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 1. INTRODUCTION

 In [A] F. Almgren proved that any area minimizing integral current on a
 Riemannian manifold is a smooth submanifold in the interior except a possible

 singular set of at most codimension two. That is so far the most general result
 about the regularity of generalized solutions to the problem of finding area
 minimizing submanifolds on a Riemannian manifold in arbitrary dimension

 and codimension. That result implies any two dimensional area minimizing

 integral current is a smooth surface except a possible 0-dimensional singular

 set. However, a 0-dimensional set may be very 'big.' In particular, it may
 not consist of just isolated points as illustrated by some Cantor type sets (not
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 700 S. X.-D. CHANG

 those obtained through the standard construction). On the other hand, all the
 known examples of two dimensional area minimizing currents have only isolated

 singular points. So the question is naturally raised whether the singular set in a

 two dimensional area minimizing integral current consists of just isolated points

 (see ? 12 in [Y] and the collection of open problems in [GMT]). In this paper we

 answer this question affirmatively. Furthermore, we give a complete description
 of the local structure near any interior singular point. Since it is well known

 that any complex curve on a Kaehler manifold is area minimizing and it may

 have singularities, the result obtained in this paper is optimal.

 Combining this regularity result and the existence of area minimizing integral

 currents spanning a given boundary or representing a given integral homology

 class on a compact Riemannian manifold, we know now that any null homol-
 ogous curve on a Riemannian manifold bounds a least area surface which is

 a classical minimal surface in the interior and any nontrivial two dimensional

 integral homology class on a compact Riemannian manifold can be represented

 by a finite integral linear combination of classical closed minimal surfaces which

 have least area and at most finitely many intersection points. As a consequence,
 we know the existence of closed minimal surfaces on any compact Riemannian

 manifold with nontrivial second integral homology group.

 This result is proved by using the theory of multiple-valued functions devel-

 oped in [A] to give a detailed analysis of the local structure near an interior

 singular point. We use two main tools. One is the branched center manifold

 which is a modified version of the center manifold introduced in [A]. The center

 manifold is very useful in the study of local structure of singular sets. In our

 context it eventually serves as a wedge inserted to separate the singularity. The

 other is the analysis of the lowest order term in the multiple-valued function

 approximating a two dimensional area minimizing current over a branched cen-

 ter manifold. To establish the existence and the uniqueness of such a lowest

 order term and analyze the difference between the lowest order term and the

 approximation function itself are the essential parts of this paper.

 For a locally irreducible two dimensional area minimizing integral current,

 we construct two finite sequences of branched discs {Nf } , { Y1 } near an interior
 singular point. The two sequences are related as follows

 1 lY241 2 2 k k

 where k is bounded by the density of the integral current at the singular point,

 Y1 is a small disc in the tangent plane and Yh+, is a multi-sheet branched
 covering of N, . To obtain this multi-sheet covering over NA is the core of this
 paper. N + is obtained through the center manifold construction and basically

 has the same topological structure as Yi+, +
 The analytical results in this paper enable us to conclude that the current

 coincides with the branched disc at the top level.

 The present paper is organized as follows.
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 701

 In ?2, we present the main analytical results and show how to use them to

 get the regularity result. From ?4 to ?12 we prove Theorem B, which tells how

 to get Y+ I from NA if the current does not coincide with NA . This is essential
 to the scheme of gradually separating the surface near a singular point. ?3 gives

 the basic facts about geometric measure theory and multiple-valued functions,

 some results about the multiple-valued functions minimizing Dirichlet integrals

 and isothermal coordinates on a surface with a branched point. In ??4 and 5,

 we demonstrate how to use first variations to obtain two formulas which are

 familiar in the context of harmonic functions. Similar calculations appeared

 in [A] in a different context. The success of this work is very much due to

 the results in ?7, where we prove with lots of work that the height integral of

 the multiple-valued function approximating an area minimizing current can be

 bounded by its Dirichlet integral. Using this we are able to define the order

 of contact for the multiple-valued function approximating an area minimizing

 current. The idea of using the order of contact to control the local behavior

 near the singular set was introduced in [A] where it was called frequency and

 proved to be a well-defined quantity for multiple-valued functions minimizing

 the Dirichlet integrals. In this paper we show that the order of contact is well-

 defined for two dimensional area minimizing currents. It is demonstrated in

 ??9 and 10 that the order of contact strongly controls the local behavior of the

 current. By applying the construction of a comparison surface generated from

 a multiple-valued harmonic function, we show that the lowest order term in the

 multiple-valued function is well defined. In ?? 11 and 12 it is proved that this

 lowest order term provides a branched disc to separate the current once more

 if the current does not coincide with Nl near the singular point.

