(t) is
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absolutely continuous, o'(f) = a(t), and ta(t) > — H, then we may take
B(t) = ¢, and obtain Theorem 91 a similarly.

We make one further specialization of Theorem 102. Suppose that
A, <A, A, =00 and

(7.7.12) Aps1~ A,

that «(¢) is the step-function of §7.4 (1), and that

(7'7'13) a, > —“H(An'—An—l)/An

If B(t) = z (An_An~1)
Mt

(with A_; = 0) and L > H, then

t
7(t) = LBO+ [ wdotu) = 3 (L—Xu 1) +1s0,)

is an increasing function of ¢. Also B(f) ~ Ay, where N is the last value
of n for which A, < ¢; and (7.7.12) then shows that B(t) ~ ¢{. Hence the
conditions of Theorem 102 are satisfied, and we obtain

THEOREM 103. If A, tends to infinity so as to satisfy (1.7.12), a,, satisfies
(7.7.13), and S(y) = > a,e ¥ —> s when y - 0, then Y a,, converges to s.

This theorem corresponds to Theorem 91 as Theorem 89 corresponds to
Theorem 85; but there is an additional condition on A,, viz. (7.7.12). This
restriction is ossential; the proof fails without it, since it is then no longer true
that B(t) ~ ¢; and the theorem itself becomes false. Suppose, for example, that

/\2m = 2m | 2-4n—2’ A2m+l — 2m+1’

and a, = (—1)*. Then a, > 0if n is even. Also

Aﬂm—{-l —‘Agm 2m+l - 2m — 2—m_2
A‘Az;n-:—;_— - om+1 - = 1—'%'—% > ia
80 that Ui = —1 > —HAsmi1—Am)Aempa-

Thus (7.7.13) is true with H = 4. Also
Sy) =et— Y e 1—e2") = W40y 3 2™ = 14 0(y) > 1;

but 3 a, is not convergent.
There is a difference in this respect between Theorem 103 and the more direct

generalization of Theorem 90, viz.

TrroreM 104. If S(y) = 3 a,e Y — s and a, = O{(A,—A,_1)/A,}, then ¥ a,
converges lo 8.

Here it is not necessary to assume (7.7.12).}

7.8. Further remarks on the relations between the theorems
of § 7.5. There are various methods of proving the theorems of §7.5,
the simplest being Karamata’s, which we have followed here. The
original method of Hardy and Littlewood involves a technique of
repeated differentiation, about which we shall say something in §7.12.

1 See the note at the end of the chapter.
4780 M
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There is also the method of Wiener, which is the most powerful and
the most general, but also the most difficult, since it depends on deep
theorems in the theory of Fourier transforms. This we leave to Ch. XII.

Each method involves a characteristic idea, leading to one of the
theorems from which the others are deduced by more elementary
devices. Thus Karamata’s idea is embodied in Theorem 100, and the
Tauberian theorem to which it leads naturally is Theorem 96. The
method of Hardy and Littlewood leads to Theorem 90 or Theorem 96,
according to the manner of its use; while that of Wiener leads most
naturally to Theorem 92.

It is therefore interesting to examine the relations between the
theorems more closely. We show here (i) how to deduce Theorem 92
from Theorem 90, and (ii) how to deduce Theorem 96 from Theorem 92.

(1) Deduction of Theorem 92 from Theorem 90. We suppose that the
conditions of Theorem 92 are satisfied and, as we may without real loss
of generality, that a, = 0 and s = 0. We write

wy = 0, w, = a+2a,+...+na, (n>0), v, = n(:—{’il)’
so that
= (n+41)s,—8y—8;—...—8, = 0(n), v, = O(n-1);
and fl@) =Y a,z", g(x) = v,a"
Then

gx)+(1—2)g'(x) = z n(n—?—l 4l Z “non__ z Wn pon 1

D R

o)+ @) = ot), 27} = of )

z\l—x (1—x)?

