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Asymptotic Plateau problem: a survey

Baris Coskunuzer

ABSTRACT. This is a survey of old and recent results about the asymptotic Plateau
problem. Our aim is to give a fairly complete picture of the field, and present the
current situation.
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Asymptotic Plateau problem

1. Introduction

The asymptotic Plateau problem in hyperbolic space basically asks the existence of an
area minimizing submanifold ¥ ¢ H"*! asymptotic to given submanifold I' C S (H"1).
In this survey article, we will cover old and recent results on the problem. Most of the
time, we will give the essential ideas of the proofs. Our aim is to give a nice expository
introduction for the interested researchers, and to present a picture of this growing field.

2. Preliminaries

In this section, we will overview the basic results which we will use in the following
sections. First, we will give the definitions of area minimizing surfaces. The first set of
the definitions are about compact submanifolds. The second set of the definitions are
their generalizations to the noncompact submanifolds.

Definition 2.1. (Compact Case) Let D be a compact disk in a manifold X. Then, D
is an area minimizing disk in X if D has the smallest area among the disks in X with
the same boundary. Let S be a compact submanifold with boundary in a manifold X.
Then, S is an absolutely area minimizing submanifold in X if S has the smallest volume
among all submanifolds (no topological restriction) with the same boundary in X. The
absolutely area minimizing surfaces and hypersurfaces can be defined likewise.

Definition 2.2. (Noncompact Case) An area minimizing plane (least area plane) is a
complete plane in a manifold X such that any compact subdisk in the plane is an area
minimizing disk in X. Let A be a complete submanifold in a manifold X. Then, A
is an absolutely area minimizing submanifold in X if any compact part (codimension-0
submanifold with boundary) of A is an absolutely area minimizing hypersurface in X.
The absolutely area minimizing surfaces, hypersurfaces and hyperplanes can be defined
likewise.

Definition 2.3. A minimal surface (submanifold or hypersurface) in a manifold X is a
surface (submanifold or hypersurface) whose mean curvature vanishes everywhere.

Note that the mean curvature being 0 is equivalent to being locally area minimizing
[CM99]. Hence, all area minimizing surfaces and hypersurfaces are also minimal.

Definition 2.4. (Convex Hull) Let A be a subset of S% (H"*!). Then the conver hull
of A, CH(A), is the smallest closed convex subset of H**! which is asymptotic to A.
Equivalently, CH(A) can be defined as the intersection of all supporting closed half-
spaces of H" ! [EMST].

Note that 0o (CH(A)) = A for any A C S (H"!) (Note that this is a special property
of H" ™1, see [HLS00]). In general, we say a subset ¥ of X has the convex hull property if
it is in the convex hull of its boundary in X, i.e. ¥ C CH(9%). In special case, if ¥ is a
complete and noncompact hypersurface in H?*!, then we say ¥ has convex hull property
if it is in the convex hull of its asymptotic boundary, i.e. ¥ C CH(JxX). Minimal
hypersurfaces in H**! have the convex hull property.
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COSKUNUZER

Lemma 2.1 ([An82]). Let ¥ be a minimal submanifold in H"*1 with 0,,% = T'. Then
we have ¥ C CH(T).

The idea is quite simple. Let ¥ be a minimal submanifold in H" ! with 0o,X =T'. Let
K be a nonsupporting halfspace in H"t!, ie., 0., K NT = (). Since K is a halfspace in
H"t!, we can foliate K with geodesic planes whose asymptotic boundaries are in 9o K.
Then, by maximum principle [CM99], K NY = (), and hence ¥ ¢ CH(T"). We should also
note that instead of smooth submanifolds, if one deals with area minimizing rectifiable
currents, or stationary varifolds, which might have some singularities, for this type of
results, one needs strong mazimum principle results which applies to these settings due
to Simon [Si87], Solomon-White [SW89], Ilmanen [1196] and Wickramasekera [Wi09].

Throughout the paper, H**! will represent the hyperbolic n + 1-space. H"! has a
natural compactification H»+1 = H"*! U S (H"*1) where S7 (H"*!) is the sphere at
infinity of H™*!. If ¥ is a subset of H"t!, the asymptotic boundary of ¥, say 0, %, can
be defined as 0% = 3 — X where ¥ is closure of ¥ in H?*! in the Euclidean metric.
In the rest of the paper, it is mostly a good idea to imagine H"*! in the Poincaré ball
model.

3. Existence

There are basically 2 types of existence results for the asymptotic Plateau problem.
The first type is the existence of absolutely area minimizing submanifolds in X for a
given asymptotic boundary in d,X. In this type, there are no topological restrictions
on the submanifolds. The other type is the fixed topological type. The area minimizing
submanifold with the given asymptotic data should also be in the given topological type.

3.1. Absolutely area minimizing submanifolds

By using geometric measure theory methods, Michael Anderson solved the asymptotic
Plateau problem for absolutely area minimizing varieties for any dimension and codimen-
sion in [An&2).

Theorem 3.1 ([An82]). Let I'? — ST (H"'!) be an embedded closed submanifold in
the sphere at infinity of H"T1. Then there exists a complete, absolutely area minimizing
locally integral p+1-current ¥ in H" 1 asymptotic to TP at infinity.

Proof: (Sketch) Let I'” be an embedded closed submanifold in S7 (H"*!). First,
Anderson proves a monotonicity formula for stationary p+1-currents such that the ratio
between the volume of a stationary p-+1-current restricted to an r-ball in H™*! and the
volume of p+1-dimensional r-ball is nondecreasing in 7 ([An82], Theorem 1). Then, he
defines a sequence of closed submanifolds I'Y in H"*! such that T} C 9B;(0) and '} — T'P.

Let ; be an area minimizing integral p-current with 0%; = I'; [Fe69]. Then by using
the monotonicity formula, he gives a lower bound for the volume of ¥; restricted to r-ball,
ie. ¢ < ||Z¢|B.||- Also, by using the area minimizing property of 3, he easily gives an
upper bound C, for the volume of 3; restricted to r-ball. Then, ¢, < ||X¢|p,|| < Cy.
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Asymptotic Plateau problem

Hence, by using compactness theorem for integral currents (See [Fe69], [Mo88]), he gets
a convergent subsequence for {¥;} for each r-ball. Then, by using diagonal subsequence
argument, he extracts a convergent subsequence ¥;, — ¥ where ¥ is an area minimizing
integral p+1-current with 9,.% = I'P. O

Remark 3.1. This result is one of the most important results in the field. This seminal
paper can be considered as the beginning of the study of the asymptotic Plateau problem.
Later, we will see various generalizations of this result to different settings. Note that the
embeddedness assumption on the given asymptotic boundary is very essential. In [La95],
Lang constructed immersed examples in S™ (H"*1) with no solutions to the asymptotic
Plateau problem.

Remark 3.2. (Interior Regularity) By interior regularity results of geometric measure
theory [Fe69], [Mo88], when p = n—1, the currents in Theorem 3.1 are smoothly embedded
hypersurfaces except for a singular set of Hausdorff dimension n — 7. In particular when
p=n—1< 6, is asmoothly embedded hypersurface in H**!. In the higher codimension
case (p < n — 1), the interior regularity results say that the absolutely area minimizing
currents are smoothly embedded p+1-submanifolds in H"*! except for a singular set of
Hausdorff dimension p — 1.

Note that the varieties constructed in theorems above are absolutely area minimiz-
ing, and have no topological restrictions on them. Another interesting case is the fixed
topological type.

3.2. Fixed topological type

In the result above, Anderson got absolutely area minimizing varieties asymptotic to
given submanifold in the asymptotic sphere. As there are no topological restrictions on
the objects, we have no idea about their topological properties.

In the case of fixed topological type for the Plateau problem, the question is to find
the smallest area surface in the given topological type with the given boundary. Its
generalization to the asymptotic Plateau problem is natural.