 In Appendix A we describe how to extend the results of F. Morgan and B.

 White to the case of Riemannian manifolds and we prove that a two dimensional

 area minimizing integral current approaches its unique tangent cone with a rate

 of 1 + e pointwise. This is necessary for the construction of the first center

 manifold. In Appendices B and C we briefly describe the construction of the

 center manifold in [A] with necessary modifications. We use the construction

 in [A] to patch together a branched center manifold and express most of the

 area minimizing current as the graph of a multiple-valued function over this

 branched surface. We also describe how to get estimates on the area of the part

 of the current missed by the graph of this multiple-valued function and how

 'centered' the branched surface is.

 This paper is the revised version of the author's Ph.D. thesis at Princeton

 University. The author wishes to acknowledge his sincere thanks to his thesis
 advisor Professor Fredrick Almgren, Jr. for encouragement and many helpful

 discussions during the preparation of this work, especially the discussions of

 the construction of the center manifolds in his paper. Also the author wishes

 to thank Princeton University and the mathematics department for financial

 support during 1983-1986.

 This paper is dedicated to the memory of my grandmother.
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 702 S. X.-D. CHANG

 2. PROOF OF THE MAIN REGULARITY RESULT

 We assume the readers have some basic knowledge of geometric measure

 theory. In this section we show how to use two technical results proved in this

 paper to prove the main regularity result.

 Let T be a two dimensional (locally) area minimizing integral current on

 a C5 Riemannian manifold M of dimension 2 + m which is isometrically
 embedded in the Euclidean space R2+m+n and 0 E spt T - spt 9T c M.

 The following is the regularity result we intend to prove in this paper.

 Main regularity result. Let M and T be as above. Then T can be decomposed
 into finitely many pieces of locally irreducible integral currents (cf: ?3, Definition

 3.1) near 0. The supports of any two such locally irreducible currents intersect

 only at 0.

 In a small neighborhood of 0, each such locally irreducible current is a C3,a
 disc with a possible branched point at 0.

 Hereafter we assume the integral current T is locally irreducible at 0. There

 is no loss of generality in doing so, according to the discussion after Definition
 3.1. Under this assumption, we know from Appendix A that the current has a

 two dimensional plane with integer multiplicity as its unique tangent cone at 0,

 denoted by To throughout this paper. We let this plane be R2 X {o} c T0M=
 R2+m x {0} C R2+m+n .

 First we give a description of one of the two technical results proved in this

 paper.

 Let Y be either the tangent plane R x {O} or a C3 " branched disc which

 is a K-sheet covering of a small neighborhood of 0 in the plane R x {O}. In
 the second case, we assume different branches do not intersect and approach
 the point 0 with a certain order. Let V be a hom neighborhood (formally

 called an admissible neighborhood as in Definition 3.8) of Y. Intuitively V is

 a thin neighborhood along each branch of Y when it is a branched covering of

 the tangent plane. Also V contains the support of T near 0. Then we have
 the following result.

 Theorem A. There is a surface N in V which is the C3,, image of a disc and
 which has the following properties

 (a) If Y is the tangent plane, then N is the graph of a function defined over
 a small neighborhood of 0 in the tangent plane. N is a branched disc if Y is,
 and they have the same number of sheets of covering over the plane. ( Y and N
 almost look alike.)

 (b) There is a multiple-valued Lipschitz function, as defined in Definition 3.2,

 fo: Nr -+ QJ(R 2+m+n). For p E Nr, fo(p) takes 'values' in the normal space
 Tl Nr and coincides with the 'slice' of the current T in that normal space for

 most points p except a set N7 c Nr . N7 and the area of the part of the current
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 missed by the graph of fo are very 'small,' which is made more precise by the
 assumption (H3) in ?4.