Hence

and therefore, integrating, we have
g _ (1 —
= = o(l—x)’ g(x) = o(1).
Since g(z) = > v, 2"t =o(l) and v, = O(n-!), it follows from
Theorem 90 that Y v, converges to 0. But

o= S - St
T " n n+l - n N+1
— Wy _ SoT Sty
NTNR1 N+1
Hence sy+8,+...+sy = o(N), i.e. > a, = 0(C,1).

t The summations running from 1 to co.
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(ii) Deduction of Theorem 96 from Theorem 92. We suppose the hypo-
theses of Theorem 96 satisfied. Then, if » > 1, we have

8, < (1 -—%)—n 2 am(l —-%)m < 4f(1 —%) = O(n).

We write ¢, = s,/(n+1), so that ¢, = O(1). Hence, if

b, = ¢ —t = Sn+1 . Sn —_ a’n+1 . "__'S:n
no n+2 nt+l" nt+2 (nf1)(n42)°
then
(7.8.1) b0+b1+...+bn = t,n+1"“80 == 0(1),
(7.8.2) b, > ——n A

> [
(n41)(n--2) n
for an appropriate . Next,

x

n — n n _]; [ 1 n
St _Zm j(ESt ydt = | (S anty) de
0
i) Fa_C
"‘ 1—t dt ~ Od (1—#)2 1—z’
0 0
and so
(7.8.3) S b, xm = (b,—to)+(ta—t)T 4 (bg—ta)a? ...

= -—?'9 —zt x® - C—t,.
From (7.8.8), (7.8.1), and Theorem 92 it follows that > b, = C—¢, (C, 1),
i.e.

(7.8.4) t, = t0+"§jlbm = C (C,1).

Finally, from (7.8.4), (7.8.2), and Theorem 64, it follows that ¢, — C,
i.e. that s, ~ Cn.

7.9. The series Y n~1-%. We have seen in §6.11 that the series
Y n~1-%, where c is real and not 0, is not convergent, and that in fact

8p = — z +l+0(1)’

where ! is independent of n.f Since a, = O(n-!), it follows from

+ We shall identify ! as {(1+-éc) in Ch. XIII.
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Theorem 90 that ¥ @, is not summable (A): that it is not summable
(C) followed from Theorem 63. It is summable (A,logn), since
3 n-1-v-ie — {(14ytic) > {(1+ic).

Theorems 63 and 90, and the other theorems of §7.5, have many
applications in the theory of Fourier series. It is known, for example,
that the Fourier series of any integrable f(¢) is summable (A), or (C, 1), at
any point of continuity or jump of f(¢). If f(t) is of bounded variation,
then its Fourier coefficients are O(n-'); and it then follows, from
Theorem 90 or Theorem 63, that the serics is convergent for all ¢.

7.10. Slowly oscillating and slowly decreasing functions. We
can generalize Theorem 91 further by the use of the ideas of § 6.2.

TaEOREM 105. If (i) I(y) = f e~ du(t) s convergent for y > 0, and
I(y) — lwhen y — 0; (i) «(t) ¢s slowly decreasing; then o(t) — l when t — co.

TaroreM 106. If Y a, = s (A), and s, is slowly decreasing, then
>a, =s.

It is convenient to suppose, as plainly we may, that «(f) = 0 in an
interval (0,7). We need a lemma.

THEOREM 107. If «(t) s 0 in an tnterval (0, ), and of bounded variation
in any interval (0, T), and I(y) is convergent for y > 0,then,if p > q > 0,

[70]

la
JMMﬂﬂmwﬂ:jﬂﬂm.
t

U
0 Y/p

The integral for I(u) is uniformly convergent in any interval
0 <v<u< U, and «t) = o(e¥) for all positive e. If 0 < v << U, then

