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1. Definition and Properties

� Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, f ′ 6= 0

� Sf = 0 ⇐⇒ f Möbius

� S(g ◦ f) = [(Sg) ◦ f ](f ′)2 + Sf

� S(T ◦ f) = Sf , T Möbius

Note: Named after H. A. Schwarz, was used by Kummer as early as 1836 in

connection with the hypergeometric equation.

Local distortion

� (f(z + ta), f(z + tb), f(z + tc), f(z + td)) = (a, b, c, d)
[
1 + (a− b)(c− d)1

6
Sf(z)t2 + · · ·

]

� |f ′(z)|κ = k − Re
{
Pf(z)eiθ

}
, Pf =

f ′′

f ′

� |f ′(z)|2dκ
ds

=
dk

dt
− Im

{
Sf(z)e2iθ

}
1
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2. Conditions for Univalence and Qc-extension

f locally injective in Ω ⊂ C, Sf = 2p

� then f =
u

v
for u, v linearly independent solutions of u′′ + pu = 0 (∗)

� f is injective in Ω ⇐⇒ every solution u of (∗) vanishes in Ω at most once

Several criteria in D, the following three are due to Nehari [17, 1949], [18, 1954],
and (3) announced by Pokornyi [21, 1951]

(1) |Sf(z)| ≤ 2

(1− |z|2)2

(2) |Sf(z)| ≤ π2

2

(3) |Sf(z)| ≤ 4

1− |z|2

The absence of multiple zeros of solutions of (∗) can be understood from the
Sturm theory:

Other important criteria: Ahlfors [2, 1974], Epstein [13, 1984], Anderson-Hinkkanen
[4, 1991], Becker [5, 1972] (for Pf)
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Ahlfors-Weill [3, 1962]

If (1−|z|2)2|Sf(z)| ≤ 2t , 0 ≤ t < 1, then f admits a quasiconformal extension.

Gehring-Pommerenke [14, 1984]

If (1− |z|2)2|Sf(z)| ≤ 2 then f admits a continuous extension to D and f(D) is
a Jordan domain except for a mapping onto a parallel strip.

L(z) = log(1+z)/(1−z) , SL(z) = 2(1−z2)−2

They also showed:

� if |Sf(z)| ≤ ρ(z) implies univalence then |Sf(z)| ≤ tρ(z), 0 ≤ t < 1 implies
qc-extension

� if f(D) is a Jordan domain and lim sup|z|→1(1− |z|2)2|Sf(z)| < 2 then f(D) is
a quasidisk

The Gehring-Pomerenke phenomenon holds also for (2) and (3). It follows that

if f satisfies (2) or (3) and f(D) is a Jordan domain then f(∂D) is WP because∫∫
|z|<1

(1− |z|2)2|Sf(z)|dxdy <∞ .

There is one necessary condition for univalence in D due to Kraus [15, 1932]:

|Sf(z)| ≤ 6

(1− |z|2)2
.

Equality at one point implies f maps onto the complement of a slit (Koebe map-
ping).
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3. Conformal Schwarzian

Osgood-Stowe [20, 1992] and Carne [6, 1990]: Let f : (M, g) → (N, h) be a
conformal local diffeomorphism between Riemannian n-manifolds, σ = log |Df |

Sg(f) = Hess(σ)− dσ ⊗ dσ − 1

n

{
∆σ − |∇σ|2

}
g

� there is a chain rule

� when f is holomorphic we recover the classical definition in the form of a matrix Re{Sf} −Im{Sf}

−Im{Sf} −Re{Sf}


Theorem A [19, 1990]: Let (M, g) be a Riemannian manifold with scalar curva-
ture s(g) such that very two points can be joined by a geodesic of length at most
δ for some 0 < δ ≤ ∞. If f : (M, g)→ Sn is a conformal local diffeomorphism and

||S(f)|| ≤ 2π2

δ2
− s(g)

n(n− 1)
then f is injective.

4. Ahlfors’ Schwarzian

Let φ : I → Rn be a parametrized curve with φ′ 6= 0. Then

S1φ =
〈φ′, φ′′′〉
|φ′|2

− 3
〈φ′, φ′′〉2

|φ′|4
+

3

2

|φ′′|2

|φ′|2
,

S2φ =
φ′ ∧ φ′′′

|φ′|2
− 3
〈φ′, φ′′〉
|φ′|4

φ′ ∧ φ′′ ,

〈~a,~b〉 : standard inner product

~a ∧~b : antisymmetric bivector with components (~a ∧~b)ij = aibj − ajbi

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=⇒

Re{Sf} =
1

|f ′|2
Re{f ′′′ f ′}+ · · · , Im{Sf} =

1

|f ′|2
Im{f ′′′ f ′}+ · · ·
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In [7, 2004] it was shown:

S1φ =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2k2 = Ss+

1

2
v2k2

S2φ = vk′(t̂ ∧ n̂) + v2kτ(t̂ ∧ b̂)

where v = |φ′| = speed, s′ = v, k = curvature, τ = torsion

� S1φ+ i|S2φ| has a natural interpretation on the osculating sphere and is Möbius

invariant

Theorem B: Let φ : I → Rn be a C3 curve with φ′ 6= 0 and S1φ ≤ 2p for some
function p = p(x) for which

u′′ + pu = 0

does not admit solutions with more than one zero on I. Then φ(I) is simple.

Combining the definitions of conformal Scharzian, Ahlfors’ real Schwarzian and
Theorem B yields:

Theorem C [9, 2007]: Let f : D→ R3 be a conformal minimal immersion with
conformal factor |Df | = eσ, and let K stand for the Gaussian curvature of the
minimal surface. If

|Sf |+ e2σ|K| ≤ 2

(1− |z|2)2
(∗∗)

then f is injective.

� Sf may be represented by the complex number 2(σzz − σ2
z)

� since (∗∗) is invariant under compositions f ◦ T with an automorphism T of D
it suffices to analize univalence on (−1, 1)

� if φ(x) = f(x) then (∗∗) implies S1φ ≤
2

(1− x2)2
, hence φ is 1-1 by Theorem B
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