 (c) The surface N which may be a branched surface is 'highly centered' with
 respect to the current T in the following sense: Take p E N, then the support of

 fo(p) consists of J points in R 2+m+n Let n o fo(p) be the average of those J
 points, then the integral of I o f (p) is very small, which is made more precise
 by the assumptions (HI) and (H2) in ?4.

 The construction of center manifolds was first done by F. Almgren in [A]. It
 was used to carry out a very delicate construction of comparison surfaces which

 eventually help to bound the Hausdorff measure of the singular sets. We use
 the center manifolds for a different purpose. As mentioned in the Introduc-

 tion, they are essentially used as wedges. Also we need center manifolds which
 are 'centered' all the way to the singular point under consideration. Center
 manifolds with this property were constructed in [A] only for area minimizing

 currents having at least 2-degree contact with the tangent plane, whereas in cer-
 tain situations we have only 1 + e-degree contact. We adopt the construction in
 [A] to get a center manifold with enough centering to meet our need. The proof

 of the regularity result in this paper can be simplified if the center manifold is
 exactly centered and there is no error term in the approximation of the area
 minimizing current using multiple-valued functions.

 The next result is used to produce Yi+I from Ni if the current does not
 coincide with Ni near 0 and then is used to separate the area minimizing
 current along the different branches of Yi+, .

 Let N be a surface of the type as in Theorem A, fo be a multiple-valued
 function defined on N approximating the area minimizing current in the sense

 of Theorem A, then

 Theorem B. If T does not coincide with the center manifold N which may

 be a branched surface, then the multiple-valued function fo has the following
 properties:

 (a) The lowest order term of fo is a well-defined strictly multiple-valued func-
 tion denoted by go. The function go is homogeneous and minimizes the Dirich-
 let integral in a small neighborhood of 0 on N .

 (b) The graph of go over N defines a K'-sheet covering of the surface N with
 K' > 1 . The different branches of this new branched surface Y' do not intersect
 each other except at 0. If the original surface N is a K-sheet covering of the
 tangent plane with K > 1, then the new surface Y' is a K - K'-sheet covering of
 the tangent plane near 0. Y' is as smooth as N.

 (c) The support of the area minimizing current T lies in a horn neighborhood
 (i.e. admissible neighborhood) of the new surface Y', where the horn neighbor-
 hood of Y' is a union of disjoint thin neighborhoods any one of which corresponds
 to one of the branches of Y' .
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 704 S. X.-D. CHANG

 Remark. The above two results can be summarized as follows: If the support of

 the current T is in a horn neighborhood of a surface Y which is either a plane

 or a branched disc, then we can insert a wedge (branched center manifold) N .
 If the current does not coincide with N, then we can separate the current one

 more time.

 Proof of the main regularity result. We prove the main regularity result of this

 paper here by assuming Theorem A and Theorem B.

 We start with Y = Y1 being the tangent plane. We construct a center man-

 ifold N1 which exists according to the estimates in Appendix A and Theorem

 A and which covers the tangent plane near 0 only once. If the current does

 not coincide with this center manifold N1, then from Theorem B, we know

 the existence of a certain branched surface Y2 which is a K2-sheet covering of
 N1 with K2 > 1 and has a horn neighborhood (i.e. admissible neighborhood)

 containing the current T. Thus the current covers the tangent plane near 0 at

 least K1 K2 times.

 Next we apply Theorem A to Y2 to get a center manifold N2. If T does
 not coincide with N2 near 0, then we apply Theorem B to the current T and

 the center manifold N2 to conclude the existence of a surface Y3 such that
 the current lies in a horn neighborhood of this new surface Y3. Y3 forms a
 K1* K2 *K3-sheet covering of the tangent plane near the origin hence the current
 covers the tangent plane near 0 at least K1 * K2 * K3 times.

 Now we start an inductive procedure. Once we know that the current lies in

 some horn neighborhood of Yn which is a branched disc covering the tangent

 plane KI... Kn times near 0, then we apply Theorem A to get a branched
 center manifold Nn. If the current coincides with Nn, then we simply stop,
 since the current is already the image of a disc near 0. Otherwise we apply

 Theorem B to get a new surface Yn+j, which is a Kn+l-sheet covering of Nn
 with Kn+I > 1 , hence a K1 Kn Kn?+ -sheet covering of the tangent plane near
 0.