U U ©
f M) du = [ .(.l.l.l' f e~ do(t)
u J u
v v 0
) U @® U
— [ do(t) f gjddu S p— f o(2) i f gjfdu dt
J u dt u
0 v 0 v
© U

v

= 6[ o(t) dt f e~ "du =

ro
&
N
Q
N
g
2
Y
&

Finally, taking v = y/p, U = y/q, we obtain

—ylfi —uif
fe:pqnm-fe:qﬂnm

4 ~yt
mffi;”wapt ) dt — f%ia(qt) dt:f (pt)t AL i gy,
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Passing to the proof of Theorem 105, we may suppose ! = 0. Since
«(t) is slowly decreasing, and bounded in any finite interval of positive ¢,

we have
(7.10.1) opt)—olgt)  _H

! 14

for any fixed p and q with 0 << ¢ << p and an appropriate H.1 Since
I(y) >0,

@ ula
(7.10.2) foi(m{i(Q€)e*U‘ dt = f ﬂg)du = o(logg) == 0(1),

vip
for any fixed p and ¢ with 0 < ¢ < p; and from (7.10.1) and (7.10.2)
it follows, by Theorem 91a, that

[0ty
¢

Hence
T

(7.10.3) f ") gu, f APt —aldh) gy,
U /2
qT 0
when 7" — co.

If «(t) does not tend to 0, there is a positive M such that one or
other of the inequalities «(t) > M, «(t) << — M is true for a sequence
of values T tending to co. Let us suppose, for example, that the first
incquality is true for ¢ = 7'. We take ¢ = 1, and choose p > 1 so that
a(u)—a(v) > —3IM for v > vy, v < u < pv. Then, for sufficiently large

t = T, we have

a(u) > o(T)— (T < u<< pT);
pT
and therefore f > 1M logp,

in contradiction to (7.10.3).

Similarly (considering an interval to the left of a T) we obtain a
contradiction from «(7') << — M, and the theorem follows. Finally we
obtain Theorem 106 by supposing «(t) an appropriate step-function.

7.11. Another generalization of Theorem 98. We have so far
proved our theorems in their simplest forms, ignoring the many
generalizations which involve additional functions or parameters. We
now illustrate these by an important extension of Theorem 98. We

T See § 6.2.
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suppose throughout this section that ¢(x) is positive and increasing
for 2 > x,, and tends to infinity with z; and that

(7.11.1) d(x) = z°L(z),
where ¢ > 0 and
(7.11.2) | L(cx) ~ L(x)

for every positive c. Thus x°(logx)" is a possible form of ¢(x), for x > 2,
ife >0, rreal,or o = 0, 7 > 0.

TuroreEM 108. If «(t) increases with t, I(y) = f e~V du(t) is convergent
Jory > 0, and

(7.11.3) I(y) ~ ¢y
when y — 0, then

(7.11.4) a(t) ~ l_(%(f._l_)_l_)
when t — 0.

We suppose first that o > 0, when the proof is a simple generalization
of that of Theorem 98. We write

o-1
p(z) = (1og£) 0 <z<1),
and use

THEOREM 109. If g satisfies the conditions of Theorem 99, and o > 0,
then there are polynomials p and P such that p < g < P and

(7.11.5) f{P(x)——p(x)}p(x) dx = f e 4o Y Pet)—p(e )} dt < eI'(0).}

THEOREM 110. If a(t) and I(y) satisfy the conditions of Theorem 108,
and g(x) 1s of bounded variation in (0, 1), then

(7.11.6) x(y) = [ eviglevt) daft)

exists for all positive y except those specified in Theorem 100, and
1 1

(7.11.7) x(y) ~ F(TJS(]S(;) f eito-1g(e~t) dt

when y - 0 through any sequence free from these exceptional values.

The proof of Theorem 109 is a straightforward generalization of that
of Theorem 99, the changes necessitated by the presence of the weight

+ As in § 7.6, integrals with respect to «, without limits, are over (0, 1), those with
respect to ¢ over (0, o).
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function p(x) being almost trivial. If g is 1 in («, B) and 0 outside, then
there is a continuous 4 such that

g < h, f(h—'g)pdx<€fpdx=er(a),

and a polynomial @ such that |Q—i| <e. If P = Q+etheng<<h <P
and

[ (P—glpdz < [ (P—Q)pdu + [1Q—hlpdx + [ (h—g)p dx < 3eI'o).

Similarly we can determine p so that p < gand J' (g—p)p dx < 3el'(o),
and the result (with 6¢ for €) follows. Thus the theorem is true for this
g, and so for any finite step-function.

