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1. Introduction

Problems in submanifold theory have been studied since the invention of

calculus and it was started with differential geometry of plane curves. Owing

to his studies of how to draw tangents to smooth plane curves, P. Fermat

(1601–1665) is regarded as a pioneer in this field. Since his time, differential

geometry of plane curves, dealing with curvature, circles of curvature, evo-

lutes, envelopes, etc., has been developed as an important part of calculus.

Also, the field has been expanded to analogous studies of space curves and

surfaces, especially of lines of curvatures, geodesics on surfaces, and ruled

surfaces.

Some historians date the beginning even before the invention of calcu-

lus. Already around 1350, the French bishop Nicole Oresme (1323–1382)

proposed to assign 0-curvature to the straight lines and curvature 1
r to the

circles of radius r. Along the lines of previous work by J. Kepler (1571–1630),

R. Descartes (1596–1650) and C. Huygens (1629-1695) in 1671, I. Newton

(1642–1727) succeeded in defining and computing the curvature κ(t) at each

point of a plane curve using the ideas of osculating circles and intersection

of neighborhood normals.

The first major contributor to the subject was L. Euler (1707–1783). In

1736 Euler introduced the arc length and the radius of curvature and so

began the study of intrinsic differential geometry of submanifolds.

Concerning space curves, G. Monge (1747–1818) obtained in 1770 the ex-

pression for the curvature κ(t) of a space curve γ = γ(t). The expression

for the torsion τ(t) was first obtained by M. A. Lancret in 1806. The works

of A. L. Cauchy (1789–1857) in 1826, F. Frenet (1816–1900) in 1847 and J.

A. Serret (1819–1885) in 1851, resulted in the well-known Frenet-Serret for-

mulas which give all the successive derivatives of a curve. The fundamental

theorems or congruence theorems for curves were obtained by L. S. V. Aoust

(1814–1885) in 1876.

C. F. Gauss (1777–1855) established the theory of surfaces by introducing

the concepts of the geometry of surfaces (Disquisitiones circa superficie cur-

vas, 1827). Since then the subject has come to occupy a very firm position in

mathematics. The influence of differential geometry of curves and surfaces

exerted upon branches of mathematics, dynamics, physics, and engineering

has been profound. For instance, the study of geodesics is a topic deeply

related to dynamics, calculus of variations, and topology; also the study of

minimal surfaces is intimately related to the theory of functions of a com-

plex variable, calculus of variations, and topology. Weierstrass and Schwarz

established its relationship with the theory of functions. Among others, J.
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L. Lagrange (1736–1813), K. Weierstrass (1815–1897), H. A. Schwarz (1843–

1921), J. Douglas (1897–1965), T. Radó (1897–1965), S. S. Chern (1911– ),

and R. Osserman (1926– ) are those who made major contributions on this

subject.

Belgian physicist J. A. Plateau (1801–1883) showed experimentally that

minimal surfaces can be realized as soap films by dipping wire in the form

of a closed space curve into a soap solution (around 1850). The Plateau

problem, that is, the problem of proving mathematically the existence of

a minimal surface with prescribed boundary curve, was solved by T. Radó

(1895–1965) in 1930, and independently by J. Douglas (1897–1965) in 1931.

Before Gauss, geometers viewed a surface as being made of infinitely many

curves, whereas Gauss viewed the surface as an entity in itself. Influenced by

Gauss’ geometry on a surface in Euclidean 3-space, B. Riemann (1826–1866)

introduced in 1854 Riemannian geometry. Riemannian geometry includes

Euclidean and non-Euclidean geometries as special cases, and it is important

for the great influence it exerted on geometric and physical ideas of the

twentieth century.

Using the concept of the intrinsic Riemannian structure on the surface,

one can compute the curvature of a surface in two different ways. One is to

compute the principal curvatures and the other is done intrinsically using

the induced Riemannian metric on the surface. The Theorema Egregium of

Gauss provides a direct relationship between the intrinsic and the extrinsic

geometries of surfaces.

Motivated by the theory of mechanics, G. Darboux (1824–1917) unified

the theory of curves and surfaces with his concept of a moving frame. This

is the beginning of modern submanifold theory which in turn gave valuable

insight into the field.

Since the celebrated embedding theorem of J. F. Nash (1928– ) allows ge-

ometers to view each Riemannian manifold as a submanifold in a Euclidean

space, the problem of discovering simple sharp relationships between intrin-

sic and extrinsic invariants of a submanifold is one of the most fundamental

problems in submanifold theory. Many beautiful results in submanifold the-

ory, including the Gauss-Bonnet theorem and isoperimetric inequalities, are

results in this respect. In the modern theory of submanifolds, the study of

relations between local and global properties has also attracted the interest

of many geometers. This view was emphasized by W. Blaschke (1885–1962),

who worked on the differential geometry of ovals and ovaloids. The study of

rigidity of ovaloids by S. Cohn-Vossen (1902–1936) belongs in this category.
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An important class of Riemannian manifolds was discovered by J. A.

Schouten (1883–1971), D. van Dantzig (1900–1959), and E. Kähler (1906–

) around 1929–1932. This class of manifolds, called Kähler manifolds to-

day, includes the projective algebraic manifolds. The study of complex sub-

manifolds of a Kähler manifold from differential geometric points of view

was initiated by E. Calabi (1923– ) in the early 1950’s. Besides complex

submanifolds, there are some other important classes of submanifolds of a

Kähler manifold determined by the behavior of the tangent bundle of the

submanifold under the action of the almost complex structure of the ambi-

ent manifold. These classes of submanifolds have many interesting properties

and many important results have been discovered in the last quarter of this

century from this standpoint.

Submanifold theory is a very active vast research field which in turn plays

an important role in the development of modern differential geometry in

this century. This branch of differential geometry is still so far from being

exhausted; only a small portion of an exceedingly fruitful field has been

cultivated, much more remains to be discovered in the coming centuries.
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2. Nash’s embedding theorem and some related results

Throughout this article manifolds are assumed to be connected, of class

C∞, and without boundary, unless mentioned otherwise.

H. Whitney (1907–1989) proved in 1936 that an n-manifold can always

be immersed in the Euclidean 2n-space E2n, and can always be embedded

in E2n+1 as a closed set.

An immersion f (or an embedding) of a Riemannian manifold (M,g) into

another Riemannian manifold (M̃, g̃) is said to be isometric if it satisfies the

condition f∗g̃ = g. In this case, M is called a Riemannian submanifold (or

simply a submanifold) of M̃ .

We shall identify the image f(M) with M when there is no danger of

confusion.

One of fundamental problems in submanifold theory is the problem of

isometric immersibility. The earliest publication on isometric embedding

appeared in 1873 by L. Schläfli (1814–1895).

The problem of isometric immersion (or embedding) admits an obvious

analytic interpretation; namely, if gij(x), x = (x1, . . . , xn), are the compo-

nents of the metric tensor g in local coordinates x1, . . . , xn on a Riemannian

n-manifold M , and y = (y1, . . . , ym) are the standard Euclidean coordinates

in Em, then the condition for an isometric immersion in Em is
n∑

i=1

∂yj
∂xi

∂yk
∂xi

= gjk(x),

that is, we have a system of 1
2n(n+1) nonlinear partial differential equations

in m unknown functions. If m = 1
2n(n+1), then this system is definite and

so we would like to have a solution. Schläfli asserted that any Riemannian

n-manifold can be isometrically embedded in Euclidean space of dimension
1
2n(n + 1). Apparently it is appropriate to assume that he had in mind

of analytic metrics and local analytic embeddings. This was later called

Schläfli’s conjecture.

2.1. Cartan-Janet’s theorem. In 1926 M. Janet (1888–1984) published a

proof of Schläfli’s conjecture which states that a real analytic Riemannian

n-manifold M can be locally isometrically embedded into any real analytic

Riemannian manifold of dimension 1
2n(n+1). In 1927 É. Cartan (1869–1951)

revised Janet’s paper with the same title; while Janet wrote the problem in

the form of a system of partial differential equations which he investigated

using rather complicated methods, Cartan applied his own theory of Pfaffian

systems in involution. Both Janet’s and Cartan’s proofs contained obscu-

rities. In 1931 C. Burstin got rid of them. This result of Cartan-Janet
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implies that every Einstein n-manifold (n ≥ 3) can be locally isometrically

embedded in En(n+1)/2.

The Cartan-Janet theorem is dimensionwise the best possible, that is,

there exist real analytic Riemannian n-manifolds which do not possess smooth

local isometric embeddings in any Euclidean space of dimension strictly less

than 1
2n(n+ 1). Not every Riemannian n-manifold can be isometrically im-

mersed in Em with m ≤ 1
2n(n + 1). For instance, not every Riemannian

2-manifold can be isometrically immersed in E3.

Cartan-Janet’s theorem implies that an analytic Riemannian 3-manifold

can be locally isometrically embedded into E6. For Riemannian smooth

3-manifolds, R. L. Bryant, P. A. Griffiths and D. Yang (1983) proved the

following:

Let M be a smooth Riemannian 3-manifold and let x ∈ M be such

that the Einstein tensor at x is neither zero nor a perfect square L2 =∑
ℓiℓjdx

idxj, L =
∑
ℓidx

i ∈ T ∗
xM . Then there exists a neighborhood of x

which can be smoothly isometrically embedded into E6.

G. Nakamura and Y. Maeda (1986) improved the result to the following:

Let M be a smooth Riemannian 3-manifold and let x ∈ M be a point such

that the curvature tensor R(x) at x does not vanish, whereR(x) is considered

as a symmetric linear operator acting on the space of 2-forms. Then there

exists a local smooth isometric embedding of a neighborhood of x into E6.

H. Jacobowitz and J. D. Moore (1973) proved that, for real analytic Rie-

mannian manifolds M and M̃ of dimensions n and N respectively with

n ≥ 2, N ≥ 1
2n(n + 1) − 1, if x0 is a point of M , then there exists an open

neighborhood U of x0 ∈M which can be conformally embedded in M̃ .

2.2. Nash’s embedding theorem. A global isometric embedding theorem

was proved by J. F. Nash (1956) which states as follows.

Theorem 2.1 Every compact Riemannian n-manifold can be isometrically

embedded in any small portion of a Euclidean N -space EN with N = 1
2n(3n+

11). Every non-compact Riemannian n-manifold can be isometrically embed-

ded in any small portion of a Euclidean m-space Em with m = 1
2n(n+1)(3n+

11).

R. E. Greene (1970) improved Nash’s result and proved that every non-

compact Riemannian n-manifold can be isometrically embedded in Euclidean

N -space with N = 2(2n + 1)(3n + 7). Furthermore, Greene (1970) and M.

L. Gromov and V. A. Rokhlin (1970) proved independently that a local

isometric embedding from Riemannian n-manifold into E
1

2
n(n+1)+n always

exist. Gromov and Rokhlin (1970) also proved that a compact Riemannian
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n-manifold of class Cr (r = ∞ or ω) can be isometrically Cr-embedded in

E
1

2
n(n+1)+3n+5.

Nash (1954) proved that if a manifold M admits a C1-embedding in Em,

where m ≥ n + 2, then it admits an isometric C1-embedding in Em. N. H.

Kuiper (1920–1994) improved this result in 1955 by showing that it is true

when m ≥ n+ 1. M. L. Gromov showed that every Riemannian n-manifold

can be C1 isometrically immersed into E2n (cf. [Gromov 1986]).

It is known that a Hermitian symmetric space G/K of compact type

can be equivariantly and isometrically embedded into Em with m = dimG

[Lichnerowicz 1958]. This result has been extended to almost all symmetric

spaces of compact type [Nagano 1965; Kobayashi 1968]. In 1976 J. D. Moore

proved that every compact Riemannian homogeneous manifold admits an

equivariant isometric embedding in some Euclidean space.

2.3. Isometric immersions with the smallest possible codimension.

According to Nash’s embedding theorem, every Riemannian manifold can be

isometrically embedded in a Euclidean space of sufficiently large dimension,

it is thus natural to look for a Euclidean space of smallest possible dimension

in which a Riemannian manifold can be isometrically embedded.

D. Hilbert (1862–1943) proved in 1901 that a complete surface of con-

stant negative curvature cannot be C4-isometrically immersed in Euclidean

3-space.

A result of S. S. Chern and N. H. Kuiper (1952) states that a compact

Riemannian n-manifold with non-positive sectional curvature cannot be iso-

metrically immersed in E2n−1. A generalization by B. O’Neill (1924– ) states

that if N is a complete simply-connected Riemannian (2n−1)-manifold with

sectional curvature KN ≤ 0, then a compact Riemannian n-manifold M

with sectional curvature KM ≤ KN cannot be isometrically immersed in N

[O’Neill 1960].

T. Otsuki (1917– ) proved in 1954 that a Riemannian n-manifold of con-

stant negative sectional curvature cannot be isometrically immersed in E2n−2

even locally. He also proved that a Riemannian n-manifold cannot be iso-

metrically immersed in a Riemannian (2n− 2)-manifold if KM < KN .

Using the purely algebraic theory of “flat bilinear forms”, J. D. Moore

(1977) proved that if a compact Riemannian n-manifold M of constant cur-

vature 1 admits an isometric immersion in EN with N ≤ 3
2n, then M is

simply-connected, hence isometric to the unit n-sphere. A real analytic ver-

sion of this result was obtained by W. Henke (1976) in the special case where

n ≥ 4 and N = n+ 2.
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2.4. Isometric immersions with prescribed Gaussian or Gauss-Kro-

necker curvature. A 1915 problem of H. Weyl (1885–1955) is that whether

a Riemannian 2-manifold of positive Gaussian curvature that is diffeomor-

phic to a sphere can be realized as a smooth ovaloid in E3? Weyl himself

suggested an incomplete solution of this problem for analytic surfaces. In

fact, he solved the problem in the case of analytic metrics sufficiently close

to the metric of a sphere.

A complete solution of Weyl’s problem for analytic case was given by H.

Lewy (1904–1988) in 1938. L. Nirenberg (1925– ) proved in 1953 that given a

C∞-smooth Riemannian metric g on a topological 2-sphere S2 with Gaussian

curvature K > 0, there exists a C∞-smooth global isometric embedding of

(S2, g) into E3.

A local immersibility for Ck-smooth metric with K ≥ 0 and k ≥ 10 in

the form of a Ck−6-smooth convex surface was proved in 1985 by C. S. Lin.

In 1995 J. Hong and C. Zuily extended Nirenberg’s global result to the case

K ≥ 0. J. Hong (1997) established isometric embedding in E3 of complete

noncompact nonnegatively curved surfaces.

C. S. Lin (1986) considered the problem of isometric embedding of two-

dimensional metrics of curvature that changes sign and proved the following:

Let the curvatureK of a Riemannian 2-manifold be equal to zero at the point

P , but the gradient of the curvature ∇K be nonzero. If the metric of the

manifold belongs to the class Cs, s ≥ 6, then a neighborhood of P admits

an isometric embedding of class Cs−3 in E3. W. Greub and D. Socolescu

(1994) claimed that the condition ∇K 6= 0 in Lin’s result can be removed.

N. V. Efimov (1964) proved that a complete surface with Gaussian curva-

ture K ≤ −c2, c a positive constant, does not admit an isometric immersion

in E3. C. Baikoussis and T. Koufogiorgos (1980) showed that a complete

surface with curvature −∞ < −a2 ≤ K ≤ 0 in E3 is unbounded.

B. Smyth and F. Xavier (1987) proved that if a complete Riemannian

n-manifold M with negative Ricci curvature is immersed as a hypersurface

in a Euclidean space, then the upper bound of the Ricci curvature of M is

equal to zero if n = 3, or if n > 3 and the sectional curvatures of M do not

take all real values.

For an oriented hypersurface M in En+1, the determinant of the shape

operator of M with respect to the unit outward normal is called the Gauss-

Kronecker curvature of the hypersurface.

Given a smooth positive real function F on En+1, the problem to find

a closed convex hypersurface M in En+1 with Gauss-Kronecker curvature

K = F have been studied by various geometers. For instance, sufficient
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conditions were found under which this problem can be solved, either by

topological methods [Oliker 1984; Caffarelli-Nirenberg-Spruck 1986] or by

geometric variational approach [Oliker 1986; Tao 1991; X. J. Wang 1996].

2.5. Isometric immersions with prescribed mean curvature. Given

a closed (n − 1)-dimensional submanifold Γ in a Riemannian manifold N ,

the problem of finding an oriented n-dimensional submanifold M with a

prescribed mean curvature vector and with Γ as its boundary has been in-

vestigated by many mathematicians.

The first necessary conditions for parametric surfaces were given by E.

Heinz in 1969 for surfaces of constant mean curvature in Euclidean 3-space

with a prescribed rectifiable boundary. R. Gulliver gave in 1983 a necessary

condition on the magnitude of the mean curvature vector field for there to

exist an oriented submanifold of a Riemannian manifoldM having prescribed

mean curvature vector and a given closed submanifold as boundary.

I. J. Bakelman and B. E. Kantor (1974), A. Treibergs and W. S. Wei

(1983), A. Treibergs (1985), and K. Tso (1989) established the existence

of closed convex hypersurfaces in a Euclidean space with prescribed mean

curvature.
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3. Fundamental theorems, basic notions and results

3.1. Fundamental equations. Let f : (M,g) → (M̃ , g̃) be an isometric

immersion. Denote by ∇ and ∇̃ the metric connections ofM and M̃ , respec-

tively. For vector fields X and Y tangent to M , the tangential component

of ∇̃XY is equal to ∇XY .

Let

(3.1) h(X,Y ) = ∇̃XY −∇XY.

The h is a normal-bundle-valued symmetric (0, 2) tensor field onM , which is

called the second fundamental form of the submanifold (or of the immersion).

Formula (3.1) is known as the Gauss formula [Gauss 1827].

For a normal vector ξ at a point x ∈M , we put

(3.2) g(AξX,Y ) = g̃(h(X,Y ), ξ).

Then Aξ is a symmetric linear transformation on the tangent space TxM of

M at x, which is called the shape operator (or the Weingarten map) in the

direction of ξ. The eigenvalues of Aξ are called the principal curvatures in

the direction of ξ.

The metric connection on the normal bundle T⊥M induced from the met-

ric connection of M̃ is called the normal connection of M (or of f).

Let D denote covariant differentiation with respect to the normal connec-

tion. For a tangent vector field X and a normal vector field ξ on M , we

have

(3.3) ∇̃Xξ = −AξX +DXξ,

where −AξX is the tangential component of ∇̃Xξ. (3.3) is known as the

Weingarten formula, named after the 1861 paper of J. Weingarten (1836–

1910).

Let R, R̃ and RD denote the Riemannian curvature tensors of ∇, ∇̃ and

D, respectively. Then the integrability condition for (3.1) and (3.3) implies

(3.4)
R̃(X,Y )Z = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇̄Xh)(Y,Z)− (∇̄Y h)(X,Z),

for tangent vector fieldsX,Y,Z ofM , where ∇̄ is the covariant differentiation

with respect to the connection in TM ⊕ T⊥M . The tangential and normal

components of (3.4) yield the following equation of Gauss

(3.5)

〈R(X,Y )Z,W 〉 = 〈 R̃(X,Y )Z,W 〉+〈h(X,W ), h(Y,Z)〉−〈h(X,Z), h(Y,W )〉
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and the equation of Codazzi

(3.6) (R(X,Y )Z)⊥ = (∇̄Xh)(Y,Z) − (∇̄Y h)(X,Z),

where X,Y,Z,W are tangent vectors of M , (R(X,Y )Z)⊥ is the normal

component of R(X,Y )Z, and 〈 , 〉 is the inner product.

Similarly, for normal vector fields ξ and η, the relation

(3.7) 〈 R̃(X,Y )ξ, η 〉 =
〈
RD(X,Y )ξ, η

〉
− 〈[Aξ, Aη]X,Y 〉

holds, which is called the equation of Ricci.

Equations (3.1), (3.3), (3.5), (3.6) and (3.7) are called the fundamental

equations of the isometric immersion f :M → M̃ .

As a special case, suppose the ambient space M̃ is a Riemannian manifold

of constant sectional curvature c. Then the equations of Gauss, Codazzi and

Ricci reduce respectively to

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉

(3.8) +c{〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉},

(3.9) (∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z),

(3.10)
〈
RD(X,Y )ξ, η

〉
= 〈[Aξ , Aη]X,Y 〉 .

Formulas (3.8) and (3.9) for surfaces in E3 were given in principal, though

not explicitly, in [Gauss 1827]. The formulas can be found in a 1860 paper by

D. Codazzi (1824–1875) in his answer to a “concours” of the Paris Academy

(printed in the Mémoires présenté à l’Académie in 1880; also in [Codazzi

1868]). These formulas at that time already published by G. Mainardi (1800–

1879) in [Mainardi 1856]. The fundamental importance of these formulas was

fully recognized by O. Bonnet (1819–1892) in [Bonnet 1867]. The equations

of Gauss and Codazzi for general submanifolds were first given by A. Voss in

1880. The equation (3.10) of Ricci was first given by G. Ricci (1853–1925)

in 1888.

3.2. Fundamental theorems. The fundamental theorems of submanifolds

are the following.

Existence Theorem Let (M,g) be a simply-connected Riemannian n-manifold

and suppose there is a given m-dimensional Riemannian vector bundle ν(M)

over M with curvature tensor RD and a ν(M)-valued symmetric (0, 2) ten-

sor h on M . For a cross section ξ of ν(M), define Aξ by g(AξX,Y ) =

〈h(X,Y ), ξ〉, where 〈 , 〉 is the fiber metric of ν(M). If they satisfy (3.8), (3.9)

and (3.10), then M can be isometrically immersed in an (n+m)-dimensional



16 B.-Y. CHEN

complete simply-connected Riemannian manifold Rn+m(c) of constant cur-

vature c in such way that ν(M) is the normal bundle and h is the second

fundamental form.

Uniqueness TheoremLet f, f ′ : M → Rm(c) be two isometric immer-

sions of a Riemannian n-manifold M into a complete simply-connected Rie-

mannian m-manifold of constant curvature c with normal bundles ν and ν ′

equipped with their canonical bundle metrics, connections and second funda-

mental forms, respectively. Suppose there is an isometry φ : M → M such

that φ can be covered by a bundle map φ̄ : ν → ν ′ which preserves the bundle

metrics, the connections and the second fundamental forms. Then there is

an isometry Φ of Rm such that Φ ◦ f = f ′.

The first to give a proof of the fundamental theorems was O. Bonnet (cf.

[Bonnet 1867]).

3.3. Basic notions. Let M be an n-dimensional Riemannian submanifold

of a Riemannian manifold M̃ . A point x ∈ M is called a geodesic point if

the second fundamental form h vanishes at x. The submanifold is said to

be totally geodesic if every point of M is a geodesic point. A Riemannian

submanifold M is a totally geodesic submanifold of M̃ if and only if every

geodesic of M is a geodesic of M̃ .

Let M be a submanifold of M̃ and let e1, . . . , en be an orthonormal basis

of TxM . Then the mean curvature vector H at x is defined by

H =
1

n

n∑

j=1

h(ej , ej).

The length of H is called the mean curvature which is denoted by H. M

is called a minimal submanifold of M̃ if the mean curvature vector field

vanishes identically.

A point x ∈ M is called an umbilical point if h = g ⊗ H at x, that is,

the shape operator Aξ is proportional to the identity transformation for all

ξ ∈ T⊥
x M . The submanifold is said to be totally umbilical if every point of

the submanifold is an umbilical point.

A point x ∈ M is called an isotropic point if |h(X,X)|/|X|2 does not

depend on the nonzero vector X ∈ TxM . A submanifold M is called an

isotropic submanifold if every point ofM is an isotropic point. The subman-

ifold M is called constant isotropic if |h(X,X)|/|X|2 is also independent of

the point x ∈M . It is clear that umbilical points are isotropic points.

The index of relative nullity at x ∈M of a submanifoldM in M̃ is defined

by

µ(x) = dim∩ξ∈T⊥M kerAξ.
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If we denote by N0(x) the null space of the linear mapping ξ → Aξ, then

the orthogonal complement of N0(x) in the normal space T⊥
x M is called the

first normal space at x.

A normal vector field ξ of M in M̃ is said to be parallel in the normal

bundle if DXξ = 0 for any vector X tangent to M . A submanifoldM is said

to have parallel mean curvature vector if the mean curvature vector field of

M is a parallel normal vector field.

A submanifold M in a Riemannian manifold is called a parallel submani-

fold if its second fundamental form h is parallel, that is, ∇̄h = 0, identically.

A Riemannian submanifold M is said to have flat normal connection if

the curvature tensor RD of the normal connection D vanishes at each point

x ∈M .

For a Riemannian n-manifold M , we denote by K(π) the sectional curva-

ture of a 2-plane section π ⊂ TxM . Suppose {e1, . . . , en} is an orthonormal

basis of TxM . The Ricci curvature Ric and the scalar curvature ρ of M at

x are defined respectively by

(3.11) Ric(X,Y ) =

n∑

j=1

〈R(ej ,X)Y, ej〉 ,

(3.12) ρ =
∑

i 6=j

K(ei ∧ ej),

where K(ei ∧ ej) denotes the sectional curvature of the 2-plane section

spanned by ei and ej .

In general if L is an r-plane section in TxM and {e1, . . . , er} an orthonor-

mal basis of L ⊂ TxM , then the scalar curvature ρ(L) of L is defined by

(3.13) ρ(L) =
∑

i 6=j

K(ei ∧ ej), 1 ≤ i, j ≤ r.

3.4. A general inequality. LetM be a Riemannian n-manifold. For an in-

teger k ≥ 0, denote by S(n, k) the finite set consisting of k-tuples (n1, . . . , nk)
of integers ≥ 2 satisfying n1 < n and n1 + · · ·+nk ≤ n. Denote by S(n) the
set of (unordered) k-tuples with k ≥ 0 for a fixed positive integer n.

The cardinal number #S(n) of S(n) is equal to p(n) − 1, where p(n)

denotes the number of partition of n which increases quite rapidly with n.

For instance, for

n = 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 20, . . . , 50, . . . , 100, . . . , 200,

the cardinal number #S(n) are given by

1, 2, 4, 6, 10, 14, 21, 29, 41, . . . , 626, . . . , 204225, . . . , 190569291, . . . , 3972999029387,
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respectively. The asymptotic behavior of #S(n) is given by

#S(n) ∼ 1

4n
√
3
exp

[
π
√

2n/3
]

as n→ ∞.

For each (n1, . . . , nk) ∈ S(n) B. Y. Chen (1996f,1997d) introduced a Rie-

mannian invariant δ(n1, . . . , nk) by

(3.14) δ(n1, . . . , nk)(x) =
1

2
(ρ(x)− inf{ρ(L1) + · · ·+ ρ(Lk)}) ,

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TxM such

that dimLj = nj, j = 1, . . . , k. We put δ(∅) = ρ
2 .

For each (n1, . . . , nk) ∈ S(n), let

(3.15) a(n1, . . . , nk) =
1

2
n(n− 1)− 1

2

k∑

j=1

nj(nj − 1).

(3.16) b(n1, . . . , nk) =
n2(n+ k − 1−∑nj)

2(n+ k −∑nj)
.

When k = 0, the left hand sides of (3.15) and (3.16) are denoted respectively

by a(∅), b(∅).
For any n-dimensional submanifold M of a real space form Rm(c) and for

any k-tuple (n1, . . . , nk) ∈ S(n), regardless of dimension and codimension,

there is a sharp general inequality between the invariant δ(n1, . . . , nk) and

the squared mean curvature H2 given by [Chen 1996c,1996f]:

(3.17) δ(n1, . . . , nk) ≤ b(n1, . . . , nk)H
2 + a(n1, . . . , nk)c.

The equality case of inequality (3.17) holds at a point x ∈ M if and only

if, there exists an orthonormal basis e1, . . . , em at x, such that the shape

operators of M in Rm(c) at x take the following form:

(3.18) Ar =




Ar1 . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . Ark 0 . . . 0

0 . . . 0 µr . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . µr




, r = n+ 1, . . . ,m,

where Arj are symmetric nj × nj submatrices which satisfy

trace (Ar1) = · · · = trace (Ark) = µr.

Inequality (3.17) has many interesting applications. For instance, re-

gardless of codimension, it implies that the squared mean curvature of
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every isometric immersion of Sn(1) (respectively, of Sk(1) × En−k or of

Sk(1) × Sn−k(1)) into a Euclidean space must satisfy

(3.19)

H2 ≥ 1

(
respectively, H2 ≥

(
k

n

)2

or H2 ≥
(
k

n

)2

+

(
n− k

n

)2
)
,

with the equality holding if and only if it is a standard embedding.

The equality case of (3.17) with k = 0 holds at a point x ∈ M when and

only when x is an umbilical point. In general, there exist ample examples of

submanifolds which satisfy the equality case of (3.17) with k > 0.

Inequality (3.17) also provides the following sharp estimate of the first

nonzero eigenvalue λ1 of the Laplacian ∆ on each compact irreducible ho-

mogeneous Riemannian n-manifold M [Chen 1996f, Chen 1997d]:

(3.20) λ1 ≥ n∆̂0,

where

(3.21) ∆̂0 = max

{
δ(n1, . . . , nk)

b(n1, . . . , nk)
: (n1, . . . , nk) ∈ S(n)

}
.

Clearly, the invariant ∆̂0 is constant on a homogeneous Riemannian man-

ifold, since each δ-invariant δ(n1, . . . , nk) is constant on such a space.

The estimate of λ1 given in (3.20) improves a well-known result of T.

Nagano (1930– ) who proved in 1961 that λ1 ≥ ρ
n−1 for each compact irre-

ducible homogeneous Riemannian n-manifold M , with the equality holding

if and only if M is a Riemannian n-sphere. We remark that ρ/(n− 1) is

nothing but δ(∅)/b(∅).
Inequality (3.17) for δ(2) was first proved in [Chen 1993]. The equality

case of (3.17) for δ(2) have been investigated by D. E. Blair, J. Bolton, B.

Y. Chen, M. Dajczer, F. Defever, R. Deszcz, F. Dillen, L. A. Florit, C. S.

Houh, I. Mihai, M. Petrovic, C. Scharlach, L. Verstraelen, L. Vrancken, L.

M. Woodward, J. Yang, and others.

Further applications of (3.17) can be found in §5.3.1, §5.4.1, and §16.7.

3.5. Product immersions. Suppose thatM1, . . . ,Mk are Riemannian man-

ifolds and that

f :M1 × · · · ×Mk → EN

is an isometric immersion of the Riemannian productM1×· · ·×Mk into Eu-

clidean N -space. J. D. Moore (1971) proved that if the second fundamental

form h of f has the property that h(X,Y ) = 0, when X is tangent to Mi

and Y is tangent to Mj for i 6= j, then f is a product immersion, that is,
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there exist isometric immersions fi :Mi → Emi , 1 ≤ i ≤ k such that

f(x1, . . . , xk) = (f(x1), . . . , f(xk))

when xi ∈Mi for 1 ≤ i ≤ k.

Let M0, · · · ,Mk be Riemannian manifolds, M = M0 × · · · × Mk their

product, and πi : M → Mi the canonical projection. If ρ1, · · · , ρk : M0 →
R+ are positive-valued functions, then

〈X,Y 〉 := 〈π0∗X,π0∗Y 〉+
k∑

i=1

(ρi ◦ π0)2 〈πi∗X,πi∗Y 〉

defines a Riemannian metric on M , called a warped product metric. M

endowed with this metric is denoted by M0 ×ρ1 M1 × · · · ×ρk Mk.

A warped product immersion is defined as follows: LetM0×ρ1M1×· · ·×ρk

Mk be a warped product and let fi : Ni → Mi, i = 0, · · · , k, be isometric

immersions, and define σi := ρi ◦ f0 : N0 → R+ for i = 1, · · · , k. Then the

map

f : N0 ×σ1 N1 × · · · ×σk Nk →M0 ×ρ1 M1 × · · · ×ρk Mk

given by f(x0, · · · , xk) := (f0(x0), f1(x1), · · · , fk(xk)) is an isometric immer-

sion, which is called a warped product immersion.

S. Nölker (1996) extended Moore’s result to the following.

Let f : N0 ×σ1 N1 × · · · ×σk Nk → RN (c) be an isometric immersion

into a Riemannian manifold of constant curvature c. If h is the second

fundamental form of f and h(Xi,Xj) = 0, for all vector fields Xi and Xj,

tangent to Ni and Nj respectively, with i 6= j, then, locally, f is a warped

product immersion.

3.6. A relationship between k-Ricci tensor and shape operator. Let

M be a Riemannian n-manifold and Lk is a k-plane section of TxM
n, x ∈M.

For each unit vector X in Lk, we choose an orthonormal basis {e1, . . . , ek}
of Lk such that e1 = X. Define the Ricci curvature RicLk of Lk at X by

(3.22) RicLk(X) = K12 + · · ·+K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned

by ei, ej . We call RicLk(X) a k-Ricci curvature of M at X relative to Lk.

Clearly, the n-th Ricci curvature is nothing but the Ricci curvature in the

usual sense and second Ricci curvature coincides with the sectional curva-

ture.
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For each integer k, 2 ≤ k ≤ n, let θk denote the Riemannian invariant

defined on M by

(3.23) θk(x) =

(
1

k − 1

)
inf
Lk ,X

RicLk(X), X ∈ TxM,

where Lk runs over all k-plane sections in TxM and X runs over all unit

vectors in Lk.

The following results provide a sharp relationship between the k-Ricci

curvature and the shape operator for an arbitrary submanifold in a real

space form, regardless of codimension [Chen 1996e,1998c].

Let f : M → Rm(c) be an isometric immersion of a Riemannian n-

manifold M into a Riemannian m-manifold Rm(c) of constant sectional cur-

vature c. Then, for any integer k, 2 ≤ k ≤ n, and any point x ∈ Mn, we

have

(1) if θk(x) 6= c, then the shape operator in the direction of the mean

curvature vector satisfies

(3.24) AH >
n− 1

n
(θk(x)− c)I at x,

where I denotes the identity map of TxM
n;

Inequality (3.24) means that AH − n−1
n (θk(x)− c)I is positive-definite.

(2) if θk(x) = c, then AH ≥ 0 at x;

(3) a unit vector X ∈ TxM satisfies AHX = n−1
n (θk(x)− c)X if and only

if θk(x) = c and X lies in the relative null space at x;

(4) AH ≡ n−1
n (θk − c)I at x if and only if x is a totally geodesic point.

The estimate of the eigenvalues of AH given above is sharp.

In particular, the result implies the following:

(i) If there is an integer k, 2 ≤ k ≤ n, such that θk(x) > c (respectively,

θk(x) ≥ c) for a Riemannian n-manifold M at a point x ∈M , then, for any

isometric immersion ofM into Rm(c), every eigenvalue of the shape operator

AH is greater than n−1
n (respectively, ≥ 0), regardless of codimension.

(ii) If M is a compact hypersurface of En+1 with θk ≥ 0 (respectively,

with θk > 0) for a fixed k, 2 ≤ k ≤ n, then M is embedded as a convex

(respectively, strictly convex) hypersurface in En+1. In particular, if M has

constant scalar curvature, then M is a hypersphere of En+1; according to a

result of W. Süss (1929) which states that the only compact convex hyper-

surfaces with constant scalar curvature in Euclidean space are hyperspheres.

Statement (ii) implies

(ii)′ If M is a compact hypersurface of En+1 with nonnegative Ricci cur-

vature (respectively, with positive Ricci curvature), then M is embedded as
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a convex (respectively, strictly convex) hypersurface in En+1. In particular,

if M has constant scalar curvature, then M is a hypersphere of En+1.

3.7. Completeness of curvature surfaces. Let M be a hypersurface in

a Euclidean space, N0(x) the null space of the second fundamental form of

M at x ∈ M , k the minimal value of the dimensions of the vector spaces

N0(x) on M , and U the open subset of M on which this minimum occurs.

Then U is generated by k-dimensional totally geodesic submanifolds along

which the normal space of M is constant. Moreover, if M is complete, then

these generating submanifolds of U are also complete [Chern-Lashof 1957].

This result was generalized in 1971 by D. Ferus to submanifolds of higher

codimension in real space forms.

For an arbitrary principal curvature function λ of an isometric immersion

f : M → Rm(c) of a Riemannian n-manifold M into a Riemannian m-

manifold of constant sectional curvature c, a similar result was obtained by

T. Otsuki (1970) and H. Reckziegel (1976,1979).

Let T⊥M denote the normal bundle and T ∗
⊥M its dual bundle. A 1-form

µ ∈ T ∗
⊥M at x ∈ M is called a principal curvature of f at x if the vector

space

E(µ) = {X ∈ TxM : AξX = µ(ξ) ·X for all ξ ∈ T⊥
x M}

is at least 1-dimensional.

Suppose that there is given a continuous principal curvature function λ

of f , that is, a continuous section of the bundle T ∗
⊥M with dimE(λx) ≥ 1

for all x ∈ M , and let U be any open subset of M on which the function

x 7→ dim E(λx) is constant, say dim E(λx) = k for all x ∈ U .

H. Reckziegel (1979) obtained the following.

(i) The principal curvature form λ is C∞-differentiable on U ;

(ii) The vector spaces E(λx), x ∈ U , form a vector subbundle of E of the

tangent bundle TM |U ;
(iii) If L denotes the foliation obtained by integrating E , and i : L →

M its inclusion, then all leaves of L are k-dimensional totally umbilical

submanifolds of M and f ◦ i : L → Rm(c) is a totally umbilical immersion

into Rm(c);

(iv) If λ is covariant constant along E , that is, if

(∇Xλ)(ξ) := X · λ(ξ)− λ(DXξ) = 0

for all X ∈ Γ(E) and ξ ∈ Γ(T⊥M |U ), if furthermore γ : J → L is a geodesic

of L with δ := supJ < ∞, and if q := limt→δ γ(t) exists in M , then also

dimE(λq) = k;
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(v) If, in particular, U is the subset of M on which the function x 7→
dimE(λx) is minimal (this subset is open, because x 7→ dim E(λx) is upper-
semicontinuous), λ is covariant constant along E , and M is complete, then

all the leaves of L are also complete spaces.

If k ≥ 2, then λ is always covariant constant along E .
The leaves of L are called the curvature surfaces of f in U corresponding

to λ.

There exist submanifolds of codimension ≥ 2 without any principal curva-

ture. For instance, the Veronese isometric embedding of RP 2
(√

3
)
in S4(1)

mentioned in §5.4.5 has no principal curvature in the above sense.
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4. Rigidity and reduction theorems

4.1. Rigidity. An isometric immersion f : M → M̃ is called rigid if it is

unique up to an isometry of M̃ , that is, if f ′ :M → M̃ is another isometric

immersion, then there is an isometry φ of M̃ such that f ′ = φ ◦ f . If

f : M → M̃ is rigid, then every isometry of M can be extended to an

isometry of M̃ .

F. Minding (1806–1885) conjectured in 1839 that a standard sphere a E3

is rigid. This conjecture was proved by H. Liebmann (1874–1939) in 1899.

In 1929, S. Cohn-Vossen (1902–1936) proved that a closed convex surface

in Euclidean 3-space is rigid. A. V. Pogorelov (1919– ) proved in 1951 that

the requirement of smoothness can be removed, by proving that any closed

convex surface, that is, the boundary of a bounded convex body, is uniquely

determined up to a rigid motion by its metric.

If f : M → En+1 is a hypersurface of Euclidean (n + 1)-space, then at

each point x ∈M , the type number of f at x, denoted by t(x), is defined to

be the rank of the shape operator of f at x.

A classical result of R. Beez (1876) states that if M is an orientable Rie-

mannian n-manifold and f is an isometric immersion of M into En+1 such

that the type number of f is ≥ 3 at every point of M , then f is rigid.

R. Sacksteder (1962) obtained a number of rigidity theorems for hyper-

surfaces. Among them he proved that a complete convex hypersurface in

En+1, n ≥ 3, is rigid if its type number is at least 3 at one point.

D. Ferus (1970) proved that if M is a complete Riemannian n-manifold

with n ≥ 5 and if f : M → Sn+1 is an isometric immersion whose type

number is everywhere ≥ 2, then f is rigid.

C. Harle (1971) proved that ifM is a Riemannian n-manifold, n ≥ 4, with

constant scalar curvature ρ 6= 1
2n(n − 1)c and c 6= 0, then every isometric

immersion of M in a complete simply-connected Riemannian space form

Rn+1(c) is rigid. Y. Matsuyama (1976) showed that a hypersurface with

nonzero constant mean curvature in a real hyperbolic (n + 1)-space Hn+1

with n ≥ 3 is rigid.

Given a system {A1, . . . , Am} of symmetric endomorphisms of a vector

space V that are linearly independent. The type number of the system is

defined to be the largest integer t for which there are t vectors v1, . . . , vt
in V such that the mt vectors Ar(vi), 1 ≤ r ≤ m, 1 ≤ i ≤ t, are linearly

independent. When m = 1, the type number of the system of one single

endomorphism A is just equal to the rank of A.

A generalization of R. Beez’s result to higher codimension was obtained in

1939 by C. Allendoerfer (1911–1974). Allendoerfer’s result states as follows:
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Let f and f ′ be two isometric embeddings of a Riemannian n-manifold M

into En+m. Assume that, for a neighborhood U of a point x0 ∈M , we have

(1) the dimensions of the first normal space at x ∈ U for both f and f ′ are

equal to a constant, say k, and (2) the type number of f is at least 3 at each

point x ∈M . Then there exists an isometry φ of En+m such that f ′ = φ ◦ f
on a neighborhood of x0.

The standard n-sphere Sn of constant curvature one is rigid in En+1 when

n ≥ 2. However, it is not rigid in En+2, since one can construct an infinite-

dimensional family of compositions of isometric immersions Sn → En+1 →
En+2. J. D. Moore (1996) proved that this is essentially the only way in

which rigidity fails when n ≥ 3. Moreover, in this case he proved that

any isometric immersion of Sn into En+2 is homotopic through isometric

immersions to a standard embedding into a hyperplane.

E. Berger, R. Bryant and P. Griffiths (1983) proved the following: Con-

sider a local isometric embedding of a Riemannian n-manifold M into En+r.

Assume the embedding is “general” in the sense that the second fundamen-

tal form lies in a certain Zariski open subset of all such forms. Then, if

r ≤ n and n ≥ 8, or r ≤ 3 and n = 4, or r ≤ 4 and n = 5, 6, or r ≤ 6 and

n = 7, 8, then the embedding is unique up to a rigid motion. This rigidity

is not a consequence of algebraic properties of the Gauss equation, but de-

pends rather on the properties of the prolonged Gauss equations involving

the higher covariant derivatives of the curvature tensor.

By applying inequality (3.17), Chen (1996f) established some rigidity

theorems for isometric immersions from some homogeneous Riemannian n-

manifolds into Euclidean space En+k, regardless of codimension k, under the

assumption that the immersions have the smallest possible squared mean

curvature.

4.2. A reduction theorem. Let M be an n-dimensional submanifold of a

Riemannian m-manifold N and E a subbundle of the normal bundle T⊥M .

Then E is said to be parallel in the normal bundle if, for each section ξ of

E and each vector X tangent to M , we have DXξ ∈ E.

The reduction theorem of J. Erbacher (1971) states as follows:

Let M be an n-dimensional submanifold of a complete simply-connected

Riemannian m-manifold Rm(c) of constant curvature c. If there exists nor-

mal subbundle E of rank ℓ which is parallel in the normal bundle and the

first normal space N1
x , spanned by {h(X,Y ) : X,Y ∈ TxM}, is contained in

Ex for each x ∈ M , then M is contained in an (n + ℓ)-dimensional totally

geodesic submanifold of Rm(c).
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5. Minimal submanifolds

The theory of minimal submanifolds is closely related with the the theory

of calculus of variations. According to historians, it is not quite certain

when L. Euler (1707–1783) began his study of the calculus of variations.

C. Carathéodory (1873–1950) believed that it occurred during his period

in Basel with John Bernoulli (1667–1748). Euler considered in 1732 and

1736 problems more or less arising out the isoperimetric problems of James

Bernoulli (1654–1705); and even as early as the end of 1728 or early of 1729.

In effect, Euler in 1744, following John Bernoulli, examined the equation of

end-curves that cut a family of geodesics so that they have equal length. In

his famous 1744 book, L. Euler gave the first systematic treatment of the

calculus of variations for curves. In this book he gave a general procedure for

writing down the so-called Euler differential equation or the first necessary

condition, and to discuss the principle of least action.

The history of the theory of minimal surfaces goes back to J. L. Lagrange

(1736–1813) who studied minimal surfaces in Euclidean 3-space. In his fa-

mous memoir, “Essai d’une nouvelle méthode pour déterminer les maxima et

les minima des formules intégrales indéfinies” which appeared in 1760–1761,

Lagrange developed his algorithm for the calculus of variations; an algo-

rithm which is also applicable in higher dimensions and which leads to what

is known today as the Euler-Lagrange differential equation. Lagrange com-

municated his method in his first letter, dated August 12, 1755 when he was

only nineteen, to L. Euler who applauded his results (cf. [Euler 1755]). The

basic idea of Lagrange ushered in a new epoch in the calculus of variations.

After seeing Lagrange’s work, Euler dropped his own method, espoused that

of Lagrange, and renamed the subject the calculus of variations.

In his famous memoir Lagrange also discovered the minimal surface equa-

tion:

(1 + z2y)zxx − 2zxzyzxy + (1 + z2x)zyy = 0.

for a surface defined by z = f(x, y) for (x, y) in a domain of E2 as the

equation for a critical point of the area functional. It was J. Meusnier (1754–

1793) in 1776 who gave a geometrical interpretation of this equation as

meaning that the surface has vanishing mean curvature function.

Before Lagrange, L. Euler had found in 1744 that a catenoid is a minimal

surface; the earliest nontrivial minimal surface discovered which remained

the only known nontrivial minimal surface for over twenty years, until J.

Meusnier found in 1766 that a right helicoid is a minimal surface. It took al-

most ninety years until H. F. Scherk (1798–1885) discovered further minimal
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surfaces. Scherk found in 1834 that the surface defined by

z = log(cos y)− log(cos x)

is a minimal surface, which is known today as Scherk’s surface.

In 1842 E. Catalan (1814–1894) proved that the helicoid is the only ruled

minimal surface in E3. O. Bonnet (1819–1892) proved in 1860 that the

catenoid is the only minimal surface of revolution.

The theory of minimal surfaces experienced a rapid development through-

out of the nineteenth century. The major achievements of this period were

presented in detail in the 1903 book of L. Bianchi (1856–1928) and the 1887

book of J. G. Darboux (1847–1917). A detailed account of more recent

results was given in the 1989 book of J. C. C. Nitsche (1926–1996).

5.1. First and second variational formulas. Let f :M → M̃ be an im-

mersion of a compact n-dimensional manifold M (with or without boundary

∂M) into a Riemannian m-manifold M̃ . Let {ft} be a one-parameter family

of immersions of M → M̃ with the property that f0 = f . Assume the map

F : M × [0, 1] → M̃ defined by F (p, t) = ft(p) is differentiable (we further

assume ft = 0 on ∂M when ∂M 6= ∅). {ft} is called a variation of f .

A variation of f induces a vector field in M̃ defined along the image of M

under f , called the variational vector field. We shall denote this field by ζ

and it is constructed as follows:

Let ∂/∂t be the standard vector field in M × [0, 1]. We set ζ(p) =

F∗(
∂
∂t(p, 0)). Then ζ gives rise to cross-sections ζT and ζN in TM and T⊥M ,

respectively. If we have ζT = 0, then {ft} is called a normal variation of f .

For a given normal vector field ξ on M , exp tξ defines a normal variation

{ft} induced from ξ. We denote by Vt the volume ofM under ft with respect

to the induced metric.

The first variational formula is given by:

(5.1) V ′(ξ) :=
dVt
dt

|t=0 = −n
∫

M
〈ξ,H〉 dV0.

Hence, the immersion f is minimal if and only if dVt
dt |t=0 = 0 for all

variations of f . Thus, a minimal submanifold gives an extremal of the volume

integral, though not necessarily of the least volume.

For a minimal submanifold M of a Riemannian manifold M̃ , the second

variational formula is given by

(5.2) V ′′(ξ) :=
d2Vt
dt2

|t=0 =

∫

M
{||Dξ||2 − S̄(ξ, ξ)− ||Aξ||2}dV,
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where S̄(ξ, η) is defined by

(5.3) S̄(ξ, η) =

n∑

i=1

R̃(ξ, ei, ei, η),

e1, . . . , en is a local orthonormal frame of TM , and R̃ is the Riemann cur-

vature tensor of the ambient manifold M̃ .

Applying Stokes’ theorem to the integral of the first term of (5.2), we have

(5.4) V ′′(ξ) =

∫

M
〈J ξ, ξ〉 dV,

in which J is a self-adjoint strongly elliptic linear differential operator of the

second order acting on the space of sections of the normal bundle, given by

(5.5) J = −∆D − Â− Ŝ,

where 〈 Âξ, η〉 = trace (AξAη), 〈 Ŝξ, η〉 = S̄(ξ, η) and ∆D is the Laplacian

operator associated with the normal connection.

5.2. Jacobi operator, index, nullity and Killing nullity. The differen-

tial operator J defined by (5.5) is called the Jacobi operator of the mini-

mal immersion f : M → M̃ . The Jacobi operator has discrete eigenvalues

λ1 < λ2 < . . . ր ∞. We put

Eλ = {ξ ∈ Γ(T⊥M) : J (ξ) = λξ }.

A domain D, of a minimal submanifoldM , with compact closure is called

stable if the second variation of the induced volume of D is positive for all

variations that leave the boundary ∂D of D fixed. The minimal submanifold

f :M → M̃ is said to be stable if every such domain D of M is stable.

The number i(f) :=
∑

λ<0 dim(Eλ) is called the index of f which measures

how far the minimal submanifold is from being stable.

A vector field ξ in E0 is called a Jacobi field. The number n(f) := dimE0

is called the nullity of f .

Define a subspace P of Γ(T⊥M) by

P = {ξN : ξ is a Killing vector field on M̃},

where ξN denotes the component of ξ normal to M . Then P ⊂ E0. The

dimension of P is called the Killing nullity of f , which is denoted by nk(f).

5.3. Minimal submanifolds of Euclidean space. An immersion f :

M → Em can be viewed as a Em-valued function. In this case, Beltrami’s

formula relates H to f by

(5.6) ∆f = −nH,
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where ∆ is the Laplacian of M with respect to the induced Riemannian

metric which is defined by

∆f = −div (grad f).

Beltrami’s formula implies that each coordinate function of f is a har-

monic function. Hence, there exists no compact minimal submanifold with-

out boundary in Euclidean space.

This nonexistence result also follows from the following fact: If M is a

compact submanifold (without boundary) in a Euclidean space, there always

exits a point x ∈ M such that the shape operator of M at x is positive-

definite with respect to some unit normal vector at x. The point x can be

chosen to be the farthest point on M from any fixed point in the Euclidean

space.

It follows from the equation of Gauss and Moore’s lemma that a minimal

isometric immersion of a Riemannian product into a Euclidean space is a

product of minimal immersions [Ejiri 1979b].

E. F. Beckenbach (1906–1982) and T. Radó proved in 1933 that if the

Gaussian curvature of a surface is ≤ 0, then, for any simply-connected do-

main D on S, one has L2 ≥ 4πA, where L is the arclength of the boundary of

D and A is the area of D. In particular, for any immersed simply-connected

minimal surface M in Em with boundary C, one has the following isoperi-

metric inequality:

L2 ≥ 4πA,

where L is the arclength of C = ∂M and A the area of M .

When one drops simple connectivity, the isoperimetric inequality does not

hold for general domains on surfaces satisfying K ≤ 0. For instance, on a

circular cylinder in E3, the length of each boundary circle is 2πr and the

area is 2πrh; thus the area can be made arbitrarily large.

The isoperimetric inequality L2 ≥ 4πA holds for domainsD lying on mini-

mal surfaces in Em in the following cases [Osserman-Schiffer 1974; Osserman

1978]:

(1) the boundary of D consists of a single rectifiable Jordan curve;

(2) D is doubly-connected and is bounded by two rectifiable curves;

(3) D is bounded by a finite number of rectifiable curves lying on a sphere

centered at a point of D;

(4) D is bounded by a finite number of rectifiable Jordan curves, and

minimizes area among all surfaces with the same boundary.
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L. P. Jorge and F. Xavier (1979) proved that there are no bounded com-

plete minimal surfaces in E3 with bounded Gaussian curvature. N. Nadi-

rashvili (1996) showed that there exists an immersed complete bounded min-

imal surface in E3 with negative Gaussian curvature.

5.3.1. Obstructions to minimal isometric immersions

IfM is a minimal surface in E3 with the induced metric g, then the Gauss

curvatureK ofM is ≤ 0. Thus,
√
−Kg defines a new metric on points where

K 6= 0.

G. Ricci (1853–1925) proved in 1894 that a given metric g on a plane

domain D arises locally as the metric tensor of a minimal surface in R3 if

and only if the Gauss curvature K of (D, g) is everywhere nonpositive and

the corresponding Gauss curvature K̄ of
√
−Kg vanishes at each point where

K 6= 0.

Let g be the metric tensor of a minimal surface M in Em. If g satisfies

Ricci’s condition, then g corresponds locally to the metric tensor of a minimal

surface M̂ in E3. H. Lawson (1971) proved that, in this case, either M lies

in E3 and belongs to a specific one-parameter family of surfaces associated

to M̂ , or else M lies in E6 and belongs to a specific two-parameter family

of surfaces obtained from M̂ , none of which lie in any E5.

Lawson’s result implies that the Ricci condition is an intrinsic condition

which completely characterizes minimal surfaces lying in E3 among all min-

imal surfaces in E4 or E5; and also the set of all minimal surfaces in Em iso-

metric to a given minimal surface in E3 consists of a specific two-parameter

family of surfaces lying in E6.

For a minimal submanifold in Euclidean space in general, the equation

of Gauss implies that the Ricci tensor of a minimal submanifold M of a

Euclidean space satisfies

(5.7) Ric(X,X) = −
n∑

i=1

|h(X, ei)|2 ≤ 0,

where {e1, . . . , en} is an orthonormal local frame field onM . Thus, the Ricci

tensor of a minimal submanifold M of a Euclidean space is negative semi-

definite and, moreover, the minimal submanifold is totally geodesic if and

only if its scalar curvature vanishes identically.

For minimal hypersurfaces in En+1, consider the metric ĝ = −ρg at the

point where the scalar curvature ρ with respect to the induced metric g is

negative. J. L. Barbosa and M. do Carmo (1978) proved that the scalar

curvature ρ̂ of this new metric ĝ must satisfy the inequality ρ̂ ≤ 2(n−1)−1.
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Besides the above necessary conditions, inequality (3.17) provides many

further sharp necessary conditions for a Riemannian n-manifold to admit a

minimal isometric immersion in a Euclidean space, regardless of codimen-

sion.

In fact, inequality (3.17) of Chen implies that, for a given Riemannian

n-manifold M , if there is a k-tuple (n1, . . . , nk) ∈ S(n) such that the δ-

invariant

(5.8) δ(n1, . . . , nk) > 0 at some point x ∈M,

then M admits no isometric minimal immersion in Euclidean space for any

arbitrary codimension.

In particular, if a Riemannian manifold M satisfies δ(2) > 0 at some

point x ∈ M (or equivalently, ρ(x) > 2(infK)(x) at some point x), then

M admits no isometric minimal immersion in Euclidean space, regardless of

codimension.

There exist ample examples of Riemannian manifolds with Ric ≤ 0 which

satisfy condition (5.8).

5.3.2. Branched minimal surfaces

A branch point of a harmonic map f : M → Em is a point x ∈ M

at which the differential (f∗)x is zero. A harmonic map f : M → Em of a

Riemann surfaceM is called a branched (or generalized) minimal immersion

if it is conformal except at the branch points, and the image f(M) is called

a branched minimal surface.

Branched minimal surfaces have the following three basic properties:

(1)Convex hull property. Every branched minimal surface with bound-

ary in Em lies in the “convex hull” of its boundary curve, that is, the smallest

closed convex set containing the boundary.

(2) Minimal principle. IfM1 andM2 are two branched minimal surfaces

in E3 such that for a point x ∈M1 ∩M2, the surface M1 lies locally on one

side of M2 near x, then M1 and M2 coincide near x.

(3) Reflection principle. If the boundary curve of a branched mini-

mal surface contains a straight line L, then the surface can be analytically

continued as a branched minimal surface by reflection across L.

Based on reflection principle, H. Lewy (1904–1988) proved in 1951 the

following: Let Γ be an analytic Jordan curve in Em and f : M → Em a

branched minimal immersion with boundary Γ. Then f is analytic up to

the boundary, that is, f(M) is contained in the interior of a larger branched

minimal surface.
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S. Hildebrandt (1969) obtained the smooth version of H. Lewy’s theorem:

If f : M → Em is a branched minimal immersion with smooth boundary

curve, then f is smooth up to the boundary.

5.3.3. Plateau’s problem

The famous problem of Plateau states that given a Jordan curve Γ in

E3 (or in Em) find a surface of least area which has Γ as its boundary.

Plateau’s problem was investigated extensively in the second half of the

nineteenth century by E. Betti (1823–1892), O. Bonnet (1819–1892), G.

Darboux (1842–1917), A. Enneper (1830–1883), É. L. Mathieu (1835–1890),

H. Poincaré (1854–1912), B. Riemann (1826–1866), K. Weierstrass (1815–

1897), and others. Plateau’s problem was finally solved independently by J.

Douglas and T. Radó around 1930.

The solution to Plateau’s problem given by Douglas and Radó is a branched

minimal surface. More precisely, they proved that if Γ is a rectifiable Jor-

dan curve in Em and D = {(x, y) ∈ E2 : x2 + y2 < 1}, then there exists a

continuous map f : D̄ → Em from the closure of D into Em such that

(a) f |∂D maps homeomorphically onto Γ,

(b) f |D is a harmonic map and almost conformal, that is 〈fx, fy〉 = 0 and

|fx| = |fy| in D with |df | > 0 except at isolated branch points, and

(c) the induced area of f is the least among the family of piecewise smooth

surfaces with Γ as their boundary.

The map f given above is called the classical solution or the Douglas-Radó

solution to Plateau’s problem for Γ. The resulting surface M is a branched

minimal disk.

A branched minimal disk M bounded by a smooth curve Γ in E3 satisfies

the following formula of Gauss-Bonnet-Sasaki-Nitsche:

1 +
∑

(mα − 1) +
∑

Mβ +
1

2π

∫

M
|K|dA ≤ 1

2π
κ(Γ),

where mα − 1 denote the orders of the interior branch points, 2Mβ the

orders of the boundary branch points which must be even, K the Gaussian

curvature, and κ(Γ) the total curvature of Γ.

R. Osserman (1970) proved that every classical solution to Plateau’s prob-

lem in E3 is free of branch points in its interior. Thus, it is a regular im-

mersion.

If Γ is a curve in E3 which is real analytic or a smooth curve with total

curvature κ(Γ) < 4π, then the minimal disk of least area with Γ as its

boundary has no boundary branch points [Gulliver-Leslie 1973].

A Douglas-Radó solution is not necessarily an embedding. In fact, if Γ

is knotted in E3, then every solution must have self-intersections. However,
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immersed minimal disks of least area in E3 which can self-intersect only

in their interiors are embeddings. Also, there exists an unknotted Jordan

curve which never bounds an embedded minimal disk. Meeks and Yau (1982)

proved that if the Jordan curve lying entirely on the boundary of a convex

body, then a Douglas-Radó solution is embedded (see also [Almgren-Simon

1979; Grüter-Jost 1986]).

In general a Douglas-Radó solution to Plateau’s problem does not have

the uniqueness property. However, Radó (1930) provided a sufficient condi-

tion on the boundary curve for which the solution is always unique. More

precisely, he showed that if a Jordan curve Γ in Em admits a one-to-one

orthogonal projection onto a convex curve in a plane E2 in Em, then the

classical solution for Γ is free of branch points and can be expressed as the

graph over this plane. Furthermore, when n = 3, the solution is unique.

J. C. C. Nitsche (1989) proved that if Γ is an analytic Jordan curve in E3

with total curvature κ(Γ) ≤ 4π or a smooth curve with κ(Γ) < 4π, then Γ

bounds a unique immersed minimal disk.

A. J. Tromba (1977) proved the following: (1) Any rectifiable Jordan

curve Γ “sufficiently close” to a plane curve has a unique simply-connected

minimal surface spanning it, and (2) If F denotes the set of embeddings f of

S1 into E3 with the property that for the curve f(S1) every simply connected

minimal surface spanning f(S1) is free from branch points, then there is an

F of embeddings for which the number of minimal surfaces spanning the

image is finite.

F. Tomi (1986) showed that an analytic Jordan curve in E3 bounds only

finitely many minimal disks and Nitsche proved that a smooth Jordan curve

Γ with total curvature ≤ 6π also bounds only finitely many minimal disks.

On the other hand, P. Lévy and R. Courant constructed an example of

rectifiable Jordan curve that is smooth with the exception of one point and

it bounds uncountably many minimal discs.

F. Morgan (1978) and A. J. Tromba (1977) proved that, generically, there

are at most finitely many minimal surfaces with a given boundary. More

precisely, in the space A of all smooth Jordan curves in Em with suitable

topology, there exists an open and dense subset B such that for any Γ in B,
there exists a unique area-minimizing minimal disk.

H. Iseri (1996) studied the Plateau’s problem in which the boundary

curves may have self-intersections and provided a condition which guarantees

that the minimal surfaces they generated will not be degenerate.

The method was carried further in 1948 by C. B. Morrey (1907–1984) for

Plateau’s problem in a complete Riemannian manifold which is metrically
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well behaved at infinity, and includes the class of compact or homogeneous

Riemannian manifolds.

Morrey’s setting of the generalized Plateau’s problem is as follows: Sup-

pose a homotopically trivial rectifiable Jordan curve Γ is given in a Riemann-

ian m-manifold N . Let D denote a disk in E2. Find a mapping f : D̄ → N

such that (i) f maps ∂D homeomorphically onto Γ and (ii) the induced area

of f is the least among the class of piecewise smooth surfaces in N bounded

by Γ satisfying (i).

Morrey gave a solution under the assumption that N is homogeneously

regular, that is, there exist 0 < k < K such that, for any point y ∈ N , there

is a local coordinate system (U,Ψ) around y for which Ψ(U) = {x ∈ Em :

||x|| < 1} and the Riemannian metric g =
∑
gijdx

idxj satisfies

k
∑

v2i ≤
∑

gijvivj ≤ K
∑

v2i

for any x and v = (v1, . . . , vm) ∈ Em.

C. B. Morrey (1907–1984) proved in 1948 that if N is a homogeneously

regular Riemannian manifold and if Γ is a homotopically trivial rectifiable

Jordan curve in N , then there exists a branched minimal immersion f : D →
M with least area bounded by Γ such that f |∂D maps homeomorphically onto

Γ. If Γ is smooth, then so is the solution f up to the boundary. Furthermore,

when m = 3, the solution f is an immersion in its interior. If N and Γ are

real analytic and m = 3, then the solution f is an immersion up to the

boundary.