 From the monotonicity of the function

 M( TL By2++n
 6)(S)= M 2 s

 (cf. [WA] or [LS]) and the results from Appendix A, we know that O(O) -
 lims-+0 ((s) exists and is a finite positive integer. If the current T covers the
 tangent plane near 0 at least K1 ... KnKn+1 times as above, where K2 ..., Kn+1
 > 1 , using the fact that T is close to the tangent plane with a degree of 1 + e
 (see Appendix A), it is easy to verify

 E(0) = lime(s) > KIK2 .KnKn+l,

 Hence the above inductive procedure stops after at most E(0) times. That

 means the current coincides with a certain Nn which is a C3,a image of a disc.
 Thus we have the result.
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 Remark 1. If T is locally irreducible at 0, and E9(0) = PI... Pk where {p,}
 are prime numbers, then the above procedure stops after at most k + 1 times.

 Remark 2. If the density of the area minimizing current at 0 is one, then the

 regularity follows from the results of W. Allard in [WA]. The readers can also

 consult with more recent exposition by L. Simon in [LS] for this case.

 3. TERMINOLOGY AND BASIC FACTS

 We let Rh be the standard Euclidean space of dimension h.

 Bh (x, r), Bh(x) both denote the ball in R with center x, radius r .
 Bh denotes B h(0, r). When h = 2, we often omit the upper index.
 We define two maps which are used often

 h h

 A(r): R -RhR r E R
 u(r)(x) =rx, x E Rh

 and
 hi h hi

 T(y): Rh R y E R
 h

 T(y)(x) = x - y, x E R
 For definitions of integral currents and facts about them, the readers should

 consult with H. Federer's treatise Geometric measure theory [F]. They are gen-

 eralized surfaces, including all the smooth submanifolds, polyhedral chains,

 analytical varieties, etc.

 We continue to let T be a two dimensional area minimizing integral current

 on a Riemannian manifold M of dimension 2 + m isometrically embedded in

 the Euclidean space of dimension 2 + m + n . Let 0 E spt T - spt AT c M c

 R2+m+n, we assume ToM = R2+m x {O} and over B2+m c ToM = R2+m the
 manifold M can be written as the graph of a certain function denoted by q

 which satisfies the following:
 2

 (1) 10(4) ' lxl, IDO(x)l < lxl, jD'0(x)j < I
 2+m

 with i = 1, ... 5 and x E B4 . We assume

 spt OT n 2+m X Rn = 0.

 Definition 3.1. T is said to be locally irreducible at 0 if for each 1 > r > 0,

 it is impossible to write T L B2+m?n = T1 + T2 with spt T1 n spt T2-{0} .

 We infer from Appendix A that the density 6(jj TIj , p) of a two dimensional
 integral minimizing current on a Riemannian manifold is a positive integer. If
 the decomposition described as in Definition 3.1 is possible, then T1, T2 are

 area minimizing as well and E(IITII, 0) = E)(1IT, 1I, 0) + E(IIT2I , 0) . It readily
 follows that in a small neighborhood of 0, T can be decomposed only into
 finitely many pieces of locally irreducible currents. To prove the regularity
 result, it is enough to prove it for the locally irreducible currents. Hereafter we

 assume that T is locally irreducible at 0.
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 706 S. X.-D. CHANG

 From Appendix A, we know that T has a plane with positive integer density

 as its unique tangent cone To at 0. We assume that spt To = R2 x {O} .

 Multiple-valued functions. The theory of multiple-valued functions was devel-

 oped in [A]. It is the most natural framework for the regularity theory in geomet-

 ric measure theory and promises a lot of future development and applications in

 other fields. Here we introduce the basic notations and facts of multiple-valued

 functions. The readers are referred to [A, Chapter 1] for more details.

 The space QK(Rh) consists of all the unordered K points denoted by
 K h~~

 >Z1K [p1JJ P1 E Rh . We let sptEK l[p.] = U<l{pi} Q h(R ) is qupp
 with the natural metric 3' defined by

 K K \ K \ 1/2
 J:[p_] , E qltq] inf E lpi - qn 1 2

 1 n1

 where (n I... nK) is a permutation of ( 1. K) and the infimum is taken
 over all the permutations.