On the other hand, hyperbolic 3-manifolds, and essential 2-dimensional submanifolds
in them is a very active research area. By essential, we mean m;-injective surfaces, and
they are very important tools to understand the structure of the hyperbolic manifold
by using geometric topology tools. At this point, when we pass to the universal cover
of the hyperbolic manifold and essential surfaces in them, the asymptotic Plateau prob-
lem in disk type becomes an important technique for construction of area minimizing
representative of these essential surfaces in 3-manifolds.

In [An83], Anderson focused on the asymptotic Plateau problem in disk type, and gave
an existence result in dimension 3.

Theorem 3.2 ([An83]). Let I be a simple closed curve in S (H?). Then, there exists a
complete, area minimizing plane ¥ in H? with 00X =T.
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The proof is very similar to the proof of the previous theorem. The basic difference is
instead of using area minimizing surfaces {¥; } with 93; = I'y, he used the area minimizing
embedded disks {D;} with 9D; = T';. The existence of the disks comes from the solution of
Plateau problem in disk type. However, the essential point is that the disks are embedded
and they are given by [MY80]. Hence, by using similar ideas, Anderson extracted a limit
D; — 3 where ¥ is an area minimizing plane in H**! with 0,,X =T.

Remark 3.3. Note that this result is for just dimension 3, it is not known if its generaliza-
tion to higher dimensions is true or not. It might be possible to construct area minimizing
hyperplanes in H"*! for any dimension, by generalizing these ideas and White’s results
in [Wh84] to replace the sequence of disks {D;} in Anderson’s proof with compact area
minimizing hyperplanes in H"*!.

On the other hand, Gabai gave another construction for Theorem 3.2. Indeed, he
needed this result for more general metrics, and he gave a topological construction for
such area minimizing planes in more general settings.

Theorem 3.3 ([Ga97]). Let X be H? with a different Riemannian metric induced from
a metric on a closed 3-manifold. Let T' be a simple closed curve in S% (X). Then,
there exists a D?-limit lamination o whose leaves are area minimizing planes in X with
Osoo =T

Proof: (Sketch) Let X be M , the universal cover of a hyperbolic 3-manifold M with any
Riemannian metric. In a similar fashion to the Anderson’s proof, Gabai starts with a
sequence of area minimizing disks {D;} in X with 0D; =T; — I'. To get a limiting plane
here, instead of using the compactness theorem of geometric measure theory, he extracts
some kind of Gromov-Hausdorff limit o of the sequence {D;} by using minimal surface
tools and techniques of [HS88]. In particular, the sequence {D;} of embedded disks in a
Riemannian manifold X converges to the lamination o if

i) For any convergent sequence {z,,} in X with z,, € D,, where n; is a strictly
increasing sequence, limx,, € o.

ii) For any x € o, there exists a sequence {x;} with z; € D; and limx; = x such that
there exist embeddings f; : D?* — D; which converge in the C*°-topology to a smooth
embedding f : D? — L, where x; € f;(Int(D?)), and L, is the leaf of o through z, and
z € f(Int(D?)).

We call such a lamination o a D2-limit lamination. Here, the topological limit o is
essentially all the limit points of a very special subsequence. Then, since locally these
are limits of area minimizing disks, by using the techniques of [HS88] he shows first that
the leaves of the lamination ¢ are minimal planes. Then by using topological arguments,
Gabai proves that these planes are not only minimal, but also area minimizing. Then,
he shows that this lamination must stay in a neighborhood of the convex hull of T, i.e.,
0 C Ng(CH(T')) where CH(T') is the convex hull of I and C is a constant independent
of I". Then, he shows that J,,0 = I' and finishes the proof. |
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Also, in [An83], Anderson constructed special Jordan curves in S% (H?) such that
the absolutely area minimizing surface given by Theorem 3.1 cannot be a plane ([An83],
Theorem 4.5). Indeed, he constructed examples with genus g > go for any given genus
go. He also used these surfaces for some nonuniqueness results which we mention later.

In the same context, de Oliveira and Soret showed the existence of a complete stable
minimal surface in H? for any surface of finite topology (finite genus and finitely many
ends). Also, they studied the isotopy type of these surfaces in some special cases. The
main difference with Anderson’s existence result is that Anderson starts with the asymp-
totic boundary data, and gives an area minimizing hypersurface where there is no control
on the topological type, while de Oliveira and Soret start with a surface with bound-
ary and constructs a stable minimal embedded surface of this type whose asymptotic
boundary is essentially determined by the surface.

Theorem 3.4 ([OS98]). Let M be a compact orientable surface with boundary. Then
int(M) can be minimally, completely, properly and stably embedded in H3. Furthermore,

the embeddings extend smoothly to an embedding from M to H3, the compactification of
H3.

Recently, Brian White and Francisco Martin improved this result by showing the exis-
tence of complete, properly embedded minimal surfaces in H? with arbitrary topological
type, i.e., including infinite genus and infinite number of ends case. To get this result,
they proved a bridge principle at infinity [MW13].

3.3. The bridge principle at infinity

In order to show the existence of complete, properly embedded minimal surfaces in H?
with arbitrary topological type, Martin and White proved the following bridge principle
at infinity.

Theorem 3.5 ([MW13]). Let T be a collection of smooth disjoint simple closed curves
in S2 (H3) such that T bounds a unique area minimizing surface & in H3. Let o be a
smooth arc in S% (H3) with aNT = Oa and T La. Then, there exists an area minimizing
surface X, where ¥, is close to X U S,. Here, Sy is a thin strip along « in Sgo(H3).
Moreover, 0sc¥q = Iy (where 'y, = T'§05,) bounds a unique area minimizing surface ¥,
in H3.

By using this bridge principle, Martin and White showed the existence of complete,
properly embedded minimal surfaces in H® with arbitrary topological type. Notice that
they greatly improved Theorem 3.4. In Theorem 3.4, de Oliveira and Soret proved the
existence theorem for finite type (finite genus and finite number of ends) surfaces, while
Martin and White proved the existence of any open orientable surfaces of arbitrary topol-

ogy.

Theorem 3.6 ([MW13]). Any open orientable surface can be properly embedded in H3
as an area minimizing surface.
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Proof: (Sketch) Let S be an open orientable surface S and let S C So C ... S, C ... be
a simple exhaustion of S, ie., S = |J,—; S, where S; is a disk , and S,41 is either a
pair of pants attached to S, or a cylinder with a handle attached to S,. By using the
bridge principle at infinity (Theorem 3.5), Martin and White construct a minimal surface
3} homeomorphic to S as follows. Let ¥; be a geodesic plane. Then, if S, 11 is a pair of
pants attached to S, they attach a bridge in S% (H?) to the corresponding component
of 050%,. Similarly, if S,,41 is a cylinder with a handle attached to S,,, they attach two
bridges successively to 0,5,. Since all ¥,,’s are uniquely minimizing, they can iterate
this process dictated by the simple exhaustion of S, and construct a properly embedded
area minimizing surface ¥ in H"*! with the same topological type of S. O

Remark 3.4. Note that by proving a generalization of the bridge principle, the author
showed that any open orientable surface can also be nonproperly embedded as a minimal
surface [Col3].

4. Boundary regularity at infinity

After the above existence theorems, the next natural question was the regularity of
the hypersurfaces X obtained as a solution of the asymptotic Plateau problem. By the
interior regularity theorems of geometric measure theory, ¥ is a real analytic hypersurface
of H**! away from a singular subset of Hausdorff dimension n — 7. The question is the
behavior of the hypersurfaces near infinity, i.e., boundary regularity at infinity. In other
words, if ¥ is an area minimizing hypersurface in H?*!, then what can be said about the
boundary regularity of ¥ in H?+1?