M. Ji and G. Y. Wang (1993) investigated disk type minimal surfaces

spanned by a given Jordan curve Γ in N and proved the following:

(1) Each smooth Jordan curve Γ in Sn bounds at least two minimal sur-

faces, sometimes infinitely many ones; and

(2) Let N be a compact oriented Riemannian manifold embedded in a Eu-

clidean m-dimensional space. Suppose that the compact manifold N admits

no minimal sphere. If there are two strictly stable minimal disks bounded

by a Jordan curve Γ, then there exists another minimal surface bounded by

Γ.

Given two Jordan curves Γ1,Γ2 in E3, does Γ = Γ1 ∪Γ2 bound a minimal

annulus? This is called the Douglas-Plateau problem which is a generaliza-

tion of the original Plateau problem [Douglas 1931b].

In many cases the answers to the Douglas-Plateau problem are negative.

One example is that of two coaxial unit circles C1 and C2. If the distance

between their centers is large, then C1∪C2 cannot bound a minimal annulus.
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When Γ1 and Γ2 are smooth convex planar Jordan curves lying in parallel

but different planes, the Douglas-Plateau problem has a satisfactory answer.

In fact, [Meeks-White 1991] proved the following: If Γ1 and Γ2 are smooth

convex planar Jordan curves lying in parallel but different planes, then ex-

actly one of the following three cases occurs:

(a) There are exactly two minimal annuli bounded by Γ = Γ1 ∪Γ2, one is

stable and one is unstable;

(b) There is a unique minimal annulus M bounded by Γ; it is almost

stable in the sense that the first eigenvalue of the Jacobi operator of M is

zero;

(c) There are no minimal annuli bounded by Γ.

If M is a minimal annulus bounded by Γ = Γ1 ∪ Γ2, then the symmetry

group of M is the same as the symmetry group of Γ.

R. Hardt and L. Simon (1979) proved that if Γ is the union of any finite

collection of disjoint smooth Jordan curves in E3, then there exists a compact

embedded minimal surface with boundary Γ which is smooth up to the

boundary.

In 1985 J. Jost proved the existence of a minimal surface of finite pre-

scribed genus and connectivity spanning a configuration of oriented Jordan

curves in a homogeneously regular manifold in the sense of Morrey, under

the condition that the area infimum over combinations of surfaces of this

topological type is strictly less than the one over combinations of surfaces of

lower genus or connectivity.

Although the same problem as Jost’s was treated in classical papers by J.

Douglas, R. Courant, and M. Shiffman in the 1930s, there was some doubt

about the validity of their proofs. Namely, in order to get the compactness

of a minimizing sequence, Douglas compactified the moduli space of surfaces

of the topological type considered, but he did not show that the boundary

of this compactification consists of surfaces of lower genus or connectivity.

Courant provided a complete proof of the case of higher connectivity but

genus zero, his considerations about the case of higher genus were pointed

out by A. J. Tromba to be too vague and not detailed enough to be accepted

as a correct proof. Shiffman assumed a priori a condition which is equivalent

to the compactness of a minimizing sequence and therefore could only prove

a weaker statement.

In 1993 F. Bernatzki treated the same Plateau-Douglas problem as Jost’s

for nonorientable surfaces, using a method similar to Jost’s.

5.3.4. Weierstrass’ representation formula
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In 1866 Weierstrass gave a general formula to express a simply-connected

minimal surface in terms of a complex analytic function f and a meromorphic

function g with certain properties. His formula allows one to construct a

great variety of minimal surfaces by choosing these functions.

Weierstrass’ representation formula states as follows: Every simply-connected

(branched) minimal surface in E3 is represented in the form:

(5.9) xk(z) = Re

{∫ z

0
φk(ζ)dζ

}
+ ck, k = 1, 2, 3,

where φ1 =
1
2f(1−g2), φ2 = 1

2

√
−1f(1+g2), φ3 = fg, and ck are constants.

Here g(z) is a meromorphic function on D (= the unit disc or the entire

complex plane), f(z) is an analytic function on D satisfying the property

that at each point z, where g(z) has a pole of order m and f(z) has a zero

of order 2m.

For instance, Enneper’s surface with coordinates

(5.10) (x1, x2, x3) = (u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2), (u, v) ∈ E2

is obtained from the Weierstrass formula by setting f = 1 and g(z) = z.

The Richmond surface, the catenoid, and helicoid are the minimal surfaces

obtained from theWeierstrass formula by setting (f, g) = (z2, z−2), (12z
−2, z),

and (−ie−z , ez), respectively.
A minimal surface described by (f, g) via Weierstrass’s representation

formula has an associated one-parameter family of minimal surfaces given

respectively by (eitf, g). Two surfaces of the family described by t0 and t1
are called adjoint by O. Bonnet (1853a,1853b) if t1 − t0 = π

2 . The catenoid

and the helicoid are a pair of adjoint minimal surfaces for a suitable choice

of constants.

All the surfaces of an associated family are locally isometric. Conversely,

H. A. Schwarz (1890) proved that if a simply-connected minimal surface S1
is isometric to a simply-connected minimal surface S, then S1 is congruent

to an associate minimal surface of S.

5.3.5. Bernstein’s problem

Let x1, . . . , xn, z be standard coordinates in En+1. Consider minimal hy-

persurfaces which can be represented by an equation of the form

z = z(x1, . . . , xn)

for all xi, that is, which have a one-to-one projection onto a hyperplane.

The answer to Bernstein’s problem is known to be affirmative in the fol-

lowing cases:

(a) n = 2 [Bernstein 1914];
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(b) n = 3 [de Giorgi 1965];

(c) n = 4 [Almgren 1966]; and

(d) n = 5, 6, 7 [Simons 1968].

And the answer is negative for n ≥ 8 [Bombieri-de Giorgi-Giusti 1969].

In general, when a bounded domain D in En and a continuous function φ

on its boundary ∂D are given, the problem of finding a minimal hypersurface

M defined by the graph of a real-valued function f on D̄, the closure of

D, with f |∂D = φ gives rise to a typical Dirichlet problem. The basic

questions are those of existence, uniqueness, and regularity of solutions.

These problems were studied by T. Radó for n = 2 and later by L. Bers, R.

Finn, H. Jenkins, J. Serrin, R. Osserman, and others.

5.3.6. Periodic minimal surfaces and minimal surfaces with many

symmetries

A minimal surface in E3 is called periodic if it is invariant under a group

G of isometries that acts freely on E3.

The Gauss-Bonnet theorem implies that if Mg is a minimal surface of

genus g in a 3-tours T 3, then its Gauss map G :Mg → S2 represents Mg as

a (g − 1) conformal branched covering of S2. Thus, a surface of genus 2 is

never periodic, and a minimal surface of genus g in a 3-torus T 3 has 4(g−1)

zeros of Gaussian curvature, counted with multiplicities (cf. [Meeks 1993]).

In 1867 H. A. Schwarz established a procedure for generating periodic

minimal surfaces in E3 using octahedral or tetrahedral symmetry. A. H.

Schoen (1970) constructed infinitely periodic minimal surfaces in E3 without

self-intersections. Among them is a surface containing no straight lines built

out of an infinite number of congruent curvilinear hexagons whose sides

form a family of curves which are almost, but not exactly, circular helices.

A. H. Schoen (1970) also described some triply periodic minimal surfaces in

E3. H. Karcher (1989) gave a geometric description of the construction of

Schoen’s surfaces, by solving a conjugate Plateau problem for a polygonal

contour. Karcher showed that the solution of an analogous Plateau problem

in S3 provides a deformation of the simpler of these minimal surfaces into

constant mean curvature surfaces. The spherical polygon can be obtained

from the Euclidean contour of the conjugate minimal surface by considering

the straight lines in E3 as integral curves of parallel vector fields and the

contour in S3 as formed by integral curves of right-invariant vector fields.

In 1978 T. Nagano and B. Smyth gave a construction procedure to con-

struct periodic minimal surfaces in Em orm-tori with symmetry correspond-

ing to a Weyl group of rank m.
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A surface is said to have finite topology if it is homeomorphic to a closed

surface with a finite number of points removed. W. H. Meeks and H. Rosen-

berg (1993) proved that a properly embedded minimal surface in a 3-torus

T 3 has finite total curvature if and only if it has finite topology. They

also proved that the plane and the helicoid are the only properly embedded

simply-connected minimal surfaces in E3 with infinite symmetry group.

D. Hoffman, F. Wei and H. Karcher (1993) constructed a complete embed-

ded singly periodic minimal surface in E3 that is asymptotic to the helicoid,

has infinite genus and whose quotient by translations has genus one. The

quotient of the helicoid by translations has genus zero and the helicoid it-

self is simply-connected. Using the techniques of N. Kapouleas, M. Traizet

(1996) constructed simply periodic minimal surfaces in Euclidean 3-space by

glueing together Scherk surfaces. F. J. López, M. Ritoré and F. Wei (1997)

found all the properly immersed minimal tori with two parallel embedded

planar ends.

W. Fischer and E. Koch (1996) classified triply periodic minimal surfaces

containing straight lines, by using their associated crystallographic groups

or, more precisely, by group-subgroup pairs with index 2. C. Frohman (1990)

proved that if F and F ′ are triply periodic minimal surfaces in E3, then there

is a homeomorphism h : E3 → E3 such that h(F ) = h(F ′).

M. Callahan, D. Hoffman and W. Meeks (1990) proved that a properly

embedded minimal surface with more than one end and with infinite sym-

metry group is either the catenoid or has an infinite number of flat ends

and is invariant under a screw motion. They also established the existence

of a family of complete embedded minimal surfaces Mk,θ invariant under a

rotation of order k+1 and a screw motion of angle 2θ about the same axis,

where k > 0 is any integer and θ is any angle with |θ| < π/(k + 1). In 1993

Callahan, Hoffman and Karcher gave an explicit construction of these sur-

faces using generalized Weierstrass representation; generalized in the sense

of using the logarithm derivative of the Gauss map rather than the Gauss

map itself as in the usual Weierstrass representation.

Further results on periodic minimal surfaces were obtained by Nagano

and Smyth (1975,1976,1978,1980), Meeks and Rosenberg (1989,1993), Meeks

(1990,1993), F. Wei (1992), J. Hass, J. T. Pitts and J. H. Rubinstein (1993),

and others.

5.3.7. Ruled minimal submanifolds

In 1835 P. Scherk tried unsuccessfully to determine all ruled minimal

surfaces in E3, that is, those minimal surfaces which contain a straight line

through each point of the surfaces. The problem was finally solved by E.
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Catalan in 1842, who proved that the helicoid is the only nonplanar ruled

minimal surface in E3.

An n-dimensional submanifold Mn of a Riemannian manifold M̃ is called

ruled if Mn is foliated by (n− 1)-dimensional totally geodesic submanifolds

of M̃ .

Ü. Lumiste (1958) showed that an n-dimensional minimal ruled subman-

ifold of Euclidean space is either

(a) generated by an (n− 1)-dimensional affine subspace P under a screw

motion in E2n+1 such that the axis cuts P orthogonally, or

(b) generated by an (n−1)-dimensional affine subspace P under a rotation

in E2n around a point in P , or

(c) a cylinder on a submanifold of the type (i) or (ii).

Analytically any ruled minimal submanifold therefore can be given by

X(s, t1, . . . , tn−1) = (t1 cos(a1s), t1 sin(a1s), . . . ,

tk cos(aks), tk sin(aks), tk+1, . . . , tn−1, bs)

where a1, . . . , ak and b are real numbers.

A submanifold with this kind of parameterization is called a generalized

helicoid.

If b 6= 0 (respectively, b = 0), then this gives a cylinder on a submanifold

of the type (i) (respectively, of the type (ii)). A ruled submanifold of the

type (ii) is a cone on a minimal ruled submanifold of some hypersphere of

the Euclidean space.

J. M. Barbosa, M. Dacjzer and L. P. Jorge (1984) proved that any min-

imal ruled submanifold is generated by an affine subspace P under a one-

parameter subgroup A of rigid motions of the Euclidean space such that

P is orthogonal to the orbits of A. Then they showed that the resulting

submanifold (at least if it is minimal) has the same parameterization. They

also extended their result to ruled submanifolds of real space forms.

Complete ruled minimal hypersurfaces of Euclidean space were classified

by D. E. Blair and J. R. Vanstone (1978); and the classification of general

ruled minimal hypersurfaces of Euclidean space were done by G. Aumann

(1981).

5.3.8. Minimal immersions of Kähler manifolds

The theory of minimal surfaces in Euclidean space profits substantially

from the study of the underlying complex structure. Thus, it is natural

to study minimal immersions f : M2n → E2n+p of Kähler manifolds into

Euclidean space.
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Kähler manifolds which are isometrically immersed into Euclidean space

as real hypersurfaces are called real Kähler hypersurfaces. Such hyper-

surfaces have been studied by T. Takahashi (1972), P. Ryan (1973), K.

Abe (1974), M. Dajczer and D. Gromoll (1985), M. Dajczer and L. Ro-

driguez (1986,1991), H. Furuhata (1994), and others. For instance, K. Abe

(1974) proved that if M2n is a complete real Kähler hypersurface of Eu-

clidean (2n + 1)-space, then M2n is a product of a Riemann surface and

Cn−1 = E2n−2, provided either

(a) M2n has nonnegative scalar curvature, or

(b) M2n has strictly negative scalar curvature, or

(c) the immersion is real analytic.

Minimal real Kähler hypersurfaces are abundant and have been classified

by M. Dajczer and D. Gromoll (1985). It turns out that none of them is

complete unlessM2n =M2×E2n−2 and f = f1× id splits, where f1 :M
2 →

E3 is a complete minimal surface.

An isometric immersion f : M2n → E2n+2 is said to be complex ruled if

M2n is a Kähler manifold and admits a continuous codimension two foliation

such that any leaf is a Kähler submanifold of M2n and whose image under

f is an affine subspace of E2n+2. f is called completely complex ruled if in

addition the leaves are all complete Euclidean E2n−2 spaces.

We say that the scalar curvature ρ of a complete manifold has sub-

quadratic growth along geodesics if its growth along any geodesic is less

than any quadratic polynomial in the parameter.

M. Dajczer and L. Rodriguez (1991) investigated minimal immersions

of complete Kähler manifolds of codimension two in Euclidean space and

obtained the following:

Let f : M2n → E2n+2, n ≥ 2, be a minimal immersion of a complete

Kähler manifold. Then one of the following occurs:

(i) f is a holomorphic;

(ii) f is completely complex ruled;

(iii) M2n =M4 × E2n−4 and f = f1 × id.

Moreover,

(a) if the scalar curvature ofM2n has subquadratic growth along geodesics,

then f is of type (i) or (iii), and

(b) if the index of relative nullity of f is ≥ 2n − 4 everywhere, then f is

of type (i) or (ii).

M. Dajczer and L. Rodriguez (1986) also investigated minimal immersions

of Kähler manifolds into Euclidean space of higher codimension and obtained

the following:
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(1) Let f :M2n → E2n+p be an isometric immersion of a Kähler manifold.

If the type number of f is ≥ 3 everywhere, then f is holomorphic.

(2) Let f : M2n → Cn+1 be a holomorphic isometric immersion of a

Kähler manifold. If g : M2n → E2n+p is a minimal isometric immersion,

then g is congruent to f in E2n+p.

(3) Let f :M2n → Cn+q be a full (or substantial) isometric immersion of

a Kähler manifold with type number ≥ 3 everywhere. If g : M2n → E2n+p

is a minimal isometric immersion, then g is congruent to f in E2n+p.

(4) Let f :M2n → R2n+p(c) be a minimal isometric immersion of a Kähler

manifold into a Riemannian manifold of constant curvature c.

(4.1) If c < 0, then n = 1.

(4.2) If c = 0, then f is circular, that is, the second fundamental form of

f satisfies h(X,JY ) = h(JX, Y ) for all X,Y ∈ TM .

(4.3) If c > 0, then the Ricci curvature RicM ≤ nc, with equality implying

that the second fundamental form is parallel.

M. Dajczer and D. Gromoll (1995) proved that if f :M2n → E2n+2, n ≥ 3

is a minimal isometric immersion of a complete Kähler manifold and if f is

irreducible and not holomorphic, then M2n contains an open dense subset

M∗ on which f is completely holomorphic ruled. Furthermore, along any

holomorphic section, f has a “Weierstrass type representation”.

Dajczer and Gromoll (1985) also proved that if an isometric minimal im-

mersion f of a simply-connected Kähler manifold into a Euclidean space is

not holomorphic, then there is a one-parameter family, called the associ-

ated family, of non-congruent isometric minimal immersions with the same

Gauss map. Moreover, the immersion can always be made the real part of a

holomorphic isometric immersion, called the holomorphic representative of

f .

H. Furuhata (1994) gave a parametrization of the set of isometric minimal

immersions of a simply-connected Kähler manifold into a Euclidean space

by a set of certain complex matrices, which is described in terms of a full

isometric holomorphic immersion of the Kähler manifold into a complex

Euclidean space. Furuhata’s result is an extension of a result of E. Calabi

(1968) on minimal surfaces.

5.4. Minimal submanifolds of spheres. A submanifoldM of a Euclidean

m-space is contained in a hypersphere as a minimal submanifold if and only

if it is a pseudo-umbilical submanifold with nonzero parallel mean curvature

vector [Yano-Chen 1971]. A submanifold of codimension two in a Euclidean

space is contained in a hypersphere as a minimal submanifold if and only if
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it is a pseudo-umbilical submanifold with nonzero constant mean curvature

[Chen 1971].

By a pseudo-umbilical submanifold we mean a submanifold of a Riemann-

ian manifold whose shape operator in the direction of the mean curvature

vector is proportional to the identity transformation.

The geometry of minimal submanifolds of a sphere Sn takes a quite differ-

ent course than in the Euclidean case, because there do exist many compact

minimal submanifolds in spheres.

5.4.1. Necessary conditions

Similar to the Euclidean case, there are some necessary conditions for a

Riemannian n-manifold to admit an isometric minimal immersion in the unit

m-sphere Sm. In fact, the equation of Gauss implies that the Ricci tensor

of a minimal submanifold in Sm satisfies Ric ≤ (n− 1)g.

Inequality (3.17) of Chen provides many further necessary conditions.

In fact, (3.17) implies that, regardless of codimension, if a Riemannian n-

manifold admits an isometric minimal immersion in a unit sphere, it must

satisfies

(5.11) δ(n1, . . . , nk) ≤
1

2
n(n− 1)− 1

2

k∑

j=1

nj(nj − 1)

for any k-tuple (n1, . . . , nk) ∈ S(n).
Since the center of gravity of a compact minimal submanifold of Sm is

exactly the center of the Sm, where Sm is viewed as an ordinary hyper-

sphere in Em+1, there exists no compact minimal submanifold in Sm which

is contained in an open hemisphere of Sm.

5.4.2. Takahashi’s theorem

A fundamental result of T. Takahashi (1933– ) obtained in 1966 states

that an isometric immersion f of a Riemannian n-manifold M in the unit

m-sphere Sm, viewed as a vector-valued function in Em+1, is minimal if and

only if ∆f = nf .

An immediate application of Takahashi’s theorem is that any compact n-

dimensional homogeneous Riemannian manifold whose linear isotropy group

is irreducible can be minimally isometrically immersed into the m-sphere of

curvature λ/n, corresponding to any nonzero eigenvalue λ, where m + 1 is

the dimension of the corresponding eigenspace.

5.4.3. Minimal isometric immersions of spheres into spheres
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M. do Carmo and N. R. Wallach (1971) proved that if an n-sphere of

constant curvature c is minimally isometrically immersed into the unit m-

sphere, but not in any great hypersphere, then, for each non-negative integer

k, we have

c =
n

k(n + k − 1)
, m ≤ (n+ 2k − 1)

(
n+ k − 2)!

k!(n− 1)!

)
− 1.

The immersion is rigid if n = 2 [E. Calabi, 1967] or k ≤ 3.

For general n, do Carmo and Wallach showed that the space of minimal

isometric immersions from Sn(1) into Sm(r) can be parametrized by a com-

pact convex body in some finite-dimensional vector space. The immersions

corresponding to interior points of this convex body all have images that are

embedded spheres or embedded real projective spaces.

A spherical space form is a compact manifold of positive constant sec-

tional curvature. D. DeTurck and W. Ziller (1992) proved that every ho-

mogeneous spherical space form admits a minimal isometric embedding into

some sphere. C. M. Escher (1996) gave a necessary condition for the exis-

tence of a minimal embedding of nonhomogeneous 3-dimensional spherical

space forms. In particular, she showed that the lens space L(5, 2) cannot be

minimally embedded into any sphere.

G. Toth (1997) provided a general method that associates to set of spher-

ical minimal immersions from Sn a spherical minimal immersion from Sn+1.

In particular, he proved the following: Let n ≥ 3 and p ≥ 4. Given full

spherical minimal immersions fi : S
n → Smi , i = 1, . . . , p, there exists a full

spherical minimal immersion f̃ : Sn+1 → SN , where N =
∑p

i=1(mi + 1).

5.4.4. Minimal surfaces in spheres

In contrast to Euclidean case, there exist many compact minimal subman-

ifolds in spheres. In fact, H. B. Lawson (1970) proved the following:

(1) any compact surface of any genus, except the real projective plane,

can be minimally immersed in S3;

(2) there exist minimal immersions of every surface of negative Euler

characteristic into S5 such that none of the images lies in a totally geodesic

S4; and

(3) there is a countable family of minimal immersions of the torus into S4

where none of the images lies in a totally geodesic S3.

Many further examples of minimal surfaces in S3 have also been con-

structed in [Karcher-Pinkall-Sterling 1988, Pitts-Rubinstein 1988].

F. J. Almgren (1933–1977) proved in 1966 that the only minimal immer-

sion from S2 into S3 is the totally geodesic one. H. I. Choi and R. Schoen
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(1985) showed that the space of embedded compact minimal surfaces of any

fixed genus in S3 is compact in the Ck topology, k ≥ 1.

E. Calabi (1968) described in principle minimal immersions of S2 into

Sn. He also proved in 1967 that, for a minimal full immersion of S2 into a

(m− 1)-sphere Sm−1(r) of radius r, m is an odd integer and the area of the

immersed S2 is an integral multiple of 2πr2, at least 1
2πr

2(m2 − 1). S. S.

Chern (1970) provided a general construction method of minimal spheres in

the unit 4-sphere using their directrix curves.

A holomorphic curve Ξ : S2 → CP 2m is called totally isotropic if any of its

local representations ξ in homogeneous coordinates satisfies (ξ, ξ) = (ξ′, ξ′) =

· · · = (ξ(m−1), ξ(m−1)) = 0, where the upper indices stand for derivatives and

( , ) denotes the canonical symmetric product in C2m+1. J. L. Barbosa

(1975) established a one-to-one correspondence between the set of all full

generalized minimal immersions f : S2 → S2m(1) and the set of all linearly

full totally isotropic curves Ξ : S2 → CP 2m, where CP 2m denotes the 2m-

dimensional complex projective space of constant holomorphic curvature 4,

with such immersions corresponding to their directrices. It is then natural

to define the degree of the minimal immersion f as the degree of its directrix

curve. By considering a very particular local expression for the directrix

curve, Barbosa obtained a set of minimal immersions such that, for any

multiple of 4π greater than or equal to 2πm(m + 1), there is one having

that value as its area. He also showed that the group SO(2m + 1,C) of

all complex matrices A satisfying det(A) = 1 and AAT = I acts on the

space of totally isotropic curves. Identifying the minimal immersions that

are isometric, he found that each orbit of this action is diffeomorphic to

SO(2m + 1,C)/SO(2m + 1,R). Barbosa also showed that the space of

minimal immersion of degree 2m consists of exactly one such orbit. X. X.

Li (1995) extended Barbosa’s result to the case of minimal immersions of

degree 2m+2. By solving the totally isotropic conditions, he concludes that

the set of full minimal immersions f : S2 → S2m(1) of degree 2m + 2 is,

modulo isometries, diffeomorphic to a disjoint union of m− 1 such orbits.

N. Ejiri (1986a) investigated equivariant minimal immersions of S2 into

S2m and proved the following:

(a) There are no full minimal immersions from the real projective 2-plane

RP 2 into S2(2n−1);

(b) The minimal cone of a full minimal immersion of S2 into S2m is stable;

(c) If f : S2 → S2m is a full minimal immersion whose minimal cone has

a parallel calibration, then m = 3 and f is holomorphic in the near Kähler

S6; and
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(d) Circle bundles of S2 of positive even Chern number (≤ 4) can be

minimally immersed in the near Kähler S6.

There do exist many minimal isometric immersions from E2 into Sm. A

description of such minimal immersions has been obtained by K. Kenmotsu

in 1976.

A. Ros (1995) proved that any 2-equator in a 3-sphere divides each embed-

ded compact minimal surface into two connected pieces, and closed regions in

the sphere with mean convex boundary containing a null-homologous great

circle are the intersection of two closed half-spheres. As an application of

these results Ros proved that the normal surface of an embedded minimal

torus is also embedded. He also showed that the Clifford torus is the only em-

bedded minimal torus in S3 that is symmetric with respect to four pairwise

orthogonal hyperplanes in E4. In his 1997 doctoral thesis at Universidad

Federal do Ceará, F. A. Amaral claimed that the Clifford torus is the only

embedded minimal torus in S3.

Y. Kitagawa (1995) proved that if f :M → S3 is an isometric embedding

of a flat torus M into S3, then the image f(M) is invariant under the an-

tipodal map of S3. He also showed that there exist an immersed flat torus

M in S3 whose image is not invariant under the antipodal map of S3. H.

Hashimoto and K. Sekigawa (1995) showed that a complete minimal sur-

face in S4 with nonnegative Gaussian curvature is either superminimal or

congruent to the Clifford torus.

H. Gauchman (1986) showed that if the second fundamental form h of

a compact minimal submanifold in a unit sphere satisfies |h(u, u)|2 ≤ 1/3

for any unit tangent vector at any point, then it is totally geodesic. P. F.

Leung (1993) proved that if an n-dimensional (n ≥ 3) compact oriented

submanifold (not necessarily minimal) in a unit sphere satisfies the same

condition as Gauchman’s, then M is homeomorphic to a sphere when n > 3

and M is homotopic to a sphere when n = 3. In 1997 C. Y. Xia extended

Leung’s result to the following:

Let M be an n-dimensional (n ≥ 4) compact simply-connected subman-

ifold isometrically immersed in a δ-pinched (δ > 1
4 ) Riemannian manifold.

If the second fundamental form of M satisfies |h(u, u)|2 < 4
9(δ − 1

4) for any

unit tangent vector at any point, then M is homeomorphic to an n-sphere.

5.4.5. Simons’ theorem

J. Simons (1968) proved that if the squared length of the second funda-

mental form, denoted by S, of a compact n-dimensional minimal submanifold
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M of the unit (n+ p)-sphere Sn+p satisfies

(5.12) S ≤ n

2− 1
p

,

then either M is totally geodesic or S = n
2− 1

p

. If the second case occurs,

then either

(a) M is a generalized Clifford torus:

Sk

(√
k

n

)
× Sn−k

(√
n− k

n

)
,

which is the standard product embedding of the product of two spheres of

radius
√
k/n and

√
(n− k)/n, respectively, or

(b) M is a Veronese surface in S4.

A. M. Li and J. M. Li (1992) showed that ifM is a compact n-dimensional

minimal submanifold of Sn+p with p ≥ 2 and S ≤ 2n/3, then M is either a

totally geodesic submanifold or a Veronese surface in S4.

The Veronese surface in S4 is defined as follows: Let (x, y, z) be the natural

coordinate system of E3 and (u1, . . . , u5) that of E
5. The mapping defined

by

(5.13)

u1 =
yz√
3
, u2 =

xz√
3
, u3 =

xy√
3
, u4 =

x2 − y2

2
√
3
, u5 =

1

6
(x2 + y2 − 2z2)

gives rise to an isometric immersion of S2(
√
3) into S4. Two points (x, y, z)

and (−x,−y,−z) of S2(
√
3) are mapped into the same point. Thus, the

mapping defines an embedding of the real projective plane RP 2 into S4.

This embedding of RP 2(
√
3) into S4 is called the Veronese surface.

5.4.6. Chern-do Carmo-Kobayashi’s theorem and related results

S. S. Chern, M. do Carmo and S. Kobayashi (1970) proved that the open

pieces of the generalized Clifford torus and the Veronese surface are the only

minimal submanifolds of Sn+p with S = n
2− 1

p

.

A large number of examples of minimal hypersurfaces in Sn+1 were con-

structed by W. Y. Hsiang (1967), using Lie group methods. For example,

he showed that, for each n ≥ 4, there exist infinitely many, mutually in-

congruent minimal embeddings of S1 × Sn−2 (respectively, S2 × Sn−3) into

Sn(1).

Hsiang also considered the problem of finding algebraic minimal cones,

obtained by setting a homogeneous polynomial equal to zero. For quadratic

polynomials, they are

q(x21 + · · ·+ x2p+1)− p(x2p+1 + · · ·+ x2p+q+2) = 0,
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(5.14) p ≥ 1, q ≥ 1, p+ q + 2 = n,

whose intersection with Sn+1 are the generalized Clifford tori. Hsiang showed

that these are in fact the only algebraic minimal cones of degree 2.

S. S. Chern conjectured that for a compact minimal hypersurface with

constant scalar curvature in Sn+1 the values S are discrete. C. K. Peng

and C. L. Terng (1983) proved that if M is a compact minimal hypersurface

of Sn+1 with constant scalar curvature, then there exists a constant ǫ(n) >

1/(12n) such that if n ≤ S ≤ n+ǫ(n), then S = n, so thatM is a generalized

Clifford torus. Furthermore, they showed that if n = 3 and S > 3, then S ≥
6; this bound is sharp, since the principal curvatures of the Cartan minimal

isoparametric hypersurface SO(3)/(Z2 ×Z2) in S
4 are given by

√
3, 0,−

√
3.

Peng and Terng’s result still holds if the 3-dimensional minimal submanifold

is assumed to be complete [Cheng 1990]. Peng and Terng conjectured that

the third value of S should be 2n, since there exist Cartan’s isoparametric

minimal hypersurfaces in Sn+1 satisfying S = 2n.

H. C. Yang and Q. M. Cheng (1997) proved that, for a compact minimal

hypersurface M with constant scalar curvature in Sn+1, if S > n > 3, then

S > n+ 1
3n. In particular, if the shape operator Aξ ofM in Sn+1 with respect

to a unit normal vector ξ satisfying trace (A3
ξ) = constant, then S ≥ n+ 2

3n.

Q. M. Wang (1988) constructed examples of compact noncongruent mini-

mal hypersurfaces in odd-dimensional spheres which have the same constant

scalar curvature. Thus, the compact minimal hypersurfaces with given con-

stant scalar curvature in a sphere are not necessary unique.

It is still an open problem to determine whether S ≥ 2n for a compact

minimal hypersurface M with constant scalar curvature in Sn+1 with S >

n > 3.

For an n-dimensional compact minimal manifold M in Sn+p with p ≥ 2,

C. Xia (1991) proved the following:

(1) If n is even and S ≤ n(3n − 2)/(5n − 4), then M is either totally

geodesic or a Veronese surface in S4;

(2) If n is odd and S ≤ n(3n− 5)/(5n − 9), then

(2-i) when n > 5, M is totally geodesic in Sn+p;

(2-ii) when n = 5, M is either totally geodesic or homeomorphic to S5

and S = 25/8 on M ; and

(2-iii) when n = 3, S is identically equal to 0 or 2; in the latter case M is

diffeomorphic to S3 or RP 3.

T. Itoh (1978) proved that if f : M → Sn+p is a minimal full isometric

immersion of a compact orientable Riemannian n-manifold into Sn+p and

the sectional curvature K of M satisfies K ≥ n/2(n + 1), then either M
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is totally geodesic or M is of constant sectional curvature n/2(n + 1) and

the immersion is given by the second standard immersion of an n-sphere of

sectional curvature n/2(n + 1).

N. Ejiri (1979a) showed that if the Ricci tensor of an n-dimensional (n ≥
4) compact minimal submanifold of Sn+p satisfies Ric ≥ (n − 2)g, then

M is totally geodesic, or n = 2m and M is Sm(
√

1/2) × Sm(
√

1/2) ⊂
Sn+1 ⊂ Sn+p embedded in a standard way, orM is a 2-dimensional complex

projective space CP 2 of constant holomorphic sectional curvature 4
3 which

is isometrically immersed in a totally geodesic S7 via Hermitian harmonic

functions of degree one.

G. Chen and X. Zou (1995) showed that if the sectional curvature is

≥ 1
2 − 1

3p , then either M is totally geodesic or the Veronese surface in S4.

5.4.7. Otsuki’s theorem and Otsuki’s equation

In 1970, T. Otsuki proved the following.

LetM be a complete minimal hypersurface of Sn+1 with two principal cur-

vatures. If their multiplicities k and n−k are ≥ 2, thenM is the generalized

Clifford torus Sk(
√
k/n)×Sn−k(

√
(n− k)/n). If one of the multiplicities is

one, then M is a hypersurface of Sn+1 in En+2 = En×E2 whose orthogonal

projection into E2 is a curve of which the support function x(t) is a solution

of the following nonlinear differential equation:

(5.15) nx(1− x2)x′′(t) + x′(t)2 + (1− x2)(nx2 − 1) = 0.

Furthermore, there are countably many compact minimal hypersurfaces

immersed but not embedded in Sn+1. Only Sn−1(
√

(n− 1)/n)×S1(
√

1/n)

is minimally embedded in Sn+1, which corresponds to the trivial solution

x(t) = 1/
√
n of Otsuki’s equation (5.15).

Applying Otsuki’s result Q. M. Cheng (1996) proved that if M is a com-

pact minimal hypersurface of Sn+1(1) with two distinct principal curvatures

such that

(5.16) n ≤ S ≤ n+
2n2(n+ 4)

3(n+ 2)2
,

then S = n and hence M is a generalized Clifford torus.

Otsuki’s result was extended by L. P. Jorge and F. Mercuri (1984) to

submanifolds of higher codimension: If f Mn → Sn+p (n ≥ 3, p > 1) is

a full minimal immersion such that the shape operator Aξ in any normal

direction ξ has at most two distinct eigenvalues, then Mn is an open subset

of a projective space over the complex, quaternion or Cayley numbers, and

f is a standard embedding with parallel second fundamental form.
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5.5. Minimal submanifolds in hyperbolic space. N. Ejiri (1979b) proved

that every minimal submanifold in a hyperbolic space is irreducible as a Rie-

mannian manifold. Chen (1972) showed that there exists no minimal surface

of constant Gaussian curvature in H3 except the totally geodesic one.

On the other hand, M. do Carmo and M. Dajczer (1983) constructed

many minimal rotation hypersurfaces in hyperbolic space, in particular, in

H3. They also proved that complete minimal rotation surfaces of H3 are

embedded.

X. Li-Jost (1994) studied Plateau type problem in hyperbolic space and

proved that if Γ is a closed Jordan curve of class C3,α in H3 with total

curvature ≤ 4π, then there exists precisely one minimal surface of disk type,

free of branch points, spanning Γ.

Let γ be a geodesic in H3, {ψt} the translation along γ, and {ϕt} the one-

parameter subgroup of isometries of H3 whose orbits are circles centered on

γ. Given any α ∈ R, λ = {λt} = {ψt ◦ ϕαt} is a one-parameter subgroup of

isometries of H3, which is called a helicoidal group of isometries with angular

pitch α. Any surface in H3 which is λ-invariant is called a helicoidal surface.

J. B. Ripoll (1989) proved the following: Let α ∈ R, |α| < 1. Then there

exists a one-parameter family Σ of complete simply-connected minimal heli-

coidal surfaces in H3 with angular pitch α which foliates H3. Furthermore,

any complete helicoidal minimal surface in H3 with angular pitch |α| < 1 is

congruent to an element of Σ.

G. de Oliveira Filho (1993) considered complete minimal immersions in

hyperbolic space and proved the following.

(1) If Mn → Hm is a complete minimal immersion and
∫
M Sn/2dV <

∞, then M is properly immersed and is diffeomorphic to the interior of a

compact manifold M with boundary. Furthermore, the immersion Mn →
Hm extends to a continuous mapM → H

n
, whereH

n
is the compactification

of Hn.

(2) If M2 → Hm is a complete minimal immersion with
∫
M SdV < ∞,

then M is conformally equivalent to a compact surface M with a finite

number of disks removed and the index of the Jacobi operator is finite.

Furthermore, the asymptotic boundary ∂∞M is a Lipschitz curve.

K. Polthier (1991) constructed complete embedded minimal surfaces inH3

having the symmetry of a regular tessellation by Coxeter orthoschemes and

proved that there exist complete minimal surfaces in H3 with the symmetry

of tessellations given by (a) all compact and noncompact Platonic polyhedra;

(b) all Coxeter orthoschemes (p, q, r) with q ∈ {3, 4, · · · , 1000} and small p

and r; (c) all “self-dual” Coxeter orthoschemes (p, q, r) with p = r.
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Recently, M. Kokubu (1997) established the Weierstrass type representa-

tion for minimal surfaces in hyperbolic space.

For stable minimal submanifolds in hyperbolic space, do Carmo and Da-

jczer (1983) proved that there exists an infinite family of simply connected

stable complete minimal surfaces in hyperbolic space H3 that are not totally

geodesic. Furthermore, let f : M → H3 be an isometric immersion of M

into H3. If D is a simply-connected domain in M with compact closure D̄

and piecewise smooth boundary ∂D, Barbosa and do Carmo (1981) proved

that if ∫

D̄

(
|K|+ 2

3

)
dV < 2π,

then D is stable. Also, Ripoll’s result implies that any complete helicoidal

minimal surface in H3 with angular pitch |α| < 1 is globally stable.

Let Mp−1 → Sn−1(∞), p = n − 1 ≤ 6, be an immersed compact sub-

manifold in the (n − 1)-sphere at infinity of Hn. M. T. Anderson (1982)

proved that there exists a complete embedded absolutely area-minimizing

submanifold asymptotic to Mp−1 at infinity. In particular, there are lots of

embedded complete minimal submanifolds in case p = n− 1 ≤ 6.

5.6. Gauss map of minimal surfaces. The Gauss map G : M → S2 of

a surface f : M → E3 is a map from the surface M to the unit sphere S2

given by G(x) = ξ(x), where ξ(x) is the unit normal of M at x. Since ξ(x)

is a unit vector in E3, one may represent it as a point in S2.

O. Bonnet (1860) proved that the Gauss map of a minimal surface in E3

is conformal. Conversely, E. B. Christoffel proved in 1867 that if the Gauss

map of a surface in E3 is conformal, then it is either a minimal surface or a

round sphere.

For a surface f : M → Em, m ≥ 3, the Gauss map G is defined to be

the map which assigns to each point x ∈ M the oriented tangent space

f∗(TxM) ⊂ Em. The Gauss map G can be considered as a map from M

into the Grassmann manifold GR(2,m − 2) = SO(m)/SO(2) × SO(m − 2)

of oriented 2-planes in Em, which in turn can be identified with the complex

quadric Qm−2(C):

(5.17) Qm−2(C) = {(z1, z2, . . . , zm) ∈ CPm−1 :
∑

z2j = 0}

in the complex projective space CPm−1 in a natural way. The Gauss map

of an n-dimensional submanifold in Em is a map from M into GR(n,m−n)

defined in a similar way.

The complex projective space admits a unique Kähler metric with con-

stant holomorphic sectional curvature 2. The induced metric on Qm−2 de-

fines a metric ĝ on the Grassmannian GR(2,m− 2) under the identification,
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satisfying

(5.18) G∗(ĝ) = −Kg

for any minimal surface M in Em, where g is the metric on M and K the

Gaussian curvature ofM . Thus, the Gauss map G is conformal for a minimal

surface f :M → Em. S. S. Chern (1965) showed that an immersion f :M →
Em is minimal if and only if the Gauss map G of f is antiholomorphic.

Since the area Â(G(M)) of the Gauss image G(M) is related with the

total curvature of M by

(5.19) Â(G(M)) = −
∫

M
KdA,

for the minimal surface, one is able to translate statements about the total

curvature of a minimal surfaces in Em into corresponding statements about

the area of holomorphic curves in CPm−1.

5.6.1. Chern-Osserman’s theorem

S. S. Chern and R. Osserman (1967) proved the following fundamental

results:

If f :M → Em is a complete orientable minimal surface with finite total

curvature
∫
M KdA = −πC <∞, then

(1) M is conformally a compact Riemann surface M̄ with finite number,

say r, of points deleted;

(2) C is an even integer and satisfies

C ≥ 2(r − χ) = 4g + 4r − 4,

where χ is the Euler characteristic and g is the genus of M (= the genus of

M̄);

(3) if f(M) does not lie in any proper affine subspace of Em, then

C ≥ 4g + r +m− 3 ≥ 4g +m− 2 ≥ m− 2;

(4) if f(M) is simply-connected and nondegenerate, that is, G(M) does

not lie in a hyperplane of CPm−1, then C ≥ 2n − 2 and this inequality is

sharp;

(5) when m = 3, C is a multiple of 4, with the minimum value 4 attained

only by Enneper’s surface and the catenoid;

(6) the Gauss map G of f extends to a map of M̄ whose Gauss image

G(M̄ ) is an algebraic curve in CPm−1 lying in Qm−2; the total curvature of

f(M) is equal to the area of G(M̄ ) in absolute value, counting multiplicity;

(7) G(M) intersects a fixed number of times, say n (counting multiplicity),

every hyperplane in CPm−1 except for those hyperplanes containing any of
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the finite number of points of G(M̄−M); the total curvature of f(M) equals

−2nπ.

(8) Enneper’s surface and the catenoid are the only two complete minimal

surfaces in E3 whose Gauss map is one-to-one.

For a complete oriented (not necessary minimal) surface M in Em, B.

White (1987) proved that if
∫
M SdA is finite, S the squared length of the

second fundamental form, then the total curvature,
∫
M KdA, is an integral

multiple of 2π, or of 4π in case m = 3.

5.6.2. Value distribution of Gauss map of complete minimal sur-

faces

The Gauss map of Scherk’s surface in Euclidean 3-space omits exactly 4

points of S2. F. Xavier (1981) proved that the Gauss map of any complete

nonflat minimal surface in E3 can omit at most 6 points of S2. F. López and

A. Ros (1987, unpublished) gave a 1-point improvement by showing that the

Gauss map of any complete nonflat minimal surface in E3 can omit at most

5 points of S2. Finally, H. Fujimoto (1988) proved that the Gauss map of

any complete nonflat minimal surface in E3 can omit at most 4 points of S2.

Clearly, Fujimoto’s estimate is sharp.

For an orientable complete minimal surface M in E3 with finite total

curvature, a theorem of A. Huber (1957) implies that M is conformally

equivalent to a compact Riemann surface punctured at a finite number of

points; thus there is a closed Riemann surface Mk of genus k and a finite

number of points Q1, . . . , Qr on Mk such that M is conformally M =Mk −
{Q1, . . . , Qr} [Osserman 1969b]. R. Osserman (1964) extended this result to

complete surfaces of finite total curvature in E3 with nonpositive Gaussian

curvature.

For a complete minimal surface f :M → E3 of finite total curvature, the

Gauss map G of f can be extended to a meromorphic function G :Mk → S2.

The total curvature of the catenoid is −4π and its Gauss map misses 2

values. R. Osserman (1961) proved that if the Gauss map of a complete

minimal surface of finite total curvature in E3 omits more than 3 values,

then it is a plane. One important consequence of this is a sharpening of

Fujimoto’s result: If the Gauss map of a complete nonplanar minimal surface

in E3 omits 4 points on S2, then every other point of S2 must be covered

infinitely often; and hence the total curvature of the minimal surface must

be infinite.

There is no known example of a complete minimal surface of finite total

curvature whose Gauss map misses 3 values. Osserman (1964) proved that

if the Gauss map of a complete minimal surface of finite total curvature in
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E3 misses 3 values, then the genus of the minimal surface is at least one

and the total curvature is less than or equal to −12π; A. Weitsman and F.

Xavier proved in 1987 that the total curvature is less than or equal to −16π;

and Y. Fang proved in 1993 that the total curvature must be at most −20π,

and the degree of the Gauss map is at least five.

In embedded case, the Gauss map a complete minimal surface in E3 with

finite total curvature cannot omit more than 2 values, since the limit normal

direction at each end belongs to a certain pair of antipodal points [Jorge-

Meeks 1983]. In particular, if the minimal surface is embedded or the min-

imal surface has parallel embedded ends, then it has at least two catenoid

type ends [Fang 1993].

In 1990 X. Mo and R. Osserman showed that if the Gauss map of a com-

plete minimal surface in E3 takes on 5 distinct values only a finite number

of times, then the minimal surface has finite total curvature. Mo and Osser-

man’s result is sharp, since there is an embedded complete minimal surface,

due to Scherk, in E3 whose Gauss map misses four points and takes any

other points infinitely many times. Mo and Osserman (1990) also proved

that the Gauss map of a nonplanar complete minimal surface in E3 of infi-

nite total curvature takes on every value infinitely often, with the possible

exception of four points.

Since the complex quadric surface Q2 is holomorphically isometric to the

product of two spheres of radii 1/
√
2, the Gauss map of a surface M in E4

is thus described by a pair of maps Gj :M → Sj, j = 1, 2.

M. Pinl (1953) showed that for a given minimal surface in E4, the maps

G1 and G2 defined above are both conformal.

W. Blaschke (1949) proved the following: Let M be a compact surface

immersed in E4 and let χ be its Euler characteristic. Denote by Aj the

algebraic area of the image of M under the map Gj , j = 1, 2. Then

(5.20) A1 +A2 = 4πχ.

S. S. Chern (1965) proved that if M is a complete minimal surface in E4

and if the image of M under each of the maps G1, G2 omits a neighborhood

of some point, then it is a plane.

X. Mo and R. Osserman (1990) proved that if each of the factors Gj of

the Gauss map of a complete nonflat minimal surface in E4 omits 4 distinct

points, then each of the Gj must cover every other point infinitely often. If

one of the Gj is constant, then the other must cover every point infinitely

often with at most 3 exceptions.

For a complete minimal surface f : M → Em with m ≥ 3, H. Fujimoto

(1990) proved that G can omit at most m(m+ 1)/2 hyperplanes in general
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position if the Gauss map G of f is nondegenerate, that is, G(M) is not

contained in any hyperplane in CPm−1. For arbitrary odd number m, the

number m(m+ 1)/2 is sharp (cf. [Fujimoto 1993, §5.5]).
M. Ru (1991) improved Fujimoto’s result to the following: If the Gauss

map G of f omits more than m(m+1)/2 hyperplanes in CPm−1, located in

general position, then the minimal surface must be a plane.

Recently, R. Osserman and M. Ru (1997) extended the above result to

the following: Let f : M → Em be a minimal surface immersed in Em.

Suppose that its Gauss map G omits more than m(m + 1)/2 hyperplanes

in CPm−1, located in general position. Then there exists a constant C,

depending on the set of omitted hyperplanes, but not on the surface, such

that |K(x)| 12d(x) ≤ C, where K(x) is the Gaussian curvature of M at x and

d(x) is the geodesic distance from x to the boundary of M .

Related to the above results are some results for minimal surfaces defined

on the complex plane C which are given by P. Hall. Consider a minimal

surface x : C → Em and the reduced representation F = (f1, . . . , fm) of its

Gauss map G : C → CPm−1. A direction v = (v1, . . . , vm) ∈ Em is called a

normal to M at p ∈M if it is orthogonal to TpM , that is,
∑m

i=1 vifi(p) = 0.

P. Hall (1989,1991) proved the following:

(1) If the normals to a minimal surface x : C → Em omits m directions in

general position, then x : C → Em has a holomorphic factor, namely, there

is an orthogonal decomposition Em = E2 ⊕ Em−2 such that the projection

of x into the first factor is holomorphic or antiholomorphic with respect to

an orthogonal almost complex structure on E2;

(2) If the normals to a minimal surface x : C → E4 omit four directions in

general position, then x is holomorphic in some orthogonal almost complex

structure. Moreover, it they omit five directions in general position, then x

is a plane.

(3) If the normals to a minimal surface x : C → Em omits n + k (k ≥ 0)

directions in general position, then the dimension d of the linear subspace

of CPm−1 generated by the image of the Gauss map and the dimension a of

the affine subspace of Em generated by the image of x satisfy

1 ≤ d ≤ m− 3

k + 1
, d+ 3 ≤ a ≤ min(n− kd, 2d + 2).

5.7. Complete minimal submanifolds in Euclidean space with finite

total curvature. Let Mk be a compact surface of genus k, Q1, · · · , Qr be

r points of Mk, and

f :M =Mk − {Q1, · · · , Qr} → En
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be a complete minimal immersion in Euclidean n-space En. If Dj ⊂ Mk

is a topological disk centered at Qj, j = 1, · · · , r, Qi 6∈ Dj, i 6= j, then

Ej = f(Dj ∩M) is an end of the immersion f , and f is called a complete

minimal immersion in En, of genus k and with r ends.

A surface is said to have finite topology if it is homeomorphic to a compact

Riemann surface from which a finite number of points have been removed. A

complete immersed minimal surface of finite total curvature in E3 has finite

topology. In fact, it is conformal to a punctured compact Riemann surface.

The helicoid is a complete embedded simply-connected minimal surface

of genus zero and with one end. Since it is periodic and nonflat, its total

curvature is infinite. This example shows that finite topology does not imply

finite total curvature.

T. Klotz and L. Sario (1965) proved that there exist complete minimal

surfaces in E3 of arbitrary genus with any finite number of ends.

The Gauss map G : M → S2 of a complete minimal surface M of finite

total curvature in E3 can be extended to Mk such that the extension G̃ :

Mk → S2 is a holomorphic function. Moreover, the total curvature of M is

−4π degG, where degG is the degree of G [Osserman 1969b].

5.7.1. Jorge-Meeks’ formula and its generalization

Let f : M → Em be a complete minimal surface with finite total curva-

ture. Assume M is conformally M = Mk − {Q1, . . . , Qr}, n ≥ 1, where Mk

is a closed Riemann surface of genus k. Each Qj corresponds to an end Ej
of M . For each end Ej of M the immersed circles Γjt = 1

t (Ej ∩ Sm−1(t))

converge smoothly to closed geodesics γj on Sm−1(1) with multiplicity Ij,

where Sm−1(t) is the sphere centered at(0, 0, 0) with radius t.

L. P. Jorge and W. H. Meeks (1983) proved that if M is a complete

minimal surface of finite total curvature in Em with r ends, then

(5.21)

∫

M
K dA = 2π

(
χ(M)−

r∑

j=1

Ij

)
≤ 2π(χ(M) − r),

where χ(M) = 2(1 − k) − r is the Euler characteristic of M . Furthermore,

if m equals 3, then

(5.22)

∫

M
K dA = 2π(χ(M) − r)

if and only if all the ends of M are embedded.
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For a branched complete minimal surface M in E3 Y. Fang (1996a) ex-

tended Jorge-Meeks’ formula to the following:

(5.23)

∫

M
K dA = 2π

(
χ(M)−

r∑

i=1

(Ji − 1) +

N∑

i=1

Kj

)
,

where Ji (1 ≤ i ≤ r) and Kj (1 ≤ j ≤ N) denote respectively the order of

the ends Ei and of the branch points qj of M .

5.7.2. Topology of complete minimal surfaces

5.7.2.1. Ends of complete minimal surfaces in E3

Let M be a complete minimal surface of finite total curvature in E3.

Suppose the ends of M are embedded. Then after a suitable rotation of the

coordinates, each end of M can be written as

5.24 z = a log(x2 + y2) + b+ r−2(cx+ dy) +O
(
r−2
)

for suitable constants a, b, c and d, where r2 = x2 + y2. An end Ej of M

is called a flat (or planar) end, if a = 0 at Ej . Otherwise, Ej is called a

catenoid end. An end Ej of a complete minimal surface M in E3 is said

to be of Enneper type if its multiplicity (or its winding number) is 3. The

complete minimal surface M is said to be of flat type if all of its ends are

flat ends.

An end of a complete minimal surface M in E3 is called annular, if it is

homeomorphic to a punctured disk.

Geometrically, all the topological ends of a complete minimal surface of

finite total curvature in E3 are conformally equivalent to a punctured disk,

and there is a well-defined limit tangent plane at each end. Outside of a

sufficiently large compact set, such an end is multisheeted graph over the

limit tangent plane, and if the end is embedded, it is asymptotic to either a

plane or a half-catenoid [Schoen 1983].

Y. Fang (1996b) proved that if all of the ends of a complete minimal

surface of finite total curvature in E3 are embedded, then either it is of flat

type (that is, no catenoid type ends) or it has at least two catenoid type

ends.

An end of a complete embedded minimal surface in E3 is called a Nitsche

end if it is fibered by embedded Jordan curves in parallel planes. Meeks

and Rosenberg (1993b) proved that if a complete embedded minimal surface

of finite topology has more than one end, then any end of infinite total

curvature is a Nitsche end.
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L. P. Jorge and W. H. Meeks (1983) have shown the following topological

uniqueness result: SupposeM1 andM2 are complete embedded minimal sur-

faces in E3 with finite total curvature. If M1 and M2 are diffeomorphic with

two topological ends, then there is an orientation preserving diffeomorphism

φ : E3 → E3 with φ(M1) =M2.

For an embedded complete minimal surface in E3 with finite total curva-

ture and with k ends, Jorge and Meeks (1983) proved the following:

(1) If M has an odd number of ends, then M disconnects E3 into two

regions diffeomorphic to the interior of a solid (g + (k − 1)/2)-holed torus

where g is the genus of the associated compact surface M̂ ; and

(2) If M has an even number of ends and M̂ has genus g, then M dis-

connects E3 into N1 diffeomorphic to the interior of a (g + k/2)-holed solid

torus and into N2 diffeomorphic to the interior of a (g + (k − 2)/2)-holed

solid torus.

5.7.3. Properly embedded complete minimal surfaces

A mapping f :M → N between two topological spaces is called proper if,

for any compact set C ⊂ N , f−1(C) is also compact. R. Osserman proved

that every complete minimal immersion f :M → E3 of finite type is proper.

Until 1982 the only known examples of properly embedded minimal sur-

faces in E3 of finite total curvature were the plane, the catenoid, and the

helicoid. The total curvature of the catenoid is −4π whose Gauss map has

degree one. The catenoid has genus zero and two embedded ends. The he-

licoid is locally isometric to the catenoid and it has infinite total curvature.

The Gauss map of the helicoid has an essential singularity.

Hoffman and Meeks (1989) proved that on a properly embedded minimal

surface in E3, at most two distinct annular ends can have infinite total cur-

vature. Thus, all other ends have finite total curvature and are therefore ge-

ometrically well behaved, that is, asymptotic to the plane or a half-catenoid.

Fang and Meeks (1991) showed that if a properly embedded minimal sur-

face in E3 with two annular ends having infinite total curvature, then these

ends lie in disjoint closed halfspaces and all other annular ends are flat ends

parallel to the boundary of the halfspaces.

P. Collin (1997) proved that if a properly embedded minimal surface in

E3 has at least two ends, then it has finite topology if and only if it has

finite total curvature.

5.7.4. Half-space theorem
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D. A. Hoffman and W. H. Meeks (1990b) showed that a nonplanar proper,

possible branched, complete minimal surface in E3 is not contained in a half-

space. This result implies that every nonplanar embedded complete minimal

surface of finite total curvature has at least two annular ends.

5.7.5. Complete minimal surfaces of genus zero

F. J. López and A. Ros (1991) showed that the plane and the catenoid are

the only embedded complete minimal surfaces of finite total curvature and

genus zero in E3. L. P. Jorge and W. H. Meeks (1983) proved that the only

complete finite total curvature minimal embedding of S2 −{Q1, · · · , Qr} →
E3 for 1 ≤ r ≤ 5 are the plane (r = 1) and the catenoid (r = 2). The cases

r = 3, 4 or 5 do not occur.

K. Yang (1994) showed that, for any finite subset Σ of S2, one can confor-

mally immerse S2 − Σ into E3 as a complete minimal surface of finite total

curvature.

R. Miyaoka and K. Sato (1994) classified all complete minimal surfaces in

E3 of genus zero and two ends.

C. J. Costa (1993) constructed several examples of complete immersed

minimal surfaces of finite topology and infinite total curvature. The first

of these examples is a one-parameter family perturbation of the catenoid.

Each of the perturbation surfaces has a catenoid-type end and an end of

infinite total curvature. The second is a one-parameter family of complete

minimal surfaces of genus one and three ends. Among the three ends, one is

flat, one is catenoid-type, and the third is an end of infinite total curvature.

This second family is a perturbation of Costa’s embedded minimal surface

of genus one and three ends. The surfaces in these two families are not

embedded.

W. Rossman (1995) classified all genus zero catenoid-ended complete min-

imal surfaces with at most 2n+ 1 ends and high symmetry.

5.7.6. Complete minimal surfaces with one or two ends

Planes are the only complete minimal surface of finite total curvature

in E3 with one end. R. Schoen (1983) proved that catenoids are the only

complete embedded minimal surfaces in E3 of finite total curvatures with

two ends. C. Costa (1989) classified complete minimal surfaces of finite

total curvature in E3 with genus one and three ends. Hoffman and Meeks

(1989,1990a) classified complete minimal surfaces of finite total curvature in

E3 with three ends and a symmetry group of order at least 4(k + 1).
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K. Sato (1996) showed the existence of complete immersed minimal sur-

faces of higher genus in E3 with finite total curvature and one Enneper-type

end.

D. Hoffman, F. Wei and H. Karcher (1993) constructed a properly em-

bedded complete minimal surface of infinite total curvature with genus one

and one end that is asymptotic to the end of a helicoid; a genus one helicoid.

The surface contains two lines, one vertical and corresponding to the axis

of the helicoid, the other horizontal crossing the axial line. Rotation about

these lines generates the full isometry group, which is isomorphic to Z2⊕Z2.

5.7.7. Complete minimal surfaces of higher genus

R. Miyaoka and K. Sato (1994) constructed examples of complete minimal

surfaces in E3 of genus k with r ends for k = 0, r = 3 and for k = 1, r ≥ 3,

via the method of generating higher genus algebraic curves through taking

branched coverings of the Riemann sphere. Using Weierstrass p functions

on M1 − {4 points }, they have constructed two series of examples. As a

consequence Miyaoka and Sato have shown that there exist complete minimal

surfaces of finite total curvature in E3, missed 2 values, for Mk−{r points }
with (1) r ≥ 2 when k = 0, (2) r ≥ 3 when k = 1, or (3) r ≥ 4 when k ≥ 2.

For every positive integer k, D. Hoffman and W. Meeks constructed in

1990 an infinite family of examples of properly embedded minimal surfaces

of genus k with three ends in E3. The total curvature is −4π(k + 2). E. C.

Thayer (1995) discovered a family of complete minimal surfaces with arbi-

trary even genus. Recently, For every k ≥ 2, Hoffman and Meeks discovered

a one parameter family, Mk,x, x ≥ 1, of embedded minimal surfaces of genus

k − 1 and finite total curvature. The surfaces Mk,x, x > 1 have all three

ends of catenoid type and a symmetry group generated by k vertical planes

of reflectional symmetry.

In 1995 W. Rossman constructed examples of complete minimal surfaces

in E3 of finite total curvature with catenoid-type ends, of genus zero; and

also of higher genus. Rossman’s examples include minimal surfaces with

symmetry groupDn×Z2 (dihedral symmetry) and Platonic symmetry, where

Dn is the dihedral group.

For a closed Riemann surface Mk of genus k, a positive integer r is called

a puncture number for Mk if Mk can be conformally immersed in E3 as a

complete finite total curvature minimal surface with exactly r punctures.

The set of all puncture numbers for Mk is denoted by P (Mk). K. Yang

(1994) proved that given any Mk its puncture set P (Mk) always contains

the set {r ∈ Z : r ≥ 4k}.
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J. Pérez and A. Ros (1996) showed that the moduli space of nondegener-

ate, properly embedded minimal surfaces in E3 with finite total curvature is

a real analytic (r+3)-dimensional manifold if the fixed number of ends is r.

5.7.8. Minimal annuli of finite total curvature

The catenoid is topologically an annulus, that is, it is homeomorphic to a

punctured disk. It follows from Jorge-Meeks’ formula that the catenoid is the

only embedded complete minimal annulus in E3 with finite total curvature.

P. Collin (1997) proved that a properly embedded complete minimal an-

nulus in E3 with at least two ends has finite total curvature.

5.7.9. Riemann’s minimal surfaces

The catenoid is a rotational surface, hence is foliated by circles in paral-

lel planes. In 1867 B. Riemann found a one-parameter family of complete

embedded singly-periodic minimal surfaces foliated by circles and lines in

parallel planes. Each minimal annulus in this one-parameter family is con-

tained in a slab and foliated by circles, and its boundary is a pair of parallel

straight lines. Rotating repeatly about these boundary straight lines gives

a one-parameter family of singly periodic minimal surfaces. These surfaces

known today as Riemann’s minimal surfaces. Riemann’s minimal surfaces

were characterized by Riemann (1892) as the only minimal surfaces fibered

by circles in parallel planes besides the catenoid.

A. Enneper (1869) proved that a minimal surface fibered by circular arcs

was an open part of a Riemann’s minimal surface or an open part of the

catenoid.

M. Shiffman (1956) proved that a minimal annulus spanning two circles

in parallel planes was foliated by circles in parallel planes and hence a part

of Riemann’s examples or a part of the catenoid. Hoffman, Karcher and

Rosenberg (1991) showed that an embedded minimal annulus with boundary

of two parallel lines on parallel planes and lying between the planes extended

by Schwarz reflection to a Riemann’s minimal surface.

É. Toubiana (1992) characterized Riemann’s minimal surfaces as the only

properly embedded minimal annuli between a pair of parallel planes bounded

by any pair of lines. He also generalized Riemann’s examples to produce

a countable family of immersed minimal annuli between a pair of parallel

planes bounded by a pair of parallel lines. These surfaces are then extended,

via the reflection principle, to produce complete immersed minimal surfaces.

In 1993 P. Romon proved that a properly embedded annulus with one flat

end, lying between two parallel planes and bounded by two parallel lines in

the planes, is a part of a Riemann example.
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J. Pérez (1995) proved that a properly embedded minimal torus in E3/T

(T is the group generated by a nontrivial translation in E3) with two planar

type ends is a Riemann’s minimal surface provided that it is symmetric with

respect to a plane. A. Douady and R. Douady (1995) showed that Riemann

examples are the only singly-periodic with translational symmetries minimal

surfaces of genus one with planar ends and a symmetry with respect to a

plane. In 1994 Y. Fang proved that a properly embedded minimal annulus

in a slab with boundary consisting of two circles or planes must be part

of a Riemann’s minimal surface. Y. Fang and F. Wei (1998) showed that

a properly embedded minimal annulus with a planar end and boundary

consisting of circles or lines in parallel planes is a part of a Riemann example.

F. J. López, M. Ritoré and F. Wei (1997) characterized Riemann’s minimal

surfaces as the only properly embedded minimal tori with two planar ends

in E3/T , where T is the group generated by a nontrivial translation in E3.

Using numerical methods, F. Wei (1995) constructed a properly embedded

minimal surface of genus two and two planar ends in E3/T by adding handles

to the Riemann examples.