 We let I EKI ip,12i] EK IPi (i=pi,K?) IL1 11[pT =L> _1I2 = g2(K Iffp1I1, KIOI1).
 We modify the construction in [A, Chapter 1.2] as suggested by B. White in

 order to obtain a map

 E: QK(Rh) Q* c Rhn(K)

 with n(K) E Z+ such that 4 is a bilipschitz correspondence between QK and

 Q* and for every p E QK(Rh), p has a small neighborhood in QK such that
 4 is an equidistance map over the neighborhood. The modification mentioned

 is to choose the orthogonal projections IIl . ... , rIn(K) in [A, Chapter 1.2] as
 complete sets of coordinate projections corresponding to distinct orthonormal

 coordinate systems for Rh and to compose the resulting map 4 there with
 proper scaling to get such a 4.

 Definition 3.2. (a) f is a multiple-valued function if it is a map

 f: U c Rk QK (Rh)

 for some K E Z+ . Associated with f, there is an r7 o f: U - Rh defined as
 r1o f(x) =>p K Ip when f(x) = EZKPi.

 (b) f is called a Lipschitz function if there is C > 0 such that

 9f (x),P f (y)) < Clx - y, I x, y E U

 (c) f is called affine if there are A A... AK where each A1 is an affine

 map from Rk to R , such that

 K

 f (x) = EZA1xi) '.
 i.= I
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 707

 (d) f is called affine approximable at xo if there are affine maps A1. A K
 from Rk to Rh such that

 lim (( ) il ()l 0
 lx-xoIO 1Ix-x1 -I

 (e) f is strongly affine approximable at xo if (d) holds for f at xo and
 Ai = Ai if Ai(xo) = A1(X0).

 From [A, Chapter 1.4] we know that if f is a multiple-valued Lipschitz

 function then it is strongly affine approximable almost every where over its

 domain. It implies that in the graph of f which is defined by

 graphf = {(x, y) E Rkx Rh X E U, yE sptf(x)}
 for almost all x E U, the tangent spaces at (x, y) and (x, y') agree if y = y'.

 If f is affine approximable at xo with Ei= I EA, I as its affine approximation,
 then obviously f (x0) = EZ 1I A i (xo)II and Ai (x) = Ai (xo) + Li (x - xo) with

 k h
 Li E Hom(R , R)

 Definition 3.3. If f is affine approximable at xo, then

 (a) EZK$I[Li] E QK(Hom(Rk Rh))h denoted by Df (x), is defined as the dif-

 ferential of f at xo , we let IDf (x0)2 = I$ iLi12 where ILI is the Euclidean
 k h

 norm of the matrix associated with any L E Hom(R , R ).
 (b) EK>j<L(v)j is defined as the derivative of f at xo in the direction v

 and is denoted by Djf E QK(Rh) . Let ID1f(xO)I2 = Z$= 1L1(v)12.
 The map 4 mentioned before has the following properties

 (2) I?fl = Ifl ,
 (3) IDv(4 o f)(x)l = lDvfI

 In this paper we are mostly interested in the multiple-valued functions defined

 over two dimensional domains. We define the following:

 Definition 3.4. Assume f: Bc c R2 -* QK(Rh) is affine approximable at xo
 2

 and (r, 0) is the polar coordinates for BC, we let

 2 K 4 2 lfr(X0)l = Z Li ( ) 2

 f(x)2 K S a1 ~ 2

 1frfO(X0) VZLi(> (j)
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 708 S. X.-D. CHANG

 IDf (x)12 = Ifr(XO)12 + If()12

 In [A, Chapter 2], the regularity of multiple-valued functions minimizing
 Dirichlet integrals was studied. We summarize the main results here.

 Let f:Bk QK(R h) and f is almost everywhere affine approximable in

 Br we define the Dirichlet integral of f over B; by

 D(f,r)= IDf(x)I dY x
 Bk

 if the integral exists.

 Following [A], we let Y denote all the functions on aBk with L2 integrable
 boundary derivatives.

 Theorem 3.1. Let g:aB- QK(Rh), and g E ', then there is an f:B k

 QK(R ) with fIOBk = g such that
 (a) D(f ,r) D(f',r) for any f' with f'IaB k =fBk =g,andf is

 called minimizing the Dirichlet integral.