The first main result about this problem came from Hardt and Lin in [HL87]. By using
geometric measure theory methods, they showed that near infinity, 3 is as regular as the
asymptotic boundary for C1* asymptotic boundary data.

Theorem 4.1 ([HL87]). Let T be a C1* codimension-1 submanifold of S™ (H"*1) where
0 < a< 1. IfX is a complete, absolutely area minimizing locally integral n-current
in H"™ with 05X = T'. Then, near T', L UT is the union of C1* submanifolds with
boundary with respect to the Euclidean metric on H*t1. These submanifolds have disjoint
analytic interiors, and they meet S™ (H" 1) orthogonally at T.

Also, if we take the upper half space model for H*™!, then R™ x {0} U {oo} would
represent the asymptotic sphere. Then, for a given C* hypersurface I' in R™ x {0}, there
is pr with (SUT) N {y < pr} is a finite union of C* submanifolds with boundary which
can be viewed as a graph over " x [0, pr).

This result is very interesting as an area minimizing hypersurface in H**! has better
regularity near the asymptotic boundary than in the interior. In other words, if ¥ is an
area minimizing hypersurface in H*™! with 0.2 =TI as above, ¥ might have a singular
set of Hausdorff dimension n — 7, but this set must stay in the bounded part of ¥ as
(SuTl)N{y < pr} is a finite union of C! submanifolds with boundary. In order to
get this result, Hardt and Lin first get an interior regularity result “near infinity” by
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showing that X can be expressed as a union of graphs of finitely many analytic functions
on vertical planes tangent to I'. Then by using this interior regularity “near infinity”
result, and hyperbolic isometries, they prove regularity at the boundary. In particular,
if there was a sequence of singular points escaping to infinity (or converging to a point
in the asymptotic boundary), by rescaling ¥ with hyperbolic isometries, they get new
area minimizing hypersurfaces, and the images of the singular points in these new area
minimizing hypersurfaces would contradict the earlier interior regularity result.

Later, by studying the following quasilinear, non-uniformly elliptic equation whose
solutions are minimal hypersurfaces in hyperbolic space, Lin and Tonegawa got higher
regularity near the asymptotic boundary. In the upper half space model of H*t!, let
Q2 C R" x {0} be a domain and f : @ — R* be a function. Consider graph(f) = 3y
which defines a hypersurface in H**1. The volume of E? =YXsN{K x R"} where K is
a compact subset of 2 can be described as follows:

vol (5 = /K "1+ |V f2de

Then, the corresponding Euler-Lagrange equation of this variational integral would
give the following Dirichlet problem:

__Sihi ey
VI gty Tl me
f>0 in Q

where |df|* = >, f7. In [An83], Anderson showed the existence and the uniqueness of
the solution to this Dirichlet problem provided that €2 has nonnegative mean curvature
with respect to inward normal in R™ x {0}.

If one wants to focus on the boundary regularity of the solution of this Dirichlet prob-
lem, an equivalent local description of the problem can be given by considering graph(f)
near a point of the asymptotic boundary as a graph over a vertical plane which is tangent
to the asymptotic boundary at the given point. In other words, let ' = 9f) be at least
C'. Let P be the vertical tangent plane to I' at p. By using hyperbolic isometries, we can
assume p = 0 in R™ x {0} and P is the plane {(x,0,y) € H**! | (z,0) € R™ and y > 0}.
Then after scaling with hyperbolic isometries, we can formulate the problem as follows:

Uq- Uy
(VU= e

u(,0,0) = (z)
where D = {(2,0,y) € P | |z <land 0 <y <1}, u:D — R, u(x,0,0) = p(x) is given
by I' near p. Hence the question becomes whether u is as smooth as ¢.

Lin studied first this quasi-linear degenerate elliptic partial differential equation in
[Li89a] and got the following result.

i) —nauy =0 in D
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Theorem 4.2 ([Li89a]). Let ' be a C** codimension-1 submanifold of ST (H"*1) where
1<k<n—-1land0<a<lork=nand0<a<1l. If¥ is a complete area minimizing
hypersurface in H" ! with 0ooX = T'. Then, near T', Y UT is union of C* submanifolds
with boundary in Euclidean metric on HM+L,

Later, Tonegawa generalized these results, and finished off the asymptotic boundary
regularity problem by giving the following complete picture.

Theorem 4.3 ([To96]). Let T be a C*< codimension-1 submanifold of S™ (H"*!) and %
be a complete area minimizing hypersurface in H" ™1 with 0¥ =T. Let k > n +1 and
0<a<1. Then,

1. If n is even, then X UT is a C* submanifold with boundary near T.

2. If n is odd, then X UT may not be a C™*1 submanifold with boundary near T' in
general.

This is a very interesting result as it gives a very subtle relation between the dimension
and the asymptotic regularity of area minimizing hypersurfaces. In particular, for n odd,
Tonegawa gives a necessary and sufficient condition that I' has to satisfy in the form of a
PDE in order to recover C*® regularity. Hence, when n is odd, if I does not satisfy this
PDE, L UT cannot be smoother than C™*! even though T is very smooth. Note also that
in [To96], Tonegawa studied a more general form of the PDE above and generalized these
results to Constant Mean Curvature (CMC) hypersurfaces in H**! (See Section 6.2).

For the higher codimension case (kK < n), by the interior regularity results of geo-
metric measure theory, absolutely area minimizing k-currents are smoothly embedded
k-submanifolds in H"*! except for a singular set of Hausdorff dimension k — 2. For
the boundary regularity at infinity in this case, Lin also showed the ezistence of an area
minimizing k-current ¥ in H"*! which is as regular as the boundary at infinity, where
I' = 0,Y is a C1® smooth closed k — 1-submanifold in S (H"*1).

Theorem 4.4 ([Li89b]). Let T be a CH< smooth closed k — 1-submanifold in S7 (H"*1).
Then there exists a complete area minimizing k-current in H' with 05X =T such that
near T, Y UT is a C* submanifold with boundary with respect to the Euclidean metric
on H+1,

Note that unlike the codimension-1 case, this higher codimension case does not say
any area minimizing k-current with smooth asymptotic boundary is boundary regular at
infinity. This result only tells the existence of such an area minimizing current for any
given smooth asymptotic data.

5. Number of solutions

There are basically 3 types of results on the number of solutions to the asymptotic
Plateau problem. The first type is the uniqueness results which classifies the asymptotic
data with the unique solution to the asymptotic Plateau problem. The next type is the
generic uniqueness and generic finiteness results which came out recently. The last type
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can be called as the nonuniqueness results which constructs the asymptotic data with
more than one solution to the problem.

5.1. Uniqueness and finiteness results

Next to the existence theorems, Anderson gave very interesting uniqueness and non-
uniqueness results on minimal surfaces in H? and area minimizing hypersurfaces in H"t!
in [An82] and [An83]. Before visiting nonuniqueness results, we will list the uniqueness
results about the the asymptotic Plateau problem.

First, in [An82], Anderson showed that if the given asymptotic boundary I is a hy-
persurface bounding a convex domain in S™ (H"*!), then there exists a unique absolutely
area minimizing hypersurface ¥g in H**1.

Theorem 5.1 ([An82]). Let Ty be a hypersurface bounding a convex domain in S™ (H"1).
Then, there exists a unique absolutely area minimizing hypersurface Yo in H" L with

O 20 = T0.

Proof: (Sketch) Let T’y be codimension-1 submanifold bounding a convex domain in
S (H"t1), and Xy be an area minimizing hypersurface in H"*! with 0,3 = Iy (exis-
tence of X is guaranteed by Theorem 3.1). As I'g bounds a convex domain in S7 (H"+1),
we can find a continuous family of isometries {¢;} of H"*! such that ¢;(I'g) = I'; where
{T';} foliates whole S7 (H"*1). Similarly, if p;(X0) = X¢, then 9% = I'y, and as {3}
images of continuous family of isometries, it foliates whole H" 1.