5.7.10. Examples and classification of complete minimal surfaces

of finite total curvature in E3

Clearly, planes in E3 are embedded complete minimal surfaces with zero

total curvature. There are only two complete minimal surfaces in E3 whose

total curvature is −4π. These are the catenoid and the Enneper surface; the

only embedded one is the catenoid. Also, it is known that the only complete

embedded minimal surfaces with total curvature ≥ −8π in E3 are the plane

and the catenoid with total curvature 0 and −4π respectively.

In 1981 W. H. Meeks showed that if M is diffeomorphic to a real pro-

jective plane minus two points, then it does not admit a complete minimal

immersion into E3 with total curvature −6π. A complete Möbius strip in E3

with total curvature −6π was constructed by Meeks (1975). M. Barbosa and

A. G. Colares (1986) showed that, up to rigid motions of E3, there exists a

unique complete minimal immersion of the Möbius strip into E3 with total

curvature −6π.

Osserman, Jorge and Meeks proved that if M is a complete minimal sur-

face in E3 with total curvature greater than −8π, then, up to a projective

transformation of E3, M is the plane, the catenoid, the Enneper surface, or

Meeks’ minimal Möbius strip.

By adjoining a handle on Enneper’s surface, C. C. Chen and F. Gackstat-

ter (1982) constructed a complete minimal surface of total curvature −8π in

E3; which was characterized by D. Bloss (1989) and F. J. López (1992) as
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the only complete minimal once punctured torus in E3 with total curvature

−8π.

It follows from a formula of L. Jorge and W. Meeks (1983) that when the

total curvature of M is −8π, the genus of the underlying Riemann surface

has to be either 0 or 1. Moreover, if the genus is 1, the number of punctures

(or ends) has to be 1; and if the genus is 0, the number of punctures can

be 1, 2 or 3. The genus zero surfaces were classified rather easily using the

Weierstrass representation.

In 1992 F. J. López classified orientable complete minimal surfaces in E3

with total curvature −8π. In 1993 he gave an example of a once-punctured

minimal Klein bottle with total curvature −8π, and proved in 1996 that this

minimal Klein bottle is the only complete nonorientable minimal surface in

E3 with total curvature −8π.

M. E. G. G. Oliveira (1984) constructed an example of a nonorientable

complete minimal surface of genus one with two ends and total curvature

−10π in E3. S. P. Zhang (1989) observed that there is only one minimal

two-punctured projective plane in E3 of total curvature −10π and such that

the branch number of the Gauss map at the ends is greater than or equal to

three.

C. C. Chen and F. Gackstatter (1982) constructed a complete minimal

surface of genus two with total curvature −12π and one end in E3. A

complete minimal surface of genus one with three ends was discovered by C.

J. Costa in 1984 which satisfies the following two properties: (a) the total

curvature is −12π, and (b) the ends are embedded. Hoffman and Meeks

(1985) showed that Costa’s minimal surface is properly embedded. They

also showed that it contains two straight lines meeting at right angles, it is

composed of eight congruent pieces in different octants, each of which is a

function graph, and the entire surface is invariant under a dihedral group of

3-space rigid motions.

C. J. Costa (1991) classified orientable complete minimal surfaces in E3

with total curvature−12π, assuming that they are embedded. F. J. López, F.

Martin and D. Rodriguez (1997) proved that the genus two Chen-Gackstatter

example is the unique complete orientable minimal surface of genus two in

E3 with total curvature −12π and eight symmetries.

N. Do Espirito-Santo (1994) showed the existence of a complete minimal

surface of genus 3 with total curvature −16π and one Enneper-type end.

F. F. Abi-Khuzam (1995) constructed a one-parameter family of complete

minimal surfaces of genus one with total curvature −16π and having four

embedded planar ends.
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Costa also constructed an example of complete minimal surface of genus

one with two ends and total curvature −20π in E3.

Complete Möbius strips in E3 with total curvature −2πn, for any odd in-

teger n ≥ 5, were constructed by Oliveira in 1984. In particular, this implies

that there exist complete Möbius strips with total curvature −10π,−14π or

−18π in E3. In 1993 de Oliveira and Toubiana constructed, for any inte-

ger n ≥ 3, an example of complete minimal Klein bottles in E3 with total

curvature −2π(2n+ 3).

In 1989 H. Karcher obtained a generalization of Chen-Gackstatter surface

by increasing the genus and the order of the symmetry group. For each

k ≥ 1 he proved that there exists a complete orientable minimal surface of

genus k with one end, total curvature −4π(2k − 2), and 4k + 4 symmetries.

R. Kusner (1987) constructed a family of immersed projective planes with

k (k ≥ 3) embedded flat ends and total curvature −4π(2k − 1). In 1996 A.

Ros proved that if M is an embedded complete minimal surface of genus

k > 0 with finite total curvature, then the symmetry group of M has at

most 4(k + 1) elements, and it has 4k + 4 elements if and only if M is the

Hoffman-Meeks surface Mk (1990).

F. Martin (1995,1997) discovered a family of complete non-orientable

highly symmetrical complete minimal surfaces with arbitrary topology and

one end and provided characterizations of such minimal surfaces. F. Martin

and D. Rodriguez (1997) classified complete minimal surfaces of total curva-

ture −4π(3k−3) with 4k symmetries and one end in E3, for k not a multiple

of 3.

Jorge and Meeks constructed in 1983 complete minimal surfaces of genus

zero in E3 with total curvature −4πr with r embedded ends. In 1993 É.

Toubiana proved that there exist nonorientable minimal surfaces of genus k

with two ends and total curvature −10(k + 1)π.

The new examples of complete embedded minimal surfaces of finite to-

tal curvature were discovered by using the global version of the Enneper-

Riemann-Weierstrass representation, which is essentially due to Osserman;

The method involves knowledge of the compact Riemann surface structure

of the minimal surface as well as its Gauss map and other geometric-analytic

data.

5.7.11. Maximum principle at infinity

The maximum principle at infinity for minimal surfaces in E3 was first

studied by R. Langevin and H. Rosenberg (1988), who proved that the dis-

tance between two disjoint embedded complete minimal surfaces in E3 with

finite total curvature and compact boundaries must be greater than zero,
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that is, the surfaces cannot touch each other at infinity. W. Meeks and

Rosenberg (1990) extended their result to the following:

Let M1 and M2 be disjoint, properly immersed minimal surfaces with

nonempty compact boundaries in a complete flat 3-manifold. Then

(5.25) dist(M1,M2) = min(dist(∂M1,M2),dist(M1, ∂M2)).

M. Soret (1995) studied the maximum principle at infinity for minimal

surfaces with noncompact boundaries and proved that if M1 and M2 are

disjoint properly embedded minimal surfaces with bounded curvature in a

complete flat 3-manifold and one of the surfaces is of parabolic type, then

(5.26) dist(M1,M2) = min(dist(∂M1,M2),dist(M1, ∂M2)).

Consequently, if M1 and M2 are disjoint, properly embedded stable minimal

surfaces with noncompact boundaries in a complete flat 3-manifold, then

(5.27) dist(M1,M2) = min(dist(∂M1,M2),dist(M1, ∂M2)).

In particular, if the boundary of one surface, say M1, is empty then

(5.28) dist(M1,M2) = dist(M1, ∂M2).

5.7.12. Further results on complete minimal surfaces in E3 with

finite total curvature

H. I. Choi, W. H. Meeks, and B. White (1990) proved that any intrinsic

local symmetry of the minimal surface in E3 with finite total curvature

can be extended to a rigid motion of E3. Y. Xu (1995) observed that this

property yields the identity of the intrinsic and exterior symmetry groups

for the minimal surfaces with embedded catenoid ends. As a consequence

he proved that, for any closed subgroup G ⊂ SO(3) different from SO(2),

there exists a genus zero complete minimal surface whose symmetry group

is G. The proof relies on the fact that if G is the symmetry group of the

minimal surface, then there exists an appropriate Möbius transformation γ

which is conjugate to G by the Weierstrass representation. To construct

the corresponding examples, Xu described all γ-invariant polynomials which

generate the Gauss map of symmetric minimal surfaces.

5.7.13. Complete minimal surfaces in Em, m ≥ 4 with finite total

curvature

A complete minimal surface in Em is said to have quadratic area growth

if

(5.29) Area (M ∩B(R)) ≤ C0R
2
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for all R > 0, where C0 is a constant and B(R) is a ball of radius R in

Em centered at 0. According to the fundamental result of Chern-Osserman

(1967) if a complete minimal surface in Em has finite total curvature, it is of

quadratic area growth and has finite topological type. Conversely, Q. Chen

(1997) proved that if a complete minimal surface in Em has finite topological

type and is of quadratic area growth, then it has finite total curvature; the

result is false if one drops the assumption of finite topological type, since the

surface sin z = sinhx sinh y, a Scherk surface in E3, has infinite genus and

quadratic area growth.

For a complete oriented minimal surface M of finite type in E4, S. Nay-

atani (1990a) showed that if M has finite total curvature and degenerate

Gauss map, then M is of finite total curvature or a holomorphic curve with

respect to some orthogonal almost complex structure on E4.

For complete minimal surfaces of Em with m ≥ 4, C. C. Chen (1979)

proved that if a complete minimal surface in Em has total curvature −2π,

then it lies in an affine 4-space E4 ⊂ Em, and with respect to a suitable

complex structure on E4,M is a holomorphic curve in C2. C. C. Chen (1980)

also proved that if a complete minimal surface in Em has total curvature

−4π, it must be either simply-connected or doubly-connected. In the former

case, it lies in some affine 6-space E6 ⊂ Em, and in the latter case, in some

E5 ⊂ Em.

D. Hoffman and R. Osserman (1980) gave complete description of com-

plete minimal surfaces in Euclidean space with total curvature −4π. In

particular, they showed that the dimensions 5 and 6 given by Chen are

sharp. It turns out that doubly-connected surfaces are all a kind of “skew

catenoid” generated by a one-parameter family of ellipses.

The Chern-Osserman theorem implies that the total curvature of a com-

plete orientable minimal surface M in Em is a negative integer multiple of

4π. Osserman showed that if the total curvature is −4π, then M must be

either Enneper’s surface or the catenoid.

5.7.14. Complete minimal submanifolds with finite total scalar

curvature

Let f :M → Em be a minimally immersed submanifold of Em. The total

scalar curvature of f is defined to be
∫
M Sn/2dV , where S is the squared

length of the second fundamental form. This integral is called total scalar

curvature because, for minimal submanifolds in a Euclidean space, the scalar

curvature is equal to −S.
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M. Anderson (1984, 1985) studied n-dimensional complete minimal sub-

manifolds of dimension n ≥ 2 with finite total scalar curvature in a Euclidean

space and proved the following:

(1) A complete minimal submanifold M of Em with finite total scalar

curvature is conformally diffeomorphic to a compact Riemannian manifold

minus a finite number of points, thus M has only finitely many ends. More-

over, each of finite topological type;

(2) Let M be an n-dimensional complete minimal submanifold of Em. If

n ≥ 3 and M has finite total scalar curvature and one end, then M is an

n-plane;

(3) If a complete minimal submanifold M of Em has finite total scalar

curvature, then each end of M has a unique n-plane as its tangent cone at

infinity;

(4) If a complete minimal submanifold M of Em has finite total scalar

curvature, then M is properly immersed, that is, the inverse image of any

compact set is compact.

H. Moore (1996) also investigated complete minimal submanifolds of di-

mension ≥ 3 with finite total scalar curvature. She obtained the following

results:

(5) Let M be a complete minimal hypersurface of En+1 with n ≥ 3. If M

has finite total scalar curvature, then M lies between two parallel n-planes

in En+1;

(6) LetM be an n-dimensional complete minimal submanifold of Em with

n ≥ 3. If M has finite total scalar curvature and it has two ends, then either

M is the union of two n-planes or M is connected and embedded;

(7) Let M be an n-dimensional complete minimal submanifold of Em

with n ≥ 3 and n > m/2. If M has finite total scalar curvature and it has

two ends, then M lies between two parallel n-planes in some affine (n+ 1)-

subspace En+1 ⊂ Em; and

(8) Let M be an n-dimensional complete nonplanar minimal submanifold

of Em with n ≥ 3 and n > m/2. If M has finite total scalar curvature and

it has two ends, then M is a catenoid.

J. Tysk (1989) proved that a complete minimal hypersurface M in En+1

has finite index if and only if M has finite total scalar curvature for n =

3, 4, 5, 6, provided that the volume growth of M is bounded by a constant

times rn, where r is the Euclidean distance function. Tysk also showed that

the result is not valid in E9 and in higher-dimensional Euclidean spaces.



RIEMANNIAN SUBMANIFOLDS 67

5.8. Complete minimal surfaces in E3 lying between two parallel

planes. In 1980 Jorge and Xavier exhibited a nontrivial example of a com-

plete minimal surface which lies between two parallel planes in E3. Rosen-

berg and Toubiana constructed in 1987 a complete minimal surface of the

topological type of a cylinder in E3 which lies between two parallel planes;

this surface intersects every parallel plane transversally. Hoffman and Meeks

(1990b) proved that there does not exist a properly immersed minimal sur-

face in E3 that is contained between two parallel planes; this follows from

their result that a nonplanar proper minimal surface M in E3 is not con-

tained in a half-space. In 1992 F. F. de Brito constructed a large family of

complete minimal surfaces which lie between two parallel planes in E3.

For each positive integer k and each integer N , 1 ≤ N ≤ 4, C. J. Costa

and P. A. Q. Simoes constructed in 1996 an example of complete minimal

surface of genus k and N ends in a slab of E3. More precisely, they showed

that there is a complete minimal immersion fk,N :Mk,N → E3 with infinite

total curvature such that:

(a) Mk,1 and Mk,2 are respectively a compact Riemann surface of genus

k minus one disk and two disks,

(b) Mk,j+2, j = 1, 2 are respectively Mk,j punctured at two points, and

(c) fk,N(Mk,N ) lies between two parallel planes of E3 and fk,3, fk,4 have

two embedded planar ends.

5.9. The geometry of Gauss image. For a minimal surface M in Em

let M̂ = G(M) denote the Gauss image of M under its Gauss map. At all

nonsingular points of M̂ , we have a well-defined Gaussian curvature K̂. It

follows from the normalization of the metric on CPm−1 that K̂ ≤ 2.

D. Hoffman and R. Osserman (1980) proved that the Gaussian curvature

K̂ of the Gauss image of a minimal surfaceM in Em is equal to 2 everywhere

if and only if M lies in some affine E4 ⊂ Em and is a holomorphic curve in

C2 with respect to a suitable orthogonal almost complex structure on E4.

Moreover, the Gaussian curvature of the Gauss image of a minimal surface

M in Em is equal to 1 everywhere if and only if M is locally isometric to a

minimal surface in E3.

B. Y. Chen and S. Yamaguchi (1983) proved that a submanifold M of a

Euclidean m-space has totally geodesic Gauss image if and only if the second

fundamental form h of M in Em satisfies

(5.30) (∇̄Xh)(Y,Z) = h(∇G
XY,Z)− h(∇XY,Z)

for vector fields X,Y,Z tangent to M , where ∇G denotes the Levi-Civita

connection of the Gauss image with respect to the metric induced from the
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Gauss map G. By applying this necessary and sufficient condition, Chen

and Yamaguchi (1983) proved that the Gauss image of a minimal surface in

Em is totally geodesic in GR(2,m−2) if and only if either M lies in an affine

E3 ⊂ Em or M is a complex curve lying fully in C2, where C2 is an affine

E4 ⊂ Em endowed with some orthogonal almost complex structure. If the

second case occurs, the Gaussian curvature K̂ of the Gauss image is 2.

Chen and Yamaguchi (1983) also completely classified surfaces in Eu-

clidean space with totally geodesic Gauss image:

Let M be a surface in Em whose Gauss image is regular. If the Gauss

image G(M) of M is totally geodesic in GR(2,m− 2), then M is one of the

following surfaces:

(1) a surface in an affine E3 ⊂ Em;

(2) a surface in Em with parallel second fundamental form, that is, a

parallel surface;

(3) a surface in an affine 4-space E4 ⊂ Em which is locally the Riemannian

product of two plane curves of nonzero curvature;

(4) a complex curve lying fully in C2, where C2 denotes an affine E4 ⊂ Em

endowed with some orthogonal almost complex structure.

Conversely, surfaces of type (1), (2), (3) and (4) have totally geodesic

Gauss image.

Yu. A. Nikolaevskii (1993) extended Chen-Yamaguchi’s result to the fol-

lowing (see, also [Chen-Yamaguchi 1984]):

Let M be an n-dimensional submanifold in Em whose Gauss image is

regular. Then the Gauss image G(M) of M is totally geodesic in GR(n,m−
n) if and only if M is the product of submanifolds, each of the factors is

either

(a) a real hypersurface, or

(b) a submanifold with parallel second fundamental form, or

(c) a complex hypersurface.

Chen and Yamaguchi (1984) proved that a submanifoldM of Em is locally

the product of real hypersurfaces if and only if the Gauss image is totally

geodesic and the normal connection is flat.

5.10. Stability and index of minimal submanifolds. .

5.10.1. Stability and λ1
If f : M → Em is a minimal submanifold and ξ is a normal vector field

on M , then f + tξ gives rise to a normal variation F : (−ǫ, ǫ) ×M → Em

for some sufficiently small ǫ > 0.



RIEMANNIAN SUBMANIFOLDS 69

The second variational formula for the volume functional is given by

(5.31)
d2Vt
dt2

|t=0 =

∫

M

(
||Dξ||2 − ||Aξ ||2

)
dV0.

In particular, if M is a minimal surface in E3, (5.25) reduces to

(5.32)
d2Vt
dt2

|t=0 =

∫

M

(
|∇φ|2 + 2Kφ2

)
dA,

where ξ = φe3 and e3 is a unit normal vector field of M . A minimal surface

M in E3 is called stable if the second variation is positive for all variations

on any bounded domain D in M .

Therefore, a minimal surface M in E3 is stable if and only if

(5.33)

∫

D

(
|∇φ|2 + 2Kφ2

)
dA > 0

for any smooth function φ with compact support on M .

It is convenient to rewrite (5.33) using a new metric ĝ = −Kg, where g is

the metric of M . Then we have

(5.34) dÂ = −KdA
and

(5.35) |∇φ|2 = −K|∇̂φ|2,
where ∇̂ denotes the gradient in the new metric. We can rewrite (5.33) as

(5.36)

∫

D
|∇̂φ|2dÂ > 2

∫

D
φ2dÂ.

The ratio

(5.37) Q(φ) =

∫
D |∇φ|2dÂ∫
D φ

2dA

is called the Rayleigh quotient of D, and the quantity

(5.38) λ1(D) = inf Q(φ)

represents the first eigenvalue of the problem

(5.39)

{
∆φ+ λφ = 0 in D,

φ = 0 on ∂D.

The “inf” in (5.38) may be taken over all piecewise smooth functions in

D̄ that vanish on the boundary, where ∆ in (5.39) is the Laplacian with

respect to a given metric on D. If D has reasonably smooth boundary, then

(5.39) has a solution φ1 corresponding to the eigenvalue λ1, and the “inf” in

(5.38) is actually attended when φ = φ1.



70 B.-Y. CHEN

From these it follows that the stability condition (5.27) is simply the

condition:

(5.40) λ1(D) > 2.

Since for a minimal surface in E3 the metric ĝ is nothing but the pullback

under the Gauss map of the metric on the unit sphere S2, thus we have the

following [Barbosa-do Carmo 1976]:

Let D be a relatively compact domain on a minimal surface M in E3.

Suppose that the Gauss map G of the minimal surface maps D one-to-one

onto a domain D̂ on the unit sphere. If λ1(D̂) < 2, then D cannot be

area-minimizing with respect to its boundary.

Since λ1(D1) = 2 for a hemisphere D1 on the unit sphere, this result

implies in particular a well-known result of H. A. Schwarz:

If the Gauss map G of a minimal surface M in E3 maps a relatively

compact domain D of a minimal surface M in E3 one-to-one onto a domain

containing a hemisphere, then D cannot be area-minimizing.

H. A. Schwarz also obtained in 1885 a sufficient condition for a domain

D in a minimal surface to be stable; namely, suppose a minimal surface M

in E3 has one-to-one Gauss map G : M → S2, then a relatively compact

domain D ⊂M is stable if G(D) is contained in a hemisphere of S2.

Schwarz’s result was generalized by J. L. Barbosa and M. do Carmo (1976)

to the following: If the area A(G(D)) of the Gauss image G(D) is less than

2π, then D is stable.

For a minimal surface M in Euclidean m-space, J. L. Barbosa and M.

do Carmo (1980a) proved that if D ⊂ M is simply-connected and that∫
M |K|dV < 4

3π, then D is stable.

J. Peetre (1959) obtained the following: Let D be a domain on the unit

sphere S2 and D̃ a geodesic disc on the sphere having the same area as D.

Then λ1(D) ≥ λ1(D̃).

As an analogue to Bernstein’s theorem, M. do Carmo and C. K. Peng

(1979), and independently by Fischer-Colbrie and Schoen (1980), proved

that planes are the only stable complete minimal surfaces in E3.

H. Mori (1977) studied minimal surfaces in 3-sphere and proved the fol-

lowing:

Let D be a relatively compact domain on a minimal surface M of a unit

3-sphere S3. Suppose that supDK = K0 < 1 and

(5.41)

∫

D
(1−K)dA <

1

54π
· 1−K0

2−K0
.

Then D is stable.
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Barbosa and do Carmo (1980a) studied the stability of minimal surfaces

in 3-sphere and in hyperbolic 3-space and improved Mori’s result to the

following:

(1) Let f :M → S3 be a minimal immersion of a surface M into the unit

3-sphere. Assume that D ⊂M is simply-connected and that

(5.42)

∫

D
(2−K)dV < 2π,

then D is stable.

Furthermore, the result is sharp in the following sense: given δ > 0 there

exists a minimal immersion f : M → S3 and an unstable domain Dδ ⊂ M

such that

(5.43)

∫

Dδ

(2−K)dV = 2π + δ,

and

(2) Let f : M → H3 be a minimal immersion of a surface M into the

unit hyperbolic 3-space with constant curvature −1. Assume that D ⊂ M

is simply-connected and that

(5.44)

∫

D
|K|dV < 2π,

then D is stable.

Barbosa and do Carmo (1980b) also considered stability for minimal im-

mersions in higher dimensional real space form and obtained the following:

Given a minimal surface M of a hypersphere of radius r in Em, let D be

a simply-connected relatively compact domain in M . If

(5.45)

∫

D

(
2

r2
−K

)
dA <

2n− 6

2n− 7
π,

then D is stable.

D. Hoffman and R. Osserman (1982) were able to prove the stability of D

under a weaker condition:

(5.46)

∫

D

(
2

r2
−K

)
dA <

4

3
π.

5.10.2. Indices of minimal submanifolds

The index of every compact minimal surface in a Riemannian manifold is

always finite. For complete minimal surfaces in E3, D. Fischer-Colbrie (1985)

obtained a direct relationship between index and total curvature. She proved

that the index of a complete minimal surface of finite total curvature in E3

is equal to the index of its Gauss map; thus the index of a complete minimal

surface in E3 is finite if and only if its total curvature is finite.
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Since a nonplanar periodic minimal surface in E3 has infinite total curva-

ture, they have infinite index; hence, the index of a complete Scherk surface

is infinite. The helicoid have infinite index as well [Tuzhilin 1992].

J. Tysk (1987) showed that for complete minimal surfaces M in E3 one

has iM ≤ 7.68183d, where d is the degree of the Gauss map of M . The

number 7.68183 is not optimal, since a catenoid has index one and d = 1. It

is not known whether the optimal value is 1.

S. Nayatani (1993) related the upper and lower bounds for the index with

the degree of the Gauss map and the genus of the minimal surface.

The indices of the catenoid and the Enneper surface are both equal to

one. This follows immediately from the fact that the extended Gauss map

of these genus one surfaces is a conformal diffeomorphism to the sphere.

Osserman (1964) proved that the catenoid and the Enneper surface were the

only complete minimal surfaces satisfying this property. S. Montiel and A.

Ros (1990) showed that the catenoid and the Enneper surface are the only

complete minimal surface in E3 with index one.

S. Y. Cheng and J. Tysk (1988) showed that if M is a complete orientable

minimal surface in E3 with embedded ends which is neither a plane nor

a catenoid, then the index of M is at least 2. F. J. López and A. Ros

(1989) showed that the catenoid and the Enneper surface are in fact the

only complete orientable minimal surfaces in E3 with index one.

M. Ritoré and A. Ros (1996) studied the structure of the space of com-

pact index one minimal surfaces embedded in flat 3-tori and obtained the

following:

Let M be a complete noncompact orientable index one minimal surface

properly embedded in the quotient of E3 by a discrete subgroup Γ of trans-

lations. Then one of the following must occurs:

(i) M is a catenoid in E3;

(ii) M is a Scherk surface with genus zero and four ends in E3/Γ;

(iii) M is a Scherk surface with genus zero and four ends in T 2 ×R;

(iv) M is a helicoid with total curvature −4π in E3/Γ.

If M is a complete oriented minimal surface of genus zero in E3 which is

not the plane, the catenoid, or the Enneper’s surface, the index of M is at

least 3 [Nayatani 1990b].

Montiel and Ros (1990) and N. Ejiri and M. Kotani (1993) proved that a

generic complete orientable finitely branched minimal surface of genus zero

in E3 with finite total curvature 4dπ has index 2d − 1 and nullity 3. Here

“generic” means that the Gauss map of M belongs to the complement of an

analytic subvariety of the space of such maps.
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Ejiri and Kotani (1993) also defined the notion of (nonembedded) flat

ends for finitely branched complete minimal surface in E3 and proved the

following:

(a) A complete orientable finitely branched minimal surface in E3 with

finite total curvature has nullity ≥ 4 if and only if its Gauss map can be the

Gauss map of a complete finitely branched flat-ended minimal surface in E3;

(b) The index and the nullity of a complete orientable finitely branched

minimal surface of genus zero in E3 with total curvature −8π both equal to

3.

LetM be a complete submanifold of arbitrary codimension in a Riemann-

ian manifold N , and ϕ a smooth vector field on N . The horizon of M with

respect to ϕ, denoted by H(M ;ϕ), is the set of all points of M at which ϕ

is a tangent vector of M . A connected subset D of M is called visible with

respect to ϕ if D is disjoint from H(M ;ϕ). The number of components of

M − H(M ;ϕ) is called the vision number of M with respect to ϕ and is

denoted by ν(M ;ϕ).

Let ϕn, ϕl and ϕp, respectively, be the variation vector fields in E3 asso-

ciated with a 1-parameter family of translations τnt in the direction of a unit

vector n, a 1-parameter family of rotations plt around a straight line l, and

a 1-parameter family of homothetic expansions µpt with center p.

J. Choe (1990) proved the following:

(a) For any unit vector n in E3 and any minimal surfaceM in E3 of finite

total curvature, orientable or nonorientable, iM ≥ ν(M ;ϕn)− 1;

(b) Let M be a complete minimal surface in E3 of finite total curvature.

If each end of M is embedded and the normal vectors at the points of M at

infinity are all parallel to a line l, then iM ≥ ν(M ;ϕ)− 1; and

(c) Let M be a complete minimal submanifold in a real space form Rm(c)

and ϕ a Killing vector field on Rm(c). IfM is compact, then iM ≥ ν(M ;ϕ)−
1, and otherwise iM ≥ ν(M ;ϕ), where ν(M ;ϕ) is the number of bounded

components of M −H(M ;ϕ).

Using these Choe showed the following:

(i) The index of the Jorge-Meeks minimal surface with k ends is at least

2k − 3;

(ii) The index of the Hoffman-Meeks minimal surface of genus g [Hoffman-

Meeks 1990a] is at least 2g + 1;

(iii) The index of Lawson’s minimal surface ξm,k of genusmk in S
3 [Lawson

1970] is at least max(2m+ 1, 2k + 1);

(iv) The index of the minimal hypersurface Sp(
√
p/(p + q))×Sq(

√
q/(p + q))

in Sp+q+1 is at least 3;
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(v) The index of any complete immersed nonorientable minimal surface in

E3 of finite total curvature which is conformally equivalent to a projective

plane with finite punctures is at least 2;

(vi) The plane, Enneper’s surface, and the catenoid are the only three

complete immersed orientable minimal surfaces of genus zero and index less

than three in E3;

(vii) The index of Chen-Gackstatter surface is 3.

S. Nayatani (1993) showed that the index of a Hoffman-Meeks minimal

surface in E3 with 3-ends of genus k is 2k + 3 for k ≤ 37. He also proved

that if a complete oriented minimal surface in Em has finite total curvature,

then it has finite index [Nayatani 1990a].

Let M be an n-dimensional complete minimal submanifold of Em. Then

there exists a constant Cn,m depending only on the dimensions n,m such

that the index of M is less than or equal to Cn,m times the total scalar

curvature, that is

(5.47) iM ≤ Cn,m

∫

M
Sn/2dV,

which was proved by P. Bérard and G. Besson (1990), S. Y. Cheng and J.

Tysk (1988) and N. Ejiri (1991).

In 1994 Cheng and Tysk proved that there exist constants Cm depending

only on m such that the index of a branched complete minimal surface in

Em satisfies

(5.48) iM ≤ Cm

∫

M
(−K)dA,

where K is the Gaussian curvature of M .

For complete oriented minimal surfaces in E4, S. Y. Cheng and J. Tysk

(1988) proved that the index is less than or equal to 12.72
(

1
2π

∫
(−KdA)

)
.

For a minimal hypersurfaceM of En+1 with n ≥ 3, J. Tysk (1989) showed

that the index of M satisfies

(5.49) iM ≤ ω−1
n

(√
e(n− 1)22n+3

n− 2

)n ∫

M
Sn/2dV,

where ωn is the volume of the unit ball in En.

The index of a great 2-sphere in S3 is one. For a compact orientable

minimal surface M in S3 which is not totally geodesic, F. Urbano (1990)

proved that the index of M is at least 5, and equal to 5 if and only if M is

the Clifford torus.

N. Ejiri (1983) showed that ifM is a closed minimal surface of genus zero,

fully immersed in S2n with n ≥ 2, then the index of M is greater than or

equal to 2(n(n+ 2)− 3).
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In 1994 S. Y. Cheng and J. Tysk proved that if M is a bounded immersed

complete minimal surface in Sm, possibly with boundary, then

(5.50) iM ≤ Cm

(
2 Area (M)−

∫

M
KdA

)
,

where Cm is a constant depending only on m.

A. A. Tuzhilin (1992) proved that the indices for all the hyperbolic catenoids

and the parabolic catenoids in the hyperbolic 3-space H3 are zero. He also

showed that the indices for the spherical catenoids in H3 do not exceed one.

A result of do Carmo and Dajczer (1983) implies the existence of unsta-

ble catenoids in the one-parameter family of spherical catenoids. Tuzhilin

showed that the indices for these catenoids equal one.

5.10.3. Stability of minimal submanifolds

M. Ross (1992) proved that every complete nonorientable minimal surface

in E3 of finite total curvature is unstable. By a refined analysis of moduli

and Teichmuller spaces, J. Jost and M. Struwe (1990) succeed in applying

saddle-point methods to prove the existence of unstable complete minimal

surfaces of prescribed genus.

Let L ⊂ E3 be a discrete lattice with rank L = 1 or 2 and f :M → E3/L

be a complete and connected minimal immersion. M. Ross and C. Schoen

(1994) proved that if f is stable and M has finite genus, then f(M) is a

quotient of the plane, the helicoid or a Scherk surface.

For complete stable minimal surfaces in a given Riemannian manifold, D.

Fischer-Colbrie and R. Schoen (1980) proved the following:

(1) Stable complete orientable minimal surfaces in complete orientable

3-manifolds with non-negative Ricci curvature are totally geodesic;

(2) Let N be a complete Riemannian 3-manifold with nonnegative scalar

curvature ρ and let M be a complete stable orientable minimal surface in

N . Then

(2.1) if M is compact, then either M is conformally equivalent to the

Riemann sphere S2 or else it is a totally geodesic flat torus. Furthermore, if

ρ > 0, the latter case cannot occur, and

(2.2) ifM is not compact, thenM is conformally equivalent to the complex

plane or a cylinder.

H. Lawson and W. Y. Hsiang gave a complete classification of equivariant

stable cones of codimension one in En+1.

B. Palmer (1991) proved that if M is a complete orientable minimal hy-

persurface of En+1 and if there exists a codimension one cycle C inM which

does not separate M , then M is stable.
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M. do Carmo and C. K. Peng (1980) showed that if an oriented stable

complete minimal hypersurface M in En+1 satisfies
∫
M SdV < ∞, then M

is a hyperplane. Using Simons’ result, P. Bérard (1991) proved that if an

oriented stable complete minimal hypersurface M in En+1 has finite total

scalar curvature, that is,
∫
M Sn/2dV <∞, thenM is a hyperplane for n ≤ 5.

The same result was proved recently by Y. B. Shen and X. H. Zhu (1998)

for n > 5, using the interior curvature estimate and Gromov’s compactness

theorem.

There are results on stability of higher dimensional minimal submanifolds

in real space forms obtained by various geometers. For instance, B. H.

Lawson and J. Simons (1973) proved that there does not exist stable compact

minimal submanifold in Sm.

S. P. Wang and S. W. Wei (1983) showed that, for any dimension n ≥ 2,

there is a non-totally geodesic complete absolute area-minimizing hypersur-

face in a hyperbolic (n + 1)-space Hn+1.

Further results on indices and stabilities of minimal submanifolds can be

found in §11.3, §11.4 and §16.11.
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6. Submanifolds of finite type

The study of order and submanifolds of finite type began in the 1970s

through Chen’s attempts to find the best possible estimate of the total mean

curvature of an isometric immersion of a compact manifold in Euclidean

space and to find a notion of “degree” for submanifolds in Euclidean space.

The main objects in algebraic geometry are algebraic varieties. One can

define the degree of an algebraic variety by its algebraic structure. On the

other hand, although every Riemannian manifold can be realized as a sub-

manifold in Euclidean space according to Nash’s embedding theorem, one

lacks the notion of the degree of a submanifold in Euclidean space. Inspired

by this observation, the notions of order and submanifolds of finite type were

introduced in [Chen 1979a,1984b].

6.1. Spectral resolution. Let (M,g) be a compact Riemannian n-manifold.

Then the eigenvalues of the Laplacian ∆ form a discrete infinite sequence:

0 = λ0 < λ1 < λ2 < . . . ր ∞. Let

Vk = {f ∈ C∞(M) : ∆f = λkf}

be the eigenspace of ∆ associated with eigenvalue λk. Then each Vk is finite-

dimensional. Define an inner product ( , ) on C∞(M) by (f, h) =
∫
M fh dV .

Then
∑∞

k=0 Vk is dense in C∞(M) (in L2–sense). If we denote by ⊕̂Vk the

completion of
∑
Vk, we have C∞(M) = ⊕̂kVk.

For each function f ∈ C∞(M), let ft denote the projection of f onto

the subspace Vt. We have the spectral resolution (or decomposition): f =∑∞
t=0 ft (in L

2-sense).

Because V0 is 1-dimensional, there is a positive integer p ≥ 1 such that

fp 6= 0 and f − f0 =
∑

t≥p ft, where f0 ∈ V0 is a constant. If there are

infinite many ft’s which are nonzero, put q = +∞; otherwise, there is an

integer q ≥ p such that fq 6= 0 and f − f0 =
∑q

t=p ft.

If x : M → Em is an isometric immersion of a compact Riemannian n-

manifold M into Em (or, more generally, into a pseudo-Euclidean space),

for each coordinate function xA we have xA = (xA)0 +
∑qA

t=pA
(xA)t. We put

(6.1) p = inf
A
{pA} and q = sup

A
{qA},

where A ranges over all A such xA − (xA)0 6= 0.

Both p and q are well-defined geometric invariants such that p is a positive

integer and q is either +∞ or an integer ≥ p. Consequently, we have the
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spectral decomposition of x in vector form:

(6.2) x = x0 +

q∑

t=p

xt,

which is called the spectral resolution (or decomposition) of the immersion

x.

6.2. Order and type of immersions. For a compact manifold M , the set

T (f) = {t ∈ Z : ft 6= constant} of a function f on M is called the order

of f . The smallest element in T (f) is called the lower order of f and the

supremum of T (f) is called the upper order of f .

A function f is said to be of finite type if T (f) is a finite set, that is, if its

spectral resolution contains only finitely many non-zero terms. Otherwise f

is said to be of infinite type.

Let x : M → Em be an isometric immersion of a compact Riemannian

n-manifold M into Em (or, more generally, a pseudo-Euclidean space). Put

(6.3) T (x) = {t ∈ Z : xt 6= constant map}.

The immersion x or the submanifoldM is said to be of k-type if T (x) contains

exactly k elements. Similarly one can define the lower order and the upper

order of the immersion. The immersion x is said to be of finite type if its

upper order q is finite; and the immersion is said to be of infinite type if its

upper order is +∞. The constant vector x0 in the spectral resolution is the

center of mass of M in Em.

One cannot make the spectral resolution of a function on a non-compact

Riemannian manifold in general. However, it remains possible to define the

notion of a function or an immersion of finite type and the related notions

of order and type.

For example, a function f is said to be of finite type if it is a finite sum

of eigenfunctions of the Laplacian and an immersion x of a non-compact

manifold is said to be of finite type if it admits a finite spectral resolution

x =
∑q

t=p xt for some natural numbers p and q; otherwise, the immersion is

said to be of infinite type. A k-type immersion is said to be of null k-type if

the component x0 in the spectral resolution is non-constant.

A result of [Takahashi 1966] can now be rephrased by saying that 1-type

submanifolds of Em are precisely those which are minimal in Em or minimal

in some hypersphere of Em. In that regard, submanifolds of finite type

provide vast generalization of minimal submanifolds.
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Let x : M → Em be a k-type isometric immersion whose spectral resolu-

tion is given by

x = c+ x1 + . . .+ xk,∆xi = λixi, λ1 < . . . < λk,

where c is a constant vector in Em and x1, . . . , xk are non-constant eigenmaps

of the Laplacian. For each i ∈ {1, . . . , k} we put

Ei = Span{xi(u) : u ∈M}.

Then each Ei is a linear subspace of E
m. The immersion is said to be linearly

independent if the k subspaces E1, . . . , Ek are linearly independent, that is,

the dimension of the subspace spanned by vectors in E1 ∪ . . . ∪ Ek is equal

to dimE1 + . . . + dimEk. The immersion is said to be orthogonal if the k

subspaces E1, . . . , Ek defined above are mutually orthogonal in Em [Chen

1991a].

Let x : M → Em be an isometric immersion of finite type. B. Y. Chen

and M. Petrovic (1991) proved the following:

(a) The immersion x is linearly independent if and only if it satisfies

Dillen-Pas-Verstraelen’s condition, that is, it satisfies ∆x = Ax+B for some

m×m matrix A and some vector B ∈ Em;

(b) The immersion x is orthogonal if and only if it satisfies ∆x = Ax+B

for some symmetric m×m matrix A and some vector B ∈ Em.

Linearly independent submanifolds, equivalently submanifolds satisfying

condition ∆x = Ax + B, have also been studied by C. Baikoussis, D. E.

Blair, F. Defever, F. Dillen, O. J. Garay, T. Hasanis, J. Pas, M. Petrovic, T.

Vlachos, L. Verstraelen, and others.

If x : M → Em is an isometric immersion of null k-type whose spectral

resolution satisfies ∆xj = 0, then the immersion is called weakly linearly in-

dependent if the k−1 subspaces E1, . . . , Ej−1, Ej+1, . . . , Ek are linearly inde-

pendent; and the immersion is called weakly orthogonal if E1, . . . , Ej−1, Ej+1, . . . , Ek
are mutually orthogonal.

The mean curvature vector of a submanifold of non-null finite type in Em

satisfies ∆H = AH for some m ×m matrix A if and only if M is linearly

independent. On the other hand, if M is a submanifold of null finite type

Em, then M satisfies ∆H = AH for some m×m matrix A if and only if M

is weakly linearly independent.

For surfaces in E3 Chen proved in 1994 the following results:

(1) Minimal surfaces and open parts of circular cylinders are the only

ruled surfaces satisfying ∆H = AH for some 3× 3 matrix A;
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(2) Minimal surfaces and open parts of circular cylinders are the only finite

type surfaces satisfying the condition ∆H = AH for some 3 × 3 singular

matrix A;

(3) Open parts of circular cylinders are the only tubes satisfying the con-

dition ∆H = AH for some 3× 3 matrix A.

See [Chen 1996d] for the details and for related results.

6.3. Equivariant submanifolds as minimal submanifolds in their ad-

joint hyperquadrics. Let f :M → Em be a nonminimal linearly indepen-

dent isometric immersion and let A denote them×m matrix associated with

the immersion f defined in §6.2. Then, for any point u ∈M , the equation

〈Au, u〉 :=
m∑

i,j

aijuiuj = cu,

with cu = 〈Ax, x〉 (u) defines a quadric Qu of Em, where u = (u1, . . . , um)

be a Euclidean coordinate system on Em. The hyperquadric defined above

is called the adjoint hyperquadric at u. If f(M) is contained in an adjoint

hyperquadricQu for some point u ∈M , then all of the adjoint hyperquadrics

{Qu : u ∈ M} coincide, which give rise to a common adjoint hyperquadric,

denoted by Q. This common hyperquadric Q is called the adjoint hyper-

quadric of the immersion.

Suppose f : M → Em is a linearly independent isometric immersion of

a compact Riemannian manifold into Em. Then M is immersed into its

adjoint hyperquadric by the immersion f if and only if the immersion is

spherical, that is, f(M) is contained in a hypersphere of Em.

A nonminimal linearly independent isometric immersion f : M → Em

of a Riemannian manifold is orthogonal if and only if M is immersed as a

minimal submanifold of its adjoint hyperquadric by the immersion f .

Although an equivariant isometric immersion of a compact homogeneous

Riemannian manifold into Euclidean m-space is of finite type, it is not nec-

essary a minimal submanifold of any hypersphere of the Euclidean m-space

in general. However, we have the following general result of Chen (1991a):

If f :M → Em is an equivariant isometric immersion of a compact homo-

geneous Riemannian manifold into Euclidean m-space, then M is isometri-

cally immersed as a minimal submanifold in its adjoint hyperquadric by the

immersion f .

6.4. Submanifolds of finite type. Although the class of submanifolds of

finite type is huge, it consists of “nice” submanifolds of Euclidean spaces.

For example, all minimal submanifolds of Euclidean space and all minimal

submanifolds of hyperspheres are of 1-type and vice versa. Also, all parallel
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submanifolds of Euclidean space and all compact homogeneous Riemannian

manifolds equivariantly immersed in Euclidean space are of finite type.

Given a natural number k, there do exist infinitely many non-equivalent

k-type submanifolds of codimension 2 in Euclidean space. The simplest

examples of such codimension two k-type submanifolds of Euclidean space

are the Riemannian products of the (n − 1)-dimensional Euclidean space

En−1 with any (k − 1)-type closed curves in E3.

Also, according to a result of C. Baikoussis, F. Defever, T. Koufogiorgos

and L. Verstraelen (1995), for any natural number k, there exist k-type

isometric immersions of flat tori in E6 which are not product immersions.

6.4.1. Minimal polynomial criterion

Compact finite type submanifolds are characterized by the minimal poly-

nomial criterion which establishes the existence of a polynomial P of the

least degree for which P (∆)H = 0, where H is the mean curvature vector of

the submanifold and deg P = k for a k-type immersion [Chen 1984b].

For general submanifolds Chen and M. Petrovic (1991) proved the follow-

ing: Let f :M → Em be an isometric immersion. Then f is of finite type if

and only if there exists a vector c ∈ Em and a polynomial P (t) with simple

roots such that P (∆)(x−c) = 0. Furthermore, in this case, the type number

of f is ≤ degP .

6.4.2. A variational minimal principle

Just like minimal submanifolds, finite type submanifolds are characterized

by a variational minimal principle in a natural way; namely as critical points

of directional deformations [Chen-Dillen-Verstraelen-Vrancken 1993].

Let f : M → Em be an isometric immersion of a compact Riemannian

manifold M into Em. Associated with each Em-valued vector field ξ defined

on M , there is a variation φt, defined by

(6.4) φt(p) := f(p) + tξ(p), p ∈M, t ∈ (−ǫ, ǫ),

where ǫ is a sufficiently small positive number.

Let D denote the class of all variations acting on the submanifold M and

let E denote a nonempty subclass of D. A compact submanifold M of Em

is said to satisfy the variational minimal principle in the class E if M is a

critical point of the volume functional for all variations in E .
Directional deformations were introduced by K. Voss in 1956. Directional

deformations are defined as follows : let c be a fixed vector in Em and let

φ be a smooth function defined on the submanifold M . Then we have a
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variation given by

(6.5) φφct (p) := f(p) + tφ(p)c, p ∈M t ∈ (−ǫ, ǫ).
Such a variation is called a directional deformation in the direction c. For

each natural number q ∈ N, define Cq to be the class of all directional

deformations given by smooth functions φ in
∑

i≥q Vi.

Chen, Dillen, Verstraelen and Vrancken (1993) proved the following:

(1) There are no compact submanifolds in Em which satisfy the variational

minimal principle in the classes C0 and C1.
(2) A compact submanifold M of Em is of finite type if and only if it

satisfies the variational minimal principle in the class Cq for some q ≥ 2.

6.4.3. Diagonal immersions

Let yi :M → Eni , i = 1, . . . , k, be k isometric immersions of a Riemannian

manifold M into Eni , respectively. For any k real numbers c1, . . . , ck with

c21 + . . . + c2k = 1, the immersion

(6.6) f = (c1y1, . . . , ckyk) :M → En1+···+nk

is also an isometric immersion, which is called a diagonal immersion of

y1, . . . , yk. If y1, . . . , yk are of finite type, then each diagonal immersion

of y1, . . . , yk is also of finite type.

6.4.4. Curves of finite type

A closed curve in Em is of finite type if and only if the Fourier series

expansion of each coordinate function of the curve has only finite nonzero

terms.

The only curves of finite type in E2 are open portions of circles or lines,

hence plane curves of finite type are of 1-type. In contrast with plane curves,

there exist infinitely many non-equivalent curves of k-type in E3 for each

k ∈ {2, 3, 4, · · · }.
Closed curves of finite type in a Euclidean space are rational curves. Fur-

thermore, a closed curve of finite type in E3 is of 1-type if and only if it lies

in a 2-sphere [Chen-Deprez-Dillen-Verstraelen-Vrancken 1990].

6.4.5. Finite type submanifolds in Euclidean space

B. Y. Chen, J. Deprez and P. Verheyen (1987) proved that an isometric

immersion of a symmetric space M of compact type into a Euclidean space

is of finite type if and only if the immersion maps all geodesics of M into

curves of finite type.

In 1988, Chen proved that a surface in E3 is of null 2-type if and only if

it is an open portion of a circular cylinder. Also, Chen and H. S. Lue (1988)

proved the following:
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(a) a 2-type submanifold M in a Euclidean m-space with parallel mean

curvature vector is either spherical or null;

(b) every 2-type hypersurface of constant mean curvature in Euclidean

space is of null 2-type;

(b) every compact 2-type hypersurface of a Euclidean space has non-

constant mean curvature.

Null 2-type hypersurfaces and open portions of hyperspheres are the only

hypersurfaces of Euclidean space with nonzero constant mean curvature and

constant scalar curvature (cf. [Chen 1996d]). T. Hasanis and T. Vlachos

(1995a) proved that null 2-type hypersurfaces of E4 have nonzero mean

curvature and constant scalar curvature. They also showed that a 3-type

surface in E3 has non-constant mean curvature [Hasanis-Vlachos 1995a].

Chen proved in 1987 that a tube in E3 is of finite type if and only if it

is an open portion of a circular cylinder. O. J. Garay (1988b) showed that

open portions of hyperplanes are the only cones of finite type in En+1.

A ruled surface in E3 is of finite type if and only if it is open portion

of a plane, a circular cylinder or a helicoid. In particular, a flat surface

in E3 is of finite type if and only if it is an open portion of a plane or a

circular cylinder [Chen-Dillen-Verstraelen-Vrancken 1990]. F. Dillen (1992)

considered finite type ruled submanifolds of Euclidean space and proved that

a ruled submanifold of Euclidean space is of finite type if and only if it is a

part of a cylinder on a curve of finite type or an open portion of a generalized

helicoid.

Chen and Dillen (1990a) proved that open portions of spheres and circular

cylinders are the only quadrics of finite type in E3. Further, Chen, Dillen

and H. Z. Song (1992) showed that a quadric hypersurface M of En+1 is of

finite type if and only if it is one of the following hypersurfaces:

(1) a hypersphere;

(2) a minimal algebraic cone Ck,n−k−1, 0 < k < n − 1, over an (n − 1)-

dimensional generalized Clifford torus (defined by (5.14));

(3) a spherical hypercylinder Ek × Sn−k, 0 < k < n;

(4) the standard product embedding of the product of a linear subspace

Eℓ and one of the algebraic cones Ck,n−ℓ−k−1 with 0 < k < n− ℓ− 1.

F. Defever, R. Deszcz and L. Verstraelen (1993/4) proved that all compact

and noncompact cyclides of Dupin are of infinite type.

A hypersurface M of En+1 is called a translation hypersurface if it is a

non-parametric hypersurface of the form:

xn+1 = P1(x1) + · · ·+ Pn(xn),
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where each Pi is a function of one variable. If each function Pi is a polyno-

mial, the hypersurface is called a polynomial translation hypersurface.

F. Dillen, L. Verstraelen, L. Vrancken and G. Zafindratafa (1995) proved

that a polynomial translation hypersurface of a Euclidean space is of finite

type if and only if it is a hyperplane.

A surface in E3 is called a surface of revolution if it is generated by a

curve C on a plane π when π is rotated around a straight line L in π. By

choosing π to be the xz-plane and line L to be the z-axis, the surface of

revolution can be parameterized by

x(u, v) = (f(u) cos v, f(u) sin v, g(u))

A surface of revolution is said to be of polynomial kind if f(u) and g(u)

are polynomial functions in u; and it is said to be of rational kind if g is a

rational function in f , that is g is the quotient of two polynomial functions

in f .

For finite type surfaces of revolution, Chen and S. Ishikawa (1993) proved

the following.

(1) A surface of revolution of polynomial kind is of finite type if and only

if either it is an open portion of a plane or it is an open portion of a circular

cylinder;

(2) A surface of revolution of rational kind is of finite type if and only if

it is an open portion of a plane.

T. Hasanis and T. Vlachos (1993) proved that a surface of revolution with

constant mean curvature in E3 is of finite type if and only if it is an open

portion of a plane, of a sphere, or of a circular cylinder. J. Arroyo, O. J.

Garay and J. J. Menc´ia (1998) proved that the only finite type surfaces

in E3 obtained by revolving an ellipse around a suitable axis are the round

spheres.

A spiral surface is a surface in E3 generated by rotating a plane curve C

about an axis A contained in the plane of the curve C and simultaneously

transforming C homothetically relative to a point of A.

C. Baikoussis and L. Verstraelen (1995) proved that a spiral surface is of

finite type if and only if it is a minimal surface.

It was conjectured that round spheres are the only compact surfaces of

finite type in E3 [Chen 1987]. All of the results mentioned above support

the conjecture.

In 1988, Chen proved that if f :M → Em is an isometric immersion of a

Riemannian n-manifold into Em, then the mean curvature vector H of f is

an eigenvector of the Laplacian on M , that is, ∆H = λH for some λ ∈ R,

if and only if M is one of the following submanifolds:
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(a) 1-type submanifold;

(b) a null 2-type submanifold;

(c) a biharmonic submanifold, that is, a submanifold satisfies ∆H = 0.

I. Dimitrić proved in his doctoral thesis (Michigan State University 1989)

that open portions of straight lines are the only biharmonic curves of a

Euclidean space. Chen proved in 1985 that minimal surfaces are the only

biharmonic surfaces in E3. I. Dimitrić (1989) extended Chen’s result to the

following: Minimal hypersurfaces are the only biharmonic hypersurfaces of

a Euclidean space with at most two distinct principal curvatures.

T. Hasanis and T. Vlachos (1995b) showed that minimal hypersurfaces

are the only biharmonic hypersurfaces of Euclidean 4-space. An alternative

proof was given in [Defever 1996].

It was conjectured by Chen that minimal submanifolds are the only bi-

harmonic submanifolds in Euclidean spaces.

The conjecture was also proved to be true if the biharmonic submanifold

is one of the following submanifolds:

(1) a spherical submanifold [Chen 1991];

(2) a submanifold of finite type [Dimitrić 1989];

(3) a pseudo-umbilical submanifold of dimension 6= 4 [Dimitrić 1989].

The conjecture is false if the ambient space is replaced by a pseudo-

Euclidean m-space with m ≥ 4 [Chen-Ishikawa 1991].

6.4.5. Finite type submanifolds in sphere

Standard 2-spheres in S3 and products of plane circles are the only finite

type compact surfaces with constant Gauss curvature in S3 [Chen-Dillen

1990b].

Every hypersurface with constant mean curvature and constant scalar

curvature in Sn+1 is either totally umbilical or of 2-type. Consequently,

every isoparametric hypersurface in Sn+1 is either of 1-type or of 2-type

[Chen 1984b]. Furthermore, every spherical 2-type hypersurface has constant

mean curvature and constant scalar curvature [Hasanis-Vlachos 1991].

2-type surfaces in S3 are open portions of the standard product embedding

of the product of two circles [Hasanis-Vlachos 1991].

Chen (1996d) proved that a compact hypersurface of S4(1) ⊂ E5 is of

2-type if and only if it is one of the following hypersurfaces:

(1) S1(a)× S2(b) ⊂ S4(1) ⊂ E5 with a2 + b2 = 1 and (a, b) 6= (
√

1
3 ,
√

2
3 )

embedded in the standard way;

(2) a tubular hypersurface of constant radius r 6= π
2 about the Veronese

surface of constant curvature 1
3 in S4(1).
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For higher dimensional spherical hypersurfaces, Chen (1991b,1984b) proved

the following:

(a) Let M be a hypersurface of a unit hypersphere Sn+1(1) of En+2 with

at most two distinct principal curvatures. Then M is of 2-type if and only

if M is an open portion of the product of two spheres Sk(a)× Sn−k(b), 1 ≤
k ≤ n− 1, such that a2 + b2 = 1, (a, b) 6=

(√
k/n,

√
(n− k)/n

)
.

(b) LetM be a conformally flat hypersurface of a unit hypersphere Sn+1(1)

of En+2. Then M is of 2-type if and only if M is an open portion of the

product of two spheres Sk(a)×Sn−k(b) for some k, 1 ≤ k ≤ n−1, such that

a2 + b2 = 1, (a, b) 6=
(√

k/n,
√

(n− k)/n
)
.

(c) If M is a 2-type Dupin hypersurface of a hypersphere Sn+1 with three

principal curvatures, then M is an isoparametric hypersurface.

Chen and S. J. Li (1991) proved that every 3-type hypersurface of a sphere

has nonconstant mean curvature.

A compact spherical submanifold M ⊂ Sm−1 ⊂ Em is called mass-

symmetric if the center of the mass of M coincides with the center of the

hypersphere Sm−1. Similarly, a non-compact submanifold f :M → Sm−1
c (r)

is called mass-symmetric if its position function admits a spectral resolution

of the form:

x = xtp + · · ·+ xtq , ∆xtj = λtjxtj .

Regardless of codimension, every mass-symmetric 2-type submanifold of

a hypersphere has constant squared mean curvature, which is determined by

the order of the submanifolds [Chen 1984b].

Although every compact 2-type surface in S3 is mass-symmetric [Barros-

Garay 1987], there do not exist mass-symmetric 2-type surfaces which lie

fully in S4 [Barros-Chen 1987a].

M. Kotani (1990) studied mass-symmetric 2-type immersions of a topolog-

ical 2-sphere into a hypersphere of Em. She proved that such an immersion

is the diagonal immersion of two 1-type immersions. Y. Miyata (1988) clas-

sified mass-symmetric 2-type spherical immersions of surfaces of constant

curvature (see, also [Garay 1988a]).

6.4.6. Finite type submanifolds in hyperbolic space

Let Ems denote the m-dimensional pseudo-Euclidean space with index s

endowed with the standard flat metric given by

(6.7) g = −
s∑

i=1

dx2i +
m∑

j=s+1

dx2j ,

where (x1, . . . , xm) is a standard coordinate system of Ems .
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For a number r > 0, we denote by Sm−1
s (r) the pseudo-Riemannian sphere

and by Hm−1
s−1 (−r) the pseudo-hyperbolic space defined respectively by

(6.8) Sm−1
s (r) = {u ∈ Ems : 〈u, u〉 = r2},

(6.9) Hm−1
s−1 (−r) = {u ∈ Ems : 〈u, u〉 = −r2},

where 〈 , 〉 denotes the indefinite inner product on the pseudo-Euclidean

space.

Denote by Hm−1 the hyperbolic space which is embedded standardly in

the Minkowski space-time Em1 by

(6.10) Hm−1 = {u ∈ Lm : 〈u, u〉 = −1 and t > 0},

where Lm = Em1 and t = x1 is the first coordinate of Em1 .

Let f : M → Ems be an isometric immersion of a pseudo-Riemannian

manifold M into the pseudo-Euclidean m-space with index s. Then M is of

1-type if and only if either

(1) M is a minimal submanifold of Ems ; or

(2) up to translations,M is a minimal submanifold of a pseudo-Riemannian

sphere Sm−1
s (r), r > 0; or

(3) up to translations,M is a minimal submanifold of a pseudo-hyperbolic

space Hm−1
s−1 (−r), r > 0.

For 2- and 3-type hypersurfaces in hyperbolic space, the following are

known (cf. [Chen 1996d]).

IfM is a hypersurface of the hyperbolic spaceHn+1, embedded standardly

in En+2
1 , then

(a) if M has constant mean curvature and constant scalar curvature, M

is either of 1-type or of 2-type;

(b) every 2-type hypersurface of the hyperbolic space Hn+1 has constant

mean curvature and constant scalar curvature.

Furthermore, we have

(c) there do not exist compact 2-type hypersurfaces in the hyperbolic

space;

(d) there do not exist null 2-type hypersurfaces in the hyperbolic space;

(e) there do not exist 3-type hypersurfaces with constant mean curvature

in the hyperbolic space;

(f) if M is a 2-type hypersurface with at most two distinct principal cur-

vatures in the hyperbolic space, then up to rigid motions of Hn+1, M is an

open portion of Mn
k,r for positive integer k, 2 ≤ k ≤ n and for some r > 0,
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where Mn
k,r is defined by

(6.11)
Mn
k,r = {(t, x2, . . . , xn+2) : t

2 − x22 − . . . − x2k = 1 + r2,

x2k+1 + . . . + x2n+2 = r2}.
(g) if M is a 2-type surface in the hyperbolic 3-space H3, then it is a flat

surface and, up to rigid motions of H3, M is an open portion of M2
2,r for

some r > 0.

6.4.7. Finite type immersions of irreducible homogeneous spaces

Every finite type isometric immersion of a compact irreducible homoge-

neous Riemannian manifold is a screw diagonal immersion, that is, it is the

composition of a diagonal immersion followed by a linear map [Chen 1996d,

Deprez 1988].

J. Deprez (1988) and T. Takahashi (1988) proved that every equivari-

ant isometric immersion of a compact irreducible homogeneous Riemannian

manifold in Euclidean space is the diagonal immersion of some standard

1-type isometric immersions.
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7. Isometric immersions between real space forms

Historically the study of surfaces of negative constant curvature in E3

was closely related with the problem of interpretation of non-Euclidean ge-

ometry. During 1839-1840 F. Minding investigated properties of surfaces

of constant negative Gaussian curvature in E3, he discovered the so called

helical surfaces of constant curvature. Minding showed that surfaces of revo-

lutions of constant negative curvature in E3 can be divided into three types;

one of them is known as the pseudo-sphere; the surface obtained by rotating

the asymptote the so-called curve of pursuit. In 1868 E. Beltrami (1835–

1900) discovered a close connection between hyperbolic geometry and the

pseudo-sphere.

In 1901 D. Hilbert proved that any complete immersed surface in E3 with

constant positive Gaussian curvature is a round sphere. The analytic case

of this result was given by H. Liebmann in 1900. A result of D. Hilbert

and E. Holmgren states that there do not exist complete immersed surfaces

in E3 with constant negative Gaussian curvature in E3. A. W. Pogorelov

(1956a,1956b) and P. Hartman and L. Nirenberg (1959) showed that a com-

plete flat surface immersed in E3 is a generalized cylinder.

Isometric immersions of a Riemannian n-manifold Rn(c) with constant

curvature c into another Riemannian (n + p)-manifold Rn+p(c̄) of constant

curvature c̄ were studied by É. Cartan (1919). He proved, for example, that

if c < c̄, then the existence of an isometric immersion implies p ≥ n− 1.

Cartan’s study was confined to local phenomena of isometric immersions,

which are generally complicated. However, sometimes, definite results can

be obtained under a global assumption of completeness or compactness.

7.1. Case: c = c̄. The following global results for c = c̄ and p = 1 have

been known.

7.1.1. Euclidean case: (c = c̄ = 0)

If a complete flat Riemannian n-manifold Rn(0) is isometrically immersed

in a Euclidean (n+1)-space En+1, then Rn(0) is a hypercylinder over a plane

curve, that is, Rn(0) = En−1×C, where En−1 is a Euclidean (n−1)-subspace

of En+1 and C is a curve lying in a Euclidean plane perpendicular to En−1.

This result was proved in [Hartman-Nirenberg 1959]. 7.1.2. Spherical

case: (c = c̄ = 1)

If the unit n-sphere Sn is isometrically immersed in Sn+1, then Sn is

embedded as a great n-sphere in Sn+1. This result is a special case of a

theorem in [O’Neill-Stiel 1963].

7.1.3. Hyperbolic case: (c = c̄ = −1)
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In this case the situation is more complicated. K. Nomizu (1924– ) exhib-

ited three distinct types of isometric immersions of hyperbolic plane H2(−1)

into the hyperbolic 3-space H3(−1) which are not totally geodesic [Nomizu

1973a.

If an isometric immersion f : Hn(−1) → Hn+1(−1) has no umbilical

points, the second fundamental form has nullity n − 1 at every point. In

this case, the relative nullity distribution is integrable and each leaf is an

(n− 1)-dimensional complete totally geodesic submanifold.

In general, a k-dimensional foliation on a Riemannian manifold is called

totally geodesic if each leaf is a k-dimensional complete totally geodesic sub-

manifold. D. Ferus (1973) has showed how to obtain all (n− 1)-dimensional

totally geodesic foliations on the hyperbolic space Hn(−1) and that every

totally geodesic foliation on Hn(−1) is the nullity distribution of a suitable

isometric immersion of Hn(−1) into Hn+1(−1) with umbilical points.

Recently, K. Abe, H. Mori and H. Takahashi (1997) parametrized the

space of isometric immersions of Hn(−1) into Hn+1(−1) by a family of

properly chosen (at most) countable n-tuples of real-valued functions.