The final stage of the proof needs a little elaboration. We write
M = max]|g|, and determine £ and ¢’ so that 0 << § < ¢ < 1 and

3 1
(7.11.8) oM f pdr < l(o), 2M f pdx < (o).
0 &

We can then find finite step-functions g, and g, such that
—M <y <g< <M

¢
in (£,£') and ! (92—9,) do < <o)

ma'X{P(E)’ P(g’)} ’

from which it follows that
fl

(7.11.9) f (9s—9g)p dz < ['(o).t
3

If we define g, as — M and g, as M in (0,£) and (¢, 1), then g, < g < g,
throughout (0,1), g,—g, < 2M, and

(7.11.10) f (9s—g1)p dx < 3eT(0),

by (7.11.8) and (7.11.9).
Finally, since g, and g, are finite step-functions, there are polynomials
p and P such that p < g, < g < g, < P and

[ (P—gpdz <o), [ (G1—ppde < eT'(a).

It then follows from (7.11.10) that f —p)p dx < 5el'(0), and this
completes the proof of Theorem 109.

1‘ p is monotonic in (0, 1) and tends to infinity at one end or the other, except when
7 = 1.
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Passing to Theorem 110, we have

= koLl ~ e eer()

= (n+1 “"fﬁ( )== P(lo) (1) f e~te~nto-1 dt,

for fixed n, when y — 0. From this it follows that

(7.11.11) f Qe da(t) ~__~¢(y) f e~49-1Q(e) dt

for any polynomial Q.
There are polynomials p and P such that

p<g<P, f e~t9-1Y P(e~)—p(e-)} dt < ['(o),
and a fortiori f e oY P(et)—g(e™)} dt < eI'(o).

Hence, if y — 00 in the manner prescribed in Theorems 100 and 110,

1 e 1 Pty g
mo f e-vigle=) doft) < lim f e~V P(e~) du(t

1 —l40— — 1 —{to-1 €
___mfe 9P dt < )Ie o-tg(et) dt +e.
Similarly
1 1
li e~Vig(e V) da(t) > —— | e %7 g(e?) dt —e,
i g J 40 > g [ e

and these two inequalities prove (7.11.7).
We can now prove Theorem 108 (when o > 0). Choosing ¢ as in the

proof of Theorem 98, we obtain

e~Vig(e~v) da(t) = ]!yd(x(t) = a(?—i),

0

c"‘s

o 1
_1_ ~44a— ~t ___I_J o-1 == 1 ;
Ny | oo di= g | = s
0 0

and the theorem follows from Theorem 110, since «(f) increases with .
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The argument fails when ¢ = 0 and ¢(y!) = L(y~') > 0. In this
case we replace Theorem 110 by

THEOREM 111. If oft) tncreases with t,

I@=wawm~LG}

and g(x) is continuous in (0,1), then

) = [ evg(es) dogt) ~ Lot

Here [ evte- datt) ~ L{ (n_;l)y} ~ L(;/)
and 50 [ Q1) dat) ~ L(;) Q)

for any polynomial §. Since g is continuous, there are polynomials
p, P such that p < g < P < p-+efor 0 < x < 1. Then

f e~Vig(e~¥) da(t) < J. e~V P(e %) duft),

—_— e
lim T7) f e Vig(ev!) du(t)
< lim ) f eV P(e ¥ da(t) = P(1) < g(1)4e,
and similarly I—IE*L(IW"—I—/;;) f e~ Yg(e¥) du(t) > g(1)—e.

This proves Theorem 111. We pass to the proof of Theorem 108,
with ¢ = 0. We cannot now choose g as in the proof of Theorem 98,
that g being discontinuous. We take

g(x) = ;10(1 ——logi) (e <L x <), 0 (0 <x<ed),

so that e~fg(e-?) is 1—¢ for 0 <L ¢ << 1 and O for ¢ >> 1. This g is con-
tinuous, so that, by Theorem 111, :

1/y 1/y 1
o = — o(t) ~ L{-},
v [ ety = [ (i) det) )

0

(7.11.12) f o(t) dt ~ xL(x).
0
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It follows from (7.11.12) that
z+0x

f oft) dt ~ (x-+8x) L(z+8x) ~ (z+8z)L(z),

0

T+ ox z+8x
f «(t) dt ~ Sz L(x), f oft) dt = SxL(x)-+o{aL(x)}

if 8 > 0. Since «(t) increases with ¢
dxa(x) < dxL(x)+ofxL(x)},

()
(7.11.13) lmL(x) <1
x+ 8z
Similarly f o(t) dt ~ Sz L(zx-+8x)
dxa(x+8x) = dxL(x-+3x)-+o{wL(x-+3x)},
o2 -3x)
(7.11.14) __l__mm) =

Finally, (7.11.13) and (7.11.14) show that a(x) ~ L(x).