Hence, if there are two minimal hypersurfaces My, My with 0., M; = T'g, then one of
them (say Maz) is not a leaf of the foliation, and My must intersect a leaf ¥, of the
foliation tangentially and by lying in one side.This contradicts to the maximum principle
for minimal hypersurfaces. O

Later, by using similar ideas, Hardt and Lin generalized this result to the codimension-1
submanifolds bounding star shaped domains in S (H"*1) in [HL87].

Theorem 5.2 ([HL87]). Let Ty be a hypersurface bounding a star shaped domain in

S™ (H™*Y). Then, there erists a unique absolutely area minimizing hypersurface Yo in
Hn+1 with 80020 = Fo.

While these are the only known results on the number of solutions of the asymptotic
Plateau problem for a long time, many generic uniqueness results have come out recently
in both general case and fixed topological type case.

For the general case, the author showed that the space of closed codimension-1 sub-
manifolds T in S% (H"*!) bounding a unique absolutely area minimizing hypersurface %
in H” is dense in the space of all closed codimension-1 submanifolds in S (H"*1) by
using a simple topological argument.

Theorem 5.3 ([Colla]). Let B be the space of connected closed codimension-1 submani-
folds of S (H"*1), and let B’ C B be the subspace containing the closed submanifolds of
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FIGURE 1. A finite segment of geodesic =y intersects the area minimizing
planes ¥; in H" with 0., = T'; in S2 (H3).

S (H"H) bounding a unique absolutely area minimizing hypersurface in H™. Then B’
is dense in B.

Proof: (Sketch) For simplicity, we will focus on the area minimizing planes in H3. The
general case is similar. Let T'g be a simple closed curve in S2 (H3). First, by using
Meeks-Yau exchange roundoff trick, the author establishes that if I’y and T’y are two
disjoint simple closed curves in S2 (H?), and ¥; and ¥, are area minimizing planes in
H? with 0,,%; = I';, then ¥; and ¥, are disjoint, too. Then, by using this result, he
shows that for any simple closed curve I' in S% (H?) either there exists a unique area
minimizing plane ¥ in H? with 0, = T, or there exist two disjoint area minimizing
planes ©1, ¥~ in H? with 0,,2% = Io.

Then, take a small neighborhood N(I'g) C S% (H?) which is an annulus, and foliate
N(Ty) by simple closed curves {I';} where t € (—¢,¢), i.e., N(T'g) ~ T' x (—¢,€). By the
above fact, for any I'; either there exists a unique area minimizing plane Y, or there are
two area minimizing planes Ef disjoint from each other. As disjoint asymptotic boundary
implies disjoint area minimizing planes, if ¢; < tg, then ¥, is disjoint and below ¥, in
H3. Consider this collection of area minimizing planes. Note that for curves I'; bounding
more than one area minimizing plane, we have a canonical region N; in H3 between the
disjoint area minimizing planes Eti.

Now, the idea is to consider the thickness of the neighborhoods N; assigned to the
asymptotic curves {I';}. Let s; be the length of the segment I; of 5 (a fixed finite length
transversal curve to the collection) between ;" and X, , which is the width of N; assigned
to I'y. Then, the curves I'; bounding more than one area minimizing planes have positive
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width, and contributes to the total thickness of the collection, and the curves bounding
unique area minimizing plane has 0 width and do not contribute to the total thickness.
Since Ete(_“) s¢ < C, the total thickness is finite. This implies that for only countably
many t € (—¢,€), s¢ > 0, i.e., 'y bounds more than one area minimizing plane. For
the remaining uncountably many ¢ € (—e¢,¢), s; = 0, and there exists a unique area
minimizing plane for those ¢. This proves the space of Jordan curves of uniqueness is
dense in the space of Jordan curves in S2 (H?). Then, the author shows that this space
is not only dense, but also generic. Also, this technique is quite general, and it can be
generalized to different settings [Co06b]. O

On the other hand, there has been important progress on the number of solutions to
the asymptotic Plateau problem in fixed topological type case. Recently in [Co04], the
author showed a generic finiteness result for C* smooth Jordan curves in S% (H?) for area
minimizing planes in H? by using geometric analysis and global analysis methods. Later
in [Co06a], he improved this result to a generic uniqueness result.

Theorem 5.4 ([Co06a] ). Let A be the space of C® simple closed curves in S2 (H?).
Then there exists an open dense subset A' C A such that for any T € A’, there exists a
unique area minimizing plane 3 with 03 =T .

Proof: (Sketch) In [Co04], by generalizing Tomi and Tromba’s global analytic techniques
in [TT78] to hyperbolic setting, and by using Li and Tam’s powerful results [LT93a]
and [LT93b], the author showed that the boundary restriction map 7 from the space of
minimal maps from D? to H? with C? asymptotic data to the space of the C® immersions
of St into S% (H?) is Fredholm of index 0. Hence, the derivative of 7 is an isomorphism
for the generic curves.

Fix a generic curve I' in S2 (H?). By using the inverse function theorem, there is a
neighborhood Us; of a area minimizing plane ¥ in 7~ 1(T"), mapping homeomorphically into
a neighborhood Vr of I'. By taking a path « in Vr, and by considering the corresponding
path 7=!(a) in Us, one can get a continuous family of minimal planes with disjoint
asymptotic boundaries around Y. Then, the author shows that this continuous family of
minimal planes is indeed a foliation by area minimizing planes of a neighborhood of ¥.
This implies the uniqueness of the area minimizing plane in H? spanning I'. Then the
author proves that the same is true for any curve in a neighborhood of a generic curve,
and gets an open dense subset of the C3 Jordan curves in S2 (H?®) with the uniqueness
result. ]

Recently, in [AM10], Alexakis and Mazzeo generalized this result to any surface of genus
k by using different methods. In [Co04], the author works with the space of parametriza-
tions of minimal planes in H?, and hence, in order to get a generic finiteness result, he
needs to deal with different parametrizations of the same minimal plane. In [AM10],
Alexakis and Mazzeo showed that if My is the moduli space of all complete minimal
surfaces of genus k in H? with asymptotic boundary curve a C*® simple closed curve in
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S2 (H?), and ¢ is the space of C*“ simple closed curve in S2 (H?), then the boundary
restriction map 7, : My — £ is Fredholm of index 0 (see also Section 7.2). Moreover,
they also showed that 7y is not only Fredholm of index 0, but also proper (Theorem 4.3
in [AM10]). Hence by the Sard-Smale theorem [Sm65], this implies a generic finiteness
result for minimal surfaces of genus k. In other words, for a generic C®® simple closed
curve I' in S2 (H?), there exist finitely many complete minimal surfaces ¥ of genus k
in H? with 0,,X = I'. Indeed, their result also applies to convex cocompact hyperbolic
3-manifolds, too.

Note that the above generic uniqueness result for area minimizing planes requires some
smoothness condition on the curves. Later, the author improved his result by removing
the smoothness condition. This time, the author uses topological methods instead of
techniques of global analysis. The technique is essentially same with the area minimizing
hypersurfaces case mentioned above.

Theorem 5.5 ([Colla]). Let A be the space of simple closed curves in S% (H?) and let
A’ C A be the subspace containing the simple closed curves in S2 (H?) bounding a unique
area minimizing plane in H3. Then, A’ is generic in A, ie., A — A’ is a set of first
category.

Remark 5.1. Note that the same result is true for area minimizing surfaces in H?, too
[Colla]. By these results, the asymptotic Plateau problem generically has a unique
solution in both area minimizing surfaces in H?® case and area minimizing planes in
H? case. In higher dimensions, the closed codimension-1 submanifolds in S7 (H"*!)
bounding a unique absolutely area minimizing hypersurface in H"*! are only dense in
the closed codimension-1 submanifolds in S™ (H"*1). However, by using the similar ideas,
by fixing the topological type of the closed codimension-1 submanifold in S7 (H"*!), it
might be possible to get some generic uniqueness result, too.