Concerning the problem of describing isometric immersions of the hyper-

bolic plane H2(−1) into the hyperbolic 3-space H3(−1), by using the stere-

ographic projection of the upper sheet of the hyperboloid x2 + y2 − z2 = −1

from the origin on the plane z = 1, it is possible to parameterize H2(−1) by

points ξ = (ξ1, ξ2) ∈ D of the open unit disc. In this way, the problem of de-

termining isometric immersions f : H2(−1) → H3(−1) is reduced to solving

a degenerate Monge-Ampere equation on the unit disc: det(∂2u/∂ξi∂ξj) =

0, ξ ∈ D, where each isometric immersion corresponds to a solution u(ξ1, ξ2)

of such an equation.

Using a special family of solutions of the Monge-Ampere equation, Z. J.

Hu and G. S. Zhao (1997a) gave a way of constructing many incongruent

examples of immersions f : H2(−1) → H3(−1) with or without an umbilic

set and with bounded or unbounded principal curvature.

7.2. Case: c 6= c̄. For c 6= c̄ a classical result of K. Liebmann and D.

Hilbert states that a complete Riemannian 2-manifold of constant negative

curvature cannot be isometrically immersed in Euclidean 3-space. L. Bianchi

proved in 1896 that there exist infinitely many isometric immersions from

a complete flat surface into S3 (cf. [Bianchi 1903]). Ju. A. Volkov and

S. M. Vladimirova in 1971 and S. Sasaki (1912–1987) in 1973 showed that

an isometric immersion of a complete flat surface into a complete simply-

connected H3(−1) is either a horosphere or a set of points at a fixed distance

from a geodesic.
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An isometric immersion of a Riemannian n-manifold Rn(c) with n ≥ 3

into a Riemannian (n+1)-manifold Rn+1(c̄) with c > c̄ is totally umbilical. If

p ≤ n−1, Ferus (1975) proved that every isometric immersion of a complete

Riemannian n-manifold Rn(c) into a complete Riemannian (n+ p)-manifold

Rn+p(c) with the same constant curvature is totally geodesic.

D. Blanusa (1955) proved that a hyperbolic n-space Hn(−1) can be iso-

metrically embedded into E6n−5. On the other hand, J. D. Moore (1972)

proved that if p ≤ n− 1, then there do not exist isometric immersions from

a complete Riemannian n-manifold Rn(c) of constant curvature c into a

complete simply-connected Riemannian manifold Rn+p(c̄) with c̄ > c > 0.

By applying Morse theory, Moore (1977) proved that if a compact Rie-

mannian n-manifold Rn(1) of constant curvature 1 admits an isometric im-

mersion in EN with N ≤ 3
2n, then R

n(1) is simply-connected, hence isomet-

ric to Sn(1).

Flat surfaces in E4 with flat normal connection were classified in [Dajczer-

Tojeiro 1995a].

D. Ferus and F. Pedit (1996) gave a method for finding local isomet-

ric immersions between real space forms by integrable systems techniques.

The idea is that, given an isometric immersion between real space forms of

nonzero different curvatures, the structural equations can be rewritten as

a zero curvature equation involving an auxiliary (spectral) parameter, that

is, as the flatness equation for a 1-form with values in a loop algebra. The

isometric immersion thus generates a one-parameter family of isometric im-

mersions with flat normal bundle. A large class of solutions to the flatness

equation can then be found by integrating certain commuting vector fields

on a loop algebra.

The isometric immersions so constructed are real-analytic and depend on

the same number of functions as predicted by Cartan-Kähler theory, though

not all isometric immersions are real-analytic.
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8. Parallel submanifolds

The first fundamental form, that is, the metric tensor, of a submanifold

of a Riemannian submanifold is automatically parallel, thus, ∇g ≡ 0 with

respect to the Riemannian connection ∇ on the tangent bundle TM . A

Riemannian submanifold is said to be parallel if its second fundamental

form h is parallel, that is ∇̄h ≡ 0 with respect to the connection ∇̄ on

TM ⊕ T⊥M .

8.1. Parallel submanifolds in Euclidean space. The first result on par-

allel submanifolds was given by V. F. Kagan in 1948 who showed that the

class of parallel surfaces in E3 consists of open parts of planes, round spheres,

and circular cylinders S1 × E1. U. Simon and A. Weinstein (1969) deter-

mined parallel hypersurfaces of Euclidean (n + 1)-space. A general classifi-

cation theorem of parallel submanifolds in Euclidean space was obtained by

D. Ferus in 1974.

An affine subspace of Em or a symmetric R-space M ⊂ Em, which is

minimally embedded in a hypersphere of Em as described in [Takeuchi-

Kobayashi 1965] is a parallel submanifold of Em. The class of symmetric

R-spaces includes:

(a) all Hermitian symmetric spaces of compact type,

(b) Grassmann manifolds O(p+ q)/O(p)×O(q), Sp(p+ q)/Sp(p)×Sp(q),
(c) the classical groups SO(m), U(m), Sp(m),

(d) U(2m)/Sp(m), U(m)/O(m),

(e) (SO(p+1)×SO(q+1))/S(O(p)×O(q)), where S(O(p)×O(q)) is the

subgroup of SO(p+ 1)× SO(q + 1) consisting of matrices of the form



ǫ 0

0 A

ǫ 0

0 B


 , ǫ = ±1, A ∈ O(p), B ∈ O(q),

(f) the Cayley projective plane OP 2, and

(g) the three exceptional spaces E6/Spin(10)×T,E7/E6×T, and E6/F4.

D. Ferus (1974) proved that essentially these submanifolds exhaust all

parallel submanifolds of Em in the following sense: A complete full parallel

submanifold of the Euclidean m-space Em is congruent to

“(1)” M = Em0 ×M1 × · · · ×Ms ⊂ Em0 ×Em1 × · · · ×Ems = Em, s ≥ 0,

or to

“(2)” M =M1 × · · · ×Ms ⊂ Em1 × · · · × Ems = Em, s ≥ 1,

where each Mi ⊂ Emi is an irreducible symmetric R-space.
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Notice that in case (1) M is not contained in any hypersphere of Em, but

in case (2) M is contained in a hypersphere of Em.

For an n-dimensional submanifold f : M → Em, for each point x ∈ M

and each unit tangent vector X at x, the vector f∗(X) and the normal space

T⊥
x determine an (m − n + 1)-dimensional subspace E(x,X) of Em. The

intersection of f(M) and E(x,X) defines a curve γ in a neighborhood of

f(x), which is called the normal section of f at x in the direction X. A

point p on a plane curve is called a vertex if its curvature function κ(s) has

a critical point at p.

Parallel submanifolds of Em are characterized by the following simple

geometric property: normal sections of M at each point x ∈ M are plane

curves with x as one of its vertices [Chen 1981a].

A submanifold f : M → Em is said to be extrinsic symmetric if, for

each x ∈ M , there is an isometry φ of M into itself such that φ(x) = x

and f ◦ φ = σx ◦ f , where σx denotes the reflection at the normal space

T⊥
x M at x, that is the motion of Em which fixes the space through f(x)

normal to f∗(TxM) and reflects f(x) + f∗(TxM) at f(x). The submanifold

f : M → Em is said to be extrinsic locally symmetric, if each point x ∈ M

has a neighborhood U and an isometry φ of U into itself, such that φ(x) = x

and f ◦φ = σx ◦f on U . In other words, a submanifoldM of Em is extrinsic

locally symmetric if each point x ∈M has a neighborhood which is invariant

under the reflection of Em with respect to the normal space at x.

D. Ferus (1980) proved that extrinsic locally symmetric submanifolds of

Em have parallel second fundamental form and vice versa.

A canonical connection on a Riemannian manifold (M,g) is defined as

any metric connection ∇c on M such that the difference tensor D̂ between

∇c and the Levi-Civita connection ∇ is ∇c-parallel.

An embedded submanifold M of Em is said to be an extrinsic homo-

geneous submanifold with constant principal curvatures if, for any given

x, y ∈ M and a given piecewise differentiable curve γ from x to y, there

exists an isometry ϕ of Em satisfying (1) φ(M) =M , (2) φ(x) = y, and (3)

φ∗x|T⊥
x M

: T⊥
x M → T⊥

y M coincides with D̂-parallel transport along γ.

C. Olmos and C. Sánchez (1991) extended Ferus’ result and obtained the

following: Let M be a connected compact Riemannian submanifold fully in

Em, and let h be its second fundamental form. Then the following three

statements are equivalent:

(i) M admits a canonical connection ∇c such that ∇ch = 0,

(ii) M is an extrinsic homogeneous submanifold with constant principal

curvatures,
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(iii) M is an orbit of an s-representation, that is, of an isotropy represen-

tation of a semisimple Riemannian symmetric space.

The notion of extrinsic k-symmetric submanifold of Em was introduced

and classified for odd k in [Sánchez 1985]. Furthermore, Sánchez (1992)

proved that the extrinsic k-symmetric submanifolds are essentially charac-

terized by the property of having parallel second fundamental form with

respect to the canonical connection of k-symmetric space. Thus, the above

result implies that every extrinsic k-symmetric submanifold of a Euclidean

space is an orbit of an s-representation.

8.2. Parallel submanifolds in spheres. Regarding the unit (m − 1)-

sphere Sm−1 as an ordinary hypersphere of Em, a submanifold M ⊂ Sm−1

is parallel if and only if M ⊂ Sm−1 ⊂ Em is a parallel submanifold of Em.

Consequently, Ferus’ result implies that M is a parallel submanifold of

Sm−1 if and only if M is obtained by a submanifold of type (2).

8.3. Parallel submanifolds in hyperbolic spaces. Parallel submanifolds

of hyperbolic spaces were classified in 1981 by M. Takeuchi (1921– ) which

is given as follows: For each c < 0, let Hm(c) denote the hyperbolic m-space

defined by

Hm(c) = {(x0, . . . , xm) ∈ Em+1 : −x20 + x21 + · · ·+ x2m = 1/c, x0 > 0}.

Assume M is a parallel submanifold of Hm(c̄), c̄ < 0. Then

(1) if M is not contained in any complete totally geodesic hypersurface of

Hm(c̄), then M is congruent to the product

Hm0(c0)×M1 × · · · ×Ms ⊂ Hm0(c0)× Sm−m0−1(c′) ⊂ Hm0(c̄)

with c0 < 0, c′ > 0, 1/c0 + 1/c′ = 1/c̄, s ≥ 0, where M1 × · · · × Ms ⊂
Sm−m0−1(c′) is a parallel submanifold as described in Ferus’ result; and

(2) if M is contained in a complete totally geodesic hypersurface N of

Hm(c̄), thenN is either isometric to an (m−1)-sphere, or to a Euclidean (m−
1)-space, or to a hyperbolic (m−1)-space. Hence, such parallel submanifolds

reduce to the parallel submanifolds described before.

8.4. Parallel submanifolds in complex projective and complex hy-

perbolic spaces. A parallel submanifold M of a Riemannian manifold M̃

is curvature-invariant, that is, for each point x ∈ M and X,Y ∈ TxM , we

have

R̃(X,Y )TxM ⊂ TxM,



RIEMANNIAN SUBMANIFOLDS 95

where R̃ is the curvature tensor of M̃ . Thus, according to a result of [Chen-

Ogiue 1974b], parallel submanifolds of complex projective and complex hy-

perbolic spaces are either parallel Kähler submanifolds or parallel totally

real submanifolds.

Complete parallel Kähler submanifolds of complex projective spaces and

of complex hyperbolic spaces have been completely classified in [Nakagawa-

Takagi 1976] and in [Kon 1974], respectively (see §15.9 for details).

[Naitoh 1981] showed that the classification of complete totally real par-

allel submanifolds in complex projective spaces is reduced to that of certain

cubic forms of n-variables and [Naitoh-Takeuchi 1982] classified these sub-

manifolds by the theory of symmetric bounded domains of tube type.

The complete classification of parallel submanifolds in complex projective

spaces and in complex hyperbolic spaces was given in [Naitoh 1983].

8.5. Parallel submanifolds in quaternionic projective spaces. Par-

allel submanifolds of a quaternionic projective m-space or its non-compact

dual were classified in [Tsukada 1985b]. Such submanifolds are parallel to-

tally real submanifolds in a totally real totally geodesic submanifold RPm,

or parallel totally real submanifolds in a totally complex totally geodesic

submanifold CPm, or parallel complex submanifolds in a totally complex

totally geodesic submanifold CPm, or parallel totally complex submanifolds

in a totally geodesic quaternionic submanifoldHP k whose dimension is twice

the dimension of the parallel submanifold.

8.6. Parallel submanifolds in the Cayley plane. Parallel submanifolds

of the Cayley plane OP 2 are contained either in a totally geodesic quaternion

projective plane HP 2 as parallel submanifolds or in a totally geodesic 8-

sphere as parallel submanifolds [Tsukada 1985c].

All parallel submanifolds in Em are of finite type. Furthermore, if a

compact symmetric space N of rank one is regarded as a submanifold of a

Euclidean space via its first standard embedding, then a parallel submanifold

of N is also of finite type [Chen 1996d].
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9. Standard immersions and submanifolds with simple geodesics

9.1. Standard immersions. Let M = G/K be a compact irreducible ho-

mogeneous Riemannian manifold. For each positive eigenvalue λ of the

Laplacian on M , we denote by mλ the multiplicity of the eigenvalue λ.

Let φ1, . . . , φmλ
be an orthonormal basis of the eigenspace of the Laplacian

with eigenvalue λ. Define a map fλ :M → Emλ by

(7.1) fλ(u) =
cλ
m2
λ

(φ1(u), . . . , φmλ
(u)),

where cλ is a positive number. The map fλ defines an isometric minimal

immersion of M into Smλ−1
0 (1) for some suitable constant cλ > 0.

According to a result of T. Takahashi (1966) each such fλ is an isometric

minimal immersion of M into a hypersphere of Emλ .

If λi is the i-th positive eigenvalue of Laplacian of M , then the immersion

ψi = fλi is called the i-th standard immersion of M = G/K.

Every full isometric minimal immersion of a Riemannian n-sphere into a

hypersphere of a Euclidean space is a standard immersion if either n = 2 or

n ≥ 3 and the order of the immersion is either {1}, {2} or {3}.
Not every full isometric minimal immersion of a Riemannian n-sphere

into a hypersphere is a standard immersion. For instance, N. Ejiri (1981)

constructed a full minimal isometric immersion of S3
(

1
16

)
into S6(1) of order

{6}, which is not a standard immersion. An explicit construction was given

by K. Mashimo (1985) and by F. Dillen, L. Verstraelen and L. Vrancken

(1990), who also showed that the immersion is a 24-fold cover onto its image.

The image of this minimal immersion in S6(1) was identified in [DeTurck-

Ziller 1992] as S3/T ∗, where T ∗ is the binary tetrahedral group of order

24.

According to a result of Moore (1972), the minimum number m for which

S3(c) can admit a non-totally geodesic isometric minimal immersion into Sm

is 6. D. DeTurck and W. Ziller (1992) showed that every non-totally geo-

desic SU(2)-equivariant minimal isometric immersion of S3( 1
16 ) into S6(1)

is congruent to the immersion mentioned above.

9.2. Submanifolds with planar geodesics. A surface in E3 whose geodesics

are all planar curves is open portion of a plane or sphere. S. L. Hong (1973)

was the first to ask for all submanifolds of Euclidean space whose geodesics

are plane curves. He showed that if f :M → Em is an isometric immersion

which is not totally geodesic and such that for each geodesic γ in M , f ◦ γ
is a plane curve in Em, then f ◦ γ is a plane circle.
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Let f :M → Rm(c) be an isometric immersion of a Riemannian manifold

into a complete simply-connected real space form of constant curvature c. If

the image of each geodesic of M is contained in a 2-dimensional totally geo-

desic submanifold of Rm(c), then f is either a totally geodesic immersion, a

totally umbilical immersion or a minimal immersion of a compact symmetric

space of rank one by harmonic functions of degree 2.

The later case occurs only when c > 0 and in this case the immersions

are the first standard embeddings of the real, complex and quaternionic

projective spaces or the Cayley plane [Hong 1973, Little 1976, Sakamoto

1977].

9.3. Submanifolds with pointwise planar normal sections. Let M be

an n-dimensional submanifold of a Euclidean m-space Em. For a point x in

M and a unit vector X tangent to M at x, the vector X and the normal

space T⊥
x M to M at x determine an (m−n+1)-dimensional affine subspace

E(x,X) of Em through x. The intersection of M and E(x,X) gives rise to

a curve γ in a neighborhood of x which is called the normal section of M at

x in the direction X.

A submanifoldM of Em is said to have planar normal sections if each nor-

mal section γX(s) at x of M in Em is a planar curve where s is an arclength

parametrization of γX ; thus the first three derivatives {γ′X(s), γ′′X (s), γ′′′X(s)}
of γ(s) are linearly dependent as vectors in Em. Hypersurface of Euclidean

space and Euclidean submanifolds with planar geodesics are examples of

submanifolds with planar normal sections. Conversely, B. Y. Chen (1983a)

proved that if a surface M of Em has planar normal sections, then either it

lies locally in an affine 3-space E3 of Em or it has planar geodesics. If the

later case occurs, M is an open portion of a Veronese surface in an affine

5-space E5 of Em.

A submanifoldM of Em is said to have pointwise planar normal sections if,

for each normal section γ at x, x ∈M , the three vectors {γ′(0), γ′′(0), γ′′′(0)}
at x are linearly dependent. Clearly, every hypersurface of En+1 has planar

normal sections, and hence has pointwise planar normal sections. A sub-

manifold M of Em is called spherical if M is contained in a hypersphere of

Em.

In 1982 B. Y. Chen proved that a spherical submanifold of a Euclidean

space has pointwise planar normal sections if and only if it has parallel

second fundamental form. K. Arslan and A. West (1996) showed that if an n-

dimensional submanifoldM of a Euclideanm-space Em has pointwise planar

normal sections and does not have parallel second fundamental form, then

locally it must lies in an affine (n+1)-space En+1 of Em as a hypersurface,



98 B.-Y. CHEN

that is, for each point x ∈M , there exists a neighborhood U of x such that

U is contained in an affine (n+ 1)-space En+1 of Em.

W. Dal Lago, A. Garc´ia, and C. U. Sánchez (1994) studied the set X [M ]

of pointwise planar normal sections on the natural embedding of a flag mani-

foldM and proved that it is a real algebraic submanifold of the real projective

n-space RPn with n = dimM . They also computed the Euler characteristic

of χ[M ] and its complexification χc[M ] and showed that the Euler charac-

teristics of χ[M ] and of χc[M ] depend only on the dimension of M and not

on the nature of M itself.

9.4. Submanifolds with geodesic normal sections and helical im-

mersions. A submanifold f : M → Em is said to have geodesic normal

sections if, for each point x ∈ M and each unit tangent vector X at x, the

image of the geodesic γX with γ′X(0) = X is the normal section of f at x in

the direction X.

Submanifolds in Euclidean space with planar geodesics also have geodesic

normal sections.

Chen and Verheyen (1981) asked for all submanifolds of Euclidean space

with geodesic normal sections. They proved that a submanifoldM of Em has

geodesic normal sections if and only if all normal sections of M , considered

as curves in Em, have the same constant first curvature κ1; also if and only

if every curve γ of M which is a normal section of M at γ(0) in the direction

γ′(0) remains a normal section of M at γ(s) in the direction γ′(s), for all s

in the domain of γ.

In particular, Chen and Verheyen’s result implies that if a compact sym-

metric space, isometrically immersed in Euclidean space, has geodesic normal

sections, then it is of rank one.

Chen and Verheyen also proved the following results:

(1) If M is a submanifold of Em all of whose geodesics are 3-planar, that

is, each geodesic lies in some 3-plane, then M has geodesic normal sections

if and only if it is isotropic; and

(2) if M is a submanifold of Euclidean space all of whose geodesics are

4-planar, then M has geodesic normal sections if and only if it is constant

isotropic.

Recall that a submanifold M of a Riemannian manifold M̃ is called

isotropic if, for each point x ∈ M and each unit vector X ∈ TxM , the

length |h(X,X)| of h(X,X) depends only on x and not on the unit vector

X. In other words, each geodesic of M emanating from x, considered as a

curve in M̃ , has the same first curvature κ1 at x. In particular, if the length
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of h(X,X) is also independent of the point x ∈M , thenM is called constant

isotropic.

Chen and Verheyen (1981) showed that submanifolds in Euclidean space

with geodesic normal sections are constant isotropic.

Let M be a compact Riemannian manifold. It has a unique kernel of

the heat equation: K : M × M × R∗
+ → R. If there exists a function

Ψ : R+ × R∗
+ → R such that K(u, v, t) = Ψ(d(u, v), t) for every u, v ∈ M

and r ∈ R∗
+, then M is called strongly harmonic.

Related to submanifolds with planar geodesics and to submanifolds with

geodesic normal sections is the notion of helical immersions. An isometric

immersion f :M → Em is called a helical immersion if each geodesic γ ofM

is mapped to a curve with constant Frenet curvatures, that is, to aW -curve,

which are independent of the chosen geodesic.

A. Besse (1978) constructed helical immersions of strongly harmonic man-

ifolds into a unit sphere. Conversely, K. Sakamoto (1982) proved that if a

complete Riemannian manifold admits a helical minimal immersion into a

hypersphere of Em, then M is a strongly harmonic manifold.

Y. Hong (1986) proved that every helical immersion of a compact homo-

geneous Riemannian manifold into Euclidean space is spherical. Hong also

proved that every helical immersion of a compact rank one symmetric space

into a Euclidean space is a diagonal immersion of some 1-type standard

isometric immersions.

Chen and Verheyen (1984) showed that a helical submanifold of Euclidean

space is a submanifold with geodesic normal sections. Conversely, P. Ver-

heyen (1985) proved that every submanifold of Euclidean space with geodesic

normal sections is a helical submanifold.

Helical submanifolds were further investigated by K. Sakamoto, B. Y.

Chen, P. Verheyen, Y. Hong, C.-S. Houh, K. Mashimo, K. Tsukada, H.

Nakagawa, and others.

9.5. Submanifolds whose geodesics are genericW -curves. AW -curve

γ : R ⊃ I → EN is said to be of rank r, if for all t ∈ I the derivatives

γ′(t), . . . , γ(r)(t) are linearly independent and the derivatives γ′(t), . . . , γ(r+1)(t)

are linearly dependent. Let γ : R ⊃ I → EN be aW -curve of infinite length,

parametrized by arc length. If the image γ(I) is bounded, then the rank of

γ is even, say r = 2k. There are positive constants a1, . . . , ak, unique up to

order, corresponding positive constants r1, . . . , rk and orthonormal vectors
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e1, . . . , e2k in EN such that

γ(t) = c+
k∑

i=1

ri(e2i−1 sin ait+ e2i cos ait),

where c is a constant vector.

The rank of unbounded W -curves is odd and the expression of γ(t) con-

tains an additional term linear in t. AW -curve γ is called a genericW -curve

if the ai are independent over the rationals, that is, if the closure of γ(R) is

a standard torus S1(r1)× · · · × S1(rk) up to a motion.

D. Ferus and S. Schirrmacher (1982) proved that if f : M → Em is an

isometric immersion of a compact Riemannian manifold into Em, then f is

extrinsic symmetric if and only if, for almost every geodesic γ in M , the

image f(γ) is a generic W -curve.

The above result is false if the condition on f(γ) were replaced by the

condition: for each geodesic γ in M , the image f(γ) is a W -curve.

For a compact Riemannian 2-manifold M , D. Ferus and S. Schirrmacher

(1982) proved that if f : M → E4 is an isometric immersion such that, for

every geodesic γ in M , the image f(γ) is a W -curve, then either one of the

following holds:

(1) if M contains a non-periodic geodesic, f covers (up to a motion) a

standard torus S1(r1)× S2(r2) ⊂ E4, or

(2) if all geodesics in M are periodic, f is (up to a motion) an isometry

onto a Euclidean 2-sphere S2(r) ⊂ E3 ⊂ E4.

Y. H. Kim and E. K. Lee (1993) proved the following: LetM be a complete

surface in E4. If there is a point x ∈ M such that every geodesic through

x, considered as a curve in E4, is a W -curve, then M is an affine 2-space,

a round sphere or a circular cylinder in an affine 3-space, a product of two

plane circles, or a Blaschke surface at a point o ∈ E4, diffeomorphic to a real

projective plane, and up to a motion, it is immersed in E4 by

(
1

κ
sinκs cos θ,

1

κ
sinκs sin θ,

1

κ
(1− cos κs) cos 2θ,

1

κ
(1− cos κs) sin 2θ),

where κ is the Frenet curvature of geodesic through o. The converse is also

true.

9.6. Symmetric spaces in Euclidean space with simple geodesics.

Submanifolds in Euclidean space with finite type geodesics were studied by

Chen, Deprez and Verheyen (1987). They proved the following results:

(a) An isometric immersion of a compact symmetric space M into a Eu-

clidean space is of finite type if and only if each geodesic of M is mapped

into curves of finite type;
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(b) if f : Sn → Em is an isometric immersion of a unit n-sphere into Em,

then the immersion maps all geodesics of Sn into 1-type or 2-type curves if

and only if the immersion is of finite type with order {1}, {2}, {3}, {1, 2}, {1, 3}
or {2, 4};

(c) if f : FPn → Em is an isometric immersion of a real, complex, or

quaternionic projective space, or the Cayley plane into Em, then the immer-

sion maps all geodesics of FPn into 1-type or 2-type curves if and only if

the immersion is of finite type with order {1}, {2} or {1, 2};
(d) a finite type isometric immersion of a unit n-sphere in Em of order

{1, 2} is a diagonal immersion of the first and the second standard immer-

sions of the n-sphere;

(e) a finite type isometric immersion of a unit n-sphere in Em of order

{1, 3} for which all geodesics are mapped to W -curves is a diagonal immer-

sion of the first and the third standard immersions of the n-sphere; and

(f) there exist finite type isometric immersions of the unit 2-sphere of

order {1, 3} or of order {2, 4} which are not diagonal immersions.

Chen, Deprez and Verheyen (1987) also studied an isometric immersion

f : M → Em which satisfies the condition: there is a point x0 ∈ M such

that every geodesic through x0 is mapped to a circle.

They proved the following results:

(g) Let f : Sn → Em be an isometric embedding. If there exists a point

x0 ∈ Sn such that f maps all geodesics of Sn through x0 to 1-type curves,

then the embedding is the first standard embedding of Sn into a totally

geodesic En+1;

(h) Let f : FPn → Em be a finite type isometric immersion. If there

exists a point x0 ∈ FPn such that the immersion maps all geodesics of

FPn through x0 to 1-type curves, then the immersion is the first standard

embedding of FPn; and

(i) up to motions, the set of isometric immersions of a projective n-space

FPn (F = R,C or H) into Euclidean m-space which map all geodesics

through a fixed point xo ∈ FPn to circles is in one-to-one correspondence

with the set of isometric immersions of FPn−1 into Sm−dn−1, where d is 1, 2

or 4, according to the field F is real, complex or quaternion.
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10. Hypersurfaces of real space forms

Complete simply-connected Riemannian n-manifolds of constant curva-

ture are frame homogeneous, that is, for any pair of points x and y and

any orthonormal frames u at x and v at y there is an isometry φ such that

φ(x) = y and φ∗ maps u onto v. Such Riemannian manifolds are Euclidean

n-space En, Riemannian n-spheres and real hyperbolic n-spaces.

Consider an isometrically immersed orientable hypersurface M in a com-

plete simply-connected real space form Rn+1(c) of constant curvature c with

a unit normal vector field ξ. We simply denote the shape operator Aξ at ξ

by A.

Let

κ1 ≤ κ2 ≤ · · · ≤ κn

denote the n eigenvalues of A at each point x of M . Then each κi, (1 ≤ i ≤
n), is a continuous function on M , and is called a principal curvature of M .

For each x ∈ M and each κ ∈ {κ1, . . . , κn}, we define a subspace Dx(κ)

of TxM by

(10.1) Dx(κ) = {X ∈ TxM : AX = κ(x)X}.

Let D(κ) assign each point x ∈M the subspace Dx(κ).

The following basic results are well-known: If dimDx(κ) is constant on

M , say m, then

(1) κ is a differentiable function on M ;

(2) D(κ) is a differentiable distribution on M ;

(3) D(κ) is completely integrable, called the principal foliation;

(4) If m ≥ 2, then κ is constant along each leaf of D(κ);

(5) If κ is constant along a leaf L of D(κ), then L is locally an m-sphere of

Rn+1(c), where an m-sphere means a hypersphere of an (m+1)-dimensional

totally geodesic submanifold of Rn+1(c).

Suppose that a continuous principal curvature κ has constant multiplicity

m on an open subset U ⊂ M . Then κ and its principal foliation D(κ) are

smooth on U . The leaves of this principal foliation are the curvature surfaces

corresponding to κ on U . The principal curvature κ is constant along each

of its curvature surfaces in U if and only if these curvature surfaces are open

subsets of m-dimensional Euclidean spheres or planes. The focal map fκ
corresponding to κ is the map which maps x ∈ M to the focal point fκ(x)

corresponding to κ, that is,

fµ(x) = f(x) +
1

µ(x)
ξ(x),
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where ξ is a unit normal vector field. The principal curvature κ is constant

along each of its curvature surfaces in U if and only if the focal map fµ
factors through an immersion of the (n− 1−m)-dimensional space of leaves

M/D(κ) into En.

10.1. Einstein hypersurfaces. A Riemannian manifold is said to be Ein-

stein if the Ricci tensor is a constant multiple of the metric tensor, that is

Ric = ρg, where ρ is a constant.

A. Fialkow (1938) classified Einstein hypersurfaces in real space forms.

Let Mn, n > 2, be an Einstein hypersurface in Rn+1(c̄). Then

(a) if ρ > (n − 1)c̄, then M is totally umbilical, hence, M is also a real

space form;

(b) if ρ = (n − 1)c̄, then the type number, t(x) = rankAx, is ≤ 1 for all

x ∈M and M is of constant curvature c̄; and

(c) if ρ < (n− 1)c̄, then c̄ > 0, ρ = (n− 2)c̄, and M is locally a standard

product embedding of Sp
((

n−2
p−1

)
c̄
)
× Sn−p

((
n−2
n−p−1

)
c̄
)
, where 1 < p <

n− 1.

In particular, complete Einstein hypersurfaces of En+1 are hyperspheres,

hypercylinders over complete plane curves and hyperplanes; and complete

Einstein hypersurfaces in Sn+1 are the small hyperspheres, the great hyper-

spheres and certain standard product embedding of products of spheres.

P. Ryan (1971) studied hypersurfaces of real space forms with parallel

Ricci tensor and proved that if a hypersurface M of dimension > 2 in a real

space form of constant curvature c is not of constant curvature c and if it has

parallel Ricci tensor, then M has at most two distinct principal curvatures.

Furthermore, if c 6= 0, then both principal curvatures are constant.

10.2. Homogeneous hypersurfaces. Let M be a homogeneous Riemann-

ian n-manifold isometrically immersed into an (n+1)-dimensional complete

simply-connected real space form Rn+1(c). Then

(1) if c = 0, thenM is isometric to the hypercylinder Sk×En−k [Kobayashi

1958, Nagano-Takahashi 1960];

(2) if c > 0, then M is represented as an orbit of a linear isotropy group

of a Riemannian symmetric space of rank 2; and M is isometric to E2 or

else is given as an orbit of a subgroup of the isometry group of Rn+1(c)

[Hsiang-Lawson 1971]; and
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(3) if c < 0, then M is isometric to a standard product embedding of En,

Sk ×Hn−k, or a 3-dimension group manifold

B =



et 0 x

0 e−t y

0 0 1


 : x, y, t ∈ R

with the metric ds2 = e−2tdx2 + e2tdy2 + dt2 [Takahashi 1971].

Each of the hypersurfaces above except E2 in (2) and B in (3) is given as

an orbit of a certain subgroup of the isometry group of Rn+1(c).

10.3. Isoparametric hypersurfaces. The history of isoparametric hyper-

surfaces can be traced back to 1918 of the work of E. Laura (1918) and of

C. Somigliana (1918) on geometric optics. T. Levi-Civita (1873–1941) and

B. Segre (1903–1977) studied such hypersurfaces of Euclidean space during

the period of 1924–1938. A major progress on isoparametric hypersurfaces

was made by É. Cartan during the period of 1938–1940.

A hypersurface M of a Riemannian manifold M̃ is called isoparametric if

M is locally defined as the level set of a function φ on (an open set of) M̃

with property: dφ ∧ d||dφ||2 = 0 and dφ ∧ d(∆φ) = 0.

A hypersurface M of a complete simply-connected Riemannian manifold

Rn+1(c) of constant curvature c is isoparametric if and only ifM has constant

principal curvatures. Each isoparametric hypersurface of Rn+1(c) determines

a unique complete embedded isoparametric hypersurface in Rn+1(c). Thus,

every open piece of an isoparametric hypersurface can be extended to a

unique complete isoparametric hypersurface.

10.3.1. Isoparametric family of hypersurfaces

Let f :M → Rn+1(c) be a hypersurface and ξ is a unit normal vector field

of f . For each t > 0, let ft(x), x ∈M , be the point of Rn+1(c) on the geodesic

from f(x) starting in the direction ξ at x which has geodesic distance t from

f(x). In the Euclidean case (c = 0), we have ft(x) = f(x) + tξx. In the

spherical case (c = 1), we have ft(x) = (cos t)f(x) + (sin t)ξx by considering

Sn+1 as the unit sphere in En+2. In all cases, ft is an immersion of M in

Rn+1(c) for sufficiently small t.

In Rn+1(c) an isoparametric family of hypersurfaces is a family of hyper-

surfaces ft : M → Rn+1(c) obtained from a hypersurface f : M → Rn+1(c)

with constant principal curvatures.

10.3.2. Cartan’s basic identity
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The starting point of Cartan’s work on isoparametric hypersurfaces is

the following basic identity concerning all the distinct constant principal

curvatures a1, . . . , ag with their respective multiplicities ν1, . . . , νg.

For g ≥ 2, Cartan’s basic identity is the following: For each i, 1 ≤ i ≤ g,

we have

(10.2)
∑

j 6=i

νj
c+ aiaj
ai − aj

= 0, 1 ≤ j ≤ g.

Cartan’s basic identity holds for all c, positive, negative and zero.

K. Nomizu (1975) observed that the focal set of an isoparametric hyper-

surface in a real space form admits a submanifold structure locally, and that

the mean curvature vector of this submanifold at ft(x) can always be ex-

pressed as a multiple of ξx. Moreover, if ft(x) is a focal point corresponding

to a principal curvature κ, then the multiple is the left hand side of (10.2).

Thus, Cartan’s identity is equivalent to the minimality of the focal varieties.

10.3.3. Isoparametric hypersurfaces in Euclidean space

In the Euclidean case (c = 0), Cartan’s identity implies g ≤ 2. If g = 2,

one of the principal curvatures must be 0.

Isoparametric hypersurfaces of a Euclidean (n+1)-space En+1 are locally

hyperspheres, hyperplanes or a standard product embedding of Sk × En−k.

This result was proved in 1937 by T. Levi-Civita for n = 2 and in 1938

by B. Segre for arbitrary n.

10.3.4. Isoparametric hypersurfaces in hyperbolic space

Cartan’s basic identity also yields g ≤ 2 in the case c < 0. In the hy-

perbolic space Hn+1(−1), É. Cartan proved that the number of the distinct

principal curvatures of an isoparametric hypersurface is one or two. An

isoparametric hypersurface in hyperbolic space is totally umbilical or locally

a standard product embedding of Sk ×Hn−k.

10.3.5. Isoparametric hypersurfaces in spheres

Cartan’s basic identity does not restrict g if c > 0. In fact, let θ be any

number such that sin θ 6= 0 and let g be any positive integer. Set

λk = cot

(
θ +

k − 1

g
π

)

for k = 1, . . . , g. Then such a collection of λk with equal multiplicities

satisfies (10.2).

One major part of Cartan’s work on isoparametric hypersurfaces is to give

an algebraic method of finding an isoparametric family of hypersurfaces in

Sn+1 with g distinct principal curvatures with the same multiplicity. His
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result is that such a family is defined by

Mt = {x ∈ Sn+1 : φ(x) = cos gt},

where φ is a harmonic homogeneous polynomial of degree g on En+2 satis-

fying

||dφ||2 = g2(x21 + · · ·+ x2n+2)
g−1,

where (x1, · · · , xn+2) are the Euclidean coordinates on En+2.

In Sn+1 an isoparametric hypersurface with g = 2 is locally a standard

product embedding of the product of two spheres with appropriate radii.

Cartan (1939a) proved that if g = 3, then n = 3, 6, 12, or 24; and the multi-

plicities are the same in each case. Moreover, the isoparametric hypersurface

must be a tube of constant radius over a standard Veronese embedding of a

projective plane FP 2 into S3m+1, where F is the division algebra of reals,

complex numbers, quaternions, or Cayley numbers for the (common) mul-

tiplicity m = 1, 2, 4, 8, respectively. Thus, up to congruence, there is only

one such family for each value of m. These isoparametric hypersurfaces with

three principal curvatures are known as Cartan hypersurfaces. If g = 4 and

if the multiplicities are equal, then n = 4 or 8.

For each of the above cases, Cartan gave an example of a hypersurface with

constant principal curvatures. All the compact isoparametric hypersurfaces

in Sn+1 given by Cartan are homogeneous; indeed, each of them is the orbit

of a certain point by an appropriate closed subgroup of the isometry group

of Sn+1.

H. F. Münzner(1980,1981) showed that a parallel family of isoparametric

hypersurfaces in Sn always consists of the level sets in Sn of a homogeneous

polynomial defined on En+1.

R. Takagi and T. Takahashi (1972) determined all the orbit hypersurfaces

in Sn+1. They showed that the number of distinct principal curvatures of a

homogeneous isoparametric hypersurfaces in a sphere is 1, 2, 3, 4, or 6, and

they listed the possible multiplicities. The list of homogeneous isoparametric

hypersurfaces of Takagi and Takahashi contains five different classes of orbit

hypersurfaces in Sn+1 each with four distinct principal curvatures not of the

same multiplicity. It also contains an example with g = 6 and m1 = m2 = 1,

and one with g = 6 andm1 = m2 = 2. H. Ozeki and M. Takeuchi (1975,1976)

produced two infinite series of isoparametric families which are not on the list

of Takagi and Takahashi and are, therefore, inhomogeneous. These examples

all have four distinct principal curvatures.

H. F. Münzner (1980,1981) proved that isoparametric hypersurfaces in

Sn+1 with g distinct principal curvatures exist only when g = 1, 2, 3, 4, or 6.
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Through a geometric study of the focal submanifolds and their second fun-

damental forms, Münzner showed that ifM is an isoparametric hypersurface

with principal curvatures cot θi, 0 < θ1 < · · · < θg < π, with multiplicities

mi, then

θk = θ1 +
k − 1

g
π, 1 ≤ k ≤ g,

and the multiplicities satisfy

mi = mi+2 (subscripts mod g).

As a consequence, if g is odd, then all of the multiplicities must be equal;

and if g is even, then m1 = m3 = · · · = mg−1 and m2 = m4 = · · · = mg.

Moreover, H. F. Münzner (1981) proved that if a hypersurfaceM in Sn+1

splits Sn+1 into two disks bundles D1 and D2 over compact manifolds with

fibers of dimensions m1 +1 and m2 +1 respectively, then dimH∗(M ;Z2) =

2h, where h is 1, 2, 3, 4 or 6. In the case that M is an isoparametric hyper-

surface, M splits Sn+1 into two disk bundles such that the numbers m1 and

m2 coincide with the multiplicities of the principal curvatures of M .

Although isoparametric hypersurfaces with four principal curvatures have

not been completely classified, there is a large class of examples due to D.

Ferus, H. Karcher and Münzner (1981). In fact, Ferus, Karcher and Münzner

constructed isoparametric hypersurfaces with four distinct principal curva-

tures using representations of Clifford algebras, which include all known

examples, except two. They are able to show geometrically that many of

their examples are not homogeneous. The isoparametric hypersurfaces which

belong to the Clifford series discovered by Ferus, Karcher and Münzner are

the regular level sets of an isoparametric function on S2k−1 determined by

an orthogonal representation of the Clifford algebra Cm−1 on Ek.

J. Dorfmeister and E. Neher (1983) extended the work of Ferus, Karcher

and Münzner to a more algebraic setting involving triple systems. The topol-

ogy of isoparametric hypersurfaces of the Clifford examples have been stud-

ied by Q. M. Wang (1988). Among others he showed that there exist non-

congruent hypersurfaces in two different isoparametric families which are

diffeomorphic.

S. Stolz (1997) proved that the only possible triples (g,m1,m2) with g = 4

are exactly those that appear either in the homogeneous examples or those

appear in the Clifford examples of Ferus, Karcher and Münzner.

Münzner (1981) proved that m1 = m2 always hold in the case g = 6. U.

Abresch (1983) showed that the common multiplicity of m1 and m2 must be

1 or 2. Münzner’s computation also yields that the focal submanifolds must

be minimal.
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J. Dorfmeister and E. Neher (1983) proved that every compact isopara-

metric hypersurface in the sphere with g = 6 and m1 = m2 = 1 must be

homogeneous. In particular, an isoparametric hypersurface in S7 with g = 6

is an orbit of the isotropy action of the symmetric space G2/SO(4), where

G2 is the automorphism group of the Cayley algebra. A geometric study of

such isoparametric hypersurfaces in S7 was made in [Miyaoka 1993]. In fact,

Miyaoka has shown that a homogeneous isoparametric hypersurfaceM in S7

can be obtained as the inverse image under the Hopf fibration ψ : S7 → S4

of an isoparametric hypersurface with three principal curvatures of multi-

plicity one in S4. She also showed that the two focal submanifolds of M are

not congruent, even though they are lifts under ψ−1 of congruent Veronese

surfaces in S4. Thus, these focal submanifolds are two noncongruent mini-

mal taut homogeneous embeddings of RP 2 × S3 in S7. Fang (1995) studied

the topology of isoparametric hypersurfaces with six principal curvatures.

Peng and Hou (1989) gave explicit forms for the isoparametric polynomials

of degree six for the homogeneous isoparametric hypersurfaces with g = 6.

Recently, R. Miyaoka (1998) proves that all isoparametric hypersurfaces in

the sphere with g = 6 are homogeneous.

A smooth immersion f : M → Em from a compact manifold M into a

Euclidean m-space is called taut if every nondegenerate Euclidean squared

distance function has the minimum number of critical points. T. E. Cecil and

P. Ryan (1979a) showed that all isoparametric hypersurfaces and their focal

submanifolds in the spheres are taut, and every isoparametric hypersurface

in a sphere is totally focal, that is, every squared distance function of the

hypersurfaces is either nondegenerate or has only degenerate critical points.

S. Carter and A. West (1982) proved that every totally focal hypersurface

in the sphere is isoparametric.

R. Miyaoka (1982) proved that if a complete hypersurface in Sn+1 has

constant mean curvature and three non-simple principal curvatures, then

it is isoparametric. B. Y. Chen (1984b) proved that an isoparametric hy-

persurface in the sphere is either of 1-type or of 2-type. S. Chang (1993)

showed that a compact hypersurface in S4 with constant scalar curvature

and constant mean curvature is isoparametric.

M. Kotani (1985) proved that if M is an n-dimensional compact homoge-

neous minimal hypersurface in a unit sphere with g distinct principal cur-

vatures, then the first nonzero eigenvalue λ1 of the Laplacian on M is n

unless g = 4. B. Solomon (1990a,1990b) determined the spectrum of the

Laplacian operator on isoparametric minimal hypersurfaces of spheres with

g = 3. All such hypersurfaces are algebraic and homogeneous. Solomon
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(1992) also studied the spectrum of the Laplacian on quartic isoparametric

hypersurfaces in the unit sphere. These are hypersurfaces with g = 4. J. H.

Eschenburg and V. Schroeder (1991) investigated the behavior of the Tits

metric on isoparametric hypersurfaces. B. Wu (1994) showed that for each n

there are only finitely many diffeomorphism classes of compact isoparamet-

ric hypersurfaces of Sn+1 with four distinct principal curvatures. J. K. Peng

and Z. Z. Tang (1996) derived an explicit formula for the Brouwer degree of

the gradient map of an isoparametric function f in terms of the multiplicities

of the principal curvatures of the isoparametric hypersurface defined by f .

They applied this formula to determine the Brouwer degree in a variety of

examples.

10.4. Dupin hypersurfaces. .

10.4.1. Cyclide of Dupin

C. Dupin (1784–1873) defined in 1922 a cyclide to be a surface M in E3

which is the envelope of the family of spheres tangent to three fixed spheres.

This was shown to be equivalent to requiring that both sheets of the focal

set degenerated into curves. The cyclides are equivalently characterized by

requiring that the lines of curvatures in both families be arcs of circles or

straight lines. Thus, one can obtain three obvious examples: a torus of

revolution, a circular cylinder and a circular cone. It turns out that all

cyclides can be obtained from these three by inversions in a sphere in E3.

The cyclides were studied by many prominent mathematicians of the last

century including A. Cayley (1821–1895), J. G. Darboux (1842–1917), F.

Klein (1849–1925), J. Liouville (1809–1882) and J. C. Maxwell (1931–1879).

A detailed treatment of the cyclides can be found in the book [Fladt-Baur

1975]. A recent survey on Dupin hypersurfaces was given in [Cecil 1997].

10.4.2. Proper Dupin hypersurfaces

The study of Dupin hypersurfaces was initiated by T. E. Cecil and P. J.

Ryan in 1978. Let M be a hypersurface in a complete simply-connected real

space form Rn+1(c). A submanifold S of M is called a curvature surface if,

at each point x ∈ S, the tangent space TxS is a principal space, that is, it is

an eigenspace of the shape operator.

If a principal curvature κ has constant multiplicity m on some open set

U ⊂M , then the corresponding distribution of principal spaces is a foliation

of rank m, and the leaves of this principal foliation are curvature surfaces.

Furthermore, if the multiplicity m of κ is greater than one, then κ is constant

along each of these curvature surfaces.
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A hypersurface M is called a Dupin hypersurface if, along each curvature

surface, the corresponding principal curvature is constant. A Dupin hyper-

surface is called proper if each principal curvature has constant multiplicity

on M , that is, the number of distinct principal curvatures is constant.

In E3 the only proper Dupin hypersurfaces are spheres, planes, and the

cyclides of Dupin. There exist many examples of Dupin hypersurfaces which

are not proper, for instance, a tube M of sufficiently small constant radius

r in E4 over a torus of revolution T 2 ⊂ E3 ⊂ E4, since there are only two

distinct principal curvatures on the set T 2×±{r} but three distinct principal
curvatures elsewhere on M .

G. Thorbergsson (1983a) proved that the possible number g of distinct

principal curvatures of a compact embedded proper Dupin hypersurface in

En+1 is 1, 2, 3, 4 or 6; the same as for an isoparametric hypersurface. Thor-

bergsson’s result implies that compact Dupin hypersurfaces in a sphere sat-

isfy the same periodicity mi = mi+2 (subscripts mod g) for the multiplicities

of the principal curvatures, just like isoparametric hypersurfaces.

S. Stolz (1997) proved that the possible multiplicities m1,m2 of compact

proper Dupin hypersurfaces are exactly the same as in the isoparametric

case.

10.4.3. Local construction of Dupin hypersurfaces

U. Pinkall (1985a) gave four local constructions for obtaining a proper

Dupin hypersurface with g + 1 distinct principal curvatures from a lower

dimensional proper Dupin hypersurface with g distinct principal curvatures.

Using these Pinkall proved that there exists a proper Dupin hypersurface in

Euclidean space with an arbitrary number of distinct principal curvatures

with any given multiplicities.

Pinkall’s construction is done by using the following basic constructions:

Start with a Dupin hypersurfaceW n−1 in En and then consider En as the

linear subspace En × {0} in En+1. Then the following constructions yield a

Dupin hypersurface M in En+1:

(1) Let M be the cylinder W n−1 × E1 in En+1;

(2) LetM be the hypersurface in En+1 obtained by rotatingW n−1 around

an axis En−1 ⊂ En;

(3) Project W n−1 stereographically onto a hypersurface V n−1 ⊂ Sn ⊂
En+1. Let M be the cone over V n−1 in En+1;

(4) Let M be a tube in En+1 around W n−1.

These constructions give rise to a new principal curvature of multiplicity

one which is constant along its lines of curvature. The other principal cur-

vatures are determined by the principal curvatures of W n−1, and the Dupin
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property is preserved for these principal curvatures. These construction can

be easily be generalized to produce a new principal curvature of multiplicity

m by considering En as a subset of En × Em rather than En × E1. These

constructions only yield a compact proper Dupin hypersurface if the original

manifoldW n−1 is itself a sphere. Otherwise, the number of distinct principal

curvatures is not constant on a compact manifold obtained in this way.

A Dupin hypersurface which is obtained as the result of one of the four

constructions is said to be reducible. A proper Dupin hypersurface which

does not contain any reducible open subset is called locally irreducible.

10.4.4. Dupin hypersurfaces with 2, 3 or 4 distinct principal cur-

vatures

LetM be a complete proper Dupin hypersurface in En+1 with two distinct

principal curvatures. If one of the principal curvatures is identically zero, M

is a standard product embedding of Sk(r) × En−k, where Sk(r) is a round

sphere in a Euclidean subspace Ek+1 orthogonal to En−k. Otherwise, T. E.

Cecil and P. Ryan (1985) proved that a compact cyclide M of characteristic

(k, n−k) embedded in Sn+1 must beMöbius equivalent to a standard product

embedding of two spheres Sk(r)×Sn−k(s) ⊂ Sn+1(t), r2+s2 = t2. The proof

of Cecil and Ryan used the compactness assumption in an essential way,

whereas the classification of Dupin surfaces in E3 obtained in the nineteenth

century does not need such an assumption. Using Lie sphere geometry of

S. Lie (1842–1899), Pinkall (1985a) proved that every cyclide of Dupin is

contained in a unique compact connected cyclide, and any two cyclides of

the same characteristic are locally Lie equivalent.

If the pole of the projection does not lie on Sk(r)× Sn−k(s), M is called

a ring cyclide. Otherwise, M is noncompact and is called a parabolic ring

cyclide. In both cases, the two sheets of the focal set are a pair of focal

conics.

Complete proper Dupin hypersurfaces embedded in En+1 with two dis-

tinct principal curvatures were completely classified by Cecil and Ryan (1985).

They proved that if such a hypersurface is compact, it is a ring cyclide; if

such a hypersurface is noncompact and one of the two distinct principal

curvatures is zero identically, then it is a standard product embedding of

Sk × En−k or a parabolic ring cyclide.

Pinkall (1985b) gave local classification of Dupin hypersurfaces with three

distinct principal curvatures in E4 up to Lie-equivalence, by using the method

of moving frames. Niebergall (1991) proved that every proper Dupin hy-

persurface in E5 with three distinct principal curvatures at each point is

reducible.
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T. E. Cecil and G. R. Jensen (1998) proved that if a proper Dupin hy-

persurface in En with three distinct principal curvatures does not contain a

reducible open subset, then it is equivalent by a Lie sphere transformation

to an isoparametric hypersurface in a sphere Sn.

A necessary condition on a Dupin hypersurface with at least 4 distinct

principal curvature to be Lie equivalent to a piece of an isoparametric hy-

persurface is the constancy of the Lie curvatures. Niebergall (1992) gave a

local classification of proper Dupin hypersurfaces in E5 with four distinct

principal curvatures which are Lie equivalent to isoparametric hypersurfaces.

He showed that if the Lie curvature of the hypersurface M is constant and

a condition on certain half-invariants are satisfied, then M is Lie equivalent

to an isoparametric hypersurface. Cecil and Jensen (1997) proved that the

condition on the half-invariants can be removed. In 1989, R. Miyaoka gave

necessary and sufficient conditions for a compact embedded Dupin hypersur-

face with four or six principal curvatures to be Lie equivalent to an isopara-

metric hypersurface. She showed that a compact proper Dupin hypersurface

embedded in En+1 is Lie equivalent to an isoparametric hypersurface if it has

constant Lie curvatures and it satisfies certain global conditions regarding

the intersections of leaves of its various principal foliations.

10.4.5. Dupin hypersurfaces and Lie sphere transformations

The classes of Dupin and proper Dupin hypersurfaces in Sn+1 are in-

variant under conformal transformations of Sn+1 and under stereographic

projection from Sn+1 to En+1 (cf. [Cecil-Ryan 1985]). U. Pinkall (1985a)

proved that they are invariant under parallel transformations; and thus un-

der the group of Lie sphere transformations. Hence, Dupin hypersurfaces

are most naturally studied in the Lie geometric framework.

A Lie sphere transformation is a projective transformation of RPn+2

which takes the Lie hyperquadric Qn+1 into itself, where Qn+1 in RPn+2

is defined by

−x20 + x21 + · · · + x2n+1 − x2n+2 = 0

in terms of homogeneous coordinates.

In terms of the geometry of En a Lie sphere transformation preserves the

family of oriented spheres and planes. The group of Lie sphere transforma-

tions is isomorphic to O(n + 1, 2)/{±I}, where O(n + 1, 2) is the group of

orthogonal transformations of En+3
2 . The group of Lie sphere transforma-

tions contains the group of conformal transformations of Sn+1 as a proper

subgroup.
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A proper Dupin hypersurface with one principal curvature at each point

is, of course, totally umbilical and must, therefore, be an open subset of a

great or small sphere.

Cecil and Ryan (1978) showed that a compact proper Dupin hypersurface

in Sn+1 with two distinct principal curvatures must be a ring cyclide, that is,

the image under a conformal transformation of Sn+1 of a standard product of

two spheres. Pinkall (1985) was able to drop the assumption of compactness

and showed that any proper Dupin hypersurface in Sn+1 with two distinct

principal curvatures is the image under a Lie sphere transformation of an

open subset of a standard product embedding of the product of two spheres.

It was conjectured by T. E. Cecil and P. Ryan that every compact proper

Dupin hypersurface in Sn+1 is Lie equivalent to an isoparametric hypersur-

face. As noted above, this is true for g equal to 1 or 2.

R. Miyaoka (1984a) proved that a compact embedded proper Dupin hyper-

surface in a real space form with three principal curvatures is Lie equivalent

to an isoparametric hypersurface.

Cecil and Ryan’s conjecture has been shown to be false by U. Pinkall

and G. Thorbergsson (1989a) and also independently by R. Miyaoka and

T. Ozawa around 1988 who have produced different counterexamples to the

conjecture.

For a proper Dupin hypersurface with g = 4, one can order the principal

curvatures so that ν1 < ν2 < ν3 < ν4, the Lie curvature Ψ is defined to be

the cross ratio:

10.3 Ψ =
(ν4 − ν3)(ν1 − ν2)

(ν4 − ν2)(ν1 − ν3)
.

The examples of Miyaoka and Ozawa involve the Hopf fibration of S7 over

S4. Let E8 = H×H, where H is the division ring of quaternions. The Hopf

fibering of the unit sphere S7 in E8 over the unit sphere S4 in E5 = H ×E1

is given by

(10.4) ψ(u, v) = (2uv̄, |u|2 − |v|2), u, v ∈ H.

Miyaoka and Ozawa showed that if M3 is a compact proper Dupin hy-

persurface embedded in S4, then ψ−1(M3) is a proper Dupin hypersurface

embedded in S7. Furthermore, if M3 has g distinct principal curvatures,

then ψ−1(M3) has 2g distinct principal curvatures. IfM3 is not isoparamet-

ric, then the Lie curvature of ψ−1(M3) is not constant, and so ψ−1(M3) is

not Lie equivalent to an isoparametric hypersurface.

The examples of Pinkall and Thorbergsson are given as follows:
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Let E2n+2 = En+1×En+1 and let S2n+1 denote the unit sphere in E2n+2.

The Stiefel manifold V of orthogonal 2-frames in En+1 of length 1/
√
2 is

given by

V = {(u, v) ∈ E2n+2|u · v = 0, |u| = |v| = 1/
√
2}.

The submanifold V lies in S2n+1 with codimension 2, so V has dimension

2n− 1. Let α and β be positive real numbers satisfying α2 +β2 = 1, and let

Tα,β be the linear transformation of E2n+2 defined by

Tα,β(u, v) =
√
2(αu, βv).

Then the image Wα,β = Tα,βV is contained in S2n+1 and it is proper Dupin

with g = 4. On can show that the Lie curvature is not constant on Wα,β if

α 6= 1/
√
2. ThusWα,β is not Lie equivalent to an isoparametric hypersurface

if α 6= 1/
√
2.

If M3 is an isoparametric hypersurface with k principal curvatures, the

inverse image ψ−1(M3) is an isoparametric hypersurface with 2k principal

curvatures in S7. When k = 3, M3 must be a tube over a Veronese surface,

and so the unique family of isoparametric hypersurfaces with g = 6 in S7 has

a precise geometric characterization in terms of ψ. Miyaoka (1993) showed

that in this case ψ−1(M3) is homeomorphic toM3×S3 and it has a foliation

whose leaves are isoparametric hypersurfaces with three principal curvatures

of multiplicity one. The two focal submanifolds of ψ−1(M3) are obtained

from the two focal submanifolds of M3 via ψ−1. However, although the two

focal submanifolds of M3 are Veronese surfaces which are congruent in S4,

the two focal submanifolds of ψ−1(M3) are not congruent in S7. Thus, they

are two noncongruent minimal taut homogeneous embeddings of RP 2 × S3

into S7.

Pinkall and Thorbergsson (1989) introduced the Möbius curvature which

can distinguish among the Lie equivalent parallel hypersurfaces in a family

of isoparametric hypersurfaces. C. P. Wang (1992) applied the method of

moving frames to determine a complete set of Möbius invariants for sur-

faces in E3 without umbilic points and for hypersurfaces in E4 with three

distinct principal curvatures at each point. He then applied this result to

derive a local classification of Dupin hypersurfaces in E4 with three principal

curvatures up to Möbius transformation.

Ferapontov (1995a,1995b) studied the relationship between Dupin and

isoparametric hypersurfaces and Hamiltonian systems of hydrodynamic type.

10.4.6. Tubes as Dupin hypersurfaces
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M. Takeuchi (1991) studied Dupin hypersurfaces in real space forms which

are tubes around symmetric submanifolds in Rn+1(c) and proved the follow-

ing: Let M be a non-totally geodesic symmetric submanifold of Rn+1(c)

of codimension > 1. Then the ε-tube Tε(M) around M is a proper Dupin

hypersurface if and only if either

(i) M is a complete extrinsic sphere of Rn+1(c) of codimension > 1; or

(ii)M is one of the following symmetric submanifolds of the n-dimensional

sphere Sn:

(ii-a) the projective plane FP 2 ⊂ S3d+1, d = dimR F , over F = R,C, the

quaternions H, or octonions O;

(ii-b) the complex quadric Q3 ⊂ S9;

(ii-c) the Lie quadric Qm+1 ⊂ S2m+1, m ≥ 2;

(ii-d) the unitary symplectic group Sp(2) ⊂ S15.

In case (i), Tε(M) is a Dupin cyclide, that is, a proper Dupin hypersurface

with two distinct principal curvatures, but it is not isoparametric. In case

(ii), Tε(M) is a homogeneous isoparametric hypersurface with three or four

distinct principal curvatures, and it is irreducible in the sense of Pinkall.

10.4.7. Topology of Dupin hypersurfaces

G. Thorbergsson (1983a) proved the following:

(1) a compact embedded proper Dupin hypersurfaceM inRn+1(c) satisfies

dimH∗(M ;Z2) = 2g, where g is the number of distinct principal curvatures;

and

(2) a compact embedded proper Dupin hypersurfaceM divides Sn+1 into

two ball bundles.

By using (2), Thorbergsson showed that g = 1, 2, 3, 4 or 6.

The integral homology, fundamental group and rational homotopy type

of a compact Dupin hypersurface in the sphere were determined in [Grove-

Halperin 1987].

In particular, K. Grove and S. Halperin proved that if M is a compact

Dupin hypersurface of Sn+1, then

(1) there are two integers k, ℓ (possible equal) such that each principal

curvature has multiplicity k or ℓ;

(2) the integral homology of M determines k, ℓ, and the number g of prin-

cipal curvatures. Conversely, g, k and ℓ determine the fundamental group,

integral homology, and rational homotopy type of M ;

(3) the integers g, k, ℓ satisfy the following restrictions:

(3-a) if k 6= ℓ, then g = 2 or 4, and k and ℓ are each the multiplicity of

g/2 principal curvatures;
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(3-b) if g = 3, then k = 1, 2, 4 or 8,

(3-c) if g = 4 and k = ℓ, then k = 1 or 2; furthermore, if g = 4 and

k > ℓ ≥ 2, then k + ℓ is odd,

(3-d) if g = 6, then k = 1 or 2.

It is immediate from the above results that n = 1
2 (k+ ℓ)g. Thus, g = 1 if

and only if k+ ℓ > n; g = 2 if and only if k+ ℓ = n; and g = 3, 4 or 6 if and

only if k + ℓ < n.

10.4.8. Dupin hypersurfaces of T1S
n+1

Let T1S
n+1 denote the unit tangent bundle of Sn+1. Consider T1S

n+1 as

the (2n+1)-dimensional submanifold of Sn+1 × Sn+1 ⊂ En+2 ×En+2 given

by

T1S
n = {(x, ξ) : |x| = 1, |ξ| = 1, 〈x, ξ〉 = 0}.

Then T1S
n+1 admits a canonical contact 1-form ω induced from the canon-

ical almost complex structure on Cn+2 = En+2 ×En+2; thus, ω ∧ (dω)n 6= 0

everywhere. The contact structure gives rise to a codimension one distribu-

tion on T1S
n+1 which has integrable submanifolds of dimension n, but none

of higher codimension. An n-dimensional integrable submanifold of T1S
n+1

is called a Legendre submanifold.

Pinkall (1985a) investigated the Legendre submanifold of T1S
n+1 that

he called Lie geometric hypersurfaces of the sphere Sn+1. Each oriented

hypersurfaceM of Sn+1 gives rise to a Legendre submanifold LM of T1S
n+1

by associating to M the set LM of oriented unit normal vectors along M .

The image of a Legendre submanifold is called a wavefront. Pinkall showed

how the basic theory of hypersurfaces can be extended to wavefronts. A

contact transformation is a diffeomorphism F of T1S
n+1 which satisfies the

property dF (kerω) = kerω. In particular, if F leaves the class of Legendre

submanifolds that come from lifting an oriented hypersurface of Sn+1 invari-

ant, then F is called a Lie sphere transformation. The class of transforma-

tions of Sn+1 that map spheres to spheres are called Möbius transformations;

they are exactly the conformal automorphisms of Sn+1, according to a result

of J. Liouville.

The classification of Lie sphere transformations is done by mapping the

space of oriented spheres of Sn+1 onto the Lie quadric, that is, the quadric

of type (n+2, 2) in RPn+3. Then the Lie sphere transformations correspond

to the projective transformations of RPn+3 which leave the Lie quadric in-

variant.