7.12. The method of Hardy and Littlewood. We insert here a
short sketch of the method by which Hardy and Littlewood first proved
Theorem 96. The method is less simple than Karamata’s, which we
followed in § 7.6, but depends on ideas which are interesting in them-
selves. We begin by proving

THEOREM 112. Ifg(x) ts differentiable for 0 < x < 1, g(x) ~ C(1—x)~*

where C > 0, « > 0, when x — 1, and g'(x) increases with x, then
g'(x) ~ Co(l—x)—>-1,

If © = 1—y, g(x) = G(y), then G(y) ~ Cy=> and —G'(y) increases

as y decreases. We choose a positive § such that
(1—€)bax << 1—(148)~* << (1+¢) .
Then Gly)—Gy+3y) ~ C{1—(1+38)}y~,
and therefore
G(y)—G(y+3y) > C(1—e){l—(14-8)~}y~* > C(1—e¢)’ady~*

for sufficiently small y. But —G'(y) increases as y decreases, and

therefore
v+0y

—qy&F @) > [ {(~G'0)dt = Gy)—O(y+5y)

Y
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Hence —oyQ'(y) > C(1—¢)2xdy—“
for sufficiently small y, and

lim{—y*+'G'(y)} = Oa(l—e)™

Similarly the upper limit does not exceed C«(l+€)?, and the theorem
follows.
A simple corollary is

TuEOREM 113. Ifc, > 0 and
gx) =S c,a* ~ C(l—z)-* (C >0, a > 0),
then g®)(x) ~ Cofa+1)...(a+p—1)(1—x)~*P,
for every positive i‘ntegml P.

Plainly ¢’(x) increases with z, so that ¢'(x) ~ Ca(l—x)-*!; and the
argument may be repeated.

From this point on we do no more than indicate the main lines of
the proof. One preliminary remark will help to make it more readily
intelligible. It follows from (7.5.1), by the simple argument used at
the beginning of § 7.8(ii), that s, = O(n); but the argument fails us as
soon as we try to obtain a more precise result. The reason is, at bottom,
that there is no such ‘peak’ in the sequence (") or (e-™¥) as would
enable us to infer that the series is dominated by terms near a maximum
term. We can, however, create such a peak artificially by p differentia-
tions with respect to y. This replaces e="? (apart from sign) by n?Pe-"v,
which has a maximum where » is about N = p/y. The maximum is
about (p/ey)?, which increases rapidly with p, so that the peak is
pronounced when p is large. Thus the fundamental idea of our proof
will be that of differentiating a large number of times.

Coming more to detail, we take C = 1, so that

Sspe =3 s, x" = 11 Zanan(-—l——-N—l—;

—x 1—x)2 y?

and, after Theorem 113, we may differentiate this relation any number
of times with respect to y. We thus obtain

(7.12.1) z’npsne_nyf\./ (p+1)!y—p-2
for every p. Now
(7.12.2) S nPe~" ~ ply—r-1,

The terms of this series have a peak about where n = N, and decrease
fairly rapidly on either side of it. It is therefore natural to suppose
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(and is easily verified) that we can choose first a large p, and then an
M depending on both p and y, so that M = o(N) and
( > )npe—"” < eply—P-1
n<N—M na>N+M
for small y. Also s, = O(n), so that s, cannot behave violently, and
it is therefore natural to suppose also that we can make a similar
reduction of the series (7.12.1).