Remark 5.2. Notice that except the convex and star-shaped asymptotic boundary cases,
all the uniqueness results on the asymptotic Plateau problem are about area minimizing
surfaces or area minimizing planes. Unfortunately, the techniques used for these results
cannot be extended to the minimal surfaces or minimal planes cases. The main obstacle
here is that while two area minimizing surfaces with disjoint asymptotic boundaries must
be disjoint, the same statement may not be true for minimal surfaces. In any case, it
would be an interesting problem to study this case in order to understand whether the
simple closed curves in S% (H?) bounding a unique minimal surface (or plane) is dense in
the space of simple closed curves in S2 (H?) or not. The author believes that the similar
statements are not true in minimal surfaces (or planes) case.

Recently in [AM10], Alexakis and Mazzeo obtained a substantial result on the problem
by using degree theory [TT78], [Wh87] . In a sense, this is the strongest result on
the number of complete minimal surfaces spanning given asymptotic data in H?. In
particular, let A(S2 (H?)) be the space of C* simple closed curves in S2 (H?), and let
M. (H3?) be the space of all complete, properly embedded minimal surfaces 3 of genus g
in H? with 0,2 € A(S% (H?)).

132



Asymptotic Plateau problem

Theorem 5.6 ([AM10]). Let IT : My (H3) — A(S% (H?)) be the natural map defined by
II(X) = 0o X. Then,

1. I is Fredholm with index 0.

1. II is proper.

Remark 5.3. Notice that this result immediately implies generic finiteness for each k. On
the other hand, by using the fact that for a convex curve I' in S% (H?), there exists a
unique minimal surface ¥ in H3, and ¥ is a plane, it is easy to see that deg(Ily) = 1 and
deg(Il;) = 0 for any k > 0. Hence, this automatically implies nonuniqueness for a generic
regular curve I' € A(S% (H?)) bounding a complete minimal surface of genus k, i.e., if
IT, '(T') # 0, then there are even number of genus & minimal surfaces with asymptotic
boundary I'. Note also that their result is indeed more general, and it is true for any
convex cocompact hyperbolic manifolds rather than just H? (see Section 7.2).

5.2. Nonuniqueness results

Beside his existence results, Anderson also gave many different nonuniqueness results
for the asymptotic Plateau problem in the fixed topological type in [An83].

Theorem 5.7 ([An83]). There exists a simple closed curve I' in S% (H?) such that there
are infinitely many complete minimal surfaces {3;} in H® with 0,,%; =T .

In the proof of this theorem, Anderson first constructs a simple closed curve such
that the absolutely area minimizing surface given by his existence theorem is not a plane
(positive genus) (a similar construction can be found in [Ha92]). Then, by modifying
this curve, he constructs a curve I' with the same property such that it is also a limit
set for a quasi-Fuchsian group A. Since the absolutely area minimizing surface ¥ is A
invariant and has positive genus, this implies the area minimizing surface /A in the
compact hyperbolic manifold H? is not mj-injective. This implies that the absolutely
area minimizing surface ¥ in H? with 0,,X = I' must have infinite genus. Then, by
using this property, he shows that there exist infinitely many complete minimal surfaces
asymptotic to T'.

Note that this result shows nonuniqueness for minimal surfaces for fixed topological
type. Notice also that [AM10] gives a stronger nonuniqueness result by Remark 5.3. In
particular, by Theorem 3.4, for every n € N, there exists a simple closed curve I'), C
S2 (H?) where the area minimizing surface 3,, with 953, = I',, has genus n. Hence, by
using the ideas in Remark 5.3, it can be shown that for every n € N, there exists a simple
closed curve I',, C S2 (H?) where I',, bounds more than one minimal surface of genus n.

So far, we described the existence of simple closed curves in S2 (H?) bounding more
than one minimal surface in H3. On the other hand, the author showed that a similar
existence result is true for least area planes, and area minimizing surfaces.

Theorem 5.8 ([Collal). There exists a simple closed curve T' in S% (H?) such that there
are more than one area minimizing surfaces {¥1,Xa, ..., X, } in H3 with 0.%X; =T. The
same s true for least area planes, too.
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Remark 5.4. In the nonuniqueness results above, only Hass’s result gives an explicit
example of a simple closed curve in S% (H?) bounding more than one minimal surface in
H?3. All other results on nonuniqueness so far shows the existence of such a curve, but it
does not give one. So, it would be interesting to construct an explicit simple closed curve
in S2_(H?) bounding more than one area minimizing surface (or plane).

Remark 5.5. Although there are many examples of simple closed curves in S%, (H?) bound-
ing more than one minimal surface or more than one area minimizing surface (or plane)
in H?, there is no example in higher dimensions so far. It would be interesting to gen-
eralize the nonuniqueness results to higher dimensions by showing whether there exists a
closed codimension-1 submanifold in S (H"*!) bounding more than one absolutely area
minimizing hypersurface in H**1.

On the other hand, recently, B. Wang and Z. Huang obtained a very interesting result
on the nonunique solutions for the asymptotic Plateau problem [WH12]. A quasi-Fuchsian
3-manifold is a hyperbolic 3-manifold M which is homeomorphic to ¥4, x R where 3,
is the closed genus g surface. In [WH12], for any given N > 0, they construct a quasi-
Fuchsian manifold My which contains at least 2V incompressible minimal surfaces. This
would automatically imply that the limit set 'y C S2 (H?) of My bounds at least 2V
minimal planes in H?. In other words;

Theorem 5.9 ([WH12]). There are simple closed curves in S% (H?) which bound arbi-
trarily many minimal planes in H3.

Note that the simple closed curves in this theorem are far from being smooth as they
are limit sets of quasi-Fuchsian 3-manifolds. Indeed, they are completely nonrectifiable
(see the end of section 6.4).

6. CMC hypersurfaces

After many important results on minimal hypersurfaces in hyperbolic space, like ex-
istence, regularity, etc., the question of generalization of these results to constant mean
curvature (CMC) hypersurfaces was naturally raised: For a given codimension-1 subman-
ifold T in S (H"*™1), does there exist a complete CMC hypersurface ¥ with specified
mean curvature H in H**! and 0,,X =I'?

For simplicity, from now on, we will call CMC hypersurfaces with mean curvature H as
H -hypersurfaces.

Note that for this generalization of the asymptotic Plateau problem, we need to assume
that |H| < 1 (after fixing an orientation on H"*'). This is because it is impossible to
have a complete H-hypersurface ¥ in H**! with |H| > 1 and 9% = I as we can always
find a horosphere (H = 1) in H"*! with tangential intersection with such a % which
contradicts to the maximum principle.

We should also note that H-hypersurfaces in H?® with H = 1 and H > 1 are an area
of active research. A basic reference for CMC hypersurfaces in hyperbolic space with
H > 1 would be [KKMS92]. For the case H = 1, we refer to Rosenberg’s survey [Ro99],
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and Bryant’s seminal paper [Br87] where he showed that any minimal surface in R? is
isometric to a CMC surface in H? with H = 1.