Pinkall pointed out that, for each Legendre submanifold L of T1S
n+1, the

concept of a principal direction can be defined at a point p ∈ L as a direction

in which L has higher order contact at p with the lift of a hypersphere, called
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an osculating sphere, to T1S
n+1. Define the principal radii of L at p to be

the radii of the corresponding osculating spheres. The tangent space TpL

then decomposes into E1 ⊕ · · · ⊕ Eg, where each Ei is a maximal subspace

which consists of principal directions. The multiplicity of a principal radius

is nothing but the dimension of the corresponding space Ei.

Let L be a Legendre submanifold of T1S
n+1 and let S be a submanifold

of L such that TpS is one of the spaces E1, . . . , Eg in the decomposition. S

is called a curvature surface of L according to Pinkall (1985a). When L is

a Legendre submanifold of T1S
n+1 such that a continuous principal radius

function is constant along its corresponding curvature surface, then L is

called a Dupin hypersurface [Pinkall 1985a].

In [Pinkall 1985a] a proper Dupin hypersurface is defined as a Dupin

hypersurface L which satisfied the property that the multiplicities of the

principal radii at each point p ∈ L are independent of the point p. Pinkall

showed that the class of proper Dupin hypersurfaces is invariant under the

Lie sphere transformations.

As a generalization of the classical cyclides in E3, Dupin hypersurfaces in

T1S
n+1 with two distinct principal radii at each point are called cyclides of

Dupin. Pinkall classified the cyclides of Dupin in T1S
n+1 and proved that

they are Lie equivalent to the Lagrangian submanifold of T1S
n+1 obtained

by the standard product embedding of Sk(1/
√
2) × Sn−k(1/

√
2), where k

and n− k are the multiplicities of the principal curvatures of the cyclide of

Dupin.

Pinkall (1985b) proved that a Dupin hypersurface with three distinct prin-

cipal curvatures in T1S
4 is either reducible or Lie equivalent to a piece of

Cartan’s isoparametric hypersurface in S4 with three distinct principal cur-

vatures. T. E. Cecil and G. R. Jensen (1998) extended Pinkall’s result and

showed that if a proper Dupin hypersurface in T1S
n+1 contains no reducible

open subset, then it is Lie equivalent to a piece of an isoparametric hyper-

surface with three principal curvatures.

10.5. Hypersurfaces with constant mean curvature. Surfaces of con-

stant mean curvature occur naturally in physics. S. D. Poisson (1781–1840)

showed in 1828 that if a surface in E3 is the interface between two media in

equilibrium, then the mean curvature H of the surface is constant and equal

to H = k(p1 − p2), where p1 and p2 denote the pressures in the media and

λ = 1/k is called the coefficient of surface tension. Furthermore, a hyper-

surface with constant mean curvature is a solution to a variational problem;

namely, with respect to any volume-preserving normal variation of a domain

D in a Euclidean space, the mean curvature of M = ∂D, the boundary of
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D, is constant if and only if the area of M is critical, that is, it satisfies

A′(0) = 0.

10.5.1. Hopf’s problem and Wente’s tori

H. Hopf (1894–1971) proved in 1951 that any immersion of a surface,

topologically a sphere, with constant mean curvature in E3 must be a round

sphere. A. D. Alexandrov (1912– ) showed in 1958 that the only compact

embedded surfaces in E3 of constant mean curvature are round spheres.

That left open the possibility of immersed constant mean curvature surfaces

of higher genus.

Surprisingly, H. C. Wente constructed in 1984 examples of tori of constant

mean curvature in E3. Wente’s examples solved the long-standing problem

of Hopf: Is a compact constant mean curvature immersed surface in E3

necessarily a round sphere?

Wente’s work inspired a string of further research on compact tori of

constant mean curvature [Abresch 1987, Spruck 1986, Pinkall-Sterling 1989].

For instance, U. Abresch classified all constant mean curvature tori having

one family of planar curvature lines.

N. Kapouleas (1991) showed that there also exist compact constant mean

curvature surfaces of every genus ≥ 3 in E3. Also Kapouleas (1991) pro-

vided a general construction method for complete surfaces of constant mean

curvature in E3.

W. Y. Hsiang (1982b,1982c) constructed infinitely many noncongruent im-

mersions of topological n-sphere Sn into En+1 with constant mean curvature

for each n ≥ 3.

10.5.2. Delaunay’s surfaces and generalizations

Delaunay’s surfaces in E3 introduced by C. E. Delaunay (1916–1872) are

surfaces of revolution of constant mean curvature. N. J. Korevaar, R. Kusner

and B. Solomon (1989) proved that, besides the circular cylinder, Delaunay

surfaces are the only doubly-connected surfaces properly embedded in E3

with nonzero constant mean curvature.

W. Y. Hsiang and W. C. Yu (1981) and W. Y. Hsiang (1982a,1982c)

constructed one-parameter family of hypersurfaces of revolution, symmetric

under O(n − 1), having constant mean curvature in the n-sphere Sn(1), in

the Euclidean n-space En, or in the hyperbolic n-space Hn(−1).

10.5.3. Hypersurfaces with K ≤ 0 or with K ≥ 0

T. Klotz and R. Osserman (1966) proved that a complete surface of

nonzero constant mean curvature is a circular cylinder if its Gauss curvature
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K is ≤ 0. B. Smyth and K. Nomizu (1969) showed that the only compact hy-

persurfaces of constant mean curvature in En+1 with non-negative sectional

curvatures are round n-spheres.

B. Smyth and K. Nomizu (1969) also proved that totally umbilical hyper-

surfaces and a standard product embedding of the product of two spheres

are the only compact hypersurfaces of constant mean curvature in Sn+1 with

nonnegative sectional curvature.

Let M be a compact hypersurface of constant mean curvature in Sn+1.

Denote by B =
√
S the norm of the second fundamental form of M in Sn+1.

Z. H. Hou (1997) proved the following:

(1) If B < 2
√
n− 1, M is a small hypersphere Sn(r) of radius r =√

n/(n+B).

(2) If B = 2
√
n− 1, M is either Sn(r0) or S

1(r)× Sn−1(s), where

r20 =
n

n+ 2
√
n− 1

, r2 =
1

1 +
√
n− 1

, s2 =

√
n− 1

1 +
√
n− 1

.

10.5.4. Hypersurfaces of constant mean curvature in hyperbolic

spaces

In the hyperbolic 3-space H3 of sectional curvature −1, the behavior of a

surface of constant mean curvatureH depends on the value of H. If |H| < 1,

the area of the surface grows exponentially. In the case where |H| > 1, the

surface can be compact, like geodesic spheres. In the border case |H| = 1,

there exist examples such that the area grows polynomially, and it is known

that some properties similar to those of minimal surfaces in Euclidean space

hold.

N. Korevaar, R. Kusner, W. H. Meeks and B. Solomon (1992) studied

constant mean curvature surfaces in H3 and proved the following:

Let M be a complete properly embedded surface in H3 with constant

mean curvature greater than that of a horosphere. Then

(1) M is not homeomorphic to a closed surface punctured in one point.

(2) If M is homeomorphic to a closed surface punctured in two points,

then M is Delaunay, that is, M is a constant mean curvature surface of

revolution.

(3) If M is homeomorphic to a closed surface punctured in three points,

then M remains at a bounded distance from a geodesic plane of reflective

symmetry and each half of M determined by the geodesic plane is a graph

over this plane with respect to the distance function to the plane.

Moreover, they showed that the annular ends of M must exponentially

converge to Delaunay surfaces, which are constant mean curvature surfaces

of revolution in H3.



120 B.-Y. CHEN

For hypersurfaces of constant mean curvature in Hn+1, M. do Carmo and

H. B. Lawson (1983) proved the following:

Let M be a complete hypersurface properly embedded in Hn+1 with con-

stant mean curvature, and let ∂∞M ⊂ Sn(∞) be its asymptotic boundary.

Then

(a) if M is compact, it is a sphere; if ∂∞M consists of exactly one point,

then M is a horosphere; and

(b) if ∂∞M is a sphere and M separates poles, then M is a hypersphere.

As a consequence, if M is a hypersurface of constant mean curvature in

Hn+1, admitting a one-to-one projection onto a geodesic hyperplane, then

M is a hyperplane. This result can be restated as follows: A nonparametric

entire hypersurface, that is, the graph of a function f defined in some Hn,

of constant mean curvature is a hypersphere, which is a close analogue of

the Bernstein theorem.

10.5.5. Weierstrass type representation for surfaces with constant

mean curvature

K. Kenmotsu (1979) established an integral representation formula for ar-

bitrary surfaces in E3 with nonvanishing mean curvature H which describes

the surface as a branched conformal immersion in terms of its mean curvature

and its Gauss map. Specifically, let ψ denote the complex-valued function

on the surface obtained by composing the Gauss map with stereographic

projection. Then, letting f = −ψz/H(1 + ψ2), one has

x1 = Re

∫
(1− ψ2)fdz, x2 = Re

∫
i(1 + ψ2)fdz, x3 = 2Re

∫
ψfdz.

Thus, given a real function H and a complex function ψ on a simply-

connected domain D, a necessary and sufficient condition that there exists

a map x : D → E3 defining a branched surface in isothermal coordinates

having H as mean curvature and ψ as the Gauss map is that the differential

relations above between H and ψ be satisfied. As a special case, if H is a

nonzero constant, then the resultant equation for ψ is the precise condition

for ψ to define a harmonic map into the unit sphere. By virtue of this rep-

resentation formula, if a harmonic map ψ from a Riemann surface Σ into S2

is given, then one can construct a branched immersion of a constant mean

curvature surface whose Gauss map is ψ.

J. Dorfmeister, F. Pedit and H. Wu (1997) showed that every constant

mean curvature immersion Φ : D → E3, D the whole complex plane or the

open unit disk in C, can be produced from a meromorphic matrix valued
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1-form

ξ = λ−1

(
0 f(z)

g(z) 0

)
dz,

λ ∈ S1, the so called meromorphic potential. Here f and g are meromorphic

functions of z ∈ D and f(z)g(z) = E(z), where E(z)dz2 is, up to a constant

factor, the Hopf differential of the surface. J. Dorfmeister, and G. Haak

(1997) gave an explicit characterization of the zero and pole order of the

meromorphic functions for the branched constant mean curvature surface to

be a smooth immersion.

R. Bryant (1987b) showed that there also exists a Weierstrass type rep-

resentation for surfaces of constant mean curvature H = c > 0 in H3(−c2).
In particular, any constant mean curvature one surface in H3(−1) can be

constructed from an sl(2,C)-valued holomorphic 1-form satisfying some con-

ditions (or equivalently a pair of a meromorphic function and a holomorphic

1-form) on a Riemann surface.

Bryant’s representation can be stated as follows.

We identify each point (t, x2, x3, x4) of L
4 with a 2× 2 Hermitian matrix

(10.5)

(
t+ x4 x2 + ix3
x2 − ix3 t− x4

)
∈ Herm (2).

Then H3(−1) is identified with

(10.6)
H3(−1) = {X ∈ Herm (2) : det(X) = 1, trace (X) > 0}

= {a · a∗ : a ∈ SL(2, C)},

where a∗ = āT . Under this identification, each element a of the group

PSL(2, C) := SL(2, C)/{±1} acts isometrically on H3(−1) ∋ X 7→ a ·X ·a∗.
Bryant proved the following result.

Let M be a simply-connected Riemann surface and z0 ∈M a fixed point.

Take a meromorphic function ψ and a holomorphic 1-form ω onM such that

ds2 := (1 + |ψ|2)2ω · ω̄ is positive definite on M . Then there exists a unique

holomorphic immersion F :M → PSL(2, C) that satisfies

(1) F (z0) = ± id.;

(2) F−1 · dF =

(
ψ −ψ2

1 −ψ

)
ω;

(3) f = F · F ∗ : M → H3(−1) is a conformal immersion with constant

man curvature 1 whose first fundamental form is ds2.

Conversely, any conformal constant mean curvature 1 immersions inH3(−1)

are obtained as above.
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M. Umehara and K. Yamada (1996) showed that Bryant’s representa-

tion formula for surfaces of constant mean curvature c in H3(−c2) can be

deformed to the Weierstrass representation formula as c tends to 0.

R. Aiyama and K. Akutagawa (1997a) gave representation formulas for

surfaces of constant mean curvature H in the hyperbolic 3-space H3(−c2)
with H > c > 0. R. Aiyama and K. Akutagawa (1997b) also gave repre-

sentation formulas for surfaces of constant mean curvature in the 3-sphere

S3(c2). Their formulas show that every such surface in H3(−c2) or in S3(c2)

can be represented locally by a harmonic map to the unit 2-sphere.

Further results on surfaces of constant mean curvature in H3 were ob-

tained by M. Umehara and K. Yamada (1992,1993,1996,1997a, 1997b).

10.5.6. Stability of surfaces with constant mean curvature

Since a compact constant mean curvature surface in E3 is a critical point

of the area functional with respect to volume-preserving normal variations,

one can define the stability of such surfaces: A compact constant mean

curvature surface in E3 is called stable if A′′(0) > 0 with respect to the class

of volume-preserving normal variations.

M. do Carmo and A. Da Silveira (1990) proved that the index of ∆− 2K

is finite if and only if the total curvature is finite for a complete surface of

constant mean curvature one in the hyperbolic 3-space H3.

J. A. Barbosa and M. do Carmo (1984) proved that the spheres are the

only compact stable hypersurfaces of constant mean curvature in En+1. This

result was generalized for closed constant mean hypersurfaces in Sn+1 and

Hn+1 by Barbosa, do Carmo and J. Eschenburg in 1988. For surfaces this

result was extended by H. Mori (1983), B. Palmer (1986) and F. J. López and

A. Ros (1989) to complete surfaces, where the stability assumption applied

to every compact subdomain and the surface is assumed to have nonzero

constant mean curvature.

Also A. Da Silveira (1987) studied complete noncompact surfaces which

are immersed as stable constant mean curvature surfaces in E3 or in the

hyperbolic space H3. In the case of E3 he proved that the immersion is a

plane. For H3 he showed, under the condition of nonnegative mean curva-

ture H, that for H ≥ 1 only horospheres can occur, while for H < 1 there

exists a one-parameter family of stable nonumbilic embeddings. His theo-

rems are generalizations and improvements of previous results by Barbosa,

do Carmo and Eschenburg, Fischer-Colbrie, Peng, and Schoen. His notion

of stability is slightly weaker than the previous one for minimal immersions.

Examples show that the two definitions in general do not agree. For three-

dimensional simply-connected complete Riemannian manifolds with positive
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constant sectional curvature he proved that there exist no complete and non-

compact stable immersions with constant mean curvature.

For hypersurfaces in En+1 H. P. Luo (1996) proved that if a complete

noncompact stable hypersurface has nonnegative Ricci curvature, it is min-

imal.

10.6. Hypersurfaces with constant higher order mean curvature.

The r-th mean curvatureHr of a hypersurfaceM is defined as the elementary

symmetric polynomial of degree r in the principal curvatures κ1, . . . , κn of

M , that is,

(10.7) Hr =
∑

i1<···<ir

κi1 · · · κir .

For a hypersurface in En+1, H1,H2 and Hn are the mean curvature, the

scalar curvature, and the Gauss-Kronecker curvature, respectively (up to

suitable constants).

For a compact oriented hypersurface f : M → En+1, the r-th mean

curvatures are related by the following formulas of H. Minkowski (1903):

(10.8)

(
n

r − 1

)∫

M
Hr−1dV = −

(
n

r

)∫

M
〈f, ξ〉HrdV, 1 ≤ r ≤ n,

where ξ is a unit normal vector field of M in En+1.

A. Ros (1987) and, independently, N. J. Korevaar (1988) proved that, for

any r, 1 ≤ r ≤ n, the round sphere is the only compact hypersurface with

constant r-th mean curvature Hr embedded in En+1.

For a compact hypersurface M embedded in hyperbolic space, N. J. Ko-

revaar (1988) and Montiel and Ros (1991) proved that if any of the higher

order mean curvatures is constant, then M must be a geodesic hypersphere.

The same is true if M lies in a hemisphere of Sn+1.

The above results are not true in general, since all the isoparametric hy-

persurfaces of Sn+1 have all mean curvatures constant.

For a compact immersed hypersurface f : M → Rn+1(c) in a complete

simply-connected real space form Rn+1(c), let Fr(H1,H2, . . . ,Hr) be the

function defined inductively by

(10.9) F0 = 1, F1 = H1, Fr = Hr+
(n− r + 1)c

r − 1
Fr−2, 2 ≤ r ≤ n− 1.

A variation of f is a differentiable map X : I ×M → Rn+1(c) such that

X0 = f and, for each t ∈ I, Xt(x) = X(t, x), x ∈M, is an immersion.

The balance of volume is defined to be the function V : I → R given by

V (t) =
∫
[0,t]×M F ∗(dV̄ ), where dV̄ denotes the volume element of Rn+1(c).

In Euclidean case, it measures the balance of the volume of the enclosed
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domain from the time 0 to time t. So, in this case, V ≡ 0 means that the

volume of the domain bounded by the hypersurface is kept constant while

the time changes.

A variation of f is said to be volume-preserving if V (t) ≡ 0.

Put

(10.10) Ar =

∫

M
Fr(H1,H2, . . . ,Hr)dV.

In the class of volume-preserving variations of f :M → Rn+1(c), the first

variational formula of f is given by

(10.11) A′
r(φ) =

∫

M
{−(r + 1)Hr+1 + κ}φdV,

where κ stands for a constant and φ is the normal projection of the variation

vector field ξ. Thus, immersions with constant (r + 1)-th mean curvature

arise as critical points for the variational problem of minimizing Ar, keeping

the balance of volume zero (cf. [Barbosa-Colares 1997, Reilly 1973]).

An immersion f :M → Rn+1(c) with constant (r+1)-th mean curvature

is said to be r-stable if its second variation A′′
r(φ) is > 0, for any compact

support function φ :M → R that satisfies
∫
M φdV = 0.

H. Alencar, M. do Carmo and H. Rosenberg (1993) proved that hyper-

spheres are the only r-stable immersed compact orientable hypersurfaces in

Euclidean space.

J. L. Barbosa and A. G. Colares (1997) showed that geodesic hyperspheres

are the only r-stable immersed compact orientable hypersurfaces in an open

hemisphere of Sn+1 or in the hyperbolic space Hn+1. When r = 1, this is

due to [Alencar-do Carmo-Colares 1993].

10.7. Harmonic spaces and Lichnerowicz conjecture. A Riemannian

manifold M is called a harmonic space if all sufficiently small geodesic hy-

perspheres have constant mean curvature.

Let (x1, . . . , xn) denote a system of Cartesian coordinates of Euclidean

n-space En centered at a point 0, and ∆ denote the Laplacian of En. Then

it is well-known that the Laplace equation ∆φ = 0 admits a nice solution

given by

φ(x) =

{
r2−n if n > 2,

ln r if n = 2,

where r is the distance of the point x from the origin 0. This implies that

the Laplace equation has a solution which is constant on each hypersphere

centered at 0. Clearly, this is true for any arbitrary center in En.
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In his 1930 doctoral thesis at Oxford University, H. S. Ruse (1905–1974)

made an attempt to solve Laplace’s equation on a general Riemannian man-

ifold and to find a solution which depends only on the geodesic distance.

He realized later that it was implicitly assumed in his thesis that such a

solution always exists and this is not the case. Stimulated by this incident,

E. C. Copson (1901–1980) and Ruse started in 1939 the study of the class of

Riemannian manifolds which admit such a solution. This is the beginning

of the study of harmonic manifolds.

In 1944 A. Lichnerowicz (1915– ) showed that a harmonic manifold of

dimension ≤ 4 is either a flat space or a rank one locally symmetric space.

From this one conjectures that the same conclusion holds true without the

dimension hypotheses; which is known as Lichnerowicz’s conjecture.

Lichnerowicz’s conjecture has been proved by Z. I. Szabö (1990) for com-

pact harmonic manifolds with finite fundamental groups.

A Riemannian manifold of negative curvature is said to be asymptotically

harmonic if the mean curvatures of the geodesic horospheres are constant.

P. Foulon and F. Labourie (1992) proved that if M is a compact (C∞-

) negatively curved asymptotically harmonic manifold, then the geodesic

flow of M is C∞ conjugate to that of a rank one locally symmetric space.

On the other hand, G. Besson, G. Courtois and S. Gallot (1995) proved

that a Riemannian manifold whose geodesic flow is C1 conjugate to that

of a compact locally symmetric manifold N is isometric to N . Thus, a

compact negatively curved asymptotically harmonic Riemannian manifold

is locally symmetric; this in particular proves Lichnerowicz’s conjecture for

the compact negatively curved case.

On the other hand, E. Damek and F. Ricci showed in 1992 that there exist

noncompact counterexamples to the conjecture; namely, there exists a class

of harmonic homogeneous simply connected manifolds of negative curvature

which are not symmetric.

Damek and Ricci’s examples are given as follows: Let n be a two-step

nilpotent Lie algebra with inner product 〈 , 〉, such that if z is the center

of n and o = z⊥, the map JZ : o → o defined by 〈JZX,Y 〉 = 〈[X,Y ], Z〉
satisfies J2

Z = −|Z|2 for all X, Y ∈ o and Z ∈ z. The connected and simply

connected Lie group N generated by this algebra n is classically referred to as

the Heisenberg group. Let n be solvably extended to s = o⊕z⊕RT by adding

the rule [T,X+Y ] = X/2+Z, and denote by S = NA (A = expS(RT )), the

corresponding connected and simply connected Lie group. By the use of the

admissible invariant metric, S is then made into a Riemannian manifold.

Effecting on S a suitable Cayley transform one can introduce the normal
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coordinates (r, w) on the ball

B = {(X,Y, t) ∈ o⊕ z⊕RT, r2 = |X|2 + |Y |2 + |t|2 < 1}
around the identity element e = (0, 0, 1), with respect to which the volume

element on B is computed as

2m+k
(
cosh

(ρ
2

))k (
sinh

(ρ
2

))m+k
dρ dσ(w),

where

m = dim z, k = dim o, ρ = log

(
1 + r

1− r

)

and dσ(w) denotes the surface element of the sphere Sm+k. Thus S turns

out to be a harmonic space. Note that m (= dim z) is quite arbitrary.

Consider the symmetric space M = G/K of noncompact type and let

G = NAK be the Iwasawa decomposition. Then the map s → sK is an

isometry of S = NA onto G/K, and it is known that if M is a symmetric

space of rank one, the dimension k of the center z of N equals 1, 3 or 7

only. This leads to infinitely many harmonic spaces S that are not rank-one

symmetric.
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11. Totally geodesic submanifolds

The notion of totally geodesic submanifolds was introduced in 1901 by J.

Hadamard (1865–1963). Hadamard defined (totally) geodesic submanifolds

of a Riemannian manifold as submanifolds such that each geodesic of them

is a geodesic of the ambient space. This condition is equivalent to the van-

ishing on the second fundamental form on the submanifolds. 1-dimensional

totally geodesic submanifolds are nothing but geodesics. Totally geodesic

submanifolds are the simplest and the most fundamental submanifolds of

Riemannian manifolds.

It is easy to show that every connected component of the fixed point set

of an isometry on a Riemannian manifold is a totally geodesic submanifold.

Totally geodesic submanifolds of a Euclidean space are affine subspaces

and totally geodesic submanifolds of a Riemannian sphere are the greatest

spheres.

It is much more difficult to classify totally geodesic submanifolds of a

Riemannian manifold in general.

11.1. Cartan’s theorem. Let M be a Riemannian n-manifold with n ≥ 3.

For a vector v in the tangent space TpM at p ∈M , denote by γv the geodesic

through p whose tangent vector at p is v. Denote by Rv(t) the (1, 3)-tensor

on TpM obtained by the parallel translation of the curvature tensor at γv(t)

along the geodesic γv. Also define a (1,2)-tensor rv(t) on TpM by

rv(t)(x, y) = Rv(t)(v, x)y, x, y ∈ TpM.

The following result of É. Cartan provides necessary and sufficient condi-

tions for the existence of totally geodesic submanifolds in Riemannian man-

ifolds in general.

Let V be a subspace of the tangent space TpM of a Riemannian manifold

M at a point p. Then the following three conditions are equivalent.

(1) There is a totally geodesic submanifold of M through p whose tangent

space at p is V .

(2) There is a positive number ǫ such that for any unit vector v ∈ V and

any t ∈ (−ǫ, ǫ), Rv(t)(x, y)z ∈ V for any x, y, z ∈ V .

(3) There is a positive number ǫ such that for any unit vector v ∈ V and

any t ∈ (−ǫ, ǫ), rv(t)(x, y) ∈ V for any x, y ∈ V .

11.2. Totally geodesic submanifolds of symmetric spaces. The class

of Riemannian manifolds with parallel Riemannian curvature tensor, that is,

∇R = 0, was first introduced independently by P. A. Shirokov (1895–1944)

in 1925 and by H. Levy in 1926. This class is known today as the class
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of locally symmetric Riemannian spaces. È. Cartan noticed in 1926 that

irreducible spaces of this type are separated into ten large classes each of

which depends on one or two arbitrary integers, and in addition there exist

twelve special classes corresponding to the exceptional simple groups. Based

on this, Cartan created his theory of symmetric Riemannian spaces in his

famous papers “Sur une classe remarquable d’espaces de Riemann” [Cartan

1926/7].

An isometry s of a Riemannian manifold M is called involutive if its

iterate s2 = s ◦ s is the identity map. A Riemannian manifold M is called a

symmetric space if, for each point p ∈M , there exists an involutive isometry

sp of M such that p is an isolated fixed point of sp. The sp is called the

(point) symmetry of M at the point p.

Denote by GM , or simply by G, the closure of the group of isometries

generated by {sp : p ∈ M} in the compact-open topology. Then G is a

Lie group which acts transitively on the symmetric space; hence the typical

isotropy subgroup H, say at o, is compact and M = G/H.

Every complete totally geodesic submanifold of a symmetric space is a

symmetric space. For a symmetric space M , the dimension of a maximal

flat totally geodesic submanifold ofM is a well-defined natural number which

is called the rank of M , denoted by rk(M).

It follows from the equation of Gauss that rk(B) ≤ rk(M) for each totally

geodesic submanifold B of a symmetric space M .

11.2.1. Canonical decomposition and Cartan’s criterion

If M = G/H is a symmetric space and o is a point in M , then the map

σ : G→ G

defined by σ(g) = sogso is an involutive automorphism of G. Let g and

h be the Lie algebras of G and H, respectively. Then σ gives rise to an

involutive automorphism of g, also denoted by σ. h is the eigenspace of σ

with eigenvalue 1.

Let m denote the eigenspace of σ on g with eigenvalue −1. One has the

decomposition:

g = h+m,

which is called the Cartan decomposition or the canonical decomposition of

g with respect to σ.

The subspace m can be identified with the tangent space of the symmetric

spaceM at o in a natural way. A linear subspace L of m is called a Lie triple

system if it satisfies [ [L,L],L] ⊂ L.
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The following result of É. Cartan provides a simple relationship between

totally geodesic submanifolds and Lie triple systems of a symmetric space:

Let M be a symmetric space. Then a subspace L of m forms a Lie triple

system if and only if L is the tangent space of a totally geodesic submanifold

of M through o.

11.2.2. Totally geodesic submanifolds of rank one symmetric spaces

Applying Cartan’s criterion, J. A. Wolf completely classified in 1963 to-

tally geodesic submanifolds in rank one symmetric spaces and obtained the

following:

(1) The maximal totally geodesic submanifolds of the real projective m-

space RPm are RPm−1;

(2) The maximal totally geodesic submanifolds of the complex projective

m-space CPm are RPm and CPm−1;

(3) The maximal totally geodesic submanifolds of the quaternionic pro-

jective m-space HPm are HPm−1 and CPm; and

(4) The maximal totally geodesic submanifolds of the Cayley plane OP 2

are HP 2 and OP 1 = S8.

11.2.3. Totally geodesic submanifolds of complex quadric

Applying Cartan’s criterion, Chen and H. S. Lue (1975a) classified totally

geodesic surfaces in the complex quadric: Qm = SO(m+2)/SO(2)×SO(m),

m > 1. The complete classification of totally geodesic submanifolds of Qm
was obtained by Chen and T. Nagano in 1977. More precisely, they proved

the following.

(1) If B is a maximal totally geodesic submanifold of Qm, B is one of the

following three spaces:

(1-a) Qm−1, embedded as a Kähler submanifold;

(1-b) a local Riemannian product, (Sp × Sq) /{± id }, of two spheres Sp

and Sq, p+ q = m, of the same radius, embedded as a Lagrangian subman-

ifold; and

(1-c) the complex projective space CPn with 2n = m, embedded as a

Kähler submanifold.

(2) If B is a non-maximal totally geodesic submanifold of Qm, M is either

contained in Qm−1 in an appropriate position in Qm, or the real projective

space RPn with 2n = m.

Chen and Nagano (1977) also proved the following:

(3) Each homology group Hk(Qm;Z), k < 2m, is spanned by the classes

of totally geodesic submanifolds of Qm;
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(4) The cohomology ring H∗(Qm;Z) is generated by the Poincaré duals

of totally geodesic submanifolds of Qm; and

(4) There is a maximal totally geodesic submanifold M of Qm such that

the differentiable manifold Qm is the union of the normal bundles to M and

to its focal manifold with the nonzero vectors identified in some way.

11.2.4. Totally geodesic submanifolds of compact Lie groups

Totally geodesic submanifolds of compact Lie groups equipped with biin-

variant metrics have been determined in [Chen-Nagano 1978].

Let M be a compact Lie group with a biinvariant metric. Then the lo-

cal isomorphism classes of totally geodesic submanifolds of M are those of

symmetric space B = GB/HB such that GB are subgroup of GM =M ×M .

11.2.5. (M+,M−)-method

In general, it is quite difficult to classify totally geodesic submanifolds of

a given symmetric space with rank ≥ 2 by classifying the Lie triple sys-

tems via Cartan’s criterion. For this reason a new approach to compact

symmetric spaces was introduced by Chen and Nagano [Chen-Nagano 1978,

Chen 1987a]. Using their method, totally geodesic submanifolds in compact

symmetric spaces were systematically investigated.

The method of Chen and Nagano works as follows: A pair of points {o, p}
in a compact symmetric space M is called an antipodal pair if there exists

a smooth closed geodesic γ in M such that p is the midpoint of γ from o.

For each pair {o, p} of antipodal points in a compact symmetric space M =

G/H, they introduced a pair of orthogonal totally geodesic submanifolds

Mo
+(p),M

o
−(p) through p such that

dimMo
+(p)+dimMo

−(p) = dimM, rk(Mo
−(p)) = rk(M), Mo

+(p) = H(p).

The totally geodesic submanifolds M+’s and M−’s are called polars and

meridians of M , respectively.

A compact symmetric space M is globally determined by its polars and

meridians. In fact, two compact symmetric spaces M and N are isometric

if and only if some pair (M+(p),M−(p)) of M is isometric to some pair

(N+(q), N−(q)) of N pairwise [Chen-Nagano 1978, Nagano 1992].

If B is a complete totally geodesic submanifold of a compact symmetric

spaceM , then, for any pair (B+(p), B−(p)) of B, there is a pair (M+(q),M−(q))

ofM such that B+(p) and B−(p) are totally geodesic submanifolds ofM+(q)

and M−(q), respectively. Since the same argument applies to the totally ge-

odesic submanifold B+(p) ⊂M+(q) and to the totally geodesic submanifold

B−(p) ⊂M−(q), one obtains strings of conditions.
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Also, given a pair of antipodal points {o, p} in a compact symmetric

space M , one obtains an ordered pair (Mo
+(p),M

o
−(p)) as above. Two pairs

(Mo
+(p),M

o
−(p)) and (Mo′

+ (p′),Mo′
− (p′)) are called equivalent if there is an

isometry on M which carries one to the other. Let P (M) denote the cor-

responding moduli space. Then P (M) is a finite set which is a global Rie-

mannian invariant of M .

In general, one has #P (M) ≤ 2rk(M) − 1. A compact irreducible sym-

metric space satisfying #P (M) = 2rk(M) − 1 if and only if it is a rank one

symmetric space.

Every isometric totally geodesic embedding f : B → M of a compact

symmetric space into another induced a pairwise totally geodesic immersion

P (f) : P (B) → P (M). In particular, if B and M have the same rank,

then P (f) is surjective, hence, #P (B) ≥ #P (M); this provides us a useful

obstruction to totally geodesic embeddings as well.

In particular, Chen and Nagano’s results imply the following:

(1) Any compact symmetric space M of dimension ≥ 2 admits a totally

geodesic submanifold B satisfying 1
2 dimM ≤ dimB < dimM ;

(2) Spheres and hyperbolic spaces are the only simply-connected irre-

ducible symmetric spaces admitting a totally geodesic hypersurface.

The result (2) was extended by K. Tojo (1997a) to the following: Let G

be a compact simple Lie group and K a closed subgroup of G. If the normal

homogeneous spaceM = G/K contains a totally geodesic hypersurface, then

M is a space with constant sectional curvature.

Further information on polars and meridians and on their applications to

both geometry and topology can be found in [Chen 1987; Chen-Nagano 1978;

Nagano 1988; Nagano 1992; Nagano-Sumi 1989; Burns 1992,1993; Peterson

1987; Burns-Clancy 1994].

There is a duality between totally geodesic submanifolds of symmetric

spaces of compact type and of their non-compact duals.

For the investigation of totally geodesic submanifolds in some symmetric

spaces of non-compact type with rank ≥ 2, see also [Berger 1957].

11.2.6. The 2-number #2M

The notion of 2-number was introduced by Chen and Nagano in 1982.

The notion of 2-number can also be applied to determine totally geodesic

embeddings in symmetric spaces.

For a compact symmetric space M , the 2-number, denoted by #2M , is

defined as the maximal possible cardinality #2A2 of a subset A2 of M such

that the point symmetry sx fixes every point of A2 for every x ∈ A2.



132 B.-Y. CHEN

The 2-number #2M is finite. The definition is equivalent to saying that

#2M is a maximal possible cardinality #A2 of a subset A2 of M such that,

for every pair of points x and y of A2, there exists a closed geodesic of M

on which x and y are antipodal to each other. Thus, the invariant can also

be defined on any Riemannian manifold.

The geometric invariant #2M is an obstruction to the existence of a to-

tally geodesic embedding f : B → M , since the existence of f clearly im-

plies the inequality #2B ≤ #2M . For example, while the complex Grass-

mann manifold GC(2, 2) of the 2-dimensional complex subspaces of the com-

plex vector space C4 is obviously embedded into GC(3, 3) as a totally ge-

odesic submanifold, the “bottom space” GC(2, 2)∗ obtained by identifying

every member of GC(2, 2) with its orthogonal complement in C4, however,

cannot be totally geodesically embedded into GC(3, 3)∗, simply because

#2G
C(2, 2)∗ = 15 > 12 = #2G

C(3, 3)∗.

The 2-number is not an obstruction to a topological embedding; for in-

stance, the real projective space RPn can be topologically embedded in a

sufficiently high dimensional sphere, but the 2-number #2RP
n = n+ 1 > 2

simply prohibits a totally geodesic embedding of RPn into any sphere whose

2-number is 2, regardless of dimension.

The invariant #2M has certain bearings on the topology of M in other

aspects; for instance, Chen and Nagano proved that #2M is equal to the

Euler number X (M) of M , ifM is a semisimple Hermitian symmetric space.

And in general they proved that the inequality #2M ≥ X (M) holds for any

compact symmetric space M (cf. [Chen-Nagano 1988] for details).

M. Takeuchi (1989) proved that #2M = dimH(M ;Z2) for any symmetric

R-space. This formula is actually correct for every compact symmetric space

which have been checked.

For a group manifold G, Chen and Nagano showed that #2G = 2r2 , where

r2 is the 2-rank of G, which by definition is the maximal possible rank of the

elementary 2-subgroup Z2×· · ·×Z2 of G. An immediate application of this

fact is that the algebraic notion of 2-rank of a compact Lie group G, studied

by Borel and Serre (1953), can be determined by computing the 2-number

#2G of the group manifold G via the theory of submanifolds.

For the determination of #2M of compact symmetric spaces and of group

manifolds, and the relationship between #2M and (M+,M−)’s, see [Chen-

Nagano 1988].

The notion of 2-number was extended in 1993 to k-number for compact

k-symmetric spaces by C. U. Sánchez. She also obtained a formula for k-

number similar to Takeuchi’s for flag manifolds.
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11.3. Stability of totally geodesic submanifolds. A minimal subman-

ifold N of a Riemannian manifold M is called stable if its second variation

for the volume functional of M is positive for every variation of N in M . It

is an interesting and important problem to find all stable minimal subman-

ifolds in each symmetric space, in particular, to determine all stable totally

geodesic submanifolds.

11.3.1. Stability of submanifolds in compact rank one symmetric

spaces

Stability of compact totally geodesic submanifolds in compact rank one

symmetric spaces have been completely determined in [Simons 1968, Lawson-

Simons 1973, Ohnita 1986a]:

(1) Compact totally geodesic submanifolds of Sm are unstable.

(2) Compact totally geodesic submanifolds of RPm are stable.

(3) A compact totally geodesic submanifold of CPm is stable if and only

if it is a complex projective subspace.

(4) A compact totally geodesic submanifold of HPm is stable if and only

if it is a quaternionic projective subspace.

(5) A compact totally geodesic submanifold of the Cayley plane OP 2 is

stable if and only if it is a Cayley projective line OP 1 = S8 of OP 2.

11.3.2. An algorithm for determining the stability of totally geo-

desic submanifolds in symmetric spaces

There is a general algorithm, discovered by B. Y. Chen, P. F. Leung

and T. Nagano in 1980, for determining the stability of totally geodesic

submanifolds in compact symmetric spaces.

Let N be a totally geodesic submanifold of a compact symmetric space

M . There is a finitely covering group GN of the connected isometry group

GoN of N such that GN is a subgroup of the connected isometry group GM of

M which leaves N invariant, provided that GoN is semisimple. Let P denote

the orthogonal complement of the Lie algebra g
N
in the Lie algebra g

M
with

respect to the biinvariant inner product on g
M

which is compatible with the

metric of M . Every member of g
M

is thought of as a Killing vector field

because of the action of GM on M .

Let P̂ denote the space of the vector fields corresponding to the member

of P restricted to the submanifold N . Then, to every member of P there

corresponds a unique (but not canonical) vector field v ∈ P̂ which is a normal

vector field and hence P̂ is a GN -invariant subspace of the space Γ(T⊥N)

of the sections of the normal bundle to N . Moreover, P̂ is homomorphic

with P as a GN -module. The group GN acts on Γ(T⊥N) and hence on the
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differential operators: Γ(T⊥N) → Γ(T⊥N). GN leaves L fixed, since L is

defined with N and the metric of M only. Therefore, each eigenspace of L

is left invariant by GN .

Let V be one of its GN -invariant irreducible subspaces. One has a rep-

resentation ρ : GN → GL(V ). Denote by c(V ) or c(ρ) the eigenvalue of the

corresponding Casimir operator. To define c(V ) one fixes an orthonormal

basis (eλ) for gN
and consider the linear endomorphism C or CV of V defined

by

(11.1) C = −
∑

ρ(eλ)
2.

Then C is c(V )IV , where IV is the identity map on V . The Casimir operator

is given by CV = −∑[eλ, [eλ, V ] ] for every member v of V (after extending

to a neighborhood of N).

A compact totally geodesic submanifold N (= GN/KN ) of a compact

symmetric space M (= GM/KM ) is stable as a minimal submanifold if and

only if one has c(V ) ≥ c(P ′) for the eigenvalue of the Casimir operator

of every simple GN -module V which shares as a KN -module some simple

KN -submodule of the KN -module T⊥
o N in common with some simple GN -

submodule P ′ of P̂ .

Roughly speaking, the algorithm says thatN is stable if and only if c(V ) ≥
c(P) for every GN -invariant irreducible space V (cf. [Chen 1990]).

Applying their algorithm, Chen, Leung and Nagano obtained in 1980 the

following results:

(1) A compact subgroup N of a compact Lie group M with a biinvariant

metric is stable if N has the same rank as M and M has nontrivial center.

(2) Every meridianM− of a compact group manifoldM is stable ifM has

nontrivial center.

(3) Let GR(p, q) = SO(p+ q)/SO(p)× SO(q) be a real Grassmann man-

ifold isometrically immersed in a complex Grassmann manifold GC(p, q) as

a totally real totally geodesic submanifold in a natural way. Then GR(p, q)

is unstable in GC(p, q).

When p = 1, statement (3) reduces to a result of Lawson and Simons

(1973).

Applying the algorithm, M. Takeuchi (1984) completely determined the

stability of totally geodesic Lagrangian submanifolds of compact Hermitian

symmetric spaces. He proved that if M is a compact Hermitian symmetric

space and B a compact Lagrangian totally geodesic submanifold of M , then

B is stable if and only if B is simply-connected.
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K. Mashimo and H. Tasaki (1990b) applied the same algorithm to deter-

mine the stability of maximal tori of compact Lie groups and obtained the

following:

(1) Let G be a connected closed subgroup of maximal rank in a compact

Lie group U equipped with biinvariant metric. If a maximal torus of U is

stable, then G is also stable.

(2) Let U be a compact connected simple Lie group and T be a maximal

torus. Then T is unstable if and only if U is isomorphic to

SU(r + 1), Spin(5), Spin(7), Sp(r) or G2.

Further results concerning the stability of certain subgroups of compact

Lie groups equipped with biinvariant metrics can also be found in [Fomenko

1972, Thi 1977, Brothers 1986, Mashimo-Tasaki 1990a].

The stabilities of all the M+’s (polars) and the M−’s (meridians) of a

compact irreducible symmetric space M were determined by M. S. Tanaka

(1995). In particular, she proved that all polars and meridians of a compact

Hermitian symmetric space are stable.

Let G be a compact connected Lie group, σ an automorphism of G and

K = {k ∈ G : σ(k) = k}. A mapping Σ: G → G, g 7→ gσg−1, induces the

Cartan embedding of G/K into G in a natural way. IfM is a compact simple

Lie group G, then the G+’s are images of Cartan embeddings and the G−’s

are the sets of fixed points of involutive automorphisms.

K. Mashimo (1992) proved that, if G is simple and σ is involutive, the

image Σ(G/K) is unstable only if either G/K is a Hermitian symmetric

space or the pair (G,K) is one of the four cases:

(SU(n), SO(n)) (n ≥ 3), (SU(4m+2)/{± I}, SO(4m+2)/{± I}) (m ≥ 1),

(Spin(n), (Spin(n− 3)× Spin(3))/Z2) (n ≥ 7), (G2, SO(4)).

11.3.3. Ohnita’s formulas

Y. Ohnita (1987) improved the above algorithm to include the formulas

for the index, the nullity and the Killing nullity of a compact totally geodesic

submanifold in a compact symmetric space.

Let f : N →M be a compact totally geodesic submanifold of a compact

Riemannian symmetric space. Then f : N → M is expressed as follows:

There are compact symmetric pairs (G,K) and (U,L) with N = G/K, M =

U/L so that f : N → M is given by uK 7→ ρ(u)L, where ρ : G → U

is an analytic homomorphism with ρ(K) ⊂ L and the injective differential

ρ : g → u which satisfies ρ(m) ⊂ p. Here u = l + p and g = k + m are the

canonical decompositions of the Lie algebras u and g, respectively.
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Let m⊥ denote the orthogonal complement of ρ(m) with p relative to the

ad(U)-invariant inner product ( , ) on u such that ( , ) induces the metric

of M . Let k⊥ be the orthogonal complement of ρ(k) in l. Put g⊥ = k⊥+m⊥.

Then g⊥ is the orthogonal complement of ρ(g) in u relative to ( , ), and g⊥

is adρ(G)-invariant.

Let θ be the involutive automorphism of the symmetric pair (U,L). Choose

an orthogonal decomposition g⊥ = g⊥1 ⊕ · · · ⊕ g⊥t such that each g⊥i is an

irreducible adρ(G)-invariant subspace with θ(g⊥i ) = g⊥i . Then, by Schur’s

lemma, the Casimir operator C of the representation of G on each g⊥i is aiI

for some ai ∈ C.

Put m⊥
i = m ∩ g⊥i and let D(G) denote the set of all equivalent classes

of finite dimensional irreducible complex representations of G. For each

λ ∈ D(G), (ρλ, Vλ) is a fixed representation of λ.

For each λ ∈ D(G), we assign a map Aλ from Vλ ⊗ HomK(Vλ,W ) to

C∞(G,W )K by the rule Aλ(v ⊗ L)(u) = L(ρλ(u
−1)v). Here HomK(Vλ,W )

denotes the space of all linear maps L of Vλ intoW so that σ(k)·L = L·ρλ(k)
for all k ∈ K.

Y. Ohnita’s formulas for the index i(f), the nullity n(f), and the Killing

nullity nk(f) are given respectively by

i(f) =
∑t

i=1

∑
λ∈D(G),aλ<ai

m(λ)dλ,

n(f) =
∑t

i=1

∑
λ∈D(G),aλ=ai

m(λ)dλ,

nk(f) =
∑t

i=1,m⊥

i 6={0} dim g⊥i ,

where m(λ) = dim HomK(Vλ, (m
⊥
i )

C) and dλ denotes the dimension of the

representation λ.

By applying his formulas, Ohnita determined the indices, the nullities and

the Killing nullities for all totally geodesic submanifolds in compact rank one

symmetric spaces and Helgason spheres in all compact irreducible symmetric

spaces.

Q. Zhao applied Ohnita’s formulas in [Zhao 1996] to determine the indices,

the nullities and the Killing nullities of maximal totally geodesic submani-

folds of the complex quadric Qm.

11.4. Helgason’s spheres. Let M be a compact irreducible symmetric

space and let κ denote the maximum of the sectional curvatures of M . By

a theorem of É. Cartan, the same dimensional maximal totally geodesic flat

submanifolds of M , that is, the maximal tori, are all conjugate under the

largest connected Lie group I0(M) of isometries.

S. Helgason (1927– ) proved in 1966 an analogous result for the maximum

curvature κ as follows:
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(1) A compact irreducible symmetric space M contains totally geodesic

submanifolds of maximum constant curvature κ.

(2) Any two such totally geodesic submanifolds of the same dimension are

conjugate under I0(M).

(3) The maximal dimension of such submanifolds is 1+m(δ̄), where m(δ̄)

is the multiplicity of the highest restricted root. Also κ = ||δ̄||2, where || ||
denotes length.

(4) IfM is a simply-connected compact irreducible symmetric space, then

the closed geodesics in M of minimal length are permuted transitively by

I0(M).

A maximal dimensional totally geodesic sphere with maximal possible

sectional curvature κ in a compact irreducible symmetric space is known as

a Helgason’s sphere.

The stability of Helgason’s spheres was determined by Y. Ohnita in 1987.

He proved that every Helgason’s sphere in a compact irreducible symmetric

space is stable as totally geodesic submanifolds.

The Helgason sphere in a compact simple Lie group is the compact simple

3-dimensional Lie subgroup associated with the highest root. In 1977 C. T.

Dao showed that Helgason’s spheres in some compact classical Lie groups

are homologically volume minimizing. H. Tasaki proved in 1985 that the

Helgason spheres in any compact simple Lie groups are homologically volume

minimizing using the canonical 3-form 〈[X,Y ], Z〉 divided by the length of

the highest root as a calibration and by root systems.

Le Khong Van showed in 1993 the volume minimizing property of Helga-

son spheres in all compact simply-connected irreducible symmetric spaces.

In 1995 H. Tasaki obtained estimates of the volume of Helgason’s spheres

and of cut loci using the generalized Poincaré formula proved by R. Howard

(1993) and established the inequality of volume minimizing of the Helga-

son spheres. He then proved that under certain suitable conditions a k-

dimensional Helgason sphere of a compact symmetric space is volume min-

imizing in the class of submanifolds of dimension k whose inclusion maps

are not null homotopic. Tasaki’s conditions hold automatically for compact

symmetric spaces of rank one, compact Hermitian symmetric spaces, and

quaternionic Grassmann manifolds.

The maximal dimension of totally geodesic submanifolds of positive con-

stant sectional curvature in an arbitrary compact irreducible symmetric

space have been completely determined in [Chen-Nagano 1978, Nagano-Sumi
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1991] by applying the (M+,M−)-method. Such dimensions play an impor-

tant role in the study of totally umbilical submanifolds, in particular, in the

study of extrinsic spheres, in locally symmetric spaces.

11.5. Frankel’s theorem. T. J. Frankel (1961) proved that if M is a com-

plete Riemannian manifold of positive sectional curvature and V and W are

two compact totally geodesic submanifolds with dimV + dimW ≥ dimM ,

then V and W have a nonempty intersection. Applying this result, Frankel

showed in 1966 that ifM is a complete Riemannian manifold of strictly posi-

tive sectional curvature and if V is a compact totally geodesic submanifold of

M with dimV ≥ 1
2 dimM , then the homomorphism of fundamental groups:

π1(V ) → π1(M) is surjective.

In 1961 Frankel also showed that if M is a complete Kähler manifold

of positive sectional curvature, then any two compact Kähler submanifolds

must intersect if their dimension sum is at least that of M . S. I. Goldberg

and S. Kobayashi (1967) extended this Frankel’s result to complete Kähler

manifolds of positive bisectional curvature.

Frankel’s theorems were extended in 1996 by K. Kenmotsu and C. Xia to

complete Riemannian manifolds which has positive k-Ricci curvature or to

Kähler manifold with partially positive bisectional curvature. For instance,

they proved that if M is a complete Riemannian manifold with nonnegative

k-Ricci curvature and V and W are complete totally geodesic submanifolds

satisfying (a) V and W are immersed as closed subsets, (b) one of V and W

is compact, (3) M has positive k-Ricci curvature either at all points of V or

at all points of W , and (4) dimV +dimW ≥ dimM + k− 1, then V and W

must intersect.

In 1966 Frankel also proved that two compact minimal hypersurfaces of a

compact Riemannian manifold with positive Ricci curvature must intersect.
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12. Totally umbilical submanifolds

A submanifoldN of a Riemannian manifoldM is called totally umbilical if

its second fundamental form h is proportional to its first fundamental form g,

that is, h(X,Y ) = g(X,Y )H for vectors X,Y tangent to N , where H is the

mean curvature vector. Total umbilicity is a conformal invariant in the sense

that if N is a totally umbilical submanifold of a Riemannian manifold M ,

then N is also a totally umbilical submanifold of M endowed with another

Riemannian metric which is conformal equivalent to the original Riemannian

metric onM . Each connected component of the fixed point set of a conformal

transformation on a Riemannian manifold is a totally umbilical submanifold.

From Riemannian geometric point of views, totally umbilical submanifolds

are the simplest submanifolds next to totally geodesic ones.

A totally umbilical submanifold N in a Riemannian manifold M is called

an extrinsic sphere if its mean curvature vector field is a nonzero parallel

normal vector field. 1-dimensional extrinsic spheres in Riemannian manifolds

are called circles.

Hyperspheres in Euclidean space are the most well-known examples of

totally umbilical submanifolds and also of extrinsic spheres.

Since every curve in a Riemannian manifold is totally umbilical, we shall

only consider totally umbilical submanifolds of dimension ≥ 2.

Totally umbilical surfaces in E3 are open parts of planes and round

spheres. This result was first proved by J. Meusnier in 1785 who showed

that open parts of planes and spheres are the only surfaces in E3 satisfying

the property that the curvature of the plane sections through each point of

the surface are equal.

In 1954 J. A. Schouten proved that every totally umbilical submanifold of

dimension ≥ 4 in a conformally flat space is conformally flat.

An n-dimensional submanifold M of Em satisfies S ≥ nH2, with the

equality holding identically if and only if M is totally umbilical, where S

and H2 denote the squared norm of the second fundamental form and the

squared mean curvature function.

12.1. Totally umbilical submanifolds of real space forms. Totally um-

bilical submanifolds in real space forms have been completely classified. To-

tally umbilical submanifolds of dimension ≥ 2 in real space forms are either

totally geodesic submanifolds or extrinsic spheres. An n-dimensional non-

totally geodesic, totally umbilical submanifold of a Euclidean m-space Em

is an ordinary hypersphere which is contained in an affine (n + 1)-subspace

of Em.
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An n-dimensional totally umbilical submanifold of a Riemannianm-sphere

Sm or of a hyperbolic m-space Hm is contained in an (n + 1)-dimensional

totally geodesic submanifold as a totally umbilical hypersurface.

An n-dimensional non-totally geodesic totally umbilical submanifold of a

real projective m-space RPm is contained in a totally geodesic RPn+1 of

RPm. Such a submanifold is obtained from a totally umbilical submanifold

of a Riemannian m-sphere via the two-fold Riemannian covering map π :

Sm → RPm.

12.2. Totally umbilical submanifolds of complex space forms. To-

tally umbilical submanifolds in other rank one symmetric spaces are also

known. Totally umbilical submanifolds in CPm and in its non-compact dual

are classified in [Chen-Ogiue 1974c].

Let N be an n-dimensional, (n ≥ 2), totally umbilical submanifold of a

real 2m-dimensional Kähler manifold M of constant holomorphic sectional

curvature 4c, c 6= 0. Then N is one of the following submanifolds:

(1) a complex space form isometrically immersed inM as a totally geodesic

complex submanifold;

(2) a real space form isometrically immersed inM as a totally real, totally

geodesic submanifold;

(3) a real space form isometrically immersed in an (n + 1)-dimensional

totally real totally geodesic submanifold of M as an extrinsic hypersphere.

12.3. Totally umbilical submanifolds of quaternionic space forms.

Totally umbilical submanifolds in a quaternionic projective space HPm and

in its non-compact dual have been classified in [Chen 1978].

Let N be an n-dimensional, (n ≥ 4), totally umbilical submanifold of

a real 4m-dimensional quaternionic space form M of constant quaternionic

sectional curvature 4c, c 6= 0. Then N is one of the following submanifolds:

(1) a quaternionic space form isometrically immersed in M as a totally

geodesic quaternionic submanifold;

(2) a complex space form isometrically immersed in M as a totally geo-

desic, totally complex submanifold;

(3) a real space form isometrically immersed inM as a totally real, totally

geodesic submanifold;

(4) a real space form isometrically immersed in an (n + 1)-dimensional

totally real totally geodesic submanifold of M as an extrinsic hypersphere.

12.4. Totally umbilical submanifolds of the Cayley plane. Totally

umbilical submanifolds of the Cayley plane OP 2 and of its noncompact dual

have also been classified [Chen 1977b, Nikolaevskij 1994]:
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(1) The maximum dimension of totally umbilical submanifolds in the Cay-

ley plane OP 2 is 8.

(2) A maximal totally umbilical submanifold of OP 2 is one of the follow-

ing:

(2-a) a totally geodesic quaternionic projective plane HP 2;

(2-b) a totally geodesic Cayley line OP 1 = S8;

(2-b) an extrinsic hypersurface of a totally geodesic Cayley lineOP 1 = S8;

or

(2-c) a non-totally geodesic totally umbilical submanifold of a totally ge-

odesic quaternionic projective plane HP 2.

The corresponding result also holds for totally umbilical submanifolds in

the non-compact dual of the Cayley plane.

12.5. Totally umbilical submanifolds in complex quadric. Yu. A.

Nikolaevskij (1991) classified totally umbilical submanifolds in complex quadric

Qm = SO(m+ 2)/SO(m) × SO(2).

An n-dimensional (n ≥ 3) totally umbilical submanifold N of the complex

quadric Qm is one of the following:

(1) a totally geodesic submanifold;

(2) an extrinsic sphere;

(3) a totally umbilical submanifold with nonzero and nonparallel mean

curvature vector.

The last case can be described in the following two ways:

(3-a) N is an umbilical hypersurface of non-constant mean curvature lying

in the totally geodesic Sp × S1 ∈ Qm; or

(3-b) N is a diagonal of the product of two small spheres lying in the

totally geodesic Sl+1 ×Sl+1 ∈ Qm; moreover, the mean and sectional curva-

tures of N are both constant.

12.6. Totally umbilical submanifolds of locally symmetric spaces.

T. Miyazawa and G. Chuman (1972) studied totally umbilical submanifolds

of locally symmetric spaces and obtained the following.

(1) A totally umbilical submanifold of a locally symmetric space is locally

symmetric if and only if its mean curvature is constant.

(2) Let N be a totally umbilical submanifold of dimension ≥ 4 in a lo-

cally symmetric space. If the mean curvature is nowhere zero, then M is

conformally flat.

A Riemannian manifold is called reducible if it is locally the Riemannian

product of two Riemannian manifolds of positive dimensions.

The following results of Chen (1981a) determines reducible totally umbil-

ical submanifolds of locally symmetric spaces:
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(1) Every reducible totally umbilical submanifold of a locally symmetric

space has constant mean curvature.

(2) A reducible totally umbilical submanifold of a locally symmetric space

M is one of the following locally symmetric spaces:

(2.1) A totally geodesic submanifold,

(2.2) a locally Riemannian product of a curve and a Riemannian space

form of constant curvature,

(2.3) a locally Riemannian product of two Riemannian space forms of

constant sectional curvatures c and −c, c 6= 0, respectively.

Irreducible totally umbilical submanifolds in locally symmetric spaces do

not have constant mean curvature in general. For irreducible totally um-

bilical submanifolds with constant mean curvature, we have the following

[Chen 1980a]: If N is an n-dimensional (n ≥ 2) irreducible totally umbilical

submanifold with constant mean curvature in a locally symmetric space M ,

then N is either a totally geodesic submanifold or a real space form. Fur-

thermore, N is either a totally geodesic submanifold or an extrinsic sphere,

unless dimN < 1
2 dimM .

Chen and P. Verheyen (1983) studied totally umbilical submanifolds in

locally Hermitian symmetric spaces and obtained the following: Let N be an

n-dimensional (n ≥ 4) totally umbilical submanifold of a locally Hermitian

symmetric space M . If n > dimCM , then either

(1) N is a totally geodesic submanifold, or

(2) rk(M) > n and N is an extrinsic sphere in a maximal flat totally

geodesic submanifold of M .

This result implies, in particular, that if N is an n-dimensional (n ≥ 4)

totally umbilical submanifold in a locally Hermitian symmetric space M of

compact or non-compact type and if n > dimCM , then N is totally geodesic.

For totally umbilical submanifolds in symmetric spaces, Yu. A. Niko-

laevskij (1994) proved that an n-dimensional (n ≥ 3) totally umbilical sub-

manifold in a globally symmetric spaceM is either totally geodesic or totally

umbilical and complete in a totally geodesic submanifold of M which is iso-

metric to the product of some Riemannian space forms. In particular, he

proved that if N is an n-dimensional totally umbilical submanifold in an

irreducible symmetric space of compact type, then it is either totally geo-

desic or totally umbilical in the totally geodesic product M̄ of flat torus and

spheres.

12.7. Extrinsic spheres in locally symmetric spaces. Extrinsic spheres

in Riemannian manifolds can be characterized as follows: Let N be an n-

dimensional (n ≥ 2) submanifold of a Riemannian manifold M . If, for some
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r > 0, every circle of radius r in N is a circle in M , then N is an extrinsic

sphere in M . Conversely, if N is an extrinsic sphere in M , then every circle

in N is a circle in M [Nomizu-Yano 1974].

Extrinsic spheres in locally symmetric spaces were completely classified

by Chen (1977a) as follows:

Let N be an n-dimensional (n ≥ 2) extrinsic sphere of a locally symmetric

space M . Then N is an extrinsic hypersphere of an (n + 1)-dimensional

totally geodesic submanifold of M with constant sectional curvature.

Conversely, every extrinsic sphere of dimension ≥ 2 in a locally symmetric

space is obtained in such way.

The above result implies, in particular, that

(1) every extrinsic sphere in a locally symmetric space is a real space form,

and

(2) real space forms are the only locally symmetric spaces of dimension

≥ 3 which admit an extrinsic hypersphere.

An extrinsic sphere in a Riemannian manifold is not necessary a Riemann-

ian sphere in general. In contrast, for extrinsic spheres in Kähler manifolds,

we have the following result of [Chen 1976a].

Every complete simply-connected even-dimensional extrinsic sphere in a

Kähler manifold is isometric to a Riemannian sphere if it has flat normal

connection.

This result is false if the extrinsic sphere is odd-dimensional. In fact, there

exist many complete odd-dimensional simply-connected extrinsic spheres

with flat normal connection in Kähler manifolds which are not Riemann-

ian spheres, even not homotopy spheres [Chen 1981a].

In 1984 S. Yamaguchi, H. Nemoto and N. Kawabata showed that if a com-

plete, connected and simply-connected extrinsic sphere in a Kähler manifold

is not isometric to an ordinary sphere, then it is homothetic to either a

Sasakian manifold or a totally real submanifold.

Extrinsic spheres in locally conformally Kähler manifolds were treated in

[Dragomir-Ornea 1998].

12.8. Totally umbilical hypersurfaces. O. Kowalski (1972) proved that

every totally umbilical hypersurface of an Einstein manifold of dimension

≥ 3 is either a totally geodesic hypersurface or an extrinsic hypersphere.

Not every Riemannian manifold admits a totally umbilical hypersurface.

The following result of Chen (1981a) determined all locally symmetric spaces

which admit a non-totally geodesic totally umbilical hypersurface:

A locally symmetric space admits a non-totally geodesic, totally umbilical

hypersurface if and only if, locally, it is one of the following spaces:
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(1) a real space form;

(2) a Riemannian product of a line and a Riemannian space form;

(3) a Riemannian product of two real space forms of constant curvatures

c and −c, respectively.
Thus, if an irreducible locally symmetric space admits a totally umbilical

hypersurface, then it is a real space form.

It follows from the above result that non-totally geodesic, totally umbilical

hypersurfaces of a locally symmetric space are given locally by the fixed

point sets of some conformal mappings. More precisely, if N is a non-totally

geodesic totally umbilical hypersurface of a locally symmetric spaceM , then,

for each point x ∈ N , there is a neighborhood U of x in M and a conformal

mapping φ of U into M such that U ∩N lies in the fixed point set of φ.

K. Tojo (1997b) studied Riemannian homogeneous spaces which admit

extrinsic hyperspheres and proved that if a natural reductive homogeneous

Riemannian manifold admits an extrinsic hypersphere, then it must be a

real space form.

K. Tsukada (1996) proved that ifM = G/H is a Riemannian homogeneous

space such that the identity component of H acts irreducibly on the tangent

space and if dimM ≥ 3, then M admits no totally umbilical hypersurfaces

unless M is a real space form.
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13. Conformally flat submanifolds

A Riemannian n-manifold M is called conformally flat if, at each point

x ∈M , there is a neighborhood of x inM which is conformal to the Euclidean

n-space. An immersed submanifold f :M → Em is called a conformally flat

submanifold if the submanifold is conformally flat with respect to the induced

metric.

Since every Riemannian 2-manifold is conformally flat, due to the exis-

tence of local isothermal coordinate system, we only consider conformally

flat manifolds of dimension greater than or equal to 3.

According to a well-known result of H. Weyl (1918), a Riemannian mani-

fold of dimension n ≥ 4 is conformally flat if and only if its Weyl conformal

curvature tensor W vanishes identically. The Weyl conformal curvature ten-

sor W vanishes identically for n = 3.

Define a tensor L of type (0, 2) on a Riemannian n-manifold by

(13.1) L(X,Y ) = −
(

1

n− 2

)
Ric(X,Y ) +

(
ρ

2(n − 1)(n− 2)

)
g(X,Y ),

where Ric is the Ricci tensor and ρ = traceRic. Let D be the (0,3)-tensor

defined by

(13.2) D(X,Y,Z) = (∇XL)(Y,Z)− (∇Y L)(X,Z).