It will follow that we can choose, first p = p(€) and then

Yo =Y (p’ 6) = ?/0('5):

so that
N+M N+M
(1—e) > nPs e < (p+ 1)y P2 < (14¢) > nPs,e™
N=M N=M

(7.12.3)

for y < yq(€). A fortiory, since s, increases with n, we shall have
NiM N+M
(1—e)sy_p 2 nPe™ < (p+1)y=P-2 < (14€)sy,p D nPe™.
N=M N=M

It will then follow from (7.12.2) and (7.12.3) that
(1—=2€)sy_pr < (p+1)y=" < (1+2e)sy,n
for large enough p and small enough y. Finally, since
N4+M~N ~ py1,

it will follow that sy ~ N.

There is a good deal of detail to be added, but it is mostly a matter
of routine; and the proof, though admittedly less simple than Kara-
mata’s, should not be found difficult when once the ideas underlying

it have been understood.

7.13. The ‘high indices’ theorem. IfA_,,/A, - 1 or, what is the

same thing, if
An—An-1

(7.13.1) o = 2001 5 0,

n

(7.13.2) a, = O(u,),
and S(y) = Y a,e™?¥ s, then X a, = s. This is a special case of
Theorem 103, and we stated in Theorem 104 that the result is true

without the restriction (7.13.1).
A particularly interesting case is that in which A, increases sufficiently

rapidly and regularly to make

(7.13.3) Aps1 > €A,

where ¢ > 1 (as, for example, when A, = 27). Then g, lies between
(¢c—1)/c and 1, so that (7.13.2) reduces to a,, = O(1). Thus in this case
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the theorem asserts that the series is convergent whenever its terms
are bounded. This assertion, however, does not contain the full truth,
which is that, when A, satisfies (7 .13.3), then no restriction on a, is
necessary.

THEOREM 114. If A, salisfies (7 13.3), and S(y) — s, then > a, con-
verges to s.

We may suppose A, > 0. The kernel of the proof lies in that of the
lemma which follows.

THEOREM 115. If A, satisfies (7.13.3), Ay, > 0,

N
1) = Futw) = 3 ayes
and |f(y)| < H for y > 0, then -
la,,| < CH,
where C = C(c) depends only on c.

R
Suppose that P(y) = p,e",
r=0
where v, is positive and increases with r. Then

N
FO) = 3 4, POy) = 3 4, 3 p.e0 = 3 p,f0,9),

and therefore

» R
(7.13.4) [Fy) < H 3 |p,
We take, in particular,

Py) = {p)}* = {427V =27}~
Then p(y) is 0 for y = 0, increases to a maximum 1 at y = 1, and then
decreases to 0. It is O(y) for small, and O(y-!) for large y, so that the

series © w
§=3pe, 8 =3 pe)
are convergent. Also

(7.13.5) S 1| = (40 1)) = 82

Suppose now that a,, is the a, (or one of the a,) whose modulus is

largest. Then
1 N
(7.13.6) ‘F(X-) — ;an ( )

-

n=0

onl—laal 3 {2(32)]

n#m m

= o= S 5 ),
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since A, ,,/A, = ¢ and p(y) decreases as we move away from 1 in either
direction. Also

2 < {pe)}F1S, 2 {p(e)® < {p()}F1s,

each of which decreases as R increases and tends to 0 when R — co.
We can therefore choose an R = R(c) for which > {p(c*)}® < },

2 e <1
(7.13.7) [F( )| 2 1@ |(1—3—1) = $lan].
It now follows from (7.13.4), (7.13.5), and (7.13.7) that
la,,| < 2.8FH.
This proves Theorem 115, but we need its extension to infinite series.

THEOREM 116. The result of Theorem 115 is true for an infintle series
f(y) = 3 a, e convergent for all positive y.

We choose a particular n, say, » = m, and a positive e. Then the
series for f(y-+e€) converges uniformly for ¥ > 0, and we can choose
N = N(m,e) > m so that

N
|3 ane ey < |f(yte)|+e < Hte

for y > 0. Hence |a,,e*¢| < C(H-¢), and the result follows when
€ —> 0.