We should point out that the generalization of area minimizing (or minimal) hyper-
surfaces to CMC hypersurfaces is quite natural. As we see the minimal hypersurfaces
(H = 0) as the critical points of the area functional, CMC hypersurfaces occurs as the
critical points of some modification of the area functional with a volume constraint. In
particular, let £” be a compact hypersurface, bounding a domain Q2"*! in some ambient
Riemannian manifold. Let A be the area of X, and V be the volume of €. Let us vary X
through a one parameter family ¥, with corresponding area A(t) and volume V' (t). If f
is the normal component of the variation, and H is the mean curvature of ¥, then we get
A'(0) = — [ynHf, and V'(0) = [, f where n is the dimension of ¥, and H is the mean
curvature

Now, let X be a hypersurface with boundary I'. We fix a hypersurface M with OM =T,
and define V(¢) to be the volume of the domain bounded by M and ;. Now, we define
a new functional as a combination of A and V. Let Iy (t) = A(t) + nHV (t). Note that
Iy(t) = A(¢). If ¥ is a critical point of the functional Iy for any variation f, then this will
imply ¥ has constant mean curvature H [Gu73|. Note that critical points of the functional
I are independent of the choice of the hypersurface M since if 1, g is the functional which
is defined with a different hypersurface M then I'y — 1, g = C for some constant C. On the
other hand, we will call ¥ a minimizing CMC hypersurface if ¥ is the absolute minimum
of the functional I'y among hypersurfaces with the same boundary. From this point of
view, CMC hypersurfaces are natural generalization of minimal hypersurfaces and area
minimizing hypersurfaces as the area functional is just the H = 0 case for the functional
Igr. This point of view is very useful and essential to generalize the geometric measure
theory methods developed for area minimizing case to CMC case as in [To96] and [AR97].

Now, we continue with the basic notions on H-hypersurfaces in H"t!. Fix a
codimension-1 closed submanifold I' in S™ (H"*1). T separates S™ (H"*!) into two parts,
say Q1 and 2. By using these domains, we will give orientation to hypersurfaces in H"t!
asymptotic to I'.  With this orientation, the mean curvature H is positive if the mean
curvature vector points towards the positive side of the hypersurface, negative otherwise.
The following fact is known as the maximum principle.

Lemma 6.1 (Maximum Principle). Let ¥1 and X3 be two hypersurfaces in a Riemannian
manifold which intersect at a common point tangentially. If X9 lies in the positive side
(mean curvature vector direction) of X1 around the common point, then Hy is less than
or equal to Hy (Hy < Hy) where H; is the mean curvature of ¥; at the common point. If
they do not coincide in a neighborhood of the common point, then H is strictly less than
Ho (Hl < Hg)

The other important notion about CMC hypersurfaces in H*t! is the generalization
of the convex hull property to this context. Now, let I' be a codimension-1 submanifold of
S™ (H"*+1) and orient all spheres accordingly. If T is a round n — 1-sphere in S (H"*+1),
then there is a unique H-hypersurface Py in H"T! asymptotic to T for —1 < H < 1
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[NS96]. T separates S™ (H"*!) into two parts A* and A~. Similarly, Py divides H" !
into two domains D;g and D with (%ODE = A*. We will call these regions as H -shifted
halfspaces. If the asymptotic boundary of a H-shifted halfspace contains I', then we will
call this H-shifted halfspace as supporting H-shifted halfspace, i.e., if A C AT, then Dj{l
is a supporting H-shifted halfspace. Then the H-shifted conver hull of T, CHg(T) is
defined as the intersection of all supporting closed H-shifted halfspaces of H" 1.

Now, the generalization of convex hull property of minimal hypersurfaces in H**! to
H-hypersurfaces in H"*! is as follows [Co06b]. Similar versions of this result have been
proved by Alencar-Rosenberg in [AR97], and by Tonegawa in [To96].

Lemma 6.2 ([To96], [AR97], [Co06b]). Let 3 be a H-hypersurface in H" ™ where 0o X
isT and |H| < 1. Then X is in the H-shifted convex hull of T, i.e., ¥ C CHy(T).

6.1. Existence

In the decade after Anderson’s existence ([An82], [An83]) and Hardt-Lin’s regularity re-
sults ([HL87],[Li89al), there have been many important generalizations of these results to
CMC hypersurfaces in the hyperbolic space. In [To96], Tonegawa generalized Anderson’s
techniques to this case, and proved existence for CMC hypersurfaces by using geometric
measure theory methods. In the same year, by using similar techniques, Alencar and
Rosenberg got a similar existence result in [AR97].

Theorem 6.3 ([To96], [AR97]). LetT' C S (H"*!) be a codimension-1 closed submani-
fold, and let |H| < 1. Then there exists a CMC hypersurface 3 with mean curvature H in
H"t! where 0,3 =T'. Moreover, any such CMC hypersurface is smooth except a closed
singularity set of dimension at most n — 7.

We should also note that Nelli and Spruck showed the existence of a CMC hypersurface
asymptotic to a % codimension-1 submanifold I' which is the boundary of a mean
convex domain in S7 (H"*!) by using analytic techniques in [NS96]. Later, Guan and
Spruck generalized this result to C™! codimension-1 submanifolds bounding star shaped
domains in ST (H"t1).

Theorem 6.4 ([GS00]). Let Q be a star shaped (mean convex for [NS96]) domain in
S (H™) where T' = 9Q is a CY1 (C*“ for [NS96]) codimension-1 submanifold in
S (H"HL). Then, for any 0 < H < 1, there exists a complete smoothly embedded CMC

hypersurface ¥ with mean curvature H and 03 = I'. Moreover, ¥ can be represented
as the graph of a function u € CH1(Q) (u € C**(Q) in [NS96]).

Even though this second existence result is for a fairly restricted class of asymptotic
boundary data (star shaped condition), the CMC hypersurfaces obtained are smoothly
embedded with no singularity in any dimension (unlike the first one), and they can be
represented as a graph like 2,41 = u for a function u € C**(Q) in the half space model for
H"!. We should also note that, in [AA02], Aiyama and Akutagawa gave a completely
different construction for CMC surfaces of disk type in H? with asymptotic boundary a
C1® smooth simple closed curve in S2 (H?) by studying a Dirichlet problem at infinity.
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These results gave a positive answer to existence question of asymptotic Plateau prob-
lem for H-hypersurfaces in H**!. On the other hand, like in the minimal case, which
topologies can occur as a solution to this problem is an interesting question. In dimension
3, the author generalized Martin and White’s result [MW13] to this case.

Theorem 6.5 ([Col3]). Any open orientable surface can be properly embedded in H? as a
minimizing H -surface.

In other words, for any given open orientable surface .S, there exists a collection of
simple closed curves I' in S% (H?) such that the minimizing H-surface ¥ with 9% =T
is homeomorphic to S, i.e., ¥ ~ S. The techniques are quite similar with [MW13]. The
author first generalized the bridge principle for uniquely minimizing surfaces in [MW13]
to uniquely minimizing H-surfaces. Then, following a compact exhaustion of the given
surface S, he constructs the surface by using the bridges inductively (See the proof of the
Theorem 3.6.)

6.2. Boundary regularity at infinity

Beside the existence results, in [To96], Tonegawa studied the following quasi-linear
degenerate elliptic PDE which is a more general form of the PDE in Section 4 for
H-hypersurfaces with |H| < 1, and got important regularity results for these hyper-
surfaces near asymptotic boundary.

y(Vu — %uu) —n(uy — H\/1+|Dul?)=0 inD
u
u(‘rv 0, 0) = (p(.’L‘)
For k < n, Tonegawa generalized the Lin’s result for minimal hypersurfaces (H = 0)

in [Li89%a].

Theorem 6.6 ([To96)). Let T be a C** codimension-1 submanifold in S (H"*1) where
1<k<n—-1and 0<a<l ork=n and 0<a<l. If ¥ is a complete CMC hypersurface
in HY with 0,8 = T, then S UT is a C** submanifold with boundary in Hn+1
near I'.

On the other hand, Tonegawa showed that for higher regularity case, H = 0 case is
fairly different form the H # 0 case. As we mentioned in Section 4, in H = 0 case,
Tonegawa showed that when n is even, higher regularity is always true, but when n is
odd, higher regularity depends on the asymptotic boundary I' (Theorem 4.3). In the
H = 0 case, Tonegawa got a very surprising result that while the similar result is true for
n = 2, it is not true for n = 4.