 (b) f is Holder continuous and the Holder constant a = 1/K in case k = 2.

 (c) The graph of f is a smooth k dimensional manifold in the interior except
 for a possible singular set of Hausdorff dimension at most of k - 2. In particular,
 when k = 2, the singular set is of dimension 0.

 Remark. In a related work [C], we show that in case k = 2, the singularity set

 mentioned in (c) is actually locally finite. That is much stronger than (c). That
 result motivates the present work.

 Definition 3.5. g: aBr QK(R ) is called an elementary function if and only
 h

 if there is a go: aBr -* Rh continuous, such that

 g(r,) = go r

 Remark. Following the discussion in [F] on the structure of one dimensional

 integral currents, we see immediately that if g: aBr QK(R ) is Lipschitz,

 then g can be written as the sum of elementary Lipschitz functions with pos-
 itive integer multiplicities. Also following (BW], we can write any Lipschitz
 K-valued elementary function g over B1 as

 g(0)=E|aj~Cosj +K )+ paJsinj +Ki) g(6)= a i K

 Definition 3.6. f: B2 , QK(Rh) is called simple if and only if f is continuous,
 f(0) = K1OII, card(sptf(x)) = K for x -- 0, K e Z+ and graphf {0} is
 connected.
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 709

 It is obvious that the graph of any simple function is a topological disc.

 For any open, connected, and simply connected U c B2 , 0 V U, there are
 continuous functions f,: U -) Rh , i=1.-K such that flU = ZKIfi .

 Corollary 3.1. If f: B2 - QK(Rh) is homogeneous of degree N, namely f (x) =

 IXIN f(x/IXI), and f minimizes the Dirichlet integral, then f can be decom-
 posed as the sum of simple functions with multiplicities, the graphs of any two
 such functions in this decomposition intersect only at { 0} . The graph of f is a

 union of discs which may be singular at { 0}.

 Proof. We examine the link of the graph of f . It must consist of curves with

 constant positive integer multiplicities, and any two of them do not intersect,

 otherwise we have one dimensional singularity on the graph to contradict The-

 orem 3.1(c).

 Remark. B. White characterized functions as in Corollary 3.1, he proved they

 are essentially holomorphic, see [C] for more details.

 Multiple-valued conformal representation of branched surfaces.

 Definition 3.7. A branched surface R in R2+h is said to be admissible if it is
 the graph of a simple function k: B2 QK(Rh), and for any open, connected,

 and simply connected set 0 V U c Br2 those functions {k } associated with k
 and U as in the remark following Definition 3.6 satisfy the following: There

 are constants 0 < e , C < oo independent of U such that

 Jki(x)1 < C1xl 1+" ,

 ID'ki(x)l < Clxl jlE

 ID3ki(x) - D3ki(y)l < C(min(Cxl, ll))7 2+EX YIE
 for each x , y E U and i = 1 ,2, 3.

 Remark. We allow K = 1 in the above definition.
 2

 Let p be the image of orthogonal projection of p into R . For an admissible

 surface R, from Definition 3.7, we know that

 RAr = minfdist(p, q)lp, q E R, pq = q, qE B2r Br/2} > O

 Definition 3.8. A neighborhood V in R 2+m of an admissible surface R is
 called admissible if for some r > 0, there are constant, C > 0, a > 0 with

 V = {p E Br x Rn+n I dist(p, R) <Cl7IaRAIl }

 It is well known that for a surface which is the graph of a function v: B2 -* Rh

 with IDiv(x)l < 1, i = 1, 2, there is an a > 0, such that any y e B1 x Rh

 with dist(y, graph vlB/2) < a has a unique point NP(y) E graph(vIB /2) with
 dist(y, NP(y)) = dist(y, graph(vlB /2)) . The set of those points is the normal
 neighborhood of height a.
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 710 S. X.-D. CHANG

 An admissible surface R defined over B1 is decomposed into a union of
 2~~~~~~~~~~~

 K pieces of surfaces over any B 2(x, x/2) , x 54 0 according to the definition.
 Applying the above discussion to those K pieces of surfaces after normalizing

 them by a factor of 1 /IxI, we know that each piece in R n B 2(x, IxI/4) admits
 a normal neighborhood of height lxl when lxl is small enough.