It is now easy to prove Theorem 114. Since S(y) - s when y — 0,
there is a 8 = 6(¢) such that | S(y)—S(y¥’')| < € when y and 3’ both lie
in (0, 28). Since S(y) is continuous for y > §, and S(y) - 0 when y - oo,
there is an n = (e, 8) = 7(e) such that 0 < 5 < § and

(7.13.8) | S(y)—8S(y+n)| < e

for y > 6; and this is true also for 0 < y < §, since then y and y-+75
both lie in (0,25). Hence (7.13.8) is true for ¥ > 0. Since

S@)—8y+n) = 3 a,(1—ean)e=ny,
it follows from Theorem 116 that
|a,l(1—eM7) < Ce

for all », and so that |a,| << 2Ce for large n. Hence a, = o(1). But

then a, = o(u,), because of (7.13.3), and the conclusion follows from
Theorem 89.
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NOTES ON CHAPTER VII

§ 7.1. A great deal has been written about Tauberian theorems during the last
thirty years, and the literature is rather confusing, since almost every theorem
carries a number of variants, analogues, and generalizations, and it is often
difficult to trace a proof, or even an explicit statement, of the precise theorem
which one may need. We confine ourselves here to theorems of ‘power series
type’, i.e. theorems associated with the exponential kernel e=®%, and to the
simplest and most striking among them.

Our treatment of the subject in this chapter is based mainly on the work of
Hardy and Littlewood and of Karamata. We return to it in Ch. X1I, where we
adopt the more general point of view of Wiener. There is a clear account of the
fundamental theorems in Widder’s ch. 5. The following list of papers may be
useful :—

Ananda Rau [1], JLMS, 3 (1928), 200-5; [2], PLMS (2), 30 (1930), 367-72;

[3], RP, 54 (1929), 455-61;

Bosanquet [4], JLMS, 19 (1944), 161-8;

Doetsch [5], M A, 82 (1921), 68-82;

Hardy and Littlewood [6], PLMS (2), 11 (1912), 411-78; [7], ibid. 13 (1913),
174-91; [8], ibid. 25 (1928), 219-36; [9], ibid. 30(1930), 23-37;[10], MM, 43
(1914), 134-47;

Ingham [11], 0QJ, 8 (1937), 1-7;

Karamata [12], M Z, 32 (1930), 319-20; [13], ibid. 33 (1931), 294-300; [14], J M,
164 (1931), 27-40;

Landau [15], Monatshefte fiir Math. 18 (1907), 8-28; [16], RP, 35(1913), 265-76;

Littlewood [17], PLMS (2), 9 (1910), 434-48;

Rajagopal [18], Math. Gazette, 30 (1948), 272-6;

R. Schmidt [19], M Z, 22 (1925), 89-152;

Szész [20], Miinchener Sitzungsberichte (1929), 326-40; [21], TAM S, 39 (1936),
117-30;

Tauber [22], Monatshefte fiir Math. 8 (1897), 273-7;

Titchmarsh [23], PLMS (2), 26 (1927), 182-200;

Vijayaraghavan [24], JLMS, 1 (1926), 113-20; [25], ibid. 2 (1927), 215-22.

The list is not complete, and does not include papers based on Wiener’s ideas.

§ 7.2. Tauber [22]. The integral analogue, for the more general integral
{ $(yt)a(t) dt, where ¢’(¢) is bounded, $(0) = 1, and | |§(¢)| d¢ convergent, was
proved by Hardy, TCPS, 21 (1910), 427-51 (432).

§ 7.3. Tauber [22]. The form of Theorem 88, with Stieltjes integrals, is that
in which it is proved by Widder, 187, Theorem 3b.

§ 7.4. Theorem 89 was proved by Landau [15].

§ 7.5. Theorem 90 was proved, and Theorem 92 stated, by Littlewood [17].
The remaining theorems are due to Hardy and Littlewood [7]: all of them are
proved in more general forms. There are generalizations for Dirichlet’s series
> a,e~**%in [10].