H. Weyl (1918) proved that the tensor D vanishes identically for a con-

formally flat manifold of dimension n ≥ 4; and a Riemannian 3-manifold is

conformally flat if and only if D vanishes identically..

N. H. Kuiper (1949) proved that a compact simply-connected conformally

flat manifold of dimension ≥ 2 is conformally equivalent to Sn.

13.1. Conformally flat hypersurfaces. .

13.1.1. Quasi-umbilicity of conformally flat hypersurfaces

The study of nonflat conformally flat hypersurfaces of dimension n ≥ 4

was initiated by É. Cartan around 1918. He proved that a hypersurface

of dimension ≥ 4 in Euclidean space is conformally flat if and only if it is

quasi-umbilical, that is, it has a principal curvature with multiplicity ≥ n−1.

The Codazzi equation implies that every quasi-umbilical hypersurface of

dimension 3 in a conformally flat 4-manifold is conformally flat. The converse

of this is not true in general. In fact, G. M. Lancaster (1973) showed that

there exist conformally flat hypersurfaces in E4 which have three distinct

principal curvatures; hence there exist conformally flat hypersurfaces in E4

which are not quasi-umbilical.

13.1.2. Canal hypersurfaces
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A hypersurface of Euclidean space is called a canal hypersurface if it is

the envelope of one-parameter family of hyperspheres. É. Cartan (1918)

proved that a canal hypersurface of dimension n ≥ 4 in Euclidean space is

conformally flat.

13.1.3. Conformally flat hypersurfaces as loci of spheres

A conformally flat hypersurface of dimension ≥ 4 in a real space form

Rn+1(c) is a locus of (n− 1)-spheres, in the sense that it is given by smooth

gluing of some n-dimensional submanifolds of M (possibly with boundary)

such that each of the submanifolds is foliated by totally umbilical (n − 1)-

submanifolds of Rn+1(c) (cf. [Chen 1973b]).

D. E. Blair (1975) proved that the generalized catenoid and the hyper-

planes are the only conformally flat minimal hypersurfaces in En+1 with

n ≥ 4.

13.1.4. Intrinsic properties of conformally flat hypersurfaces

An intrinsic characterization of conformally flat manifolds admitting iso-

metric immersions in real space forms as hypersurfaces was given by Chen

and Yano.

A conformally flat manifold M of dimension n ≥ 4 is called special if

there exist three functions α, β and γ on M such that the tensor L defined

by (13.1) takes the form:

(13.3) L = −1

2

(
k + α2

)
g − αβ ω ⊗ ω,

for some constant k, where ω is a unit 1-form satisfying dα = γω on the

open subset U = {x ∈ M : β(x) 6= 0}, where L = −1
2

(
k + α2

)
g on {x ∈

M : β(x) = 0}.
For a special conformally flat space M , we define a real number iM by

iM =sup{k ∈ R : L = −k + α2

2
g − αβ ω ⊗ ω

for some functions α, β on M},

which is called the index of the special conformally flat manifold.

Chen and Yano proved the following (cf. [Chen 1973b]):

(1) Every conformally flat hypersurface of dimension n ≥ 4 in a real space

form is special.

(2) Conversely, every simply-connected special conformally flat manifold

of dimension n ≥ 4 with index iM can be isometrically immersed in every

real space form of curvature k < iM as a hypersurface and it cannot be

isometrically immersed in any real space form of curvature k > iM as a

hypersurface.
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In 1982, M. do Carmo and M. Dajczer showed that conformally flat mani-

folds are the only Riemannian n-manifolds, n ≥ 4, which can be isometrically

immersed as a hypersurface in two real space forms of different curvatures.

U. Pinkall (1988) proved that every compact conformally flat hypersurface

in En+1, n ≥ 4 is conformally equivalent to a classical Schottky manifold.

Pinkall’s result improves a result of [do Carmo-Dajczer-Mercuri 1985].

It is not known whether every classical Schottky manifold admits a con-

formal immersion into En+1.

13.1.5. Taut conformally flat hypersurfaces

Let f :M → Em be an immersion and p ∈ Em. Denote the function

x ∈M → |f(x)− p|2

by Lp. Suppose φ : M → R is a Morse function on manifold M . If for all

real r, Mr = φ−1(−∞, r] is compact, then the Morse inequality µk ≥ βk
holds, where µk is the number of critical points of index k which φ has on

Mr, and βk is the k-th Betti number of Mr over any field F .

The function φ is called a T -function if there is a field F such that the

Morse inequality is an equality for all r and k. An immersion f : M → Em

is said to be taut if every function of the form Lp, p ∈ Em, is a T -function.

T. E. Cecil and P. Ryan (1980) proved that a complete conformally flat

hypersurface of En+1, n ≥ 4, is taut if and only if it is one of the following:

(a) a hyperplane or a round sphere;

(b) a cylinder over a circle or round (n− 1)-sphere;

(c) a ring cyclide (diffeomorphic to S1 × Sn−1);

(d) a parabolic cyclide (diffeomorphic to S1×Sn−1 with a point removed).

The proofs of all of the above results rely on Cartan’s condition of quasi-

umbilicity on conformally flat hypersurfaces.

13.2. Conformally flat submanifolds. .

13.2.1. Totally quasi-umbilical submanifolds

An n-dimensional submanifold M of a Riemannian (n + p)-manifold N

is called quasiumbilical (respectively, umbilical) with respect to a normal

vector field ξ if the shape operator Aξ has an eigenvalue with multiplicity

≥ n−1 (respectively, multiplicity n). In this case, ξ is called a quasiumbilical

(respectively, umbilical) normal section of M .

An n-dimensional submanifold M of a Riemannian (n + p)-manifold is

called totally quasiumbilical if there exist p mutually orthogonal quasium-

bilical normal sections on M .
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A result of Chen and Yano (1972) states that a totally quasiumbilical

submanifold of dimension ≥ 4 in a conformally flat manifold is conformally

flat.

The property of being totally quasiumbilicity is a conformal invariant,

that is, the property remains under every conformal change of the metric of

the ambient space.

For conformally flat submanifolds of higher codimension, Chen and L.

Verstraelen (1977) proved that an n-dimensional (n ≥ 4) conformally flat

submanifold M with flat normal connection in a conformally flat (n + p)-

manifold is totally quasiumbilical if p < n− 2.

Ü. Lumiste and M. Väljas (1989) showed that Chen-Verstraelen’s result

is sharp in the sense that there exists a conformally flat submanifold M of

dimension n ≥ 4 with flat normal connection in a conformally flat (2n− 2)-

manifold which is not totally quasiumbilical.

J. D. Moore and J. M. Morvan (1978) showed that an n-dimensional

conformally flat submanifold M in En+p is totally quasiumbilical if n > 7

and p < 4.

A relationship between the notion of quasiumbilicity and focal points of

conformally flat submanifolds was given in [Morvan-Zafindratafa 1986].

13.2.2. Submanifolds admitting an umbilical normal section

A normal vector field ξ of a submanifold is said to be parallel if DXξ = 0

for each tangent vector X of M , where D denotes the normal connection.

The length of a parallel normal vector field is constant. A normal vector

field ξ of M is called nonparallel if, for each x ∈M , there is a tangent vector

X ∈ TxM such that DXξ 6= 0.

A submanifold f : M → En+p of a Euclidean space admits an umbilical

parallel unit normal section if and only if f is spherical, that is, f(M) is

contained in a hypersphere of En+p. On the other hand, if a submanifold

M of codimension 2 in a Euclidean space admits an umbilical nonparallel

unit normal section ξ, then M must be quasiumbilical with respect to each

unit normal vector field perpendicular to ξ. Thus, M is a totally quasium-

bilical submanifold. In particular, if dimM ≥ 4, then the submanifold is

conformally flat [Chen-Yano 1973].

13.2.3. Normal curvature tensor as a conformal invariant

Another general conformal property of submanifolds is that the normal

curvature tensor of a submanifold of a Riemannian manifold is a conformal

invariant [Chen 1974].
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If M is a submanifold of a Riemannian manifold N endowed with Rie-

mannian metric g̃ and if g̃∗ = e2ρg̃ is a conformal change of the metric g̃,

then the normal curvature tensor RD of M in (N, g̃) and the normal cur-

vature tensor R∗D of M in (N, g̃∗) satisfy R∗D(X,Y ) = RD(X,Y ) for any

vectors X,Y tangent to M .

13.2.4. CW -decomposition of a conformally flat submanifold

Applying Morse theory, J. D. Moore (1977) proved that a compact n-

dimensional conformally flat submanifold of En+p possesses a CW -decomposition

with no cells of dimension k with p < k < n− p.

13.2.5. A sufficient condition for a locus of spheres to be confor-

mally flat

Chen (1973b) proved that a locus Mn of (n − 1)-spheres (n ≥ 4) in an

(n+ p)-dimensional real space form Rn+p(c) with arbitrary p is conformally

flat if the unit normal vector field of each leaf in Mn is a parallel vector field

in the normal bundle of the leaf in Rn+p(c).

13.2.6. Conformally flat manifolds and hypersurfaces of light cone

A simply-connected Riemannian manifold of dimension n ≥ 3 is confor-

mally flat if and only if it can be isometrically immersed as a hypersurface

of the light cone

V n+1 = {X ∈ Ln+2 : 〈X,X〉 = 0,X 6= 0},

where 〈 , 〉 is the semi-definite metric on V n+1 induced from the standard

Lorentzian metric on the flat (n + 2)-dimensional Lorentzian space Ln+2

[Brinkmann 1923, Asperti-Dajczer 1989].

13.2.7. Conformally flat submanifolds with constant index of con-

formal nullity

When f : Mn → En+p, p ≤ n − 3, is a conformally flat submanifold,

at each point x ∈ M , there is an umbilical subspace U(x) ⊂ TxM with

dimU(x) ≥ n − p. Hence, there is a unit vector η ∈ T⊥
x M and a nonneg-

ative number λ so that the second fundamental form satisfies h(Z,X) =

λ 〈Z,X〉 η, for each Z ∈ U(x) and each X ∈ TxM .

The umbilical distribution U is integrable on any open subset where the

dimension of U(x) is constant, which is denoted by νcf (x). ν
c
f (x) is called the

index of conformal nullity.

The leaves of the umbilical distribution are extrinsic spheres in M , hence

they are totally umbilical submanifolds with parallel mean curvature vector.
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We say that an isometric immersion F : Nn+1 → Ñn+p extends an iso-

metric immersion f :Mn → Ñn+p when there exists an isometric embedding

of Mn into Nn+1 such that F |M = f .

M. Dajczer and L. A. Florit (1996) proved the following: Let f : Mn →
En+p, n ≥ 5, p ≤ n− 3, be a simply-connected conformally flat submanifold

without flat points. If f has constant index of conformal nullity νcf , say

ℓ, then there exist an extension F : Nn+1 → En+p of f and an isometric

immersion G : Nn+1 → Ln+2 so that Mn = G(Nn+1) ∩ V n+1. Moreover, F

and G carry a common (ℓ+ 1)-dimensional relative nullity foliation.

A conformally flat submanifold f : Mn → En+2, n ≥ 5, is called generic

when its umbilical direction η ∈ T⊥M possesses everywhere a nonzero prin-

cipal curvature λ of multiplicity n − 2. An immersion f : Mn → En+2 is

called a composition if there exist an open subset U ⊂ En+1 and isometric

immersions f̃ :Mn → U and H : U → En+2 such that f = H ◦ f̃ .
Dajczer and Florit (1996) proved that any conformally flat submanifold

f : Mn → En+2, n ≥ 5, without flat points is locally along an open dense

subset either generic or a composition.

13.2.8. A non-immersion theorem

H. Rademacher (1988) proved that if there exists a constant c such that

the Ricci curvature of a compact conformally flat n-manifold M , n ≥ 4,

satisfies

−c2 ≤ Ric(X) ≤ −
(
n− 1

2n − 3

)
c2

for any unit vector X tangent toM , thenM cannot be conformally immersed

in S2n−2.



RIEMANNIAN SUBMANIFOLDS 151

14. Submanifolds with parallel mean curvature vector

A submanifold of a Riemannian manifold is said to have parallel mean

curvature vector if the mean curvature vector field H is parallel as a section

of the normal bundle. Trivially, every minimal submanifold of a Riemann-

ian manifold has parallel mean curvature vector. A minimal submanifold

of a hypersphere in Euclidean space has nonzero parallel mean curvature

vector when it is considered as a submanifold of the ambient Euclidean

space. Furthermore, a hypersurface of a Riemannian manifold has parallel

mean curvature vector if and only if it has constant mean curvature. By

introducing the notion of twisted product, Chen (1981a) showed that every

Riemannian manifold can be embedded in some twisted product Riemann-

ian manifold as a submanifold with nonzero parallel mean curvature vector.

H. Reckziegel (1974) proved if M is a compact submanifold of a manifold

N such that TN |M has a metric γ and η is a nonzero normal vector field of

constant length in (TM)⊥, then γ can be extended to a Riemannian metric

on N such thatM is an extrinsic sphere with parallel mean curvature vector

η.

It was S. S. Chern who first suggested in the mid 1960s that the notion

of parallel mean curvature vector as the natural extension of constant mean

curvature for hypersurfaces.

14.1. Gauss map and mean curvature vector. For an isometric immer-

sion f : M → Em of an oriented n-dimensional Riemannian manifold into

Euclidean m-space, the Gauss map

G :M → GR(m− n,m)

of f is a smooth map which carries a point x ∈M into the oriented (m−n)-
plane in Em, which is obtained from the parallel translation of the normal

space of M at x in Em, where GR(m − n,m) denotes the Grassmannian

manifold consisting of oriented (m− n)-planes in Em.

E. A. Ruh and J. Vilms (1970) characterized submanifolds of Euclidean

space with parallel mean curvature vector as follows: A submanifold M of a

Euclidean m-space Em has parallel mean curvature vector if and only if its

Gauss map G is harmonic.

14.2. Riemann sphere with parallel mean curvature vector. One-

dimensional submanifolds with parallel mean curvature vector are nothing

but geodesics and circles.

D. Ferus (1971b) and E. A. Ruh (1971) determined completely closed

surfaces of genus zero with parallel mean curvature vector in Euclidean space:
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Let M be a closed oriented surface of genus zero in Em. If M has parallel

mean curvature vector, then M is contained in a hypersphere of Em as a

minimal surface.

14.3. Surfaces with parallel mean curvature vector. Surfaces in E4

with parallel mean curvature vector were classified by D. Hoffman in his

doctoral thesis (Stanford University 1971).

The complete classification of surfaces in Euclidean n-space, n ≥ 4, with

parallel mean curvature vector was obtained by Chen (1972) and, indepen-

dently by Yau (1974).

A surfaceM of Euclidean m-space Em has parallel mean curvature vector

if and only if it is one of the following surfaces:

(1)a minimal surface of Em;

(2) a minimal surface of a hypersphere of Em;

(3) a surface of E3 with constant mean curvature;

(4) a surface of constant mean curvature lying in a hypersphere of an

affine 4-subspace of Em.

Similar results hold for surfaces with parallel mean curvature vector in

spheres and in real hyperbolic spaces as well (cf. [Chen 1973b]).

For surfaces of constant Gaussian curvature, Chen and G. D. Ludden

(1972) and D. Hoffman (1973) proved that minimal surfaces of a small hy-

persphere, open pieces of the product of two plane circles, and open pieces

of a circular cylinder are the only non-minimal surfaces in Euclidean space

with parallel mean curvature vector and with constant Gaussian curvature.

For a compact surface M with positive constant Gaussian curvature, K.

Enomoto (1985) proved that if f : M → Em is an isometric embedding

with constant mean curvature and flat normal connection, then f(M) is a

round sphere in an affine 3-subspace of Em. Enomoto also proved that if f :

M → En+2 is an isometric embedding of a compact Riemannian n-manifold,

n ≥ 4, with positive constant sectional curvature and with constant mean

curvature, then f(M) is a round n-sphere in a hyperplane of En+2.

For codimension two using the method of equivariant differential geome-

try, W. T. Hsiang, W. Y. Hsiang and I. Sterling (1985) proved the following:

(a) There exist infinitely many codimension two embeddings of distinct

knot types of S4k+1 into S4k+3(1) with parallel mean curvature vector of

arbitrarily small constant length.

(b) There exist infinitely many codimension two embeddings of distinct

knot types of the Kervaire exotic sphere Σ4k+1
0 into S4k+3(1) with parallel

mean curvature vector having length of arbitrarily small constant value.
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(c) There exist infinitely many constant mean curvature embeddings of

(4k − 1)-dimensional generalized lens spaces into S4k+1(1).

It remains as an open problem to completely classify submanifolds of

dimension ≥ 3 with parallel mean curvature vector in real space forms.

14.4. Surfaces with parallel normalized mean curvature vector. Chen

(1980b) defined a submanifold in a Riemannian manifold to have parallel nor-

malized mean curvature vector field if there exists a unit parallel vector field

ξ which is parallel to the mean curvature vector field H, that is, H = αξ for

some unit parallel normal vector field ξ.

Submanifolds with nonzero parallel mean curvature vector field also have

parallel normalized mean curvature vector field. The condition to have paral-

lel normalized mean curvature vector field is much weaker than the condition

to have parallel mean curvature vector field. For instance, every hypersurface

in a Riemannian manifold always has parallel normalized mean curvature

vector field.

For surfaces with parallel normalized mean curvature vector field, we have

the following results from [Chen 1980b]:

(1) Let M be a Riemann sphere immersed in a Euclidean m-space Em.

Then M has parallel normalized mean curvature vector field if and only if

either

(1-a) M is immersed in a hypersphere of Em as a minimal surface, or

(1-b) M is immersed in an affine 3-subspace of Em.

(2) A surface M of class Cω in a Euclidean m-space Em has parallel

normalized mean curvature vector field if and only ifM is one of the following

surfaces:

(2-a) a minimal surface of a hyperplane of Em,

(2-b) a surface in an affine 4-subspace of Em with parallel normalized

mean curvature vector.

Every surface in a Euclidean 3-space has parallel normalized mean curva-

ture vector field. Moreover, there exist abundant examples of surfaces which

lie fully in a Euclidean 4-space with parallel normalized mean curvature

vector field, but not with parallel mean curvature vector field.

14.5. Submanifolds satisfying additional conditions. It is a classical

theorem of Liebmann that the only closed convex surfaces in Euclidean 3-

space having constant mean curvature are round spheres. B. Smyth (1973)

extended Liebmann’s result to the following: LetM be a compact n-dimensional

submanifold with nonnegative sectional curvature in Euclidean m-space. If

M has parallel mean curvature vector, then M is a product submanifold
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M1×· · ·×Mk, where each Mi is a minimal submanifold in a hypersphere of

an affine subspace of Em.

Further, K. Yano (1912–1993) and S. Ishihara (1922– ) in 1971 and J.

Erbacher in 1972 extended Liebmann’s result to the following: Let M be an

n-dimensional submanifold in Euclidean m-space with nonnegative sectional

curvature. Suppose that the mean curvature vector is parallel in the normal

bundle and the normal connection is flat. If M is either compact or has

constant scalar curvature, then M is the standard product immersion of the

product Sn1(r1)× · · · × Snk(rk) of some spheres.

Recently, Y. Zheng (1997) proved the following: Let M be a compact

orientable submanifold with constant scalar curvature and with nonnegative

sectional curvature immersed in a real space form of constant sectional cur-

vature c. Suppose that M has flat normal connection. If the normalized

scalar curvature of M is greater than c, then M is either totally umbilical

or locally the Riemannian product of several totally umbilical constantly

curved submanifolds.

For complete submanifolds Mn of dimension ≥ 3 in Euclidean space,

Y. B. Shen (1985) proved the following: Let Mn (n ≥ 3) be a complete

submanifold in the Euclidean space Em with parallel mean curvature vector.

If the squared mean curvature H2 and the squared length S of the second

fundamental form of M satisfies

(n− 1)S ≤ n2H2,

then Mn is an n-plane, an n-sphere Sn, or a circular cylinder Sn−1 × E1.

This extended some results of [Chen-Okumura 1973, Okumura 1973].

G. Chen and X. Zou (1995) studied compact submanifolds of spheres with

parallel mean curvature vector and proved the following:

Let M be an n-dimensional compact submanifold with nonzero parallel

mean curvature vector in the unit (n+ p)-sphere. Then

(1) M is totally geodesic, if one of the following two conditions hold:

S ≤ min

{
2

3
n,

2n

1 +
√

n
2

}
, p ≥ 2 and n 6= 8;

S ≤ min

{
n

2− 1
p−1

,
2n

1 +
√

n
2

}
, p ≥ 1 and (n, p) 6= (8, 3);

(2) M is totally umbilical, if 2 ≤ n ≤ 7, p ≥ 2, and S ≤ 2
3n.

14.6. Homogeneous submanifolds with parallel mean curvature vec-

tor. C. Olmos (1994,1995) studied homogeneous submanifolds of Euclidean

space and proved the following.
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(a) IfM is a compact homogeneous submanifold of a Euclidean space with

parallel mean curvature vector which is not minimal in a sphere, then M is

an orbit of the isotropy representation of a simple symmetric space;

(b) A homogeneous irreducible submanifold of Euclidean space with par-

allel mean curvature vector is either minimal, or minimal in a sphere, or

an orbit of the isotropy representation of a simple Riemannian symmetric

space.
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15. Kähler submanifolds of Kähler manifolds

According to the behavior of the tangent bundle of a submanifold with

respect to the action of the almost complex structure J of the ambient

manifold, there are several typical classes of submanifolds, namely, Kähler

submanifolds, totally real submanifolds, CR-submanifolds and slant sub-

manifolds.

In this section, the dimensions of complex manifolds always mean the

complex dimensions, unless mentioned otherwise.

The theory of submanifolds of a Kähler manifold began as a separate

area of study in the last century with the investigation of algebraic curves

and algebraic surfaces in classical algebraic geometry. The study of complex

submanifolds of Kähler manifolds from differential geometrical points of view

(that is, with emphasis on the Riemannian metric) was initiated by E. Calabi

in the early of 1950’s.

15.1. Basic properties of Kähler submanifolds. A submanifold of a

complex manifold is called a complex submanifold if each of its tangent

spaces is invariant under the almost complex structure of the ambient mani-

fold. A complex submanifold of a Kähler manifold is itself a Kähler manifold

with respect to its induced metric. By a Kähler submanifold we mean a com-

plex submanifold with the induced Kähler structure.

It was proved by Calabi (1953) that Kähler submanifolds of Kähler man-

ifolds always have rigidity. Thus, for any two full Kähler immersions f and

f ′ of the same Kähler manifold M into CPm and into CPN , respectively,

we have m = N and, moreover, there exists a unique holomorphic isometry

Ψ of CPm onto itself such that Ψ ◦ f = f ′.

The second fundamental form of a Kähler submanifold M of a Kähler

manifold with the almost complex structure J satisfies

h(JX, Y ) = h(X,JY ) = Jh(X,Y ),

for X,Y tangent to M . From this it follows that Kähler submanifolds of

Kähler manifolds are always minimal.

Compact Kähler submanifolds of Kähler manifolds are also stable and

have the property of being absolutely volume minimizing inside the homology

class. Moreover, a compact Kähler submanifold M of a Kähler manifold M̃

can never be homologous to zero, that is, there exists no submanifold M ′ of

M̃ such that M is the boundary of M ′ [Wirtinger 1936].

A Kähler submanifold of a Kähler manifold is said to be of degree k if the

pure part of the (k−1)-st covariant derivative of the second fundamental form

is identically zero but the pure part of the (k − 2)-nd one is not identically
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zero. In particular, degree 1 is nothing but totally geodesic and degree 2 is

equivalent to parallel second fundamental form but not totally geodesic.

Let CPm(c) denote the complex projective m-space equipped with the

Fubini-Study metric of constant holomorphic sectional curvature c and M

be an n-dimensional Kähler submanifold of CPm(c).

Denote by g,K,H,Ric, ρ and h the metric tensor, the sectional curvature,

the holomorphic sectional curvature, the Ricci tensor, the scalar curvature

and the second fundamental form of M , where ρ =
∑

i 6=jK(ei ∧ ej) and

{e1, . . . , en} is an orthonormal frame on M .

It follows from the equation of Gauss that an n-dimensional Kähler sub-

manifold of a Kähler m-manifold M̃m(c) of constant holomorphic sectional

curvature c satisfies the following curvature properties in general:

(1) H ≤ c, with equality holding identically if and only if M is a totally

geodesic Kähler submanifold.

(2) Ric ≤ c
2(n+ 1)g, with equality holding identically if and only if M is

a totally geodesic Kähler submanifold.

(3) ρ ≤ n(n + 1)c, with equality holding identically if and only if M is a

totally geodesic Kähler submanifold.

Let z0, z1, . . . , zn+1 be a homogeneous coordinate system of CPn+1(c) and

Qn be the complex quadric hypersurface of CPn+1(c) defined by

Qn = {(z0, z1, . . . , zn+1) ∈ CPn+1(c) :
∑

z2i = 0}.

Then Qn is complex analytically isometric to the compact Hermitian sym-

metric space SO(n+ 2)/SO(n) × SO(2).

With respect to the induced Kähler metric g, Qn satisfies the following:

(1) 0 ≤ K ≤ c for n ≥ 2 and K = c
2 for n = 1.

(2) c
2 ≤ H ≤ c for n ≥ 2 and H = c

2 for n = 1.

(3) Ric = n
2 cg.

(4) ρ = n2c.

P. B. Kronheimer and T. S. Mrowka (1994) proved the Thom conjecture

concerning the genus of embedded surfaces in CP 2, namely, they proved

that if C is a smooth holomorphic curve in CP 2, and C ′ is a smoothly

embedded oriented 2-manifold representing the same homology class as C,

then the genus of C ′ satisfies g(C ′) ≥ g(C). The proof of this result uses

Seiberg-Witten’s invariant on 4-manifolds.

15.2. Complex space forms and Chern classes. A Kähler manifold is

called a complex space form if it has constant holomorphic sectional curva-

ture. The universal covering of a complete complex space form M̃n(c) is the
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complex projective n-space CPn(c), the complex Euclidean n-space Cn, or

the complex hyperbolic space CHn(c), according to c > 0, c = 0, or c < 0.

Complex space forms can be characterized in terms of the first and the

second Chern classes. In fact, B. Y. Chen and K. Ogiue (1975) proved the

following sharp inequality between the first and the second Chern numbers

for Einstein-Kähler manifolds. They also applied their inequality to charac-

terize complex space forms:

Let M be an n-dimensional compact Einstein-Kähler manifold. Then the

first and the second Chern classes of M satisfy

(15.1) εn
∫

M
2(n + 1)cn−2

1 c2 ≥ εn
∫

M
ncn1 (ε the sign of ρ),

with the equality holding if and only if M is either a complex space form

or a Ricci-flat Kähler manifold. Chen-Ogiue’s inequality was extended by

M. Lübke in 1982 to Einstein-Hermitian vector bundle over compact Kähler

manifolds in the sense of S. Kobayashi (1932– ) (cf. [Kobayashi 1987]).

In this respect, we mention that T. Aubin (1976) proved that if M is a

compact Kähler manifold with c1 < 0 (that is, c1 is represented by a negative

definite real (1, 1)-form), then there exists a unique Einstein-Kähler metric

on M whose Kähler form is cohomologous to the Kähler form of the initial

given metric. Consequently, by combining these two results, it follows that

every compact Kähler manifold with c1 < 0 satisfies inequality (15.1), with

the equality holding if and only if M is covered by the complex hyperbolic

n-space.

S. T. Yau (1977) proved that if M is a compact Kähler manifold with

c1 = 0, then it admits a Ricci-flat Kähler metric.

15.3. Kähler immersions of complex space forms in complex space

forms. M. Umehara (1987a) studied Kähler immersions between complex

space forms and obtained the following.

(1) A Kähler submanifold of a complex Euclidean space cannot be a Kähler

submanifold of any complex hyperbolic space;

(2) A Kähler submanifold of a complex Euclidean space cannot be a Kähler

submanifold of any complex projective space, and

(3) A Kähler submanifold of a complex hyperbolic space cannot be a

Kähler submanifold of any complex projective space.

Kähler immersions of complex space forms in complex space forms are

completely classified by H. Nakagawa and K. Ogiue in 1976 as follows.

Let Mn(c) be an n-dimensional complex space form isometrically im-

mersed in an m-dimensional complex space form M̃m(c̄) as a Kähler sub-

manifold such that the immersion is full. Then
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(1) if c̄ ≤ 0, then the immersion is totally geodesic;

(2) if c̄ > 0, then c̄ = µc and m =
(n+µ
µ

)
− 1 for some positive integer µ.

Moreover, either the immersion is totally geodesic or locally the immersion

is given by one of the Veronese embeddings.

This result is due to Calabi (1953) when both Mn(c) and M̃m(c̄) are

complete simply-connected complex space forms.

An immersion f M → M̃ between Riemannian manifolds is called proper

d-planar geodesic if every geodesic in M is mapped into a d-dimensional

totally geodesic subspace of M̃ , but not into any d − 1-dimensional totally

geodesic subspace of M̃ .

J. S. Pak and K. Sakamoto (1986,1988) proved that and f :Mn → CPm

a proper d-planar geodesic Kähler immersion from a Kähler manifold into

CPm, d odd or d ∈ {2, 4}, then f is equivalent to the d-th Veronese embed-

ding of CPn into CPm.

15.4. Einstein-Kähler submanifolds and Kähler submanifolds M̃

satisfying Ric(X,Y ) = R̃ic(X,Y ). For complex hypersurfaces of complex

space forms we have the following:

(1) Let M be a Kähler hypersurface of an (n + 1)-dimensional complex

space form M̃n+1(c). If n ≥ 2 and M is Einstein, then either M is totally

geodesic or Ric = n
2 cg.

The latter case occurs only when c > 0. Moreover, the immersion is rigid

[Smyth 1968, Chern 1967].

(2) Let M be a compact Kähler hypersurface embedded in CPn+1. If M

has constant scalar curvature, then M is either totally geodesic in CPn+1

or holomorphically isometric to Qn in CPn+1. [Kobayashi 1967a].

(3) Let M be a Kähler hypersurface of an (n + 1)-dimensional complex

space form M̃n+1(c). If the Ricci tensor of M is parallel, then M is an

Einstein space [Takahashi 1967].

J. Hano (1975) proved that, besides linear subspaces, Qn is the only

Einstein-Kähler submanifold of a complex projective space which is a com-

plete intersection.

M. Umehara (1987b) proved that every Einstein-Kähler submanifold of

Cm or CHm is totally geodesic.

B. Smyth (1968) proved that the normal connection of a Kähler hyper-

surfaceMn in a Kähler manifold M̃n+1 is flat if and only if the Ricci tensors

of Mn and M̃n+1 satisfy Ric(X,Y ) = R̃ic(X,Y ) for X,Y tangent to Mn.

For general Kähler submanifolds Chen and Lue (1975b) proved the fol-

lowing.
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Let M be a compact Kähler submanifold of a compact Kähler manifold

M̃ . Then

(1) if the normal connection is flat, the Ricci tensors of M and M̃ satisfy

Ric(X,Y ) = R̃ic(X,Y ) for X,Y tangent to M ;

(2) if Ric(X,Y ) = R̃ic(X,Y ) for any X,Y tangent to M , then the first

Chern class of the normal bundle is trivial, that is, c1(T
⊥M) = 0;

(3) if M̃ is flat, then the first Chern class of the normal bundle is trivial

if and only if the normal connection is flat.

15.5. Ogiue’s conjectures and curvature pinching. An n-dimensional

complex projective space of constant holomorphic sectional curvature c can

be analytically isometrically embedded into an
((

n+µ
µ

)
− 1
)
-dimensional com-

plex projective space of constant holomorphic sectional curvature µc. Such

an embedding is given by all homogeneous monomials of degree µ in homoge-

neous coordinates, which is called the µ-th Veronese embedding of CPn(c).

The degree of the µ-th Veronese embedding is µ.

The Veronese embeddings were characterized by A. Ros (1986) in terms

of holomorphic sectional curvature in the following theorem: If a compact

n-dimensional Kähler submanifold M immersed in CPm(c) satisfies

c

µ+ 1
< H ≤ c

µ
,

then M = CPn( cµ) and the immersion is given by the µ-th Veronese embed-

ding.

Kähler submanifolds of degree ≤ 2 are characterized by Ros (1985b) as

follows: If a compact Kähler submanifold M immersed in CPm(c) satis-

fies H ≥ 1/2, then degree ≤ 2; and, moreover, the Kähler submanifold is

congruent to one of the following six Kähler manifolds:

CPn(c), CPn
( c
2

)
, Qn = SO(n+ 2)/SO(n) × SO(2),

SU(r + 2)/S(U(r) × U(2)), r ≥ 3, SO(10)/U(5),

E6/Spin(10) × SO(2).

A. Ros and L. Verstraelen (1984) and Liao (1988) characterized the second

Veronese embedding in terms of sectional curvature in the following theorem.

If a compact n-dimensional (n ≥ 2) Kähler submanifold M immersed in

CPm(c) satisfies K ≥ 1/8, then eitherM is totally geodesic orM = CPn( c2)

and the immersion is the second Veronese embedding.

A. Ros (1986) characterized all Veronese embeddings by curvature pinch-

ing as follows: If a compact n-dimensional, n ≤ 2, Kähler submanifold M
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immersed in CPm(c) satisfies

c

4(µ + 1)
≤ K ≤ c

µ
,

then either M = CP ( cµ) and the immersion is given by the µ-th Veronese

embedding or M = CPn( c
µ+1 ) and the immersion is given by the (µ+ 1)-st

Veronese embedding.

J. H. Cheng (1981) and R. J. Liao (1988) characterized complex quadric

hypersurface in terms of its scalar curvature:

If a compact n-dimensional Kähler submanifold M immersed in CPm(c)

satisfies ρ ≥ n2, then either M is totally geodesic or M = Qn.

The above results gave affirmative answers to some of Ogiue’s conjectures.

Totally geodesic Kähler submanifolds of CPm(c) are characterized in

terms of Ricci curvature by K. Ogiue (1972a): If a compact n-dimensional

Kähler submanifold M immersed in CPm(c) satisfies Ric > n
2 c, then M is

totally geodesic.

Chen and Ogiue (1974a) proved that if an n-dimensional Kähler subman-

ifoldM of CPm(c) satisfies Ric = n
2 cg, thenM is an open piece of Qn which

is embedded in some totally geodesic CPn+1(c) in CPm(c).

For compact Kähler submanifolds with positive sectional curvature, Y. B.

Shen (1995) proved the following.

Let Mn be an n-dimensional, n ≥ 2, compact Kähler submanifold im-

mersed in CPn+p with p < n. ThenMn has nonnegative sectional curvature

if and only if Mn is one of the following:

(1) a totally geodesic Kähler submanifold in CPn+p; or

(2) an embedded submanifold congruent to the standard full embedding

of

(2-a) the complex quadric Qn as a hypersurface; or

(2-b) of CPn−1 × CP 1 with codimension n− 1; or

(2-c) of U(5)/U(3) × U(2) of codimension 3; or

(2-d) of U(6)/U(4) × U(2) with codimension 6; or

(2-e) of SO(10)/U(5) with codimension 5, or

(2-f) of E6/Spin(10) × T with codimension 10.

F. Zheng (1996) studied Kähler submanifolds of complex Euclidean spaces

and proved that if M is an n-dimensional Kähler submanifold with nonpos-

itive sectional curvature in Cn+r with r ≤ n, then

(a) if r < n, M is ruled, that is, there exists a holomorphic foliation F on

an open dense subset U of M with each leaf of F totally geodesic in Cn+r;

(b) if r = n, then either M is ruled, or M is locally holomorphically

isometric to the product of n complex plane curves.
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The dimension bound is sharp, as there exist examples of negatively

curved submanifolds Mn in C2n+1 which are not ruled or product mani-

folds.

15.6. Segre embedding. Let (zi0, . . . , z
i
Ni
) (1 ≤ i ≤ s) denote the homoge-

neous coordinates of CPNi . Define a map:

SN1···Ns : CP
N1 × · · · ×CPNs → CPN , N =

s∏

i=1

(Ni + 1)− 1,

which maps a point ((z10 , . . . , z
1
N1

), . . . , (zs0, . . . , z
s
Ns

)) of the product Kähler

manifold CPN1 × · · · × CPNs to the point (z1i1 · · · zsij )1≤i1≤N1,...,1≤is≤Ns in

CPN . The map SN1···Ns is a Kähler embedding which is called the Segre

embedding [Segre 1891].

Concerning Segre embedding, B. Y. Chen (1981b) and B. Y. Chen and

W. E. Kuan (1985) proved the following:

Let M1, . . . ,Ms be Kähler manifolds of dimensions N1, . . . , Ns, respec-

tively. Then every Kähler immersion

f :M1 × · · · ×Ms → CPN , N =
s∏

i=1

(Ni + 1)− 1,

ofM1×· · ·×Ms into CP
N is locally the Segre embedding, that is,M1, . . . ,Ms

are open portions of CPN1 , . . . , CPNs , respectively, and moreover, the Kähler

immersion f is congruent to the Segre embedding.

This theorem was proved in [Nakagawa-Takagi 1976] under two additional

assumptions; namely, s = 2 and the Kähler immersion f has parallel second

fundamental form.

15.7. Parallel Kähler submanifolds. Ogiue (1972b) studied complex space

forms in complex space forms with parallel second fundamental form and

proved the following: Let Mn(c) be a complex space form analytically iso-

metrically immersed in another complex space form Mm(c̄). If the second

fundamental form of the immersion is parallel, then either the immersion is

totally geodesic or c̄ > 0 and the immersion is given by the second Veronese

embedding.

Complete Kähler submanifolds in a complex projective space with parallel

second fundamental form were completely classified by H. Nakagawa and R.

Tagaki in 1976. Their result states as follows.

Let M be a complete Kähler submanifold embedded in CPm(c). If M is

irreducible and has parallel second fundamental form, then M is congruent
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to one of the following six kinds of Kähler submanifolds:

CPn(c), CPn
( c
2

)
, Qn = SO(n+ 2)/SO(n) × SO(2),

SU(r + 2)/S(U(r) × U(2)), r ≥ 3, SO(10)/U(5), E6/Spin(10)× SO(2).

If M is reducible and has parallel second fundamental form, then M is

congruent to CPn1 ×CPn2 with n = n1+n2 and the embedding is given by

the Segre embedding.

K. Tsukada (1985a) studied parallel Kähler submanifolds of Hermitian

symmetric spaces and obtained the following: Let f : M → M̃ be a Kähler

immersion of a complete Kähler manifold M into a simply-connected Her-

mitian symmetric space M̃ . If f has parallel second fundamental form, then

M is the direct product of a complex Euclidean space and semisimple Her-

mitian symmetric spaces. Moreover, f = f2 ◦f1, where f1 is a direct product

of identity maps and (not totally geodesic) parallel Kähler embeddings into

complex projective spaces, and f2 is a totally geodesic Kähler embedding.

15.8. Symmetric and homogeneous Kähler submanifolds. Suppose

fi : Mi → CPNi , i = 1, . . . , s, are full Kähler embeddings of irreducible

Hermitian symmetric spaces of compact type and N =
∏s
i=1(Ni + 1) − 1.

Then the composition

SN1···Ns ◦ (f1 × · · · × fs) :M1 × · · · ×Ms → CPN

is a full Kähler embedding, which is called the tensor product of f1, . . . , fs.

H. Nakagawa and R. Tagaki (1976) and R. Tagaki and M. Takeuchi (1977)

had obtained a close relation between the degree and the rank of a symmetric

Kähler submanifold in complex projective space; namely, they proved the

following.

Let fi : Mi → CPNi , i = 1, . . . , s, are pi-th full Kähler embeddings of

irreducible Hermitian symmetric spaces of compact type. Then the degree

of the tensor product of f1, . . . , fs is given by
∑s

i=1 ripi, where ri = rk(Mi).

M. Takeuchi (1978) studied Kähler immersions of homogeneous Kähler

manifolds and proved the following:

Let f : M → CPN be a Kähler immersion of a globally homogeneous

Kähler manifold M . Then

(1) M is compact and simply-connected;

(2) f is an embedding; and

(3) M is the orbit in CPN of the highest weight in an irreducible unitary

representation of a compact semisimple Lie group.

A different characterization of homogeneous Kähler submanifolds in CPN

was given by S. Console and A. Fino (1996).
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H. Nakagawa and R. Tagaki (1976) proved that there do not exist Kähler

immersions from locally symmetric Hermitian manifolds into complex Eu-

clidean spaces and complex hyperbolic spaces except the totally geodesic

ones.

15.9. Relative nullity of Kähler submanifolds and reduction theo-

rem. For a submanifold M in a Riemannian manifold, the subspace

Np = {X ∈ TpM : h(X,Y ) = 0, for all Y ∈ TpM}, p ∈M
is called the relative nullity space of M at p. The dimension µ(p) of Np is

called the relative nullity of M at p. The subset U of M where µ(p) assumes

the minimum, say µ, is open in M , and µ is called the index of relative

nullity.

K. Abe (1973) studied the index of relative nullity of Kähler submanifolds

and obtained the following:

(1) Let M be an n-dimensional Kähler submanifold of a complex projec-

tive m-space CPm. If M is complete, then the index of relative nullity is

either 0 or 2n. In particular, if µ > 0, then M = CPn and it is embedded

as a totally geodesic submanifold.

(2) Let M be an n-dimensional complete Kähler submanifold of the com-

plex Euclidean m-space Cm. If the relative nullity is greater than or equal

to n− 1, then M is (n− 1)-cylindrical.

Let M be an n-dimensional Kähler submanifold of an (n+p)-dimensional

complex space form M̃n+p(c). A subbundle E of the normal bundle T⊥M is

called holomorphic if E is invariant under the action of the almost complex

structure J of M̃n+p(c). For a holomorphic subbundle E of T⊥M , let

νE(x) = dimC{X ∈ TxM : AξX = 0 for all ξ ∈ Ex}.
Put νE = Minx∈MνE(x), which is called the index of relative nullity with

respect to E.

Chen and Ogiue (1973a) proved the following: LetM be an n-dimensional

Kähler submanifold of a complex space form M̃n+p(c). If there exists an r-

dimensional parallel normal subbundle E of the normal bundle such that

νE(x) ≡ 0, then M is contained in an (n + r)-dimensional totally geodesic

submanifold of M̃n+p(c).

This result implies the following result of Chen and Ogiue (1973a) and

T. E. Cecil (1974): If M is an n-dimensional Kähler submanifold of a com-

plete complex space form M̃n+p(c) such that the first normal space, Im h,

defines an r-dimensional parallel subbundle of the normal bundle, then M is

contained in an (n+ r)-dimensional totally geodesic submanifold of M̃n+p.



RIEMANNIAN SUBMANIFOLDS 165

16. Totally real and Lagrangian submanifolds of Kähler

manifolds

The study of totally real submanifolds of a Kähler manifold from differen-

tial geometric points of views was initiated in the early 1970’s. A totally real

submanifoldM of a Kähler manifold M̃ is a submanifold such that the almost

complex structure J of the ambient manifold M̃ carries each tangent space

of M into the corresponding normal space of M , that is, J(TpM) ⊂ T⊥
p M

for any point p ∈M . In other words, M is a totally real submanifold if and

only if, for any nonzero vector X tangent to M at any point p ∈ M , the

angle between JX and the tangent plane TpM is equal to π
2 , identically. A

totally real submanifold M of a Kähler manifold M̃ is called Lagrangian if

dimRM = dimC M̃ .

1-dimensional submanifolds, that is, real curves, in a Kähler manifold are

always totally real. For this reason, we only consider totally real submani-

folds of dimension ≥ 2.

A submanifoldM of dimension ≥ 2 in a non-flat complex space form M̃ is

curvature invariant, that is, the Riemann curvature tensor R̃ of M̃ satisfies

R̃(X,Y )TM ⊂ TM for X,Y tangent to M , if and only if M is either a

Kähler submanifold or a totally real submanifold [Chen-Ogiue 1974b].

For a Lagrangian submanifold M of a Kähler manifold (M̃, g, J), the

tangent bundle TM and the normal bundle T⊥M are isomorphic via the

almost complex structure J of the ambient manifold. In particular, this

implies that the Lagrangian submanifold has flat normal connection if and

only if the submanifold is a flat Riemannian manifold.

Let h denote the second fundamental form of the Lagrangian subman-

ifold in M̃ and let α = Jh. Another important property of Lagrangian

submanifolds is that g(α(X,Y ), JZ) is totally symmetric, that is, we have

(16.1) g(α(X,Y ), JZ) = g(α(Y,Z), JX) = g(α(Z,X), JY )

for any vectors X,Y,Z tangent to M .

A result of M. L. Gromov (1985) implies that every compact embedded

Lagrangian submanifold of Cn is not simply-connected (see [Sikorav 1986]

for a complete proof of this fact). This result is not true when the compact

Lagrangian submanifolds were immersed but not embedded.

16.1. Basic properties of Lagrangian submanifolds. A general Kähler

manifold may not have any minimal Lagrangian submanifold. Also, the

only minimal Lagrangian immersion of a topological 2-sphere into CP 2 is

the totally geodesic one. In contrast, minimal Lagrangian submanifolds in
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an Einstein-Kähler manifold exist in abundance, at least locally (cf. [Bryant

1987]).

For surfaces in E4 Chen and J. M. Morvan (1987) proved that an ori-

entable minimal surface M in E4 is Lagrangian with respect to an orthog-

onal almost complex structure on E4 if and only if it is holomorphic with

respect to some orthogonal almost complex structure on E4.

A simply-connected Riemannian 2-manifold (M,g) with Gaussian cur-

vature K less than a constant c admits a Lagrangian isometric minimal

immersion into a complete simply-connected complex space form M̃2(4c) if

and only if it satisfies the following differential equation [Chen 1997c; Chen-

Dillen-Verstraelen-Vrancken 1995b]:

(16.2) ∆ ln(c−K) = 6K,

where ∆ is the Laplacian on M associated with the metric g.

The intrinsic and extrinsic structures of Lagrangian minimal surfaces in

complete simply-connected complex space forms were determined in [Chen

1997c] as follows:

Let f : M → M̃2(4c) be a minimal Lagrangian surface without totally

geodesic points. Then, with respect to a suitable coordinate system {x, y},
we have

(1) the metric tensor of M takes the form of

(16.3) g = E
(
dx2 + dy2

)

for some positive function E satisfying

(16.4) ∆0(lnE) = 4E−2 − 2cE,

where ∆0 =
∂2

∂x2 + ∂2

∂y2 , and

(2) the second fundamental form of L is given by

h

(
∂

∂x
,
∂

∂x

)
= − 1

E
J

(
∂

∂x

)
, h

(
∂

∂x
,
∂

∂y

)
=

1

E
J

(
∂

∂y

)
,

(16.5) h

(
∂

∂y
,
∂

∂y

)
=

1

E
J

(
∂

∂x

)
.

Conversely, if E is a positive function defined on a simply-connected do-

main U of E2 satisfying (16.4) and g = E(dx2 + dy2) is the metric tensor

on U , then, up to rigid motions of M̃2(4c), there is a unique minimal La-

grangian isometric immersion of (U, g) into a complete simply-connected

complex space form M̃2(4c) whose second fundamental form is given by

(16.5).
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R. Harvey and H. B. Lawson (1982) studied the so-called special La-

grangian submanifolds in Cn, which are calibrated by the n-form Re(dz1 ∧
· · · ∧ dzn).

Being calibrated implies volume minimizing in the same homology class.

So, in particular, the special Lagrangian submanifolds are oriented minimal

Lagrangian submanifolds. In fact, they proved that a special Lagrangian

submanifold M (with boundary ∂M) in Cn is volume minimizing in the

class of all submanifolds N of Cn satisfying [M ] = [N ] ∈ Hc
n(C

n;R) with

∂M = ∂N . Harvey and Lawson (1982) constructed many examples of special

Lagrangian submanifolds in Cn.

Using the idea of calibrations, one can show that every Lagrangian min-

imal submanifold in an Einstein-Kähler manifold M̃ with c1(M̃) = 0 is

volume minimizing. It is false for the case c1 = λω with λ > 0, where ω is

the canonical symplectic form on M̃ . It is unknown for the case c1 = λω

with λ < 0 (cf. [Bryant 1987c]). J. G. Wolfson (1989) showed that a com-

pact minimal surface without complex tangent points in an Einstein-Kähler

surface with c1 < 0 is Lagrangian.

Y. I. Lee (1994) studied embedded surfaces which represent a second ho-

mology class of an Einstein-Kähler surface. She obtained the following:

Let N be an Einstein-Kähler surface with c1(N) < 0. Suppose [A] ∈
H2(N,Z) and there exists an embedded surface without complex tangent

points of genus r which represents [A]. Then every connected embedded

minimal surface in [A] has genus at least r. Moreover, the equality occurs if

and only if the embedded minimal surface is Lagrangian.

Notice that by using an adjunction inequality for positive classes obtained

by P. B. Kronheimer and T. S. Mrowka (1994), the minimality condition in

her result can be dropped; namely, under the same hypothesis, one can

conclude that every connected embedded surface in [A] has genus at least r.

Moreover, equality occurs if and only if the embedded surface is Lagrangian.

Recently, Y. I. Lee also obtained the following result:

Let (N, g) be an Einstein-Kähler surface with c1 < 0. If an integral

homology class [A] ∈ H2(N,Z) can be represented by a union of Lagrangian

branched minimal surfaces with respect to g, then, for any other Einstein-

Kähler metric g′ on N which can be connected to g via a family of Einstein-

Kähler metrics on N , [A] can also be represented by a union of branched

minimal surfaces with respect to g′.

16.2. A vanishing theorem and its applications. For compact Lagrangian

submanifolds in Einstein-Kähler manifolds, there is the following vanishing

theorem [Chen 1998a]:
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Let M be a compact manifold with finite fundamental group π1(M) or

vanishing first Betti number β1(M). Then every Lagrangian immersion from

M into any Einstein-Kähler manifold must have some minimal points.

This vanishing theorem has the following interesting geometrical conse-

quences:

(1) There do not exist Lagrangian isometric immersions from a compact

Riemannian n-manifold with positive Ricci curvature into any flat Kähler

n-manifold or into any complex hyperbolic n-space;

(2) Every Lagrangian isometric immersion of constant mean curvature

from a compact Riemannian manifold with positive Ricci curvature into any

Einstein-Kähler manifold is a minimal immersion; and

(3) Every Lagrangian isometric immersion of constant mean curvature

from a spherical space form into a complex projective n-space CPn is a

totally geodesic immersion.

This vanishing theorem is sharp in the following sense:

(a) The conditions on β1 and π1 given in the vanishing theorem cannot be

removed, since the standard Lagrangian embedding of T n = S1 × · · · × S1

into C1 × · · · × C1 = Cn is a Lagrangian embedding with nonzero constant

mean curvature; and

(b) “Lagrangian immersion” in the theorem cannot be replaced by the

weaker condition “totally real immersion”, since Sn has both trivial first

Betti number and trivial fundamental group; and the standard totally real

embedding of Sn in En+1 ⊂ Cn+1 is a totally real submanifold with nonzero

constant mean curvature.

16.3. The Hopf lift of Lagrangian submanifolds of nonflat com-

plex space forms. There is a general method for constructing Lagrangian

submanifolds both in complex projective spaces and in complex hyperbolic

spaces.

Let S2n+1(c) be the hypersphere of Cn+1 with constant sectional curvature

c centered at the origin. We consider the Hopf fibration

(16.6) π : S2n+1(c) → CPn(4c).

Then π is a Riemannian submersion, meaning that π∗, restricted to the hor-

izontal space, is an isometry. Note that given z ∈ S2n+1(c), the horizontal

space at z is the orthogonal complement of iz with respect to the metric

induced on S2n+1(c) from the usual Hermitian Euclidean metric on Cn+1.

Moreover, given a horizontal vector x, then ix is again horizontal (and tan-

gent to the sphere) and π∗(ix) = J(π∗(x)), where J is the almost complex

structure on CPn(4c).
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The main result of H. Reckziegel (1985) is the following: Let g : M →
CPn(4c) be a Lagrangian isometric immersion. Then there exists an iso-

metric covering map τ : M̂ → M , and a horizontal isometric immersion

f : M̂ → S2n+1(c) such that g(τ) = π(f). Hence every Lagrangian immer-

sion can be lifted locally (or globally if we assume the manifold is simply

connected) to a horizontal immersion of the same Riemannian manifold.

Conversely, let f : M̂ → S2n+1(c) be a horizontal isometric immersion.

Then g = π(f) : M → CPn(4c) is again an isometric immersion, which is

Lagrangian. Under this correspondence, the second fundamental forms hf

and hg of f and g satisfy π∗h
f = hg. Moreover, hf is horizontal with respect

to π.

In the complex hyperbolic case, we consider the complex number (n+1)-

space Cn+1
1 endowed with the pseudo-Euclidean metric g0 given by

(16.7) g0 = −dz1dz̄1 +
n+1∑

j=2

dzjdz̄j

Put

(16.8) H2n+1
1 (c) =

{
z = (z1, z2, . . . , zn+1) : g0(z, z) =

1
c < 0

}
.

H2n+1
1 (c) is known as the anti-de Sitter space-time.

Let

T ′
z = {u ∈ Cn+1

1 : 〈u, z〉 = 0}, H1
1 = {λ ∈ C : λλ̄ = 1},

where 〈 , 〉 denotes the Hermitian inner product on Cn+1
1 whose real part

is g0. Then we have an H1
1 -action on H2n+1

1 (c), z 7→ λz and at each point

z ∈ H2n+1
1 (c), the vector iz is tangent to the flow of the action. Since

the metric g0 is Hermitian, we have g0(iz, iz) = 1
c . Note that the orbit is

given by xt = (cos t + i sin t)z and dxt
dt = izt. Thus the orbit lies in the

negative definite plane spanned by z and iz. The quotient space H2n+1
1 / ∼,

under the identification induced from the action, is the complex hyperbolic

space CHn(4c) with constant holomorphic sectional curvature 4c, with the

complex structure J induced from the canonical complex structure J on

Cn+1
1 via the following totally geodesic fibration:

(16.9) π : H2n+1
1 (c) → CHn(4c).

Just as in the case of complex projective spaces, let g : M → CHn(4c) be

a Lagrangian isometric immersion. Then there exists an isometric covering

map τ : M̂ →M , and a horizontal isometric immersion f : M̂ → H2n+1
1 (c)

such that g(τ) = π(f). Hence every totally real immersion can be lifted
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locally (or globally if we assume the manifold is simply connected) to a

horizontal immersion.

Conversely, let f : M̂ → H2n+1
1 (c) be a horizontal isometric immersion.

Then g = π(f) : M → CHn(4c) is again an isometric immersion, which is

Lagrangian.

Similarly, under this correspondence, the second fundamental forms hf

and hg of f and g satisfy π∗h
f = hg. Moreover, hf is horizontal with respect

to π.

This construction method have been used by various authors. For in-

stance, M. Dajczer and R. Tojeiro (1995b) applied this technique to show

that the projection of the Hopf fibration provides a one-to-one correspon-

dence between the set of totally real flat submanifolds in complex projective

space and the set of symmetric flat submanifolds in Euclidean sphere with

the same codimension, where a flat submanifold F :Mn+1
0 → S2n+1 is called

symmetric if its corresponding principal coordinates generate a solution of

the symmetric generalized wave equation.

16.4. Totally real minimal submanifolds of complex space forms.

The equation of Gauss implies that an n-dimensional totally real minimal

submanifold of a complex space form M̃n(4c) satisfies the following proper-

ties:

(1) Ric ≤ (n − 1)cg, with equality holding if and only if it is totally

geodesic.

(2) ρ ≤ n(n−1)c, with equality holding if and only if it is totally geodesic.

B. Y. Chen and C. S. Houh (1979) proved that if the sectional curvature of

an n-dimensional compact totally real submanifold M of CPm(4c) satisfies

K ≥ (n − 1)c/(2n − 1), then either M is totally geodesic or n = 2, m ≥ 3,

and M is of constant Gaussian curvature c/3. In both cases, the immersion

is rigid.

K. Kenmotsu (1985) gave a canonical description of all totally real iso-

metric minimal immersions of E2 into CPm as follows.

Let Ω be a simply-connected domain in the Euclidean plane E2 with

metric g = 2|dz|2 where z = x+
√
−1y is the standard complex coordinate

on E2, and let ψ : Ω → CPm be a totally real isometric minimal immersion.

Then, up to a holomorphic isometry of CPm, ψ is given by

(16.10) ψ(z) = [r0e
µ0z−µ̄0z̄, . . . , rme

µmz−µ̄mz̄],



RIEMANNIAN SUBMANIFOLDS 171

where r0, . . . , rm are non-negative real numbers and µ0, . . . , µm are complex

numbers of unit modulus satisfying the following three conditions:

(16.11)

m∑

j=0

r2j = 1,

m∑

j=0

r2jµj = 0,

m∑

j=0

r2jµ
2
j = 0.

Furthermore, ψ is linearly full, that is, ψ(Ω) does not lie in any linear hy-

perplane of CPm, if and only if r0, . . . , rm are strictly positive and µ0, . . . , µm
are distinct, in which case the complex numbers r0µ0, . . . , rmµm are uniquely

determined up to permutations.

Conversely, any map ψ defined by (16.10), where r0, . . . , rm, µ0, . . . , µm
satisfy (16.11), is a totally real isometric minimal immersion of Ω into CPm.

16.5. Lagrangian real space form in complex space form. The sim-

plest examples of Lagrangian (or more generally totally real) submanifolds

of complex space forms are totally geodesic Lagrangian submanifolds. A to-

tally geodesic Lagrangian submanifoldM of a complex space form M̃n(4c) of

constant holomorphic sectional curvature 4c is a real space form of constant

curvature c.

The real projective n-space RPn(1) (respectively, the real hyperbolic

n-space Hn(−1)) can be isometrically embedded in CPn(4) (respectively,

in complex hyperbolic space CHn(−4)) as a Lagrangian totally geodesic

submanifold.

Non-totally geodesic Lagrangian isometric immersions from real space

forms of constant curvature c into a complex space form M̃n(4c) were deter-

mined by Chen, Dillen, Verstraelen, and Vrancken (1998). Associated with

each twisted product decomposition of a real space form, they introduced

a canonical 1-form, called the twistor form of the twisted product decom-

position. Their result says that if the twistor form of a twisted product

decomposition of a simply-connected real space form of constant curvature

c is twisted closed, then, up to motions, it admits a unique “adapted” La-

grangian isometric immersion into the complex space form M̃n(4c).

Conversely, if L : Mn(c) → M̃n(4c) is a non-totally geodesic Lagrangian

isometric immersion of a real space form Mn(c) of constant sectional curva-

ture c into a complex space form M̃n(4c), thenMn(c) admits an appropriate

twisted product decomposition with twisted closed twistor form and, more-

over, the Lagrangian immersion L is given by the corresponding adapted

Lagrangian isometric immersion of the twisted product.

Chen and Ogiue (1974b) proved that a Lagrangian minimal submanifold

of constant sectional curvature c in a complex space form M̃n(4c̃) is either

totally geodesic or c ≤ 0. N. Ejiri (1982) proved that the only Lagrangian
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minimal submanifolds of constant sectional curvature c ≤ 0 in a complex

space form are the flat ones. Ejiri’s result extends the corresponding result

of Chen and Ogiue (1974b) for n = 2 to n ≥ 2.

A submanifoldM of a Riemannian manifold is called a Chen submanifold

if

(16.12)
∑

i,j

〈 h(ei, ej),H 〉 h(ei, ej)

is parallel to the mean curvature vector H, where {ei} is an orthonormal

frame of the submanifold M (for general properties of Chen submanifolds,

cf. [Gheysens-Verheyen-Verstraelen 1981, Rouxel 1994]).

M. Kotani (1986) studied Lagrangian Chen submanifolds of constant cur-

vature in complex space forms and obtained the following:

If M is a Lagrangian Chen submanifold with constant sectional curvature

in a complex space form M̃n(4c̃) with c < c̃, then either M is minimal, or

locally, M = I × L̃n−1 with metric g = dt2 + f(t)g̃, where I is an open

interval, (L̃n−1, g̃) is the following submanifold in M̃n(4c̃):

(16.13)

L̃n−1 ⊂ S2n−1 ⊂ M̃n(4c̃)

π ↓ ↓ π
Ln−1 ⊂ CPn−1,

S2n−1 is a geodesic hypersphere in M̃n(4c̃), and L̃ is the horizontal lift of a

Lagrangian minimal flat torus Ln−1 in CPn−1.

A flat torus T n can be isometrically immersed in CPn as Lagrangian

minimal submanifold with parallel second fundamental form, hence with

parallel nonzero mean curvature vector.

M. Dajczer and R. Tojeiro (1995b) proved that a complete flat Lagrangian

submanifold in CPn with constant mean curvature is a flat torus T n (with

parallel second fundamental form).

16.6. Inequalities for Lagrangian submanifolds. For any n-dimensional

Lagrangian submanifold M in a complex space form M̃n(4c) and for any

k-tuple (n1, . . . , nk) ∈ S(n), the δ-invariant δ(n1, . . . , nk) must satisfies fol-

lowing inequality [Chen 1996f]:

(16.14) δ(n1, . . . , nk) ≤ b(n1, . . . , nk)H
2 + a(n1, . . . , nk)c,

where δ(n1, . . . , nk), a(n1, . . . , nk) and b(n1, . . . , nk) are defined by (3.14),

(3.15) and (3.16), respectively.

There exist abundant examples of Lagrangian submanifolds in complex

space forms which satisfy the equality case of (16.14).
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Inequality (16.14) implies that for any Lagrangian submanifold M in a

complex space form M̃n(4c), one has

(16.15) δ(2) ≤ n2(n− 2)

2(n − 1)
H2 + 1

2 (n+ 1)(n − 2)c.

Chen, Dillen, Verstraelen and Vrancken (1994) proved that if a Lagrangian

submanifold M of M̃n(4c) satisfies the equality case of (16.17) identically,

then M must be minimal in M̃n(4c).

There exist many Lagrangian minimal submanifolds of M̃n(4c), c ∈ {−1, 0, 1},
which satisfy the equality case of (16.15) identically. However, Chen, Dillen,

Verstraelen and Vrancken (1996) proved that if M has constant scalar cur-

vature, then the equality occurs when and only when either M is totally

geodesic in M̃n(4c) or n = 3, c = 1 and the immersion is locally congruent

to a special non-standard immersion ψ : S3 → CP 3 of a topological 3-sphere

into CP 3 which is called an exotic immersion of S3. The classification of

Lagrangian submanifolds of CP 3 satisfying the equality case of (16.15) was

given in [Bolton-Scharlach-Vrancken-Woodward 1998]

Lagrangian submanifolds of the complex hyperbolic n-space CHn, n ≥
3, satisfying the equality case of (16.15) were classified in [Chen-Vrancken

1997c].

We remark that inequality (16.14) holds for an arbitrary n-dimensional

submanifold in CHn(4c) for c < 0 as well.