Theorem 6.7 ([To96]). a. (n =2 case) Let I' be a C** smooth simple closed curve in
S2(H3) withk >n+1=3,0<a<1. Let ¥ be a H-hypersurface in H* with 95,2 =T.
Then, SUT is a C** submanifold with boundary near T.
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b. (n =4 case) Forn =4, H # 0 and |H| < 1, there exists a smooth T such that
YL UT is not a C" = C® submanifold with boundary where ¥ is a H-hypersurface with
Oox =T.

We should also note that by studying the PDE above, or by using some barrier argu-
ments, it is not hard to show that the intersection angle 6 between an H-hypersurface
and the asymptotic boundary S7 (H"*1) is arctan(—vll;m) [To96]. In other words, let
I be a codimension-1 submanifold in S? (H"*1), and ¥ be an H-hypersurface in H" !
with 9,2 = . Then for any p € T, the angle 6y between ¥ UT and S (H"*1) at p
would be arccos H.

6.3. Number of solutions

By using analytic techniques, Nelli and Spruck generalized Anderson’s uniqueness re-
sult for mean convex domains in area minimizing hypersurfaces case to CMC context
in [NS96]. Then, Guan and Spruck extended Hardt and Lin’s uniqueness results for
star-shaped domains in area minimizing hypersurfaces case to CMC hypersurfaces in
hyperbolic space in [GS00].

Theorem 6.8 ([GS00]). Let Q be a star shaped (mean convex for [NS96]) domain in
S (H"M) where T = 0Q is a C11 (C%2 for [NS96]) codimension-1 submanifold in
S (H"T1). Then, for any 0 < H < 1, there exists a unique complete CMC' hypersurface
¥ with mean curvature H and 0,02 =T.

On the other hand, the author got a generic uniqueness result for CMC hypersurfaces
by generalizing his methods in [Collal]. In particular, he defined the notion of minimizing
CMC hypersurfaces as generalizations of area minimizing hypersurfaces. In other words,
as minimal hypersurfaces are critical points of the area functional, and area minimizing
hypersurfaces are not just critical but minimum points of the functional, the same gen-
eralization is defined for CMC hypersurfaces in [Co06b]. The CMC hypersurfaces are
the hypersurfaces with constant mean curvature and they correspond to critical points of
the functional Iy (t) = A(t) +nHV (t), and minimizing CMC hypersurfaces correspond to
minimizers of the functional I5. Note that the existence result Theorem 6.3 by Tonegawa
and Alencar-Rosenberg indeed gives minimizing CMC hypersurfaces.

Theorem 6.9 ([Co06b]). Let A be the space of codimension-1 closed submanifolds of
S™ (H"H), and let A’ C A be the subspace containing the closed submanifolds of
S (H"H) bounding a unique minimizing CMC' hypersurface with mean curvature H in
H"t!. Then A’ is generic in A, i.e., A— A’ is a set of first category.

On the other hand, there is no known result for nonuniqueness of CMC hypersurfaces.
In particular, there is no known example of a codimension-1 submanifold T' in S7 (H"*1)
such that I is the asymptotic boundary of more than one CMC hypersurface with mean
curvature H for any 0 < H < 1. For H = 0, Anderson [An83], Hass [Ha92], and the
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FIGURE 2. For 0 < H1 < H2 < 1, S1 is above Sz near the boundary of the
ball Bg,(p) by [To96].

author [Colla] gave such examples. It might be possible to generalize these techniques
to prove nonuniqueness in CMC case for any H € (—1,1).

6.4. Foliations of hyperbolic space

While discussing the uniqueness of CMC hypersurfaces for a given asymptotic data in
asymptotic boundary, there is a related problem in the subject: For a given codimension-1
closed submanifold T' in S™ (H"*!), does the family of CMC hypersurfaces {3y} with
mean curvature H foliate H**! or not, where —1 < H < 1 and 0%y = I'. This
question is related to the uniqueness question as the existence of such a foliation auto-
matically implies the uniqueness of the CMC hypersurface ¥y with mean curvature H
where Ox X g = I' by maximum principle. In the reverse direction, the author showed the
following result.

Theorem 6.10 ([Col0]). Let T be a C*“ closed codimension-1 submanifold in S (H"T1).
Also assume that for any H € (—1,1), there exists a unique CMC hypersurface Xy with
OsXmy = T'. Then, the collection of CMC hypersurfaces {Xgy} with H € (—1,1) foliates
H" L,

Proof: (Sketch) First, by using the boundary regularity results in [To96] and some
cut-and-paste arguments similar to the exchange roundoff trick, the author shows that
two different minimizing H-hypersurfaces with the same asymptotic boundary must be
disjoint (see Figure 2). In particular, he proves that if I is a C*® closed codimension-
1 submanifold in S (H"*!), and X, and Xp, are minimizing CMC hypersurfaces in
H" ! with OsoXp, =1y and —1 < Hy < Hy < 1, then X, and X g, are disjoint. Hence,
{Xy} for =1 < H < 1 is a disjoint family of hypersurfaces in H**!. Now, there are two
points to check to show that {3} foliates H"*1. The first point is that there is no gap
between the leaves of {¥ g}, and the second point is that {Xp} fills H* 1.
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For the first point the idea is to use the assumption that I' bounds a unique
H-hypersurface for any H € (—1,1). If there was a gap between the family {Xx } ge(—1, )
and {X g} He(mH,,1), then one can construct a sequence of hypersurfaces {S;} such that
S; C ¥y, where H; N\, Hy and 9S; — I'. Then, by showing that S; — Y%, where ¥ is
another minimizing Hy-hypersurface with 8002}10 =T, he gets a contradiction as I' must
bound a unique Hy-hypersurface in H"*!.

For the second point, if the family {¥z} of hypersurfaces does not fill H**!, then
by constructing a suitable horosphere in the unfilled region, and by using the maximum
principle, the author gets a contradiction. |

Hence, by the uniqueness results in [GS00] and [NS96], for the star shaped asymptotic
data and mean convex asymptotic data, the above result gives positive answer for the
question. Note that in [CV03], Chopp and Velling studied this problem by using compu-
tational methods, and had an interesting result that for many different types of curves in
S2 (H?), CMC surfaces give a foliation of H3.

On the other hand, recently in [Wa08], Wang showed that if a quasi-Fuchsian
3-manifold M contains a minimal surface whose principle curvature is less than 1, than
M admits a foliation by CMC surfaces by using volume preserving mean curvature flow.
If we lift this foliation to the universal cover, we get a foliation of H?> by CMC sur-
faces with same asymptotic boundary I' where T' is a simple closed curve in S2 (H?)
and it is the limit set of the quasi-Fuchsian 3-manifold M. However, the limit set of
quasi-Fuchsian manifolds are far from being smooth, even they contain no rectifiable arcs
([Be72]). Existence of one smooth point in the limit set implies the group being Fuchsian,
which means the limit set is a round circle in S2 (H?). Hence, in addition to smooth
examples in [Col0], [Wa08] gives completely nonrectifiable simple closed curve examples
where CMC hypersurfaces with the given asymptotic data foliate the hyperbolic space.
Also in [Wa08], Wang constructs a simple closed curve I' in S2 (H?) (as limit set of a
quasi-Fuchsian 3-manifold) which is similar to the one in [Ha92], where there cannot be
a foliation of H? by CMC surfaces with asymptotic boundary T.

7. Further results

Other than existence, regularity and number of solutions to the asymptotic Plateau
problem, there have been other important features which are studied.