§7.6. Theorem 98 was proved by Szész [20]: it is the case y = 1 of Widder’s
Theorem 4.3 (192). The proof here, based on Theorems 99 and 100, is sub-
stantially that of Karamata [14]. Theorem 96 a was first proved explicitly (with
a change of variable) by Doetsch [5]: see also Hardy and Littlewood [9] and
Titchmarsh [23]. Doetsch also proves theorems equivalent to 91 a and 94 a.
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§ 7.7. The first explicit proof of Theorem 101, in the form given here, seems
to be that of Landau, Ergebnisse, 58. The theorem is stated and used by Hardy
and Littlewood, {7] and [10]. The less general form in which f“(y) = O(y™?) is
included in Theorem 2 of [6] (420).

Theorem 102 is a slight generalization of Widder’s Theorem 4.5 (195): he has

(t) = t.
g Theorem 103 is proved by Hardy and Littlewood [10]. The example showing
the necessity of the condition (7.7.12) is due to Ananda Rau [2].

When A, satisfies (7.7.12), Theorem 104 becomes the main theorem of Little-
wood [17]. Littlewood says there that it is true without the restriction (7.7.12),
but the first published proof of this is that of Ananda Rau [1]. We may complete
the proof as follows.

We suppose @y = 0. Then, first, if

(1) Ay = 0{(’\n"—hn—1)/’\n}’

we have

(@) 3 Antn = 0 3 An—An)] = 0.
m=1 m=1

Secondly, by Theorem 88 [0], (2), together with S(y) —> s, implies
A(x) = Z a, = O(1).
A<

Next Sy) = 3 a,e ¥ = fe"" dA(t) = y f A(t)evt dt,

s+H
Yy

for any H. Choosing H so that A(¢)-+H > 0, and applying Theorem 96a, we find
that

since 4(0) = 0, and so f {A@)+H}evidy ~

t t
[ta@)+Hy du ~ (s+HY, [ Aw)du ~st.
(1] 0

Finally, the conclusion follows from Theorem 67. This form of the proof is due
to Bosanquet.

Szész [20, 21] proved that ¥ a, converges to s if S(y) — s and a,, satisfies both
(7.7.18) and (a)lima, > 0. This theorem includes Theorem 103, since (7.7.13)
implies (a¢) when A, satisfies (7.7.12), and also the theorem referred to in the
note on § 6.1.

Dr. Bosanquet has pointed out to me that (as was suggested to him by Mr.
Ingham) (7.7.13) and S(y) — s imply

Sa,=3s (RA«k)

for every positive k; and Rajagopal [18] has proved this explicitly for x = 1.
Both Bosanquet and Rajagopal use a result of Szasz [20], and Bosanquet also
uses the theorem of Riesz for (R,A,x) summability which corresponds to
Theorem 70.

Szész [20] and Ananda Rau [3] have proved that if X a,e ¥V ~y~*, where
a« > 0 and a, > 0, then A, necessarily satisfies (7.7.12).

§7.10. Theorem 105 was proved by Szész [21]: it includes his theorom referred
to under §7.7. The method used in this section is that referred to at the end of
Hardy and Littlewood [9].

§7.11. The proof is substantially that of Karamata [14].
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§ 7.12. The technique of repeated differentiation was used first by Littlewood
in [17].

§ 7.13. Theorem 114 was conjectured by Littlewood in [17], and proved by
Hardy and Littlewood in [8]. The proof given here, which is much shorter, is
due to Ingham [11]. Ingham proves a good deal more, in particular that, when
Api1/An — 00, the limits of indetermination of s,, when n—> 0, are the same as
those of S(y) when y — 0.

Bosanquet [4] has proved a theorem which includes both of Theorems 104
and 114, viz. that S(y) — ¢ and

lim lim Max |ap +.ot0y| =0

80 10 Ag<Ap<(14-8)An
imply ¥ a, = s. Szdsz [21] had proved the corresponding theorem for (R, A, 1)
sumrnability.

4780 N



VIII
THE METHODS OF EULER AND BOREL (1)

8.1. Introduction. In this and the next chapter we study more
systematically a group of methods of which the most important are
the E and B methods defined in §§ 1.3, 4.6, and 4.12-13. The definitions
which we consider differ widely in form, and might seem at first sight
unlikely to have much in common; but the relations between them turn
out to be much closer than might have been expected. In particular
the Tauberian theorems associated <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>