16.7. Riemannian and topological obstructions to Lagrangian im-

mersions. M. L. Gromov (1971) proved that a compact n-manifold M ad-

mits a Lagrangian immersion into Cn if and only if the complexification of

the tangent bundle of M , TM ⊗C, is trivial. Since the tangent bundle of a

3-manifold is always trivial, Gromov’s result implies that there does not exist

topological obstruction to Lagrangian immersions for compact 3-manifolds.

In contrast, by applying inequality (16.14) and the vanishing theorem

mentioned in §16.2, one obtains the following sharp obstructions to isomet-

ric Lagrangian immersions of compact Riemannian manifolds into complex

space forms [Chen 1996f]:

Let M be a compact Riemannian manifold with finite fundamental group

π1(M) or b1(M) = 0. If there exists a k-tuple (n1, . . . , nk) ∈ S(n) such that

(16.16) δ(n1, . . . , nk) >
1

2

(
n(n− 1)−

k∑

j=1

nj(nj − 1)
)
c,

then M admits no Lagrangian isometric immersion into a complex space

form of constant holomorphic sectional curvature 4c.
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An immediate important consequence of the above result is the first neces-

sary intrinsic condition for compact Lagrangian submanifolds in Cn; namely,

the Ricci curvature of every compact Lagrangian submanifoldM in Cn must

satisfies infuRic(u) ≤ 0, where u runs over all unit tangent vectors of M

[Chen 1997d]. For Lagrangian surfaces, this means that the Gaussian curva-

ture of every compact Lagrangian surface M in C2 must be nonpositive at

some points on M . Another immediate consequence is that every compact

irreducible symmetric space cannot be isometrically immersed in a complex

Euclidean space as a Lagrangian submanifold.

Let f : En+1 → Cn be the map defined by

(16.17) f(x0, . . . , xn) =
1

1 + x20
(x1, . . . , xn, x0x1, . . . , x0xn).

Then f induces an immersion w : Sn → Cn of Sn into Cn which has a unique

self-intersection point f(−1, 0, . . . , 0) = f(1, 0, . . . , 0).

With respect to the canonical almost complex structure J on Cn, the

immersion w is a Lagrangian immersion of Sn into Cn, which is called the

Whitney immersion. Sn endowed with the Riemannian metric induced from

the Whitney immersion is called a Whitney n-sphere.

The example of the Whitney immersion shows that the condition on

the δ-invariants given above is sharp, since Sn (n ≥ 2) has trivial fun-

damental group and trivial first Betti number; moreover, for each k-tuple

(n1, . . . , nk) ∈ S(n), the Whitney n-sphere satisfies δ(n1, . . . , nk) > 0 except

at the unique point of self-intersection.

Also, the assumptions on the finiteness of π1(M) and vanishing of b1(M)

given above are both necessary for n ≥ 3. This can be seen from the following

example:

Let F : S1 → C be the unit circle in the complex plane given by F (s) = eis

and let ι : Sn−1 → En (n ≥ 3) be the unit hypersphere in En centered at

the origin. Denote by f : S1 × Sn−1 → Cn the complex extensor defined by

f(s, p) = F (s)⊗ι(p), p ∈ Sn−1. Then f is an isometric Lagrangian immersion

of M =: S1 × Sn−1 into Cn which carries each pair {(u, p), (−u,−p)} of

points in S1×Sn−1 to a point in Cn (cf. [Chen 1997b]). Clearly, π1(M) = Z

and b1(M) = 1, and moreover, for each k-tuple (n1, . . . , nk) ∈ S(n), the
δ-invariant δ(n1, . . . , nk) on M is a positive constant. This example shows

that both the conditions on π1(M) and b1(M) cannot be removed.

16.8. An inequality between scalar curvature and mean curvature.

Besides inequality (16.14), there is another sharp inequality for Lagrangian

submanifolds in complex space forms.
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Let ρ =
∑

i 6=j K(ei ∧ ej) denote the scalar curvature of a Riemannian

n-manifold M , where e1, . . . , en is an orthonormal local frame. The scalar

curvature ρ and the squared mean curvatureH2 of a Lagrangian submanifold

in complex space form M̃n(4c) satisfy the following general sharp inequality:

(16.18) H2 ≥ n+ 2

n2(n− 1)
ρ−

(
n+ 2

n

)
c.

Inequality (16.18) with c = 0 and n = 2 was proved in [Castro-Urbano

1993]. Their proof relies on complex analysis which is not applicable to

n ≥ 3. The general inequality was established in [Borrelli-Chen-Morvan

1995] for c = 0 and arbitrary n; and in [Chen 1996b] for c 6= 0 and arbitrary

n; and independently by Castro and Urbano (1995), for c 6= 0 with n = 2,

also using the method of complex analysis.

If M̃n(4c) = Cn, the equality of (16.18) holds identically if and only if

either the Lagrangian submanifold M is an open portion of a Lagrangian

n-plane or, up to dilations, M is an open portion of the Whitney immersion

[Borrelli-Chen-Morvan 1995] (see also [Ros-Urbano 1998] for an alternative

proof).

Chen (1996b) proved that there exists a one-parameter family of Rie-

mannian n-manifolds, denoted by Pna (a > 1), which admit Lagrangian iso-

metric immersions into CPn(4) satisfying the equality case of the inequality

(16.18) for c = 1; and there are two one-parameter families of Riemannian

manifolds, denoted by Cna (a > 1),Dn
a (0 < a < 1), and two exceptional

n-spaces, denoted by Fn, Ln, which admit Lagrangian isometric immersion

into CHn(−4), satisfying the equality case of the inequality for c = −1. Be-

sides the totally geodesic ones, these are the only Lagrangian submanifolds

in CPn(4) and in CHn(−4) which satisfy the equality case of (16.18) (see

also [Castro-Urbano 1995] for the case n = 2).

The explicit expressions of those Lagrangian immersions of Pna , C
n
a ,D

n
a , F

n

and Ln satisfying the equality case of (16.18) were completely determined

in [Chen-Vrancken 1996].

I. Castro and F. Urbano (1995) showed that a Lagrangian surface in CP 2

satisfies the equality case of (16.14) for n = 2 and c = 1 if and only if the

Lagrangian surface has holomorphic twistor lift.

16.9. Characterizations of parallel Lagrangian submanifolds. Com-

pact Lagrangian submanifolds of CPn(4c) with parallel second fundamental

form were completely classified by H. Naitoh in [Naitoh 1981].

There are various pinching results for totally real submanifolds in complex

space forms similar to Kähler submanifolds given as follows.
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Y. Ohnita (1986b) and F. Urbano (1986) proved the following: Let M be

a compact Lagrangian submanifold of a complex space form with parallel

mean curvature vector. If M has nonnegative sectional curvature, then the

second fundamental form of M is parallel.

By applying the results of Ohnita and Urbano, it follows that compact

Lagrangian submanifolds of CPn(4) with parallel mean curvature vector

satisfying K ≥ 0 must be the products T ×M1 × · · · ×Mk, where T is a flat

torus with dimM ≥ k − 1 and each Mi is one of the following:

RP r(1) → CP r(4) (r ≥ 2) (totally geodesic),

SU(r)/SO(r) → CP (r−1)(r+2)/2(4) (r ≥ 3) (minimal),

(16.19) SU(2r)/Sp(r) → CP (r−1)(2r+1)(4) (r ≥ 3) (minimal),

SU(r) → CP r
2−1(4) (r ≥ 3) (minimal),

E6/F4 → CP 26(4) (minimal).

S. Montiel, A.Ros and F. Urbano (1986) proved that if a compact La-

grangian minimal submanifold of CPn(4) satisfies Ric ≥ 3
4(n−2)g, then the

second fundamental form is parallel.

Combining this theorem with the result of H. Naitoh (1981), it follows

that compact Lagrangian minimal submanifold of CPn(4) satisfying Ric ≥
3
4(n − 2)g is either one of the Lagrangian minimal submanifolds given in

(16.19) or a minimal Lagrangian flat torus in CP 2(4).

Compact Lagrangian minimal submanifolds in CPn(4) satisfying a pinch-

ing of scalar curvature were studied in [Chen-Ogiue 1974b, Shen-Dong-Guo

1995], among others.

For scalar curvature pinching, we have the following: If M is an n-dimen-

sional compact Lagrangian minimal submanifold in CPn(4) whose scalar

curvature ρ satisfies ρ ≥ 3(n−2)n/4, thenM has parallel second fundamental

form.

F. Urbano (1989) proved that if M3 is a 3-dimensional compact La-

grangian submanifold of a complex space form M̃3(4c) with nonzero parallel

mean curvature vector, then M3 is flat and has parallel second fundamental

form.

For complete Lagrangian submanifolds in Cn with parallel mean curvature

vector, F. Urbano (1989) and U. H. Ki and Y. H. Kim (1996) proved the

following.

Let M be a complete Lagrangian submanifold embedded in Cn. If M has

parallel mean curvature vector, then M is either a minimal submanifold or
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a product submanifold M1 × · · · ×Mk, where each Mi is a Lagrangian sub-

manifold embedded in some Cni and each Mi is also a minimal submanifold

of a hypersphere of Cni .

J. S. Pak (1978) studied totally real planar geodesic immersions and ob-

tained that if f : M → CPm is a totally real isometric immersion such

that each geodesic γ of M is mapped into a 2-dimensional totally real to-

tally geodesic submanifold of CPm, then M is a locally a compact rank one

symmetric space and the immersion is rigid.

16.10. Lagrangian H-umbilical submanifolds and Lagrangian catenoid.

Since there do not exist totally umbilical Lagrangian submanifolds in com-

plex space forms except totally geodesic ones, it is natural to look for the

“simplest” Lagrangian submanifolds next to totally geodesic ones. As a

result, the following notion of Lagrangian H-umbilical submanifolds was in-

troduced.

A non-totally geodesic Lagrangian submanifoldM of a Kähler manifold is

called a Lagrangian H-umbilical submanifold if its second fundamental form

takes the following simple form:

h(e1, e1) = λJe1, h(e2, e2) = · · · = h(en, en) = µJe1,

(16.20) h(e1, ej) = µJej, h(ej , ek) = 0, j 6= k, j, k = 2, . . . , n

for some suitable functions λ and µ with respect to some suitable orthonor-

mal local frame field.

Clearly, a non-minimal Lagrangian H-umbilical submanifold satisfies the

following two conditions:

(a) JH is an eigenvector of the shape operator AH and

(b) the restriction of AH to (JH)⊥ is proportional to the identity map.

In fact, Lagrangian H-umbilical submanifolds are the simplest Lagrangian

submanifolds satisfying both conditions (a) and (b). In this way Lagrangian

H-umbilical submanifolds can be considered as the “simplest” Lagrangian

submanifolds in a complex space form next to the totally geodesic ones.

There exist ample examples of Lagrangian H-umbilical submanifolds in a

complex space form. For instance, Chen (1997b) showed that every complex

extensor of the unit hypersurface of En via any unit speed curve in the com-

plex plane gives rise to a Lagrangian H-umbilical submanifold in Cn. Using

this method one can constructed ample examples of compact Lagrangian

submanifolds in a complex Euclidean space.

LagrangianH-umbilical submanifolds were classified in [Chen 1997a,1997b]

in connections with the notions of Legendre curves and complex extensors. In

particular, Chen proved that, except the flat ones, Lagrangian H-umbilical
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submanifolds of dimension ≥ 3 in a complex Euclidean space are Lagrangian

pseudo-sphere (λ = 2µ) and complex tensors of the unit hypersphere of a

Euclidean space. Moreover, except some exceptional classes, Lagrangian

H-umbilical submanifolds in CPn and in CHn, n ≥ 3, are obtained from

Legendre curves in S3 or in H3
1 via warped products in some natural ways.

The intrinsic and extrinsic structures of Lagrangian H-umbilical surfaces in

complex space forms were determined in [Chen 1997c]. In [Chen 1998e],

a representation formula for flat Lagrangian H-umbilical submanifolds in

complex Euclidean spaces was discovered.

By a complex extensor of the unit hypersphere Sn−1 of En, we mean a

Lagrangian submanifold of Cn which is given by the tensor product of the

unit hypersphere and a unit speed (real) curve in the complex line C1. The

Lagrangian catenoid was constructed by R. Harvey and H. B. Lawson (1982)

which is defined by

(16.21)
M0 ={(x, y) ∈ Cn = En × En : |x|y = |y|x,

Im (|x|+ i|y|)n = 1, |y| < |x| tan π
n
}.

Besides being a minimal Lagrangian submanifold of Cn, M0 is invariant

under the diagonal action of SO(n) on Cn = En × En.

I. Castro and F. Urbano (1997) characterized Lagrangian catenoid as the

only minimal nonflat Lagrangian submanifold in Cn which is foliated by

pieces of round (n− 1)-spheres of Cn (up to dilations).

16.11. Stability of Lagrangian submanifolds. The stability of minimal

Lagrangian submanifolds of a Kähler manifold was first investigated by B. Y.

Chen, P. F. Leung and T. Nagano in 1980 (cf. [Chen 1981a]). In particular,

they proved that the second variational formula of a compact Lagrangian

submanifold M in a Kähler manifold M̃ is given by

(16.22) V ′′(ξ) =

∫

M

{
1

2
||dX#||2 + (δX#)2 − S̃(X,X)

}
dV,

where JX = ξ, X# is the dual 1-form of X on M , δ is the codifferential

operator, and S̃ is the Ricci tensor of M̃ .

By applying (16.22), Chen, Leung and Nagano proved the following (cf.

[Chen 1981a]):

Let f : M → M̃ be a compact Lagrangian minimal submanifold of a

Kaehler manifold M̃ .

(1) If M̃ has positive Ricci curvature, then the index of f satisfies i(f) ≥
β1(M), where β1(M) denotes the first Betti number of M . In particular, if
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the first cohomology group of M is nontrivial, that is, H1(M ;R) 6= 0, then

M is unstable;

(2) If M̃ has nonpositive Ricci curvature, then M is stable.

Y. G. Oh (1990) introduced the notion of Hamiltonian deformations in

Kähler manifolds. He considered normal variations V along a minimal La-

grangian submanifold M such that the 1-form αV = 〈JV, · 〉 is exact and

call such variations Hamiltonian variations.

A minimal Lagrangian submanifold is called Hamiltonian stable if the

second variation is nonnegative in the class of Hamiltonian variations.

Oh (1990) establishes the following Hamiltonian stability criterion on

Einstein-Kähler manifolds: Let M̃ be an Einstein-Kähler manifold with

Ric = cg, where c is a constant. Then a minimal Lagrangian submani-

fold M is locally Hamiltonian stable if and only if λ1(M) ≥ c, where λ1(M)

is the first nonzero eigenvalue of the Laplacian acting on C∞(M).

According to [Lawson-Simons 1973] the Lagrangian totally geodesicRPn(1)

in CPn(4) is unstable in the usual sense. In contrast, Oh’s result implies that

the Lagrangian totally geodesic RPn(1) is Hamiltonian stable in CPn(4).

I. Castro and F. Urbano (1998) constructed examples of unstable Hamil-

tonian minimal Lagrangian tori in C2.

16.12. Lagrangian immersions and Maslov class. Let Ω denote the

canonical symplectic form on Cn defined by

(16.23) Ω(X,Y ) = 〈JX, Y 〉 .

Consider the Grassmannian L(Cn) of all Lagrangian vector subspaces of Cn.

L(Cn) can be identified with the symmetric space U(n)/O(n) in a natural

way.

U(n)/O(n) is a bundle over the circle S1 in C1 with the projection

det2 : U(n)/O(n) → S1,

where det2 is the square of the determinant.

For a Lagrangian submanifold M in Cn, the Gauss map takes the values

in L(Cn) which yields the following sequence:

(16.24) M → L(Cn) ∼= U(n)/O(n) → S1.

If ds denotes the volume form of S1, then mM := (det2 ◦G)∗(ds) is a

closed 1-form on M . The cohomology class [mM ] ∈ H1(M ;Z) is called the

Maslov class of the Lagrangian submanifold M .
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J. M. Morvan (1981) proved that the Maslov form mM and the mean

curvature vector of a Lagrangian submanifold M in Cn are related by

(16.25) mM (X) =
1

π
〈 JH,X 〉 , X ∈ TM.

Hence, a Lagrangian submanifold M in Cn is minimal if and only if det2 ◦G
is a constant map.

Let ξ be a normal vector field of a Lagrangian submanifoldM of a Kähler

manifold M̃ . Denote by αξ the 1-form on M defined by

(16.26) αξ(X) = Ω(ξ,X) = 〈Jξ,X〉 , X ∈ TM,

where Ω is the Kähler form of M̃ .

Chen and Morvan (1994) introduced the notion of harmonic deformations

in Kähler manifolds: A normal vector field ξ of a Lagrangian submanifoldM

is called harmonic if the 1-form αξ associated with ξ is a harmonic 1-form. A

normal variation of a Lagrangian submanifold in a Kähler manifold is called

harmonic if its variational vector field is harmonic.

A Lagrangian submanifoldM of a Kähler manifold is called harmonic min-

imal if it is a critical point of the volume functional in the class of harmonic

variations.

Chen and Morvan (1994) proved that the Maslov class of a Lagrangian

submanifold of an Einstein-Kähler manifold vanishes if and only if it is har-

monic minimal, thus providing a simple relationship between the calculus of

variations and Maslov class. This result implies in particular that a closed

curve γ in a Kähler manifold M̃ with dimR M̃ = 2 is harmonic minimal if

and only if it has zero total curvature, that is,
∫
γ κ(s)ds = 0; an extension

of a result mentioned in [Vaisman 1987].

A Lagrangian submanifold M is said to have conformal Maslov form if

JH is a conformal vector filed on M . The Whitney immersion w defined by

(16.12) is known to have conformal Maslov form.

A. Ros and F. Urbano (1998) proved that, up to dilations, Whitney’s

immersion is the only Lagrangian immersion of a compact manifold with

zero first betti number and conformal Maslov form.
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17. CR-submanifolds of Kähler manifolds

17.1. Basic properties of CR-submanifolds of Kähler manifolds. Let

M be a submanifold of a Kähler manifold (or more generally, of an almost

Hermitian manifold) with almost complex structure J and metric g. At

each point x ∈ M , let Dx denote the maximal holomorphic subspace of the

tangent space TxM , that is, Dx = TxM ∩ J(TxM). If the dimension of

Dx is the same for all x ∈ M , we have a holomorphic distribution D on

M . The submanifold M is called a CR-submanifold if there exists on M

a holomorphic distribution D such that its orthogonal complement D⊥ is

totally real, that is, J(D⊥
x ) ⊂ T⊥

x M , for all x ∈M [Bejancu 1978].

Every real hypersurface of a Hermitian manifold is a CR-submanifold.

A CR-submanifold is called proper if it is neither a Kähler submanifold

(D = TM) nor a totally real submanifold (D⊥ = TM).

Blair and Chen (1979) proved that a submanifold M of a non-flat com-

plex space form M̃ is a CR-submanifold if and only if the maximal holo-

morphic subspaces define a holomorphic distribution D on M such that

R̃(D,D;D⊥,D⊥) = {0}, where D⊥ denotes the orthogonal distribution of D
in TM , and R̃ is the Riemann curvature tensor of M̃ .

In this section, we denote by h the complex rank of the holomorphic

distribution D and by p the real rank of the totally real distribution D⊥ of

a CR-submanifold M so that dimM = 2h+ p.

Let N be a differentiable manifold and TCN be the complexified tangent

bundle of N . A CR-structure on N is a complex subbundle H of TCN such

that H ∩ H̄ = {0} and H is involutive, that is, for complex vector fields U

and V in H, [U, V ] is also in H. A manifold endowed with a CR-structure

is called a CR-manifold [Greenfield 1968].

D. E. Blair and B. Y. Chen (1979) proved that every CR-submanifold of

a Hermitian manifold is a CR-manifold.

In 1978 Chen proved the integrability theorem for CR-submanifolds of a

Kähler manifold; namely, the totally real distribution D⊥ of a CR-submani-

fold of a Kähler manifold is always completely integrable. This theorem

implies that every proper CR-submanifold of a Kähler manifold is foliated by

totally real submanifolds. By applying this integrability theorem A. Bejancu

(1979) proved that a CR-submanifold of a Kähler manifold is mixed totally

geodesic if and only if each leaf of the totally real distribution is totally

geodesic in the CR-submanifold.

Chen’s integrability theorem was extended to CR-submanifolds of var-

ious families of Hermitian manifolds by various geometers. For instance,
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this theorem was extended to CR-submanifolds of locally conformal sym-

plectic manifolds by Blair and Chen. Furthermore, they constructed CR-

submanifolds in some Hermitian manifolds with non-integrable totally real

distributions [Blair-Chen 1979].

Let M be a CR-submanifold with Riemannian connection ∇ and let

e1, . . . , e2h be an orthonormal frame field of the holomorphic distribution

D. Put Ĥ =trace σ̂, where σ̂(X,Y ) = (∇XY )⊥ is the component of ∇XY

in the totally real distribution. The holomorphic distribution D is called

minimal if Ĥ = 0, identically.

Although the holomorphic distribution is not necessarily integrable in

general, Chen (1981c) proved that the holomorphic distribution of a CR-

submanifold is always a minimal distribution.

Besides the minimality Chen (1984a) also proved the following properties

for the holomorphic distributions:

(1) If M is a compact proper CR-submanifold of a Hermitian symmet-

ric space of non-compact type, then the holomorphic distribution is non-

integrable.

(2) LetM be a compact proper CR-submanifold of the complex Euclidean

space. If the totally real distribution is a minimal distribution, then the

holomorphic distribution is a non-integrable distribution.

A. Bejancu (1978) obtained a necessary and sufficient condition for the

integrability of the holomorphic distribution: Let M be a CR-submanifold

of a Kähler manifold. Then the holomorphic distribution D is integrable if

and only if the second fundamental form ofM satisfies h(X,JY ) = h(Y, JX)

for any X,Y tangent to M .

Chen (1981c) discovered a canonical cohomology class c(M) ∈ H2h(M ;R)

for every compact CR-submanifold M of a Kähler manifold. By applying

this cohomology class, he proved the following: Let M be a compact CR-

submanifold of a Kähler manifold. If the cohomology group H2k(M ;R) =

{0} for some integer k ≤ h, then either the holomorphic distribution D is not

integrable or the totally real distribution D⊥ is not minimal. Chen’s coho-

mology class was used by S. Dragomir in his study concerning the minimality

of Levi distribution (cf. [Dragomir 1995, Dragomir-Ornea 1998]).

A. Ros (1983) proved that ifM is an n-dimensional compact minimal CR-

submanifold of CPm(4), then the first nonzero eigenvalue of the Laplacian

of M satisfies λ1(M) ≤ 2(n2 + 4h+ p)/n.

17.2. Totally umbilical CR-submanifolds. Bejancu (1980) and Chen

(1980c) investigated totally umbilical CR-submanifolds of Kähler manifolds
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and obtained the following: Let M be a CR-submanifold of a Kähler mani-

fold. If M is totally umbilical, then either

(1) M is totally geodesic, or

(2) M is totally real, or

(3) the totally real distribution is 1-dimensional, that is, p = 1.

Totally umbilical CR-submanifolds with 1-dimensional totally real dis-

tribution were investigated in [Chen 1980c]. For instance, he proved that

every totally umbilical hypersurface of dimension ≥ 5 in a Kähler manifold

has constant mean curvature. This result is no longer true if the totally

umbilical hypersurface is 3-dimensional.

Totally geodesic CR-submanifolds of a Kähler manifold are classified by

Blair and Chen (1979). In particular, they proved that if M is a totally

geodesic CR-submanifold of a Kähler manifold, then M is a CR-product.

17.3. Inequalities for CR-submanifolds. For CR-submanifolds in com-

plex space forms, there is a sharp relationship between the invariant δM =
1
2ρ− infK and the squared mean curvature H2 [Chen 1996a]:

Let M be an n-dimensional CR-submanifold in a complex space form

M̃m(4c). Then

δM ≤





n2(n− 2)

2(n − 1)
H2 +

{
1

2
(n+ 1)(n − 2) + 3h

}
c, if c > 0;

n2(n− 2)

2(n − 1)
H2, if c = 0;

n2(n− 2)

2(n − 1)
H2 +

1

2
(n+ 1)(n − 2)c, if c < 0.

(17.1)

There exist many CR-submanifolds in complex space forms which satisfy

the equality cases of the above inequalities.

ProperCR-submanifolds of complex hyperbolic spaces satisfying the equal-

ity case were completely determined by Chen and Vrancken (1997b) as fol-

lows:

Let U be a domain ofC and Ψ : U → Cm−1 be a nonconstant holomorphic

curve in Cm−1. Define z : E2 × U → Cm+1
1 by

z(u, t, w) =
(
− 1− 1

2
Ψ(w)Ψ̄(w) + iu,−1

2
Ψ(w)Ψ̄(w) + iu,Ψ(w)

)
eit.

Then 〈z, z〉 = −1 and the image z(E2 ×U) in H2m+1
1 is invariant under the

group action of H1
1 . Moreover, away from points where Ψ′(w) = 0, the image

π(E2 × U), under the projection π : H2m+1
1 (−1) → CHm(−4), is a proper

CR-submanifold of CHm(−4) which satisfies δM = n2(n−2)
2(n−1) H

2+ 1
2(n+1)(n−

2)c.
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Conversely, up to rigid motions of CHm(−4), every properCR-submanifold

of CHm(−4) satisfying the equality is obtained in such way. For a given sub-

manifold M of a Kähler manifold, let P : TM → TM denote the tangential

component of J : TM → J(TM).

M. Kon (1989) proved the following: SupposeM is a compact orientable n-

dimensional minimal CR-submanifold of the complex projective space CPm.

Suppose the Ricci tensor of M satisfies

(17.2) Ric(X,X) ≥ (n− 1)g(X,X) + 2g(PX,PX).

Then M is isometric to one of the following:

(1) a real projective space RPn;

(2) a complex projective space CPn/2;

(3) a pseudo-Einstein real hypersurface π(S(n+1)/2(12 ) × S(n+1)/2(12 )), of

some

CP (n+1)/2 in CPm, where π : S2m+1 → CPm is the Hopf fibration.

17.4. CR-products. The notion of CR-products was introduced in [Chen

1981b]: A CR-submanifold M of a Kähler manifold M̃ is called a CR-

product if it is locally a Riemannian product of a Kähler submanifold MT

and a totally real submanifold N⊥ of M̃ .

Chen (1981b) showed that a submanifold M of a Kähler manifold is a

CR-product if and only if ∇P = 0, that is, P is parallel with respect to the

Levi-Civita connection of M , where P is the endomorphism on the tangent

bundle TM induced from the almost complex structure J of M̃ .

Let f :M⊥ → CP p(4) be a Lagrangian submanifold of CP p(4). Then the

composition

(17.3) CP h ×M⊥@ > i× f >> CP h × CP p@ > Shp >> CP h+p+hp

is a CR-product in CP h+p+hp, where i : CP h → CP h is the identity map

and Shp is the Segre embedding.

A CR-product M =MT ×M⊥ in CPm is called a standard CR-product

if m = h+ p+hp and MT is a totally geodesic Kähler submanifold of CPm.

For CR-products in complex space forms, Chen (1981b) proved the fol-

lowing:

(1) A CR-product in a complex hyperbolic space is non-proper, that is,

it is either a Kähler submanifold or a totally real submanifold.

(2) A CR-product in complex Euclideanm-space Cm is a product subman-

ifold of a complex linear subspace Cr of Cm and a totally real submanifold

in a complex linear subspace Cm−r of Cm.

(3) If M =MT ×M⊥ is a CR-product of CPm(4), then
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(3.1) m ≥ h+ p+ hp,

(3.2) the squared length S of the second fundamental form satisfies S ≥
4hp,

(3.3) if m = h+ p+ hp, then M is a standard CR-product, and

(3.4) if S = 4hp, then M = MT ×M⊥ is a standard CR-product con-

tained in a totally geodesic Kähler submanifold CP h+p+hp(4) of CPm(4).

Moreover, MT is an open portion of CP h(4) and M⊥ is an open portion of

RP p(1).

(4) If M is a minimal CR-product in CPm, then the scalar curvature ρ

of M satisfies

(17.4) ρ ≥ 4h2 + 4h+ p2 − p,

with the equality holding when and only when S = 4hp.

S. Maeda and N. Sato (1983) studied CR-submanifolds M in a complex

space form M̃m(4c) such that geodesics in M are circles in M̃m(4c) and

obtained the following: Let M be a CR-submanifold in a complex space

form M̃m(4c). If geodesics in M are circles in M̃m(4c), then M is a CR-

product.

17.5. Cyclic parallel CR-submanifolds. Concerning the covariant deriv-

ative of the second fundamental form of CR-submanifolds of a complex space

form M̃m(4c), K. Yano and M. Kon (1980) (for c > 0) and Chen, G. D. Lud-

den and S. Montiel (1984) (for c < 0) proved the following general inequality.

Let M be a CR-submanifold in a complex space form M̃m(4c). Then the

squared length of the covariant derivative of the second fundamental form

satisfies

(17.5) ||∇̄h||2 ≥ 4c2hp,

with the equality holding if and only if M a cyclic-parallel CR-submanifold,

that is, M satisfies

(17.6) (∇̄Xh)(Y,Z) + (∇̄Y h)(Z,X) + (∇̄Zh)(X,Y ) = 0

for X,Y,Z tangent to M .

Let H2m+1
1 (−1) denote the anti-de Sitter space time with constant sec-

tional curvature −1 and let

(17.7) π : H2m+1
1 (−1) → CHm(−4)

denote the corresponding Hopf fibration. For a submanifoldM of CHm(−4),

let M̃ denote the pre-image of M .

B. Y. Chen, G. D. Ludden and S. Montiel (1984) showed that a CR-

submanifold M of CHm(−4) is cyclic-parallel if and only if the preimage



186 B.-Y. CHEN

M̃ has parallel second fundamental form in H2m+1
1 (−1). Similar result also

holds for CR-submanifolds in CPm(4) [Yano-Kon 1983].

A submanifold of a real space form is cyclic-parallel if and only if it is a

parallel submanifold.

A Riemannian manifoldM is called a two-point locally homogeneous space

if it is either flat or a rank one locally symmetric space. Chen and L. Van-

hecke (1981) proved that a Riemannian manifold is a two-point locally ho-

mogeneous space if and only if sufficiently small geodesic hypersurfaces of

M are cyclic-parallel hypersurfaces.

17.6. Homogeneous and mixed foliate CR-submanifolds. Y. Shimizu

(1983) constructed homogeneous CR-submanifolds in CPn which are not

CR-products. Shimizu’s results state as follows.

Let G/H be an irreducible Hermitian symmetric space of compact type.

Denote by π : S2n+1(1) → CPn(4) the Hopf fibration. For a point x ∈ S2n+1

denote by N the H-orbit of x and M = π(N). If the rank of G/H is greater

than one and if N has the maximal dimension, then

(1) M is a proper CR-submanifold of CPn of codimension rk(G/H)− 1,

(2) M is not a CR-product,

(3) M has parallel mean curvature vector, and

(4) M has flat normal connection.

A CR-submanifold M in a Kähler manifold is called mixed foliate if its

holomorphic distribution D is integrable and its second fundamental form h

satisfies h(X,Z) = 0 for X in D and Z in D⊥.

Mixed foliate CR-submanifolds in complex space forms were completely

determined as follows.

(1) A complex projective space admits no mixed foliate properCR-submani-

folds [Bejancu-Kon-Yano 1981].

(2) A CR-submanifold in Cm is mixed foliate if and only if it is a CR-

product [Chen 1981b].

(3) A CR-submanifold in a complex hyperbolic space CHm is mixed foli-

ate if and only if it is either a Kähler submanifold or a totally real subman-

ifold [Chen-Wu 1988].

17.7. Nullity of CR-submanifolds. T. Gotoh (1997) investigated the sec-

ond variational formula of a compact minimal CR-submanifold in a complex

projective space and estimated its nullity of the second variations to obtain

the following.

Let f :M → CPm be an n-dimensional compact minimal CR-submanifold

of CPm.
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(1) If n is even, then the nullity of M satisfies

(17.8) n(f) ≥ 2
(n
2
+ 1
)(

m− n

2

)
,

with equality holding if and only if M is a totally geodesic Kähler subman-

ifold;

(2) If n is odd and equal to m, then the nullity of M satisfies

(17.9) n(f) ≥ n(n+ 3)

2
,

with equality holding if and only if M is a totally real totally geodesic sub-

manifold;

(3) If n is odd and not equal to m, then the nullity of M satisfies

(17.10) n(f) ≥ n+ 1 + 2

(
n+ 1

2
+ 1

)(
m− n+ 1

2

)
,

with equality holding if and only when

M = π

(
S1

(√
1

n+ 1

)
× Sn

(√
n

n+ 1

))
⊂ CP (n+1)/2,

where CP (n+1)/2 is embedded in CPm as a totally geodesic Kähler subman-

ifold and π : S(n+1)/2+1 → CP (n+1)/2 is the Hopf fibration.



188 B.-Y. CHEN

18. Slant submanifolds of Kähler manifolds

Let M be an n-dimensional Riemannian manifold isometrically immersed

in a Kähler manifold M̃ with almost complex structure J and Kähler metric

g. For any vector X tangent toM let PX and FX denote the tangential and

the normal components of JX, respectively. Then P is an endomorphism of

the tangent bundle TM . For any nonzero vector X tangent to M at a point

p ∈ M , the angle θ(X) between JX and the tangent space TpM is called

the Wirtinger angle of X.

A submanifold M of M̃ is called slant if the Wirtinger angle θ(X) is

constant (which is independent of the choice of x ∈ M and of X ∈ TxN).

The Wirtinger angle of a slant submanifold is called the slant angle of the

slant submanifold [Chen 1990].

Kähler submanifolds and totally real submanifolds are nothing but slant

submanifolds with θ = 0 and θ = π/2, respectively. A slant submanifold

is called proper if it is neither complex nor totally real. In this sense, both

CR-submanifolds and slant submanifolds are generalizations of both Kähler

submanifolds and totally real submanifolds.

Slant surfaces in almost Hermitian manifolds do exist extensively. In fact,

Chen and Y. Tazawa (1990) proved the following:

Let f : M → M̃ be an embedding from an oriented surface M into an

almost Hermitian manifold M̃ endowed with an almost complex structure J

and an almost Hermitian metric g. If f has no complex tangent points, then

for any prescribed angle θ ∈ (0, π), there exists an almost complex structure

J̃ on M̃ satisfying the following two conditions:

(i) (M̃ , g, J̃ ) is an almost Hermitian manifold, and

(ii) f is a θ-slant surface with respect to (g, J̃ ).

By a complex tangent point of f , we mean a point x ∈ M such that the

tangent space TxM of M at x is invariant under the action of the almost

complex structure J on M .

18.1. Basic properties of slant submanifolds. Proper slant submani-

folds are even-dimensional, such submanifolds do exist extensively for any

even dimension greater than zero (cf. [Chen 1990, Tazawa 1994a, 1994b]).

Slant submanifolds of Kähler manifolds are characterized by a simple con-

dition; namely, P 2 = λI for a fixed real number λ ∈ [−1, 0], where I is the

identity map of the tangent bundle of the submanifold.

A proper slant submanifold is called Kählerian slant if the endomorphism

P is parallel with respect to the Riemannian connection, that is, ∇P = 0. A

Kählerian slant submanifold is a Kähler manifold with respect to the induced

metric and the almost complex structure defined by J̃ = (sec θ)P .
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Kähler submanifolds, totally real submanifolds and Kählerian slant sub-

manifolds satisfy the condition: ∇P = 0. In general, letM be a submanifold

of a Kähler manifold M̃ . Then M satisfies ∇P = 0 if and only if M is lo-

cally the Riemannian product M1 × · · · ×Mk, where each Mi is a Kähler

submanifold, a totally real submanifold or a Kählerian slant submanifold of

M̃ .

Slant submanifolds have the following topological properties:

(1) IfM is a compact 2k-dimensional proper slant submanifold of a Kähler

manifold, then H2i(M ;R) 6= {0} for i = 1, . . . , k [Chen 1990].

(2) Let M be a slant submanifold in a complex Euclidean space. If M is

not totally real, then M is non-compact [Chen-Tazawa 1991].

Although there do not exist compact proper slant submanifolds in com-

plex Euclidean spaces, there do exist compact proper slant submanifolds in

complex flat tori.

The following result of Chen (1996c) provides a Riemannian obstruction

to the isometric slant immersion in a flat Kähler manifold.

Let M be a compact Riemannian n-manifold with finite fundamental

group π1(M). If there exists a k-tuple (n1, . . . , nk) ∈ S(n) such that δ(n1, . . . , nk) >

0 on M , then M admits no slant immersion into any flat Kählerian n-

manifold.

18.2. Equivariant slant immersions. S. Maeda, Y. Ohnita and S. Uda-

gawa (1993) investigated slant immersions between Kähler manifolds and

obtained the following.

Let f :M → N be an isometric immersion of an m-dimensional compact

Kähler manifold with Kähler form ωM into a Kähler manifold with Kähler

form ωN . Assume that the second Betti number b2(M) = 1 and f∗ωN is of

type (1, 1). Then the following three conditions are equivalent:

(1) f is a slant immersion with slant angle cos−1( |c|m ), for some nonnegative

constant c.

(2) f∗ωN = ( cm )ωM ,

(3) traceg f
∗ωN =

√
−1c is a constant, where g is the Kähler metric on

M .

A compact simply-connected homogeneous Kähler manifold is simply called

a Kähler C-space. Let f :M = G/H → CPm(4c) be an isometric immersion

of a compact homogeneous Riemannian manifold into CPm(4c). The immer-

sion f is called G-equivariant if there is a homomorphism ρ : G→ SU(m+1)

such that f(a · p) = ρ(a)f(p) for any p ∈M and a ∈ G.
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If f :M → CPm(4c) is a map of a Kähler manifold M with H2(M ;Z) ∼=
Z. Denote by ωM and ω̃ the Kähler forms of M and CPm(4c), respec-

tively. Let S be a positive generator of H2(M ;Z). Define the degree of f

by deg(f) = c
π [f

∗ω̃](S), where [f∗ω̃](S) is the evaluation of the cohomology

class [f∗ω̃] represented by f∗ω̃ at S.

The following theorem of Maeda, Ohnita and Udagawa provides some nice

examples of proper slant submanifolds in complex projective spaces.

Let f : M = G/H → CPm(4c) be a G-equivariant isometric immersion

of an m-dimensional Kähler C-space into a complex projective space with

Kähler form ω̃. Then f∗ω̃ is of type (1, 1) and traceg ω̃ is constant, where

g is the Kähler metric on M . Moreover, if b2(M) = 1, then f is a slant

immersion with slant angle given by

cos−1

(
|deg (f)| · π

c vol(S)

)
,

where S is a rational curve ofM which represents the generator of H2(M ;Z).

18.3. Slant surfaces in complex space forms. Slant submanifolds of

dimension two have some special geometric properties. For instance, Chen

(1990) proved that a surface in a Kähler manifold is a proper slant surface

if and only if it is a Kählerian slant surface. He also showed that there do

not exist flat minimal proper slant surfaces in C2. Also Chen and Tazawa

proved in 1997 that there exist no proper slant minimal surfaces in CP 2 and

in CH2.

If the mean curvature of a complete oriented proper slant surface in C2 is

bounded below by a positive number, then topologically it is either a circular

cylinder or a 2-plane [Chen-Morvan 1992].

SupposeM is an immersed surface in a Kähler surface M̃ which is neither

Kählerian nor Lagrangian. Then M is a proper slant surface of M̃ if and

only if the shape operator of M satisfies

(18.1) AFXY = AFYX

for vectors X,Y tangent to M .

Applying this special property of the shape operator for slant surfaces,

Chen (1995,1998b,1998d) proved that the squared mean curvature and the

Gaussian curvature of a proper slant surface in a 2-dimensional complex

space form M̃2(4c) satisfies

(18.2) H2 ≥ 2K − 2(1 + 3 cos2 θ)c,

where θ denotes the slant angle.
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There do not exist proper slant surfaces satisfying the equality case of

inequality (18.2) for c > 0. A proper slant surface in a flat Kähler sur-

face satisfies the equality of inequality (18.2) if and only if it is totally geo-

desic. Furthermore, a proper slant surface in the complex hyperbolic plane

CH2(−4) satisfying the equality case of inequality (18.2) is a surface of con-

stant Gaussian curvature −2
3 with slant angle θ = cos−1(13 ). Moreover, the

immersion of such a slant surface is rigid.

A submanifold N of a pseudo-Riemannian Sasakian manifold (M̃, g, φ, ξ)

is called contact θ-slant if the structure vector field ξ of M̃ is tangent to

N at each point of N and, moreover, for each unit vector X tangent to N

and orthogonal to ξ at p ∈ N , the angle θ(X) between φ(X) and TpN is

independent of the choice of X and p.

LetH2m+1
1 (−1) ⊂ Cm+1

1 denote the anti-de Sitter space-time and π : H2m+1
1 (−1)

→ CHm(−4) the corresponding totally geodesic fibration (cf. section 16.3).

Then every n-dimensional proper θ-slant submanifold M in CHm(−4) lifts

to an (n + 1)-dimensional proper contact θ-slant submanifold π−1(M) in

H2m+1
1 (−1) via π. Conversely, every proper contact θ-slant submanifold

of H2m+1
1 (−1) projects to a proper θ-slant submanifold of CHm(−4) via

π. Similar correspondence also holds between proper θ-slant submanifolds

of CPm(4) and proper contact θ-slant submanifolds of the Sasakian unit

(2m+ 1)-sphere S2m+1(1).

The contact slant representation of the unique proper slant surface in

CH2(−4) which satisfies the equality case of (18.2) in H5
1 (−1) ⊂ C3

1 has

been determined by Chen and Y. Tazawa in 1997. Up to rigid motions of

C3
1 , this contact slant representation is given by

z(u, v, t) = eit
(
1 +

3

2

(
cosh

√
2

3
v − 1

)
+
u2

6
e
−
√

2

3
v − i

u√
6
(1 + e

−
√

2

3
v
),

(18.3)
u

3

(
1 + 2e

−
√

2

3
v
)
+

i

6
√
6
e
−
√

2

3
v
((
e

√

2

3
v − 1

)(
9e

√

2

3
v − 3

)
+ 2u2

)
,

u

3
√
2

(
1− e

−
√

2

3
v
)
+

i

12
√
3

(
6− 15e

−
√

2

3
v
+ 9e

√

2

3
v
+ 2e

−
√

2

3
v
u2
))
.

In 1990 Chen classified slant surfaces in C2 with parallel mean curvature

vector:

LetM be a slant surface in C2 with parallel mean curvature vector. Then

M is one of the following surfaces:

(1) an open portion of the product surface of two plane circles;

(2) an open portion of a circular cylinder which is contained in a real

hyperplane of C2;
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(3) a minimal slant surface.

Cases (1) and (2) occur only when M is a Lagrangian surface of C2.

J. Yang (1997) showed that a flat proper slant surface with nonzero con-

stant mean curvature in C2 is an open portion of a helical cylinder and there

do not exist proper slant surfaces with nonzero constant mean curvature and

nonzero constant Gauss curvature in C2.

Y. Ohnita (1989) proved that totally geodesic surfaces are the only min-

imal slant surfaces with constant Gauss curvature in complex hyperbolic

spaces. In contrast, Chen and Vrancken (1997a) proved that for each con-

stant θ, 0 < θ < π
2 , there exist complete θ-slant surfaces in the complex

hyperbolic plane CH2 with nonzero constant mean curvature and constant

negative Gaussian curvature.

Chen and Vrancken (1997a) also proved the following:

(1) For a given constant θ with 0 < θ ≤ π
2 and a given function λ, there

exist infinitely many θ-slant surfaces in C2 with λ as the prescribed mean

curvature function.

(2) For a given constant θ with 0 < θ ≤ π
2 and a given function K,

there exist infinitely many θ-slant surfaces in C2 with K as the prescribed

Gaussian curvature function.

Slant surfaces in C2 were completely classified by Chen and Y. Tazawa

(1991) for the following cases:

(1) spherical slant surfaces;

(2) slant surfaces lying in a real hyperplane of C2; or

(3) slant surfaces whose Gauss map has rank less than two.

For case (1), they proved that a spherical surface in C2 is proper slant

if and only if it is locally a spherical helical cylinder in a hypersphere S3;

for case (2), the surfaces are doubly slant and they are the unions of some

open portions of planes, circular cones and the tangent developable surfaces

obtained by generalized helices; and for case (3) the slant surfaces are unions

of some special flat ruled surfaces.

18.4. Slant surfaces and almost complex structures. Let C2 = (E4, J0)

be the complex Euclidean plane with the canonical complex structure J0.

Then J0 is an orientation preserving isomorphism. Denote by J the set of

all almost complex structures on E4 which are compatible with the inner

product 〈 , 〉, that is, J consists of all linear endomorphisms J of E4 such

that J2 = −I and 〈JX, JY 〉 = 〈X,Y 〉 for X,Y ∈ E4

An orthonormal basis {e1, e2, e3, e4} on E4 is called a J-basis if Je1 =

e2, Je3 = e4. Any two J-bases associated with the same almost complex

structure have the same orientation.
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With respect to the canonical orientation on E4 one can divide J into

two disjoint subsets J + and J− which consist of all positive and all negative

J-bases, respectively.

For an immersion φ of a Riemann surface M into a Kähler manifold N ,

the Kähler angle α of φ is defined to be the angle between Jφ∗(∂/∂x) and

φ∗(∂/∂y), where z = x +
√
−1y is a local complex coordinate on M and J

the almost complex structure on N .

The relation between θ and the Kähler angle α for an immersion φ of a

Riemann surface M into a Kähler manifold N is

θ(X) = min {α(TpM), π − α(TpM)}

for any nonzero vector X ∈ TpM .

The immersion f of a Riemann surface in N is called holomorphic (re-

spectively, anti-holomorphic) if α ≡ 0 (respectively, α ≡ π).

The following results of B. Y. Chen and Y. Tazawa (1990) determine

whether a surfaces in E4 is slant with respect to some compatible almost

complex structure on E4:

(1) Let f : N → E4 be a minimal immersion. If there exists a compatible

complex structure Ĵ ∈ J+ (respectively, Ĵ ∈ J −) such that the immersion

is slant with respect to Ĵ , then

(1-a) for any α ∈ [0, π], there is a compatible complex structure Jα ∈ J +

(respectively, Jα ∈ J −) such that f is α-slant with respect to the complex

structure Jα, and

(1-b) the immersion f is slant with respect to any complex structure

J ∈ J+ (respectively, J ∈ J−).

(2) If f : N → E4 is a non-minimal immersion, then there exist at most

two complex structures ±J+ ∈ J + and at most two complex structures

±J− ∈ J− such that the immersion f is slant with respect to them.

(3) If f : N → C2 = (E4, J0) is holomorphic, then the immersion f is

slant with respect to every complex structure J ∈ J +.

(4) If f : N → C2 = (E4, J0) is anti-holomorphic, then the immersion f

is slant with respect to every complex structure J ∈ J −.

(5) If f : N → E3 is a non-totally geodesic minimal immersion, then

f : N → E3 ⊂ E4 is not slant with respect to every compatible complex

structure on E4.

18.5. Slant spheres in complex projective spaces. For each k = 0, . . . ,m,

let ψk : S
2 → CPm(4) be given by

(18.4) ψk([z0, z1]) =

[
gk,0

(
z0
z1

)
, . . . , gk,m

(
z0
z1

)]
,
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where [z0, z1] ∈ CP 1 = S2, and for j = 0, . . . ,m, gk,j(z) is given by

(18.5) gk,j(z) =
k!

(1 + zz̄)k

√(
m

j

)
zj−k

∑

p

(−1)p
(

j

k − p

)(
m− j

p

)
(zz̄)p.

It was proved by Bolton, Jensen, Rigoli and Woodward (1988) that each ψk
is a conformal minimal immersion with constant Gaussian curvature 4(m+

2k(m− k))−1 and constant Kähler angle αk given by

tan2
(αk

2

)
=

k(m− k + 1)

(k + 1)(m− k)
.

Each ψk is an embedding unless m = 2k, in which case ψk is a totally real

immersion.

The immersions ψ0, . . . , ψm defined above are called the Veronese se-

quence. For Veronese sequence, J. Bolton, G. R. Jensen, M. Rigoli and

L. M. Woodward (1988) proved that

(1) Let ψ : S2 → CPm(4) be a conformal minimal immersion with con-

stant Gaussian curvature and assume that ψ(S2) is not contained in any

hyperplane of CPm(4). Then, up to a holomorphic isometry of CPm(4), the

immersion ψ is an element of the Veronese sequence.

(2) Let ψ,ψ′ : S2 → CPm(4) be conformal minimal immersions. Then

ψ,ψ′ differ by a holomorphic isometry of CPm(4) if and only if they have

the same Kähler angle and induced metrics at each point.

(3) If ψ : S2 → CPm(4) is a totally real minimal immersion, then ψ is

totally geodesic.

For each linearly full minimal immersion ψ : S2 → CPn, let ψ0, ψ1, · · · , ψn
denote the corresponding Veronese sequence with ψ = ψk for some k =

0, 1, · · · , n, where ψ0 is holomorphic, called the directrix of ψ. ψ is called a

minimal immersion with position k.

Z. Q. Li (1995) proved the following:

(1) Let ψ : S2 → CPn be a linearly full minimal immersion with position

2. Suppose the Kähler angle α is constant but the Gaussian curvature is

not. If α 6= 0, π, π/2 and the directrix ψ0 of ψ is unramified, then n ≤ 10

and tan2(α/2) = 3
4 .

(2) There are at least three families of totally unramified minimal immer-

sions ψ : S2 → CP 10 such that ψ is neither holomorphic, anti-holomorphic

nor totally real, with constant Kähler angle and nonconstant Gaussian cur-

vature. Moreover, ψ is homotopic to the Veronese minimal immersion.

Y. Ohnita (1989) studied minimal surfaces with constant curvature and

constant Kähler angle. He obtained the following.
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Let M be a minimal surface with constant Gaussian curvature K im-

mersed fully in CPm(4). If the Kähler angle α of M is constant.

(1) If K > 0, then there exists some constant k with 0 ≤ k ≤ m such that

K =
4

2k(m− k) +m
, cosα =

(
m− 2k

4

)
K

and M is an open submanifold of an element of Veronese sequence.

(2) If K = 0, then M is totally real.

(3) K < 0 is impossible.

A minimal surface in CPn is called superconformal if its harmonic se-

quence is orthogonally periodic, and it is called pseudo-holomorphic if its

harmonic sequence terminates at each end.

M. Sakaki (1996) proved the following:

(1) Any superconformal minimal slant surface in CP 3 is totally real.

(2) Any pseudo-holomorphic minimal slant surface in CP 4 is either holo-

morphic, anti-holomorphic, totally real or of constant curvature.
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19. Submanifolds of the nearly Kähler 6-sphere

It was proved by E. Calabi (1958) that any oriented submanifold M6 of

the hyperplane ImO of the imaginary octonions carries a U(3)-structure

(that is, an almost Hermitian structure). For instance, let S6 ⊂ ImO be the

sphere of unit imaginary vectors; then the right multiplication by u ∈ S6

induces a linear transformation Ju : O → O which is orthogonal and satisfies

(Ju)
2 = −I. The operator Ju preserves the 2-plane spanned by 1 and u and

therefore preserves its orthogonal 6-plane which may be identified with TuS
6.

Thus Ju induces an almost complex structure on TuS
6 which is compatible

with the inner product induced by the inner product of O and S6 has an

almost complex structure.

The almost complex structure J on S6 is a nearly Kähler structure in the

sense that the (2,1)-tensor field G on S6, defined by G(X,Y ) = (∇̃XJ)(Y ),

is skew-symmetric, where ∇̃ denotes the Riemannian connection on S6.

The group of automorphisms of this nearly Kähler structure is the ex-

ceptional simple Lie group G2 which acts transitively on S6 as a group of

isometries.

A. Gray (1969) proved the following:

(1) every almost complex submanifold of the nearly Kähler S6 is a minimal

submanifold, and

(2) the nearly Kähler S6 has no 4-dimensional almost complex submani-

folds.

19.1. Almost complex curves. Almost complex curves, that is, real 2-

dimensional almost complex submanifolds, in the nearly Kähler S6 have

been studied by various authors.

An almost complex curve in S6 is a non-constant smooth map f : S → S6,

from a Riemann surface S, whose differential is complex linear. Such a map

is necessarily a weakly conformal harmonic map or, equivalently, a weakly

conformal branched minimal immersion.

Almost complex curves have ellipse of curvature a circle, that is, the map

v 7→ h(v, v) describes a circle in the normal space where v ∈ UMp, UMp the

unit hypersphere of TpM , and h denotes the second fundamental form. If

the map v 7→ (∇̄vh)(v, v), v ∈ UMp also describes a circle, then M2 is called

superminimal. This class of almost complex curves has been investigated by

Bryant (1982).

In [Bryant 1982] a Frenet formalism for almost complex curves in S6

was developed; the first, second and third fundamental forms are defined as

holomorphic sections of line bundles over S. In particular, he showed that
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the third fundamental form III, analogous to the torsion of a space curve,

plays a crucial role.

The hypothesis III 6= 0 is very restrictive and Bryant proved that if

S = CP 1, then III 6= 0 is impossible. On the contrary, he constructed

almost complex curves f : S → S6 with III = 0 for any Riemann surface S

such that the ramification divisor of f has arbitrarily large degree. He also

proved that if S is compact and f : S → S6 is an almost complex curve with

III = 0, then f is algebraic. In particular, it is real analytic.

J. Bolton, L. Vrancken and L. M. Woodward (1994) proved that there are

four basic types of almost complex curves in S6; namely,

(i) linearly full in S6 and superminimal,

(ii) linearly full in S6 but not superminimal,

(iii) linearly full in some totally geodesic S5 in S6, and

(iv) totally geodesic.

They also provided metric criteria for recognizing when a weakly confor-

mal harmonic map f : S → S6 is O(7)-congruent to an almost complex curve

of any one of the four types.

A surface S in S2m is called superminimal if S is the image of a horizontal

holomorphic curve in the Hermitian symmetric space SO(2m + 1)/U(m)

under the Riemannian submersion π : SO(2m + 1)/U(m) → S2m induced

by the inclusions U(m) ⊂ SO(2m) ⊂ SO(2m+ 1). E. Calabi (1967) proved

that all minimal 2-spheres in S2m are superminimal.

R. Bryant (1982) used a twistor construction to obtain all almost complex

curves in S6 of type (I). Bryant’s construction involves consideration of the

twistor bundle π : Q5 → S6, where Q5 denotes the quadric in CP 6 given by

Q5 = {[a+ ib] ∈ CP 6 : a, b ∈ E7, |a| = |b| and a ⊥ b}

and π : Q5 → S6 is the map

π([a+ ib]) = − a× b

|a× b| .

An alternative description of π may be given in terms of a projection

between quotient spaces of G2 as follows. Recall that the standard action

of G2 on E7 induces transitive actions on S6 and Q5. If {e1, . . . , e7} is the

standard basis of E7, then the stabilizer of e4 ∈ S6 may be identified with

SU(3) and that of [e1 + ie5] ∈ Q5 with U(2). Using these identifications, if

g ∈ U(2), then

g(e4) = −g(e1 × e5) = −e1 × e5 = e4,
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so that U(2) ⊂ SU(3). The above projection π may also be described as the

standard projection map π : Q5 = G2/U(2) → G2/SU(3) = S6.

A holomorphic map g : S → Q5 is said to be superhorizontal if g×gz = 0,

where z = x+iy is a local complex coordinate on S. Such maps are horizontal

in the sense that g(S) intersects the fibres orthogonally. Although the map

π above is not a Riemannian submersion, if g : S → Q5 is holomorphic and

superhorizontal, the metrics induced on S by g and π ◦ g are equal.

R. Bryant (1982) showed that there is a one-to-one correspondence be-

tween linearly full superhorizontal maps g : S → Q5 and almost complex

curves f : S → S6 of type (I), where g corresponds to the map f = π ◦ g.
Bryant (1982) also gave a “Weierstrass representation” theorem for almost

complex curves in S6 and proved that every compact Riemann surface admits

an infinite number of almost complex maps of type (I) into S6.

Almost complex curves of genus zero are necessarily of type (I) or (IV),

which have been studied by N. Ejiri (1986a) who described all S1-symmetric

examples.

A description of almost complex curves of types (II) was given by Bolton,

F. Pedit and Woodward (1995). They showed that almost complex curves

of type (II) all arise from solutions of the affine 2-dimensional G2-Toda

equations.

The method of construction of almost complex curves of type (III) uses

the Hopf fibration π : S5 → CP 2 to obtain these complex curves horizontal

lifts of suitable totally real branched minimal immersions into CP 2. In fact,

if f : S → S6 is an almost complex curve of type (III), by applying an

element of G2 if necessary we may assume that f(S) ⊂ S5 = S6 ∩ P where

P is the hyperplane of E7 given by P = {(x1, . . . , x7) : x4 = 0}. Then the

map π : S5 → CP 2 given by

π(x1, x2, x3, 0, x5, x6, x7) = [x1 + ix5, x2 + ix6, x3 + ix7],

is the Hopf fibration and it is shown in [Bolton-Vrancken-Woodward 1994]

that f is horizontal and π◦f : S → CP 2 is a totally real non-totally geodesic

weakly conformal harmonic map of S into CP 2.

Conversely, if S is simply-connected and if ψ : S → CP 2 is such a map,

then among the horizontal lifts of ψ there are exactly three almost complex

curves (which are all G2-congruent).

Using the theory of calibrations, Palmer (1997) gave estimates for the

nullity and Morse index of almost complex curves in the nearly Kähler 6-

sphere.
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19.2. Minimal surfaces of constant curvature in nearly Kähler 6-

sphere. The minimal surfaces of constant curvature in the 6-sphere have

been known for some time.

R. L. Bryant (1985) proved that there are no minimal surfaces in Sn (in

particular, in S6) of constant negative Gaussian curvature. Flat minimal

surfaces in Sn were classified by K. Kenmotsu (1976).

K. Sekigawa (1983) studied almost complex curves of constant curvature

in the nearly Kähler 6-sphere and proved that, if the Gaussian curvature

K of an almost complex surface M in the nearly Kähler S6 is constant on

M , then K = 1, K = 1
6 or K = 0. Moreover, up to G2-congruence and

conformal transformation of the domain, the immersion f : M → S6 of the

almost complex curve is one of the following:

(1) K = 1, M = S2 = {(x, y, z) ∈ E3 : x2 + y2 + z2 = 1} and

f(x, y, z) = (x, y, z, 0, 0, 0, 0),

for (x, y, z) ∈ S2,

(2) K = 1
6 , M = S2, and

f(x, y, z) =
1

2
√
2
(
√
3x(−x2 − y2 + 4z2),

√
30z(x2 − y2),

√
5y(3x2 − y2),

√
2z(−3x2 − 3y2 + 2z2),

−
√
3y(−x2 − y2 + 4z2),−2

√
30xyz,

√
5x(−x2 + 3y2)),

(3) K = 0, M = C1, and

f(w) =
1√
6

3∑

j=1

(
eµjw−µjwνj + e−µjw+µjwν̄j

)
,

where

µ1 = 1, µ2 = exp(
2π

3
), µ3 = exp(

4πi

3
), νj =

1√
2
(ej + iej+4),

for j = 1, 2, 3; and e1, . . . , e7 is the standard basis of E7.

F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken (1987b) studied

almost complex surfaces M in the nearly Kähler S6 and proved that

(1) If 0 ≤ K ≤ 1/6, then K is constant and K = 0 or K = 1/6.

(2) If 1/6 ≤ K ≤ 1, then K is constant and K = 1/6 or K = 1.

The condition K ≤ 1 in (2) is not necessary, since it is always satisfied

for an almost complex surface. (2) improves an earlier result of Sekigawa

(1983).
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19.3. Hopf hypersurfaces and almost complex curves. Suppose that

M is a real hypersurface in the nearly Kähler S6. Applying the almost

complex structure J on S6 to the normal bundle of M , one obtains a 1-

dimensional distribution in M . The 1-dimensional foliation induced by this

distribution is called the Hopf foliation, and M is said to be a Hopf hyper-

surface if this foliation is totally geodesic.

J. Berndt, J. Bolton and L. Woodward (1995) proved that a hypersurface

of the nearly Kähler S6 is a Hopf hypersurface if and only if it is an open

part of a tube around an almost complex submanifold of S6.

As the nearly Kähler six-sphere admits no four-dimensional almost com-

plex submanifolds, this implies that M is a Hopf hypersurface if and only

if it is an open part of either a geodesic hypersphere or a tube around an

almost complex curve. As a consequence, every Hopf hypersurface of S6 has

exactly 1, 2, or 3 distinct principal curvatures at each point.

In the case whereM is umbilical, it is an open subset of a geodesic hyper-

sphere. The Hopf hypersurfaceM has exactly 2 distinct principal curvatures

if and only if M is an open part of a tube around a totally geodesic almost

complex curve in the nearly Kähler S6.

19.4. Lagrangian submanifolds in nearly Kähler 6-sphere. .

19.4.1. Ejiri’s theorems for Lagrangian submanifolds in S6

A 3-dimensional submanifold M of the nearly Kähler S6 is called La-

grangian if the almost complex structure J on the nearly Kähler 6-sphere

carries each tangent space TxM, x ∈M onto the corresponding normal space

T⊥
x M .

NĖjiri (1981) proved that a Lagrangian submanifold M in S6 is always

minimal and orientable. He also proved that ifM has constant sectional cur-

vature, thenM is either totally geodesic or has constant curvature 1/16. The

first nonhomogeneous examples of Lagrangian submanifolds in the nearly

Kähler 6-sphere were described in [Ejiri 1986b].

F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken (1987a) proved that

if M is a compact Lagrangian submanifold of S6 with K > 1/16, then M is

a totally geodesic submanifold.

19.4.2. Equivariant Lagrangian submanifolds in S6

K. Mashimo (1985) classified the G2-equivariant Lagrangian submanifolds

M of the nearly Kähler 6-sphere. It turns out that there are five models,

and every equivariant Lagrangian submanifold in the nearly Kähler 6-sphere

is G2-congruent to one of the five models.
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These five models can be distinguished by the following curvature prop-

erties:

(1) M3 is totally geodesic (δ(2) = 2),

(2) M3 has constant curvature 1/16 (δ(2) = 1/8),

(3) the curvature of M3 satisfies 1/16 ≤ K ≤ 21/16 (δ(2) = 11/8),

(4) the curvature of M3 satisfies −7/3 ≤ K ≤ 1 (δ(2) = 2),

(5) the curvature of M3 satisfies −1 ≤ K ≤ 1 (δ(2) = 2).

F. Dillen, L. Verstraelen and L. Vrancken (1990) characterized models

(1), (2) and (3) as the only compact Lagrangian submanifolds in S6 whose

sectional curvatures satisfy K ≥ 1/16. They also obtained an explicit ex-

pression for the Lagrangian submanifold of constant curvature 1/16 in terms

of harmonic homogeneous polynomials of degree 6. Using these formulas, it

follows that the immersion has degree 24. Further, they also obtained an

explicit expression for model (3).