7.1. Properly embeddedness

The properly embeddedness of the solution of the asymptotic Plateau problem is one of
the interesting problems which is under investigation. Namely, the question is whether a
solution to the asymptotic Plateau problem ¥ with 0., = I" where I is a codimension-1
closed submanifold in S% (H"*!) is properly embedded, or not? In other words, if
¢ : S — H" is an embedding with ¢(S) = 3, then is ¢ proper, i.e., is the preim-
age of a compact subset K of H"*! ¢~1(K), is compact in S for any K?
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In recent years, the properly embeddedness of complete minimal surfaces is under seri-
ous investigation in R? case (see the survey [A106]). This is called the Calabi-Yau Conjec-
ture for minimal surfaces, and has been shown by Colding and Minicozzi in [CMO08]. After
this result, Meeks and Rosenberg generalized this result by showing that any embedded
minimal surface with positive injectivity radius in an ambient space with nonpositive
curvature must be properly embedded [MRO6]. This would automatically suggest the
question of whether the Calabi-Yau Conjecture is true in H3.

Recently, the author obtained the first positive answer in this direction. In particular,
he showed that for any area minimizing plane ¥ in H? with asymptotic boundary I" which
is a simple closed curve with at least one smooth point, then ¥ is properly embedded in H3.
The technique is very different from Colding and Minicozzi’s techniques. While Colding-
Minicozzi relates intrinsic distances and extrinsic distances for embedded minimal surface
in R? by using very powerful analytical techniques, the author’s techniques are purely
topological.

Theorem 7.1 ([Co09]). Let X be a complete embedded area minimizing plane in H* with
05X = T where T is a simple closed curve in S% (H3) with at least one smooth (C!)
point. Then, 3 must be proper.

Proof: (Sketch) Assume that X is a non-properly embedded area minimizing plane in H3
with 0,X = T' where T is a simple closed curve in S% (H?) with at least one smooth
point. The author gets a contradiction by analyzing the disks in the intersection of
¥ with the balls Bg(0) which exhaust H?. First, he shows that for sufficiently large
generic R > 0, ¥ N Br(0) contains infinitely many disjoint disks. Then, he categorizes
these disks as separating and nonseparating depending on their boundary in the annulus
Ar = CH(T') N 9BR(0) being essential or not.

Then, he establishes the Key Lemma which shows that the nonseparating disks in
Bpr(0) must stay close to the boundary dBr(0). In particular, he proves that if D, is a
nonseparating disk in B,.(0)NX, then there is a function F' which is a monotone increasing
function with F'(r) — oo as r — o0, such that d(0, D,) > F(r) where d is the distance.
He proves the Key Lemma by using a barrier argument (see Figure 3). In other words,
by using the smooth point assumption, he proves the existence of a least area annulus A,
in H® with 0,4, = [';F UT,, where I';" are simple closed curves sufficiently close to I in
opposite sides. Since they are area minimizing, any nonseparating disk D, must stay in
one side of the least area annulus A,. As r — oo the distance from 0 to A, will give the
desired function. Hence, this shows that nonseparating disks do not come close to the
point 0, and stay close to the boundary 9B,.(0).

Finally, the author proves the main result by using the Key Lemma as follows. A
separating disk Dg, in ¥ N Bg, (0) will be a subdisk in a nonseparating disk Eg, in
>N Bg,(0) where Ry > R;y. By choosing Rs appropriately and by using the fact that the
separating disk Dpg, is a subset of the disk Erg,, he shows that the nonseparating disk
Er, comes very close to the point 0, which is a contradiction. |
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F1GURE 3. The least area annulus A; is used as barrier in the proof of
Key Lemma.

However, in the following years, the author showed that the Calabi-Yau Conjecture is
not true in H? by constructing a complete, nonproperly embedded minimal plane in H?
[Collb]. Furthermore, by combining Martin and White’s construction [MW13] with this
nonproperly embedded minimal plane, he showed the following;:

Theorem 7.2 ([Col3]). Any open orientable surface S can be embedded in H? as a
complete nonproper minimal surface.

7.2. The moduli space

On the other hand, the space of all solutions to the asymptotic Plateau problem (the
Moduli Space) is another interesting subject, and its structure gives powerful global anal-
ysis tools to get important results on the number of solutions to the asymptotic Plateau
problem . In particular, the author showed that the space of minimal planes in H? with
asymptotic boundary a C* smooth simple closed curve is a manifold and its projection
to the asymptotic boundary is a Fredholm map in [Co04]. By using these results, the
author showed a generic uniqueness result (Theorem 5.4) for C® smooth simple closed
curves in S2 (H?), [Co06a).

Very recently, by using different techniques, Alexakis and Mazzeo generalized the au-
thor’s results to complete properly embedded minimal surfaces of any fixed genus in
convex cocompact hyperbolic 3-manifolds (H? is a special case).

Theorem 7.3 ([AM10]). Let X be a convex cocompact hyperbolic 3-manifold, and My, (X)
is the space of properly embedded minimal surfaces in X of genus k with asymptotic
boundary a C> simple closed curve in O, X. Let & be the space of all C*® curves in
DX . Then, both My(X) (Mo(H?) case in [Co04]) and & are Banach manifolds, and the
projection map 7y : My(X) — £ is a smooth proper Fredholm map of index 0.

Note that being Fredholm map of index 0 is a very strong property, and it can be
considered as the map is locally one-to-one for generic points. Indeed, they showed that
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7 is not only Fredholm of index 0, but also proper. Hence, by using this result, they
developed a powerful Z-valued degree theory for 7, as follows:

deg(my) = Y ()"
Yen, (D)
where T is a regular value of 7, and n(X) is the number of negative eigenvalues of the
Jabobi operator —Lyx. By combining this degree theory with the techniques in [TT78]

and [Wh87], one can get very interesting results on complete minimal surfaces in H? (see
Section 4 in [AM10]).

7.3. Renormalized area

In [AM10], in addition to the study of the global structure of moduli spaces of complete
minimal surfaces in H® and a Z-valued degree theory on them (see Section 7.2), Alex-
akis and Mazzeo defined a notion called renormalized area A(Y') for properly embedded
minimal surfaces Y in H? (or more generally convex cocompact hyperbolic 3-manifolds)
where 0, Y =T is a C** simple closed curve in S% (H?). They showed that if a minimal
surface minimizes renormalized area, it must be an area minimizing surface.

Theorem 7.4 ([AM10]). Let T’ be a C* embedded curve in S2 (H?). Suppose that Yy
and Ys are two properly embedded minimal surfaces in H? with 0sY] = OscYa = T'. If
Y is area minimizing in H3, then A(Y1) < A(Ya), and equality holds if and only if Y is
also an area minimizer.

Moreover, they also showed that the renormalized area functional A is connected with
the Willmore functional W, which is the total integral of the square of the mean curva-
ture, in the following way. The renormalized area functional is defined for any convex
cocompact hyperbolic 3-manifold X. After modifying the metric on X in a suitable way
such that it induces a Zs-invariant smooth metric on the double of X, denoted by 2X,
consider the double of any surface 3 in My(X) (see Section 7.2), denoted by 2%, in 2X.
Then, Alexakis and Mazzeo showed that A(X) = —3W(2X) for any ¥ € My(X).

On the other hand, they also define an extended renormalized area R which is defined
for all properly embedded surfaces Y which intersect S% (H?) orthogonally and 05 Y =T
is a C*“ simple closed curve in S2 (H?). Then the extended renormalized area behaves
just like the area for these surfaces.

Theorem 7.5 ([AM10]). Let T’ be a C** closed curve in S% (H*). Then the infimum
of R(Y) where Y ranges over the set of all C3® surfaces with 0,,Y = I’ which intersect
S2 (H3) orthogonally is attained only by absolutely area-minimizing surfaces. Also, if Y
is a critical point for R, then Y must be a minimal surface.

Notice that renormalized area behaves just like the area for these infinite surfaces in
many ways. Hence, many techniques from the compact area minimizing surfaces can be
generalized to these surfaces with this new tool.

Acknowledgements. I would like to thank Urs Lang for very valuable remarks.
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