It follows from inequality (3.17) and Ejiri’s result that the invariant

(19.1) δ(2) :=
ρ

2
− infK

always satisfies δ(2) ≤ 2, for every Lagrangian submanifold of the nearly

Kähler S6.

The models (1), (4) and (5) satisfy the equality δ(2) = 2 identically. Chen,

Dillen, Verstraelen and Vrancken (1995a) proved that these three models

are the only Lagrangian submanifolds of the nearly Kähler S6 with constant

scalar curvature that satisfy the equality δ(2) = 2.

Many further examples of Lagrangian submanifolds in the nearly Kähler

S6 satisfying the equality δ(2) = 2 have been constructed in [Chen-Dillen-

Verstraelen-Vrancken 1995a, 1995b].

19.4.3. Lagrangian submanifolds in S6 satisfying δ(2) = 2

A Riemannian n-manifold M whose Ricci tensor has an eigenvalue of

multiplicity at least n − 1 is called quasi-Einstein. R. Deszcz, F. Dillen, L.

Verstraelen and L. Vrancken (1997) proved that Lagrangian submanifolds of

the nearly Kähler 6-sphere satisfying δ(2) = 2 are quasi-Einstein.

The complete classification of Lagrangian submanifolds in the nearly Kähler

6-sphere satisfying the equality δ(2) = 2 was established by Dillen and

Vrancken (1996). More precisely, they proved the following:

(1) Let φ : N1 → CP 2(4) be a holomorphic curve in CP 2(4), PN1 the

circle bundle over N1 induced by the Hopf fibration π : S5(1) → CP 2(4),
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and ψ the isometric immersion such that the following diagram commutes:

PN1
ψ−−−−→ S5(1)

yπ
yπ

N1
φ−−−−→ CP 2(4).

Then, there exists a totally geodesic embedding i of S5 into the nearly

Kähler 6-sphere such that the immersion i◦ψ : PN1 → S6 is a 3-dimensional

Lagrangian immersion in S6 satisfying equality δ(2) = 2.

(2) Let φ̄ : N2 → S6 be an almost complex curve (with second fundamental

form h) without totally geodesic points. Denote by UN2 the unit tangent

bundle over N2 and define a map

19.2 ψ̄ : UN2 → S6 : v 7→ φ̄⋆(v)×
h(v, v)

‖h(v, v)‖ .

Then ψ̄ is a (possibly branched) Lagrangian immersion into S6 satisfying

equality δ(2) = 2. Moreover, the immersion is linearly full in S6.

(3) Let φ̄ : N2 → S6 be a (branched) almost complex immersion. Then,

SN2 is a 3-dimensional (possibly branched) Lagrangian submanifold of S6

satisfying equality δ(2) = 2.

(4) Let f :M → S6 be a Lagrangian immersion which is not linearly full

in S6. Then M automatically satisfies equality δ(2) = 2 and there exists a

totally geodesic S5, and a holomorphic immersion φ : N1 → CP 2(4) such

that f is congruent to ψ, which is obtained from φ as in (1).

(5) Let f : M → S6 be a linearly full Lagrangian immersion of a 3-

dimensional manifold satisfying equality δ(2) = 2. Let p be a non totally

geodesic point ofM . Then there exists a (possibly branched) almost complex

curve φ̄ : N2 → S6 such that f is locally around p congruent to ψ̄, which is

obtained from φ̄ as in (3).

Let f : S → S6 be an almost complex curve without totally geodesic

points. Define

(19.3) F : T1S → S6(1) : v 7→ h(v, v)

||h(v, v)|| ,

where T1S denotes the unit tangent bundle of S.

L. Vrancken (1997) showed that the following:

(i) F given by (19.2) defines a Lagrangian immersion if and only if f is

superminimal, and

(ii) If ψ : M → S6(1) be a Lagrangian immersion which admits a unit

length Killing vector field whose integral curves are great circles. Then

there exist an open dense subset U of M such that each point p of U has a
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neighborhood V such that ψ : V → S6 satisfies δ(2) = 2, or ψ : V → S6 is

obtained as in (i).

19.5. Further results. L. Vrancken (1988) proved that a locally symmetric

Lagrangian submanifold of the nearly Kähler S6 has constant curvature 1 or

1/16.

H. Li (1996) showed that if the Ricci tensor of a compact Lagrangian

submanifold in the nearly Kähler S6 satisfies Ric ≥ (53/64)g, then either

Ric = 2g or the submanifold is totally geodesic.

F. Dillen, B. Opozda, L. Verstraelen and L. Vrancken (1988) proved that

if a totally real surface M in the nearly Kähler S6 is homeomorphic to a

sphere, then M is totally geodesic.

K. Sekigawa studied CR-submanifolds in the nearly Kähler S6 and proved

that there exists no proper CR-product in the nearly Kähler S6, although

there do exist 3-dimensional CR-submanifolds in the nearly Kähler S6 whose

totally real and holomorphic distributions are both integrable.

Y. B. Shen (1998) studied slant minimal surfaces in the nearly Kähler S6.

He proved that if f : M → S6 is a minimal slant isometric immersion of a

complete surface of nonnagative Gauss curvature K in the nearly Kähler S6

such that f is neither holomorphic nor antiholomorphic, then either K = 1

and f is totally geodesic, or K = 0 and f is either totally real or supermin-

imal. He also showed that if f : S2 → S6 is a minimal slant immersion of a

topological 2-sphere which is neither holomorphic nor antiholomorphic, then

f is totally geodesic.
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20. Axioms of submanifolds

20.1. Axiom of planes. Historically the axiom of planes was originally

introduced by G. Riemann in postulating the existence of a surface S passing

through three given points with the property that every straight line having

two points in S is completely contained in this surface.

E. Beltrami (1835–1900) had shown in 1868 that a Riemannian manifold

of constant curvature satisfies the axiom of 2-planes and F. Schur (1856–

1932) proved in 1886 that the converse is also true. The later result was

also obtained by L. Schläfli (1873) in combination with the work of F. Klein

(1849–1925).

In his 1928 book, È. Cartan defined the axiom of planes as follows: A

Riemannian n-manifold M , n ≥ 3, is said to satisfy the axiom of k-planes

if, for each point x ∈M and each k-dimensional subspace T ′
x of the tangent

space TxM , there exists a k-dimensional totally geodesic submanifold N

containing x such that the tangent space of N at x is T ′
x, where k is a fixed

integer 2 ≤ k < n.

È. Cartan’s result states that real space forms are the only Riemannian

manifolds of dimension ≥ 3 which satisfy the axiom of k-planes, for some k

with 2 ≤ k < n.

20.2. Axioms of spheres and of totally umbilical submanifolds. As

a generalization of the axiom of k-planes, D. S. Leung and K. Nomizu (1971)

introduced the axiom of k-spheres: for each point x ∈ M and for each k-

dimensional linear subspace T ′
x of TxM , there exists a k-dimensional totally

umbilical submanifold N of M containing x with parallel mean curvature

vector such that the tangent space of N at x is T ′
x.

Leung and Nomizu proved that a Riemannian manifold of dimension n ≥ 3

satisfies the axiom of k-spheres, 2 ≤ k < n, if and only if it is a real space

form.

The proof of Leung and Nomizu’s result was based on Codazzi’s equation

and the following result of É. Cartan: A Riemannian manifold M of dimen-

sion > 2 is a real space form if and only if its curvature tensor R satisfies

R(X,Y,Z,X) = 0 for any orthonormal vector fields X,Y,Z in M .

S. I. Goldberg and E. M. Moskal (1976) observed that the result also

holds if totally umbilical submanifolds with parallel mean curvature vector

are replaced by submanifolds with parallel second fundamental form. W.

Strübing (1979) pointed out that totally umbilical submanifolds with parallel

mean curvature vector can further be replaced by submanifolds satisfying

Codazzi equation for real space forms.
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J. A. Schouten in 1924 proved that a Riemannian manifold of dimension

n ≥ 4 is conformally flat if and only if it satisfies the axiom of totally

umbilical submanifolds of dimension k, 3 ≤ k < n.

By the axiom of totally umbilical submanifolds of dimension k, we mean

that, for each point x ∈ M and for each k-dimensional linear subspace T ′
x

of TxM , there exists a k-dimensional totally umbilical submanifold N of M

containing x such that the tangent space of N at x is T ′
x.

K. L. Stellmacher (1951) showed that the same result holds for Riemann-

ian 3-manifold for k = 2.

K. Yano and Y. Muto (1941) proved that a Riemannian manifold of di-

mension ≥ 4 is conformally flat if and only if it satisfies the axiom of totally

umbilical surfaces with prescribed mean curvature vector.

D. Van Lindt and L. Verstraelen (1981) proved that a Riemannian man-

ifold of dimension n ≥ 4 is conformally flat if and only if it satisfies the

axiom of conformally flat totally quasiumbilical submanifolds of dimension

k, 3 < k < n. Here by the axiom of conformally flat totally quasiumbilical

submanifolds of dimension k we mean that, for each point x ∈ M and for

each k-dimensional linear subspace T ′
x of TxM , there exists a k-dimensional

conformally flat totally quasiumbilical submanifold N of M containing x

such that the tangent space of N at x is T ′
x.

In 1975, Chen and Verstraelen proved that a Riemannian manifold M of

dimension n ≥ 4 is conformally flat if and only if, for each point x ∈ M

and for each k-dimensional (2 ≤ k < n) linear subspace T ′
x of TxM , there

exists a k-dimensional submanifold N which passes through x and which at

x tangent to T ′
x such that N has flat normal connection and commutative

shape operators.

20.3. Axiom of holomorphic 2k-planes. In 1955 K. Yano and Y. Mogi

introduced the axiom of holomorphic 2k-planes on a Kähler manifold M̃

as follows: for each point x ∈ M̃ and for each holomorphic 2k-dimensional

linear subspace T ′
x of TxM , there exists a 2k-dimensional totally geodesic

submanifold N of M̃ containing x such that the tangent space of N at x is

T ′
x.

Yano and Mogi proved that a Kähler manifold of real dimension 2n ≥ 4

is a complex space form if and only if it satisfies the axiom of holomorphic

2k-planes for some k, 1 ≤ k < n. Goldberg and Moskal pointed out that

the same result holds if the 2k-dimensional totally geodesic submanifolds

are replaced by 2k-dimensional totally umbilical submanifolds with parallel

mean curvature vector. In 1982, O. Kassabov proved that the same result
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also holds if the 2k-dimensional totally geodesic submanifolds are replaced

by 2k-dimensional totally umbilical submanifolds.

20.4. Axiom of antiholomorphic k-planes. The axiom of antiholomor-

phic k-planes was introduced in 1973 by Chen and Ogiue: for each point

x ∈ M̃ and for each totally real k-dimensional linear subspace T ′
x of TxM̃ ,

there exists a k-dimensional totally geodesic submanifold N of M̃ containing

x such that the tangent space of N at x is T ′
x.

Chen and Ogiue proved that a Kähler manifold of real dimension 2n ≥ 4 is

a complex space form if and only if it satisfies the axiom of antiholomorphic

k-planes for 2 ≤ k ≤ n. The same result was also obtained independently

by K. Nomizu (1973b).

M. Harada (1974) pointed out that the same result holds if the k-dimensional

totally geodesic submanifolds were replaced by k-dimensional totally umbil-

ical submanifolds with parallel mean curvature vector. Also, S. Yamaguchi

and M. Kon (1978) observed that the same result holds if the k-dimensional

totally geodesic submanifolds are replaced by k-dimensional totally umbili-

cal totally real submanifolds. O. Kassabov proved that the same result also

holds if the k-dimensional totally geodesic submanifolds are further replaced

by k-dimensional totally umbilical submanifolds.

D. Van Lindt and L. Verstraelen proved that a Kähler manifold of real

dimension 2n > 4 is a complex space form if and only if, for each point

x ∈ M and for each k-dimensional (2 ≤ k < n) totally real linear subspace

T ′
x of TxM , there exists a totally real k-dimensional submanifold N which

passes through x and which at x tangent to T ′
x such that N has commutative

shape operators and parallel f -structure in the normal bundle. Here the

f -structure is the endomorphism on the normal bundle induced from the

almost complex structure on the ambient space.

20.5. Axioms of coholomorphic spheres. Chen and Ogiue (1974a) in-

troduced the axiom of coholomorphic (2k + ℓ)-spheres as follows: for each

point x ∈ M̃ and for each totally real (2k+ ℓ)-dimensional CR-plane section

T ′
x of TxM̃ , there exists a k-dimensional totally umbilical submanifold N of

M̃ containing x such that the tangent space of N at x is T ′
x. Chen and Ogiue

proved that a Kählerian manifold of real dimension 2n ≥ 4 is locally flat if

and only if it satisfies the axiom of coholomorphic (2k+ ℓ)-spheres for some

integers k and ℓ such that 1 ≤ k, ℓ < n and 2k + ℓ < 2n.

An almost Hermitian manifold M is called a RK-manifold if its Riemann

curvature tensor R and its almost complex structure J satisfies

R(X,Y,Z,W ) = R(JX, JY, JZ, JW )
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for X,Y,Z,W tangent toM . L. Vanhecke (1976) studied RK-manifolds sat-

isfying the axiom of coholomorphic (2k+1)-spheres for some k and obtained

characterization theorems for space forms.

S. Tachibana and S. Kashiwada (1973) proved that every geodesic hy-

persphere S with unit normal vector field ξ in a complex space form is

Jξ-quasiumbilical, that is, S is quasiumbilical with respect to ξ and Jξ

is a principal direction with multiplicity equal to either one or n, where

n = dimS. The later case occurs only when the complex space form is flat.

A hypersurface of a Kähler manifold is said to be Jξ-hypercylindric if Jξ

is a principal direction and the principal curvatures other than the principal

curvature associated with Jξ are zero.

A Kähler manifold M̃ is said to satisfy the axiom of Jξ-quasiumbilical

hypersurfaces if, for each point x ∈ M̃ and for each hyperplane H of TxM̃

with hyperplane normal ξ, there exists a Jξ-quasiumbilical hypersurface N

containing x such that the tangent space of N at x is H.

B. Y. Chen and L. Verstraelen (1980) proved that a Kähler manifold of

real dimension > 4 satisfies the axiom of Jξ-quasiumbilical hypersurfaces if

and only if it is a complex space form. This improves a result of L. Vanhecke

and T. J. Willmore (1977).

D. van Lindt and L. Verstraelen showed that a Kähler manifold of real

dimension > 4 is locally flat if and only if, for each point x ∈ M̃ and for

each hyperplane L of TxM̃ with hyperplane normal ξ, there exists a Jξ-

hypercylindric hypersurface N containing x such that the tangent space of

N at x is L.

20.6. Submanifolds contain many circles. An ordinary torus contains

exactly four circles through each points. Since each compact cyclide of Dupin

in E3 can be obtained from inversion of a torus of revolution; thus it contains

four circles through each point. R. Blum (1980) investigated the cyclide in

E3 defined by

(20.1) (x2 + y2 + z2)2 − 2ax2 − 2by2 − 2cz2 + d2 = 0,

where the real coefficients a, b, c, d satisfy the condition 0 < d < b ≤ a, c < d.

He proved that (a) if a 6= b and c 6= −d, there exist 6 circles through each

point; (b) if a = b, c 6= −d or a 6= b, c = −d, there exist 5 circles through

each point; and (c) if a = b and c = −d, there exist 4 circles through each

point of the cyclide. The case(c) represents a torus of revolution. On the

other hand, N. Takeuchi (1987) showed that a smooth compact surface of

genus one in E3 cannot contain seven circles through each point. Obviously,
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there exist infinitely many circles which pass through each point of a round

sphere in E3.

In 1984 K. Ogiue and R. Takagi proved that a surface M in E3 is locally

a plane or a sphere if, through each point p ∈M , there exist two Euclidean

circles such that (i) they are contained in M in some neighborhood of p and

(ii) they are tangent to each other at p. Condition (i) alone is not sufficient,

as it is satisfied by a torus of revolution. Ogiue and Takagi also generalized

this to obtain similar characterizations of totally geodesic submanifolds and

extrinsic spheres of arbitrary dimension in Riemannian manifolds. In partic-

ular, they proved that a 2-dimensional surface M in a Riemannian manifold

N is totally geodesic if through each point p ∈M there exist three geodesics

of N which lie in M in some neighborhood of p.

R. Miyaoka and N. Takeuchi (1992) proved that a complete simply-connected

surface in E3 which contains two transversal circles through each point must

be a plane or a sphere.

K. Ogiue and N. Takeuchi (1992) proved that a compact smooth surface

of revolution which contains at least two circles through each point is either

a sphere or a hulahoop surface, that is, a surface obtained by revolving a

circle around a suitable axis. A hulahoop surface has 4, 5, or infinitely many

circles through each point. A hulahoop surface, which is neither a sphere

nor an ordinary torus, contains exactly 5 circles through each point. Ogiue

and Takeuchi also described the concrete geometric construction of a torus

in Euclidean 3-space containing five circles through each point.

J. Arroyo, O. J. Garay and J. J. Menc´ia (1998) showed that if a compact

surface of revolution in E3 contains at least two ellipses through each point,

then it is an elliptic hulahoop surface, that is, a surface obtained by revolving

an ellipse around a suitable axis.

Without making distinction between real and nonreal circles, E. E. Kum-

mer (1810–1893) already observed in 1865 that a general cyclide has the

property that there exist 10 circles through each generic point of the cyclide.
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21. Total absolute curvature

21.1. Rotation index and total curvature of a curve. Let γ be closed

smooth curve in the plane. As a point moves along γ, the line through a

fixed point O and parallel to the tangent line of γ rotates through an angle

2nπ or rotates n times about O. This integer n is called the rotation index

of γ. If γ is a simple closed curve, n = ±1.

Two curves are said to be regularly homotopic if one can be deformed to

the other through a family of closed smooth curves. Because the rotation

index is an integer and it varies continuously through the deformation, it

must be constant. Therefore, two closed smooth curves have the same ro-

tation index if they are regular homotopic. A theorem of W. C. Graustein

(1888–1941) and H. Whitney states that the converse of this is also true; a

result suggested by Graustein whose proof was first published in [Whitney

1937]. Hence, the only invariant of a regular homotopy class is the rotation

index.

Let γ(s) = (x(s), y(s)) be a unit-speed smooth closed curve in E2. Then

x′′(x) = −κ(s)y′(s), y′′(x) = κ(s)x′(s),

where κ = κ(s) is the curvature of the curve. If θ(s) denotes the angle

between the tangent line and the x-axis, then dθ = κ(s)ds. Thus, we have

(21.1)

∫

γ
κ(s)ds = 2nπ,

where n is the rotation index of γ.

From (21.1), it follows that the total absolute curvature of γ satisfies

(21.2)

∫

γ
|κ(s)|ds ≥ 2π,

with the equality holding if and only if γ is a convex plane curve.

Inequality (21.2) was generalized to closed curves in E3 by W. Fenchel

(1905– ) in 1929, and to closed curves in Em, m > 3, by K. Borsuk (1905–

1982) in 1947.

I. Fary (1922– ) in 1949 and J. Milnor (1931– ) in 1950 proved that if a

closed curve γ in Em satisfies

∫

γ
|κ(s)|ds ≤ 4π,

then γ is unknotted.
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21.2. Total absolute curvature of Chern and Lashof. Let f :M → Em

be an isometric immersion of a compact Riemannian n-manifold M into

Em. Let ν1(M) denote the unit normal bundle of f, and Sm−1 the unit

hypersphere centered at the origin of Em, and let Tf : ν1(M) → Sm−1 be

the parallel translation.

Denote by ω and Ω the volume elements of ν1(M) and of Sm−1, respec-

tively. For each ξ ∈ ν1(M), we have

T ∗
fΩ = (detAξ)ω,

where Aξ is the shape operator of f in the direction ξ.

As a generalization of the total absolute curvature for a space curve, S. S.

Chern and R. K. Lashof (1957) defined the total absolute curvature of f as

follows:

(21.3) τ(f) =
1

sm−1

∫

ν1(M)
|T ∗
fΩ| =

1

sm−1

∫

ν1(M)
|detAξ|ω,

where sm−1 is the volume of the unit (m− 1)-sphere.

A function φ on M which has only nondegenerate critical point is called

a Morse function. Since M is assumed to be compact, each Morse function

on M has only a finite number of critical points. The Morse number γ(M)

of M is defined as the least number of critical points of Morse functions on

M . The Morse inequalities imply that

(21.4) γ(M) ≥ β(M ;F ) =

n∑

k=0

βk(M ;F )

for any field F , where βk(M ;F ) is the k-th betti number of M over F . For

a (smooth) manifold M of dimension greater than five, the Morse number of

M is equal to the number of cells in the smallest CW-complex of the same

simple homotopy type as M [Sharpe 1989a].

S. S. Chern and R. K. Lashof (1957,1958) proved the following results.

Let f : M → Em be an isometric immersion of a compact Riemannian

n-manifold M into Em. Then

(1) τ(f) ≥ γ(M) ≥ 2;

(2) τ(f) = 2 if and only if f is an embedding and f(M) is a convex

hypersurface in an affine (n+ 1)-subspace En+1 of Em;

(3) if τ(f) < 3, then M is homeomorphic to Sn.

If τ(f) = 3, M needs not be homeomorphic to Sn. In fact, the Veronese

embedding of the real projective plane into E5 satisfies τ(f) = 3.

J. Eells and N. H. Kuiper (1962) classified compact manifolds which admit

a Morse function with three nondegenerate critical points. They called such
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manifolds “manifolds like projective spaces”, which include the real, complex

and quaternionic projective planes and the Cayley plane.

Applying Eells-Kuiper’s result, it follows that if an immersion f : M →
Em of a compact manifold M into Em satisfies τ(f) < 4, then M is homeo-

morphic either to the sphere Sn or else to one of the manifolds like projective

planes.

R. W. Sharpe (1989b) proved that for manifolds M of dimension greater

than five, the best possible lower bound for the total absolute curvature τ(f)

is the Morse number γ(M), as the immersion f : M → Em varies over all

possibilities.

Let M be a compact n-manifold with n > 5. Denote by τ [i] the infimum

of the total absolute curvature τ(j) as j varies over all immersions in the

regular homotopy class of the immersion i : M → Em. Sharpe (1989b)

also proved that, for n > 5, if m > n + 1 or if m = n + 1 is odd, then

τ [i] = γ(M). If m = n + 1 is even, then τ [i] = max{γ(M), 2|d|}, where d
is the normal degree of i and γ(M) is the Morse number of M . Examples

are given of codimension-one immersions of odd-dimensional spheres which

have arbitrary odd normal degree and which attain the infimum of the total

absolute curvature in their regular homotopy class..

R. Langevin and H. Rosenberg (1976) proved that if the total absolute

curvature of an embedded surface of genus g > 1 is < 2g+6, then the surface

is unknotted. N. H. Kuiper and W. Meeks (1984) showed that if the total

absolute curvature τ(f) of an embedding torus f : T → E3 is ≤ 8, then f(T )

is unknotted.

Kuiper and Meeks (1984) also proved that, for an embedding of a compact

manifold f :Mn → EN , the total absolute curvature of f satisfies

(21.5) τ(f) > β + 4σ1,

where β is the sum of the mod 2 Betti numbers and β + σ1 is the minimal

number of generators of the fundamental group of the complement of the

image f(Mn).

21.3. Tight immersions. An immersion f : M → Em is called tight (or

minimal total absolute curvature immersion) if τ(f) = b(M) := minφ β(φ),

where β(φ) denotes the number of critical points of a Morse function φ on

M . This condition is equivalent to requiring that every height function that

is Morse have the minimum number of critical points required by the Morse

inequalities. Not every compact manifold admits a tight immersion. For

instance, N. H. Kuiper (1958) observed that the exotic 7-sphere of J. Milnor

admits no immersion with minimal total absolute curvature. This can be
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seems as follows: Since a manifold M homeomorphic to a sphere admits a

function with only two critical points, M satisfies b(M) = 2. Thus, if a

manifold M is homeomorphic to S7, then a tight immersion f : M → Em

would embed M as a convex hypersurface in an E8 ⊂ Em, and hence M

would be diffeomorphic to the standard 7-sphere.

D. Ferus (1967) proved that every embedding f of an exotic n-sphere

(n ≥ 5) in En+2 has total absolute curvature τ(f) ≥ 4.

S. Kobayashi (1967b) showed that every compact homogeneous Kähler

manifold admits a tight embedding. R. Bott and H. Samelson (1958) proved

that symmetric R-spaces admit tight immersions. This result was also

proved independently by M. Takeuchi and S. Kobayashi (1968). A tight

immersion of a symmetric R-space is a minimal immersion into a hyper-

sphere.

In 1960’s the theory of tight immersions underwent substantial develop-

ment and reformulation. Since this notion is a generalization of convexity,

N. H. Kuiper called these “convex immersions”. T. F. Banchoff (1965) first

used tight in conjunction with his study of the two-piece property.

Kuiper (1962) formulated tightness in terms of intersections with half-

spaces and injectivity of induced maps on homology and proved that his

formulation is equivalent to the minimal total absolute curvature of mani-

folds which satisfy the condition: the Morse number γ(M) of M is equal to

the sum β(M ;F ) of the Betti numbers for some field F .

N. H. Kuiper (1961) obtained smooth tight embeddings into E3 for all

orientable surfaces, and smooth tight immersions for all nonorientable sur-

faces with Euler characteristic less than −1. He also showed that smooth

tight immersions of the projective plane and the Klein bottle into E3 do not

exist.

The question of whether there is a smooth tight immersion of the projec-

tive plane with an attached handle into E3 has been open for 30 years. In

1992, F. Haab proved that no such immersion exists.

Kuiper and Meeks (1984) showed that if the genus g of a compact surface

M is greater than 2, then there exists a knotted tight embedding in E3,

whereas if g ≤ 2, there does not exist such an embedding. Pinkall (1986a)

showed that if the Euler characteristic χ(M) ofM satisfies χ(M) < −9, then

every immersion f ofM into E3 is regularly homotopic to a tight immersion.

This is also true if M is orientable with genus g ≥ 4. On the other hand,

there are immersions which are not regularly homotopic to a tight immersion.

This is clearly true for any immersion of the projective plane or Klein bottle.

Pinkall (1986a) also showed that every tight immersion of the torus T 2 is
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regularly homotopic to a standard embedding, and thus there are no tight

immersions in the nonstandard regular homotopy class of immersed tori.

Kuiper (1961) showed that smooth immersions into E4 of orientable sur-

faces exist for every genus ≥ 1. He also showed that for a substantial (that

is, not contained in any proper affine subspace) tight immersion of a surface

into EN one must have N ≤ 5, with equality only for surfaces projectively

equivalent to the Veronese surface and thus analytic.

Kuiper (1979) also proved the following:

(1) If f : M2d → EN is a tight substantial continuous embedding of a

manifold like a projective space, then N ≤ 3d+ 2;

(2) Let f : M2d → E3d+2 be a tight smooth substantial embedding of a

compact manifold with Morse number γ(M) = 3. Then M2d is algebraic.

Moreover, it is the union of its Ed+1-top-sets, smooth d-sphere Sd that are

quadratic d-manifolds.

T. F. Banchoff and N. H. Kuiper have produced tight analytic immersions

into E3 of all orientable compact surfaces, while Kuiper has produced tight

analytic immersions into E3 of all nonorientable compact surfaces with even

Euler characteristic other than zero.

G. Thorbergsson (1991) proved that an analytic tight immersion of a

compact orientable surface into E4 which is substantial must be a torus.

He also showed that the surface is the intersection of two developable ruled

hypersurfaces, possibly with singularities, with two-dimensional rulings.

After the spheres, the (k − 1)-connected 2k-dimensional compact mani-

folds have the most simple topology, for their homology groups vanish in all

dimensions except 0, k and 2k. Among these so-called highly connected man-

ifolds, the only ones known to admit tight immersions into some Euclidean

space are the connected sums of copies of Sk × Sk, the projective planes,

and all surfaces except for the Klein bottle and the projective plane with

one handle attached. Kuiper has conjectured that the only 2k-dimensional,

(k − 1)-connected manifolds with trivial k-th Stiefel-Whitney class that ad-

mit tight immersions into E2k+l are homeomorphic to Sk × Sk. (The con-

dition on the k-th Stiefel-Whitney class follows from (k − 1)-connectedness

for k 6= 1, 2, 4, 8.) J. J. Hebda (1984) and G. Thorbergsson (1986) were able

to construct counterexamples for l = 1 and l = 2, respectively. Assume the

immersion is analytic, R. Niebergall (1994) used top-set techniques to show

that Kuiper’s conjecture is true for l ≥ 2.

C. S. Chen (1979) proved that if f is a substantial tight embedding of

Sk×Sn−k (k/(n−k) 6= 2, 12) into E
n+2 whose image lies on an ovoid, then f is
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projectively equivalent to a product embedding of two ovaloids of dimensions

k and n− k, respectively.

M. van Gemmeren (1996) generalized tightness properties of immersed

compact manifolds to noncompact manifolds with a finite number of ends.

21.4. Taut immersions. T. Banchoff initiated the study of taut immer-

sions in 1970 by attempting to find all tight surfaces which lie in a hyper-

sphere of a Euclidean m-space. Via stereographic projection, this problem is

equivalent to the study of surfaces in Em which have the spherical two-piece

property.

S. Carter and A. West (1972) extended the spherical two-piece property

and defined an immersion of a compact manifold M to be taut if every

nondegenerate Euclidean distance function Lp has the minimum number of

critical points.

The property of tautness is preserved under Lie sphere transformations

[Cecil-Chern 1987]. Furthermore, an embedding f : M → Em is taut (or

more precisely F -taut) if and only if the embedding σ ◦ f :M → Sm has the

property that every nondegenerate spherical distance function has β(M ;F )

critical points on M , where σ : Em → Sm − {P} is stereographic projection

and β(M ;F ) is the sum of F -Betti numbers of M for any field F .

A spherical distance function dp(q) = cos−1(ℓp(q)) is essentially a Eu-

clidean height function ℓp(q) = p·q, for p, q ∈ Sm, which has the same critical

points as ℓp. Thus, the embedding f is taut if and only if the spherical embed-

ding σ◦f is tight, that is, every nondegenerate height function ℓp has β(M ;F )

critical points on M . A tight spherical embedding F : M → Sm ⊂ Em+1 is

taut when regarded as an embedding of M in Em+1 (cf. [Cecil-Ryan 1985]).

S. Carter and A. West (1972) observed that if f :M → En+1 is a compact

orientable embedded taut hypersurface, then for sufficiently small r > 0 the

hypersurface fr : M → En+1 defined by fr(p) = f(p) + rξ(p) if taut if

and only if f is taut, where ξ is a global unit normal vector field of f .

Carter and West (1972) also pointed out their idea can be generalized to

taut embeddings of higher codimension. Pinkall (1986b) proved that if M

is a compact embedded submanifold of dimension n < m− 1 in Sm, then a

tube Tr(M) of sufficiently small radius r over M is taut if and only if M is

Z2-taut.

S. Carter and A. West (1972) also observed that if M is noncompact but

the immersion is proper, then the Morse inequalities still hold on compact

subset of the form

Mr(Lp) = {x ∈M : Lp(x) ≤ r}
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and the notion of a taut immersion extends to this case.

Carter and West (1972) showed that a taut immersion is tight; and it must

be an embedding, since if p ∈ Em were a double point then the function Lp
would have two absolute minima. Thus, tautness is a stronger condition

than tightness. Via stereographic projection and Chern-Lashof’s theorem,

Banchoff and Carter-West observed that a taut embedding of a sphere in a

Euclidean space must be a round sphere, not merely convex.

S. Carter and A. West (1972) classified substantial taut embeddings as

follows:

Let f :M → Em be a substantial taut embedding of an n-manifold.

(a) IfM is compact, then m ≤ 1
2n(n+3). In particular, if m = 1

2n(n+3),

then f is a spherical Veronese embedding of a real projective space RPn;

(b) If M is noncompact, then m ≤ 1
2n(n + 3) − 1. In particular, if m =

1
2n(n + 3) − 1, then f(M) is the image under stereographic projection of

a Veronese manifold, where the pole of the projection is on the Veronese

manifold.

Pinkall (1985a) proved that any taut submanifold in a real space form is

Dupin. G. Thorbergsson (1983) proved that a complete embedded proper

Dupin hypersurface in En+1 is taut, and thus it must be embedded. Pinkall

(1985a) extended this result to compact submanifolds of higher codimension

for which the number of distinct principal curvatures is constant on the unit

normal bundle. It remains as an open problem whether Dupin implies taut

without this assumption.

Taut surfaces in a Euclidean space have been completely classified by

Banchoff (1970) and Cecil (1976) as follows:

Let M be a taut surface substantially embedded in a Euclidean m-space.

(c) If M is a compact, then M is a round sphere or a ring cyclide in E3, a

spherical Veronese surface in E5, or a compact surface in E4 related to one

of these by stereographic projection;

(d) IfM is noncompact, thenM is a plane, a circular cylinder, a parabolic

ring cyclide in E3, or it is the image in E4 of a punctured spherical Veronese

surface under stereographic projection.

Conversely, all of the surfaces listed in (c) and (d) are taut.

Let ψ : S7 → S4 denote the Hopf fibration defined by (10.4) in §10.4.5.
R. Miyaoka and T. Ozawa (1988) proved that if a compact submanifold of

S4 is taut, then ψ−1(M) is also taut in S7.

Pinkall and Thorbergsson (1989b) classified, up to diffeomorphism, com-

pact 3-manifolds which admit taut embeddings into some Euclidean space.

They showed that there are seven such manifolds: S1 × S2, S1 × RP 2, the
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twisted S2-bundle over S1, S3, RP 3, the quaternion space S3/{±1,±i,±j,±k},
and the torus T 3. Each has at least one known taut embedding. The taut

embeddings of S1 × S2, S3 and the quaternion space have been shown to be

unique up to an appropriate equivalence. RP 3 is known to admit taut sub-

stantial embeddings of codimension 2 and 5, but it is still unknown whether

it admits a taut substantial embedding of codimensions 3 or 4. The possible

codimensions for taut substantial embeddings of the other three manifolds

have been completely determined. Yet, the complete geometric classification

of taut 3-manifolds remains open.

For higher dimensional taut hypersurfaces, Carter and West (1972) proved

the following:

(e) Let f : M → En+1 be a taut embedding of a noncompact n-manifold

with Hk(M ;Z2) = Z2 for some k, 0 < k < n, and Hi(M ;Z2) = 0 for

i 6= 0, k. ThenM is diffeomorphic to Sk×En−k and f is a standard product

embedding;

(f) Let f : M → En+q be a substantial taut embedding of a noncompact

n-manifold whose Z2-Betti numbers satisfy βk(M) = j > 0 for some k, n2 <

k < n and βi = 0 for i 6= 0, k. Then q = 1, j = 1 and f embeds M as a

standard product Sk × En−k in En+1.

Both the hypothesis k > n
2 in statement (f) and the hypothesis that the

codimension is one in statement (e) are necessary due to the example of the

taut substantial embedding of the Möbius band M2 = RP 2−{a point} into

E4 obtained from a Veronese surface V 2 in S4 by stereographic projection

with respect to a pole on V 2.

Cecil and Ryan (1978a) studied taut hypersurfaces of a Euclidean space

and proved the following:

(g) Let M be a taut hypersurface in E2k+1 such that Hi(M ;Z2) = 0 for

i 6= 0, k, 2k. Then M is a round hypersphere, a hyperplane, a standard

product Sk × Ek, a ring cyclide, or a parabolic cyclide;

(h) A taut compact hypersurface M in En+1 with the same Z2-homology

as Sk × Sn−k is a ring cyclide.

T. Ozawa (1986) showed that the codimension of a taut substantial em-

bedding of the product of two spheres, Sp×Sq, p < q, is either 1 or q−p+1,

and that a connected sum of such products of two spheres cannot be tautly

embedded into any sphere.

G. Thorbergsson (1983b) generalized statement (h) to higher codimension.

He obtained the following:

(i) If M2k is a compact (k − 1)-connected, but not k-connected, taut

submanifold of Em which does not lie in any hypersphere of Em, then either
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(i-1) m = 2k+1 and M2k is a cyclide of Dupin diffeomorphic to Sk ×Sk,

or

(i-2) m = 3k+1 and M2k is diffeomorphic to one of the projective planes

RP 2, CP 2, HP 2 or OP 2.

It is known that the compact focal submanifolds of a taut hypersurface in

En+1 need not be taut. For instance, one focal submanifold of a non-round

cyclide of Dupin in E3 is an ellipse, which is tight but not taut. On the other

hand, S. Buyske (1989) used Lie sphere-geometric techniques to show that if

a hypersurfaceM in En+1 is Lie equivalent to an isoparametric hypersurface

in Sn+1, then each compact focal submanifold of M is tight in En+1.

R. Bott and H. Samelson (1958) proved that the principal orbits of the

isotropy representations of symmetric space, known asR-spaces, are taut. M.

Takeuchi and S. Kobayashi (1968) also proved the same result independently.

G. Thorbergsson (1988) found some necessary conditions for the existence

of a taut embedding of a manifold M . He proved the following:

(j) Suppose that M is tautly embedded with respect to F into En and

that i > 0 is the smallest number such that Hi(M ;F ) is nontrivial. Then

every torsion element in Hi(M ;Z) is of order two. In particular, Hi(M ;Z)

is without torsion if the characteristic of F is not two.

As a corollary, Thorbergsson showed that the only lens space admitting

a taut embedding is the real projective space. He also showed that a coset

space M = G/H cannot be tautly embedded if one of the following condi-

tions is satisfied:

(j-1) G is simply connected with a torsion element in the fundamental

group of order greater than two;

(j-2) G and H are simple and simply-connected and H is a subgroup with

index greater than two.

Thorbergsson gave several explicit examples of homogeneous spaces which

do not admit taut embeddings because of these two conditions.

C. Olmos (1994) proved that if M is a substantial compact homogeneous

submanifold of a Euclidean space, then the following five statements are

equivalent:

(0-1) M is taut;

(0-2) M is Dupin;

(0-3) M is a submanifold with constant principal curvatures;

(0-4) M is an orbit of the isotropy representation of a symmetric space;

(O-5) the first normal space of M coincides with the normal space.
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T. E. Cecil and S. S. Chern (1987,1989) established a relationship between

a given immersion f and its induced Legendre submanifold in T1S
n+1 (cf.

§10.4.8). They proved the following:

Suppose L : Mn → T1S
n+1 is a Legendre submanifold whose Möbius

projection is a taut immersion. If β is a Lie transformation such that the

Möbius projection of β ◦ L is an immersion, then the Möbius projection of

β ◦ L is also taut.

Two hypersurfaces of Sn+1 are called Lie equivalent if their induced Le-

gendre submanifolds are Lie equivalent, that is, there is a Lie sphere trans-

formation which carries one to the other. The result of Cecil and Chern

implies that if two compact hypersurfaces of Sn+1 are Lie equivalent, then

one of the two hypersurfaces is taut if and only if the other is taut.

When M is a compact embedded submanifold in Sm of codimension > 1,

it induces a Legendre submanifold defined on the unit normal bundle of M

in Sm. As with hypersurfaces two submanifolds of arbitrary codimension in

Sm are said to be Lie equivalent if their induced Legendre submanifolds are

Lie equivalent. Cecil and Chern’s result also implies that if two compact

embedded submanifolds of Sm are Lie equivalent, then one is Z2-taut if and

only if the other is Z2-taut.

Cecil and Chern (1987,1989) also investigated the relationship between

Legendre submanifolds and Dupin submanifolds.

J. J. Hebda (1988) investigated possible Z2-cohomology of some taut sub-

manifolds in spheres. E. Curtin (1994) extended the notion of taut embed-

dings to manifolds with boundary and obtained some classification results.

Tight and taut submanifolds have also been studied in hyperbolic space.

In fact, Cecil and Ryan (1979a,1979b) introduced three classes of distance

functions in hyperbolic m-space Hm whose level sets are spheres centered at

a point p ∈ Hm, equidistant hypersurfaces from a hyperplane in Hm, and

horospheres equidistant from a fixed horosphere. Suppose M is a compact

embedded submanifold in Hm and that π : Hm → Dm is stereographic

projection of Hm onto a disk Dm ⊂ Em. They proved that π(M) is taut in

Em if and only if every nondegenerate hyperbolic distance function of each

of the three types has β(M ;F ) critical points on M .

G. Thorbergsson (1983b) obtained a result similar to statement (i) for

noncompact taut submanifolds of Em and for taut compact (k−1)-connected

hypersurfaces in real hyperbolic space H2k+1.
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22. Total mean curvature

22.1. Total mean curvature of surfaces in Euclidean 3-space. It is

well-known that the two most important geometric invariants of a surface in

a Euclidean m–space are the Gaussian curvature K and the squared mean

curvatureH2. According to Gauss’ Theorema Egregium, Gaussian curvature

is an intrinsic invariant and the integral of the Gaussian curvature over a

compact surface gives the famous Gauss–Bonnet formula:

(22.1)

∫

M
KdV = 2πχ(M),

where χ(M) denotes the Euler number of M .

For a compact surface M in E3, Chern-Lashof’s inequality yields the

following inequality:

(22.2)

∫

M
|K|dV ≥ 4π(1 + g),

where g denotes the genus of M .

G. Thomsen initiated in 1923 the study of total mean curvature:

(22.3) w(f) =

∫

M
H2dV

of an immersion f :M → E3 of a surface in E3. Among others, G. Thomsen

studied the first variations of the total mean curvature and showed that the

Euler-Lagrange equation of (22.3) is given by

(22.4) ∆H + 2H(H2 −K) = 0.

W. Blaschke proved in his 1923 book that the total mean curvature of

a compact surface in E3 is a conformal invariant. Chen (1973c,1974) ex-

tended Blaschke’s result to any submanifold of dimension ≥ 2 in an arbitary

Riemannian manifold.

Using the inequality H2 ≥ K for a surface M in E3, T. J. Willmore

(1968) observed that combining Gauss-Bonnet’s formula and Chern-Lashof’s

inequality yields the following inequality:

(22.5) w(f) =

∫

M
H2dV ≥ 4π,

for an immersion f :M → E3 of a compact surface M in E3, with equality

holding if and only if M is a round sphere.

The functional w(f) defined by (22.3), initially studied by G. Thomsen,

is also known as Willmore’s functional and a surface satisfying Thomsen’s

equation (22.4) is called a stationary surface or a Willmore surface.
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An immersed surface M̄ in a Euclidean space is said to be conformally

equivalent to another immersed surface M in a Euclidean space if M̄ can be

obtained from M via conformal mappings on Euclidean space.

22.2. Willmore’s conjecture. Since the total mean curvature of an im-

mersion f :M → E3 of a compact surface in E3 is at least 4π, it is a natural

question to determine the infinimum of w(f) among all immersions of a com-

pact surface Mg of a given genus g, or among all isometric immersions of a

compact Riemannian surface.

T. J. Willmore conjectured that if f :M → E3 is an immersion of a torus,

then w(f) ≥ 2π2.

Willmore’s conjecture have been proved to be true for various classes of

immersed tori in E3 (or more generally, in Em, m ≥ 3).

For instance, the following are known.

(1) If f :M → E3 is a closed tube with fixed radius over a closed curve in

E3, then w(f) ≥ 2π2, with the equality holding if and only if it is a torus of

revolution whose generating circle has radius r and distance (
√
2− 1) r from

the axis of revolution [Shiohama-Tagaki 1970, Willmore 1971, Langer-Singer

1984].

(2) If f :M → E3 is a knotted torus, then w(f) ≥ 8π [Chen 1971,1984b].

(3) If an immersed torusM in a Euclidean space Em is conformally equiv-

alent to a flat torus in a Euclidean space, then w(f) ≥ 2π2, with the equality

holding if and only if M is a conformal Clifford torus, that is, M is confor-

mally equivalent to a standard square torus in an affine E4 ⊂ Em [Chen

1976b, 1984b].

(4) U. Hertrich-Jeromin and U. Pinkall (1992) proved that the conjecture

is true for elliptic tubular tori in E3. (A special case of this was proved by

van de Woestijne and Verstraelen in 1990, cf. [Verstraelen 1990]).

(5) If an immersed tori in E3 has self-intersections, then w(f) ≥ 8π [Li-

Yau 1982].

(6) Li and Yau (1982) showed that the conjecture is true for certain

bounded domain of the moduli space of conformal structure on torus. Mon-

tiel and Ros (1985) proved that the conjecture is true for a larger domain in

this moduli space.

22.3. Further results on total mean curvature for surfaces in Eu-

clidean space. Chen (1973) proved that if f :M → Em is a compact sur-

face in Em which is conformally equivalent to a compact surface in E4 ⊂ Em

with nonnegative Gaussian curvature and w(f) ≤ (2+π)π, thenM is home-

omorphic to S2.
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Let f : M → E4 be an embedding of a compact surface M into E4. The

fundamental group π1(E
4 − f(M)) of E4 − f(M) is called the knot group

of f . The minimal number of generators of the knot group of f is called the

knot number of f .

P. Wintgen (1978,1979) proved the following:

(a) If f :M → E4 is an embedding of a compact surface M into E4, then

w(f) ≥ 4πρ, where ρ is the knot number of f ;

(b) If f :M → E4 is an immersion of a compact oriented surface M into

E4, then

(22.6) w(f) ≥ 4π(1 + |If | − g),

where If is the self-intersection number of f and g is the genus of M .

Li and Yau (1982) showed that if f : RP 2 → E3 is an immersion of a real

projective plane RP 2 into E3, then w(f) ≥ 12π. R. Bryant (1987a) and,

independently, R. Kusner (1987) found explicit immersions of RP 2 in E3

satisfying w(f) = 12π.

Let M be an oriented surface immersed in E4 and {X1,X2} be an or-

thonormal oriented frame field of TM . For each point x ∈M and each unit

tangent vector of M at x, we put X = (cos θ)X1 + (sin θ)X2. Then the

second fundamental form h of M satisfies

h(X,X) = H + (cos 2θ)

(
h(X1,X1)− h(X2,X2)

2

)
+ (sin 2θ)h(X1,X2),

which shows that

Ex = {h(X,X) : X ∈ TxM, |X| = 1}

is an ellipse in the normal space T⊥
x M centered at H. The ellipse Ex is

called the ellipse of curvature at x.

Let {e3, e4} be an orthonormal oriented frame field of the normal bundle

of M . The normal curvature KD of M in E4 is defined by

KD =
〈
RD(X1,X2)e4, e3

〉
.

I. V. Guadalupe and L. Rodriguez (1983) proved that if f : M → E4 is

an immersion of a compact oriented surface M into E4 and if the normal

curvatureKD of f is everywhere positive, then w(f) ≥ 12π, with the equality

holding if and only if the ellipse of curvature of f is always a circle.

For an immersion f : M → E3 of a compact surface into E3, W. Kühnel

and U. Pinkall (1986) showed the following:

(1) if M is nonorientable with even Euler number, then w(f) ≥ 8π, and

(2) if M has odd Euler number, then w(f) ≥ 12π.
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Kühnel and Pinkall (1986) also proved that, for any genus g, there are

compact orientable surfaces of genus g immersed in E3 with
∫
H2dV ≤ 8π.

22.4. Total mean curvature for arbitrary submanifolds and applica-

tions. According to Nash’s embedding theorem, every compact Riemann-

ian n-manifold can be isometrically embedded in En(3n+11)/2. On the other

hand, most compact Riemannian n-manifolds cannot be isometrically im-

mersed in En+1 as hypersurfaces. For instance, every compact surface with

nonpositive Gaussian curvature cannot be isometrically immersed in E3.

Chen (1971) proved the following general inequality for compact subman-

ifolds in Euclidean space for arbitrary dimension and arbitrary codimension:

Let M be a compact n-dimensional submanifold of Em. Then

(22.7)

∫

M
HndV ≥ sn,

where sn is the volume of unit n-sphere. The equality sign of (22.7) holds if

and only if M is a convex planar curve when n = 1; and M is embedded as

a hypersphere in an affine (n+ 1)–subspace of Em when n > 1.

If n = 1, inequality (22.7) reduces to the well-known Fenchel-Borsuk in-

equality for closed curves in Euclidean space.

Some geometric applications of inequality (22.7) are the following:

(1) If M is a compact n-dimensional minimal submanifold of the unit m-

sphere Sm, then the volume of M satisfies vol (M) ≥ sn, with the equality

holding if and only if M is a great n-sphere of Sm;

(2) IfM is a compact n-dimensional minimal submanifold of RPm of con-

stant sectional curvature 1, then vol (M) ≥ sn/2, with the equality holding

if and only if M is a totally geodesic submanifold of RPm;

(3) if M is a compact n-dimensional minimal submanifold of CPm of

constant holomorphic sectional curvature 4, then vol (M) ≥ sn+1/2π, with

the equality holding if and only if M = CP k which is embedded as a totally

geodesic complex submanifold of CPm(4);

(4) If M is a compact n-dimensional minimal submanifold of HPm of

constant quaternionic sectional curvature 4, then vol (M) ≥ sn+3/2π
2, with

the equality holding if and only if M = HP k which is embedded as a totally

geodesic quaternionic submanifold of HPm(4); and

(5) If M is a compact n-dimensional minimal submanifold of the Cayley

plane OP 2 of maximal sectional curvature 4, then vol (M) ≥ sn/2
n.
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If M is a compact n-dimensional submanifold M with nonnegative scalar

curvature in a Euclidean m-space, then the total mean curvature of M sat-

isfying [Chen 1972]:

(22.8)

∫

M
HndV ≥ C(n)β(M),

where C(n) is a positive constant depending on n and β(M) is the topological

invariant: β(M) = max{∑n
i=0 βi(M ;F ) : F fields}, βi(M ;F ) the i-th Betti

number of M over F .

Related to inequality (22.8), Chen (1976c) proved that the total scalar

curvature of an arbitrary compact n-dimensional submanifold M in the Eu-

clidean m-space, regardless of codimension, satisfies

(22.9)

∫

M
Sn/2dV ≥

((n
2

)n/2
sn

)
β(M).

The equality sign of (22.9) holds if and only if M is embedded as a hyper-

sphere in an affine (n+ 1)-subspace of Em.

22.5. Some related results. In the 1973 AMS symposium held at Stan-

dard University, Chen asked to find the relationship between the total mean

curvature and Riemannian invariants of a compact submanifold in a Eu-

clidean space (cf. [Chen 1975]). In the late 1970s Chen obtained a solution

to this problem; discovering a sharp relationship between the total mean cur-

vature of a compact submanifold and the order of the immersion (cf. [Chen

1984b]). More precisely, he proved the following:

Let M be an n-dimensional compact submanifold of Em. Then

(22.10)

(
λp
n

)
vol(M) ≤

∫

M
H2dV ≤

(
λq
n

)
vol(M),

where p and q are the lower order and the upper orders of f : M → Em.

Either equality sign in (22.10) holds if and only if M is of 1-type.

Inequality (22.10) improves a result of Reilly (1977) who proved that, for

any compact submanifold M in Em, the total mean curvature of M satisfies

(22.11)

∫

M
H2dV ≥

(
λ1
n

)
vol(M).

We also have the following sharp inequalities for the total mean curvature

[Chen 1987b, Chen-Jiang 1995]:

Let f :M → Em be a compact n-dimensional submanifold of Em and let

c denote the distance from the origin to the center of gravity of M in Em.

Then
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(i) if M is contained in a closed ball B0(R) with radius R centered at the

origin, then M satisfies

(22.12)

∫

M
|H|kdV ≥ vol(M)

(R2 − c2)k/2
, k = 2, 3, · · · , n,

with equality holding for some k ∈ {2, 3, . . . , n} if and only ifM is a minimal

submanifold of the hypersphere Sm−1
0 (R) of radius R centered at the origin;

(ii) if M is contained in Em −B0(r), then

(22.13)

(
λp
n

)2

(r2 − c2) ≤ 1

vol(M)

∫

M
|H|2dV ≤

(
λq
n

)2

(R2 − c2)

where p and q denote the lower and the upper orders of M in Em. Either

equality of (22.13) holds if and only if M is a minimal submanifold of a

hypersphere centered at the origin; and

(iii) if f(M) is contained in a unit hypersphere of Em, then the first and

the second nonzero eigenvalues of the Laplacian of M satisfy

(22.14)

∫

M
|H|2dV ≥ 1

n2
{n(λ1 + λ2)− λ1λ2}vol(M),

with equality sign of (22.14) holding if and only if either f is of 1-type with

order {1} or with order {2}, or f is of 2-type with order {1, 2}. Some easy

applications of (iii) are the following [Chen 1987b]:

(1) If M is an n-dimensional compact minimal submanifold of RPm(1),

then the first and the second nonzero eigenvalues of the Laplacian of M

satisfy

(22.15)
m

2(m+ 1)
λ1λ2 ≥ n(λ1 + λ2 − 2n− 2).

(2) If M is an n-dimensional compact minimal submanifold of CPm(4),

then

(22.16)
m

2(m+ 1)
λ1λ2 ≥ n(λ1 + λ2 − 2n− 4),

with equality holding if and only if M is one of the following compact Her-

mitian symmetric spaces:

CP k(4), CP k(2), SO(2 + k)/SO(2) × SO(k),

CP k(4)× CP k(4), U(2 + k)/U(2) × U(k), (k > 2),

SO(10)/U(5), and E6/Spin(10) × T,

with an appropriate metric, where m is given respectively by

k,
k(k + 3)

2
, k + 1, k(k + 2),

k(k + 3)

2
, 15, and 26.
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(3) If M is an n-dimensional compact minimal submanifold of HPm(4),

then

(22.17)
m

2(m+ 1)
λ1λ2 ≥ n(λ1 + λ2 − 2n− 8),

with equality holding if and only if M is a totally geodesic quaternionic

submanifold and n = 4m.

For further applications of (i), (ii) and (iii), see [Chen 1996d]. The follow-

ing conformal property of λ1vol(M) as another application of the notion of

order was first discovered in [Chen 1979b]:

If a compact Riemannian surfaceM admits an order {1} isometric embed-

ding into Em, then, for any compact surface M ⊂ Em which is conformally

equivalent to M ⊂ Em, we have

(22.18) λ1vol(M) ≥ λ̄1vol(M̄).

Equality sign of (22.18) holds if and only if M̄ also admits an isometric

embedding of order {1}.
Some further applications of (22.10) and (22.11) are the following [Chen

1983b, 1984b].

Let M be an n-dimensional compact submanifold of the unit hypersphere

Sm−1 of Euclidean m-space. Denote by p and q the lower order and the

upper order of M in Em. Then

(a) If M is mass-symmetric in Sm−1, then λ1 ≤ λp ≤ n. In particular,

λp = n if and only if M is of 1-type and of order {p};
(b) If M is of finite type, then λq ≥ n. In particular, λq = n if and only

if M is of 1-type and of order {q};
(c) If M is a compact n-dimensional minimal submanifold of RPm(1),

then λ1 of M satisfies λ1 ≤ 2(n+ 1), with equality holding if and only if M

is a totally geodesic RPn(1) in RPm(1);

(d) If M is a compact n-dimensional minimal submanifold of CPm(4),

then λ1 ≤ 2(n+2), with equality holding if and only ifM is holomorphically

isometric to a CP
n
2 (4), and M is embedded as a complex totally geodesic

submanifold of CPm(4).

(e) If M is a compact n-dimensional minimal submanifold of HPm(4),

then λ1 ≤ 2(n+4), with equality sign holding if and only if M is a HP
n
4 (4)

and M is a quaternionic totally geodesic submanifold of HPm(4); and

(f) If M is a compact n-dimensional minimal submanifold of the Cayley

plane OP 2(4) , then λ1 ≤ 4n.

I. Dimitrić (1998) improved the result of statement (f) to λ1 < 676/15 =

45.06̄ for compact minimal hypersurfaces in OP 2(4).
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For compact Kähler submanifolds of CPm(4), statement (d) was due to

A. Ros (1983), and independently by N. Ejiri (1983).

The Euler-Lagrange equation of w(f) =
∫
M HndV for a compact hyper-

surface M in En+1 is given by

(22.19) ∆Hn−1 +Hn−1
(
nH2 − S

)
= 0,

where S denotes the squared length of the second fundamental form.

Chen (1973d) proved that hyperspheres in En+1 are the only solutions of

(22.19) when n is odd (for compact submanifolds in Euclidean space with

higher codimension, see [Chen-Houh 1975]). On the other hand, there do

exist many solutions of (22.19) other than hyperspheres for even n. For

example, a torus of revolution in E3 whose generating circle has radius r

and distance (
√
2 − 1) r from the axis of revolution is a solution of (22.19).

Furthermore, the stereographic projections of compact minimal surfaces M

in S3 also satisfy (22.19) with n = 2.

U. Pinkall (1985c) found examples of compact embedded surfaces in E3

satisfying (22.19) that are not stereographic projections of compact minimal

surfaces in S3 (see, also [Weiner 1979, Pinkall-Sterling 1987]). Barros and

Garay [1998,1999] constructed many submanifolds in spheres which satisfies

(22.19).
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[88] Bonnet, O., Mémoire sur l’emploi d’un nouveau système de variables dans l’étude

des surfaces courbes, J. Math. Pures Appl., 2 (1860), 153–266.



RIEMANNIAN SUBMANIFOLDS 231
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H. Poincaré Anal. Non Linéaire, 3 (1986), 345–390.

[451] Guadalupe, I. V. and L. Rodriguez, Normal curvature of surfaces in space forms,

Pacific J. Math., 106 (1983), 95–103.

[452] Gulliver, R., Existence of surfaces with prescribed mean curvature vector, Math.

Z., 131 (1973), 117–140.

[453] Gulliver, R., Necessary conditions for submanifolds and currents with prescribed

mean curvature vector, Seminar on Minimal Submanifolds, Ann. of Math. Stud.,

103, Princeton Univ. Press, Princeton, N.J., 225–242, 1983.

[454] Guilliver, R., Osserman, R. and H. L. Roydon, A theory of branched immersions

of surfaces, Amer. J. Math., 95 (1973), 750–812.

[455] Gulliver, R. D. and F. D. Lesley, On boundary branch points if minimizing surface,

Arch. Rat. Mech. Anal., 2 (1973), 20–25.

[456] Haab, F., Immersions tendues de surfaces dans E3, Comment. Math. Helv. 67

(1992), 182–202.

[457] Hall, P., A Picard theorem with an application to minimal surfaces, Trans. Amer.

Math. Soc. , 314 (1989), 597–603.

[458] Hall, P., A Picard theorem with an application to minimal surfaces. II, Trans. Amer.

Math. Soc., 325 (1991), 895–902.
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[659] Miyaoka, R., Complete hypersurfaces in the space form with three principal curva-

tures, Math. Z., 179 (1982), 345–354.

[660] Miyaoka, R., Compact Dupin hypersurfaces with three principal curvatures , Math.

Z., 187 (1984), 433-452.

[661] Miyaoka, R., Taut embeddings and Dupin hypersurfaces, Lecture Notes in Math.,

Springer, Berlin-New York, 1090 (1984), 15–23.

[662] Miyaoka, R., Dupin hypersurfaces and a Lie invariant, Kodai Math. J., 12 (1989),

228–256.

[663] Miyaoka, R., Dupin hypersurfaces with six principal curvatures, Kodai Math. J.,

12 (1989), 308–315.

[664] Miyaoka, R., The linear isotropy group of G2/SO(4), the Hopf fibering and isopara-

metric hypersurfaces, Osaka J. Math., 30 (1993), 179–202.

[665] Miyaoka, R., The homogeneity of isoparametric hypersurfaces with six principal

curvature, preprint, 1998.

[666] Miyaoka R. and T. Ozawa, Construction of taut embeddings and Cecil-Ryan con-

jecture, Geometry of manifolds, (ed. K. Shiohama) Academic Press, New York,

181–189, 1988.



RIEMANNIAN SUBMANIFOLDS 257

[667] Miyaoka R. and K. Sato, On complete minimal surfaces whose Gauss map misses

two directions, Arch. Math., 63 (1994), 565–576.

[668] Miyaoka, R. and N. Takeuchi, A note on Ogiue-Takagi conjecture on a character-

ization of Euclidean 2-spheres, Mem. Fac. Sci. Kyushu Univ. Ser. A , 46 (1992),

129–135.

[669] Miyata, Y., 2-type surfaces of constant curvature in Sn, Tokyo J. Math., 11 (1988),

157–204.

[670] Miyazawa, T. and G. Chuman, On certain subspaces of Riemannian recurrent

spaces, Tensor, N. S., 23 (1972), 253–260.

[671] Mo, X. and R. Osserman, On the Gauss map and total curvature of complete

minimal surfaces and an extension of Fujimoto’s theorem, J. Differential Geometry,

31 (1990), 343–355.

[672] Montiel, S. and A. Ros, Minimal immersions of surfaces by the first eigenfunctions

and conformal area, Invent. Math. ,83 (1985), 153–166.

[673] Montiel, S. and A. Ros, Schrödinger operators associated to a holomorphic map,

Global differential geometry and global analysis, 147–174, Lecture Notes in Math.,

1481 (1990), 147–174.

[674] Montiel, S. and A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher

order mean curvature , Differential geometry, 279–296, Pitman Monographs Surveys

Pure Appl. Math., 52, 1991,

[675] Montiel, S., Ros, A. and F. Urbano, Curvature pinching and eigenvalue rigidity for

minimal submanifolds, Math. Z., 191 (1986), 537–548.

[676] Moore, H., Minimal submanifolds with finite total scalar curvature, Indiana Univ.

Math. J., 45 (1996), 1021–1043.

[677] Moore, J. D., Isometric immersions of riemannian products, J. Differential Geom-

etry , 5 (1971), 159–168.

[678] Moore, J. D., Isometric immersions of space forms in space forms, Pacific J. Math.,

40 (1972), 157–166.

[679] Moore, J. D., Equivariant embeddings of Riemannian homogeneous spaces, Indiana

Univ. Math. J., 25 (1976), 271–279.

[680] Moore, J. D., Conformally flat submanifolds of Euclidean space, Math. Ann., 225

(1977), 89–97.

[681] Moore, J. D., On extendability of isometric immersions of spheres, Duke Math. J.,

85 (1976), 685–699.

[682] Moore, J. D. and J. M. Morvan, Sous-variétés conformḿent plates de codimension
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Fächentheorie, Abh. Math. Sem. Univ. Hamburg, 1923, 31–56.

[932] Tojo, K., Normal homogeneous spaces admitting totally geodesic hypersurfaces, J.

Math. Soc. Japan, 49 (1997), 781–815.

[933] Tojo, K., Extrinsic hyperspheres of naturally reductive homogeneous spaces, Tokyo

J. Math., 20 (1997), 35–43.

[934] Toth, G., New construction for spherical minimal immersions, Geom. Dedicata, 67

(1997), 187–196.

[935] Tomi, F., A finiteness results in the free boundary value problem for minimal sur-

faces, Ann. Inst. Henri Poincaré, 3 (1986), 331–343.

[936] Tomi, F. and A. J. Tromba, The index theorem for minimal surfaces of higher

genus, Mem. Amer. Math. Soc., 117 (1995), no. 560.
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der Krümmung höherer Mannigfaltigekeiten, Math. Ann., 16 (1880), 129–178.

[974] Voss, K., Einige differentialgeometrische Kongruenzsätze für geschlossene Flächen
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