 Lemma 3.1. Any admissible neighborhood V of an admissible surface R has

 an open neighborhood near 0 which admits a nearest point retraction map NP

 onto Rn Br x Rh {O} when r is small enough.

 Proof. It follows from the above discussion and the definition of admissible
 neighborhood.

 If an admissible surface R is a one-sheet covering of Br 2 it is well known
 that it has a conformal coordinates system near 0. We want an analogy of this

 in case R is a multiple-sheet covering of Br2, i.e. K > 1.

 Let k, B 2, and K be the same as in Definition 3.7. Let s > 0 with sK = r
 and

 2 2

 u: B, --*Br
 K

 X = U(y) = y

 It is obvious that there is a function k: Bs - Rh which is unique up to a rotation

 by a multiple of 27r/K such that

 k(x) = E Ek(Y)j E QK(R h).
 yEu-'(x)

 It is apparent that the surface R is now the image of the map (u , k): Bs
 2+h

 R

 Using the derivatives bound on the function k as in Definition 3.7, we have
 that for some C' > 0 the following hold:

 (4) Ik(y)i < C1 I K(1E)'

 (5) ID'k(y)I < C'lyIK-i+eK i= 1,)2,)3,

 ID k(x) - D k(y)I < C/lx - yI

 There is a metric defined on Bs induced by the map (u , k) . This metric is

 singular at 0 and is C6 on Bs, locally C2x on Bs - {0} . It is easy to verify
 that

 (6) glI(y) = K2 y 2K-2 + O(Iyi2K-2+2c;
 (7) 922 (Y) = K 2 lyl 2K-2 + O( yi2K-2+2e

 (8) g1 2 (y) = O(I yI - )
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 711

 Hence the function

 W= 911 - g22+ 2ig12

 g11 + g22 + 2(g - 1922- 92

 is well defined over Bs and is a C6 function, locally C2 x over Bs -{O}.
 According to Proposition 26 in [S] and the discussion there, there is a C1
 map

 v: Bt -+Bs
 with v(O) = 0, Dv(O) = 1R2 such that the induced metric over Bt is conformal;
 in other words, the map (u o v, k o v) is a conformal map. By applying the

 proof of Proposition 26 in [S] to B(p, IpI/4) C Bt P p 0, we conclude that
 for some 0 < t' < t, the map v satisfies further estimates:

 (9) KD'v(x) < C XIK-i+cK i =1, 2,3, x E B
 (10) ID'v(x) - D'v(y)l < Cmin(lxl, lyl)61x - Y16, x, y E Bt, .
 Remark. The above estimates are obtained first for the inverse map of v, then

 using the chain rule to get the similar estimates for v itself.
 'K

 Let p= tK and
 w: Bt, Bp

 K
 with q = w(p)= p . Let

 FO: B, + R2+h

 F:Bp ) QK(R )
 be defined by

 (11) Fo(p) = (uov(p),kov(p))
 F(q) = Z IFo(p)I

 p =q

 (12) = o v(p), kov(p)].
 pk =q

 It is obvious that F has the following properties:

 Lemma 3.2. (a) For any open, connected, and simply connected U c Bp 0 U,
 2+h

 there are F: U +R i = 1, K such that
 K

 FIU = DFij
 i=1

 and Fi, i = I , K, satisfy

 F(O) = JO1,

 IDFj(q)j = 1 + Q(lqj&,

 (13) IDjFi(q)l < Clql(j+n+, qEB) j=23 = 1. K

 I D'1F-(p) - D'1Fj(q) I < C (min(I p I, I q ))-2+,,Ip - qlc, iI=1 ... K .
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 712 S. X.-D. CHANG

 (b) Each Fi is conformal. From the definition of the admissible surfaces, the
 graphs of Fi , i = 1, ... , K, do not intersect with each other.
 (c) If e(x) is a unit normal vector field near Fi(x) , x : 0, then

 IDe(x)l < Clxl 1+8.

 Also for a differentiable normal vector field 'n near Fi(x) and a unit vector
 a E TF(x)N, we have

 IDa n (x) * Fjs (x)l = IDa()n (x) * Fs (x)) - n (x) * DaFi s(x)l

 = 17n (x) - Da Fj s(x)I

 < Cl n (x)ljljx+7

 Thus we get a multiple-valued conformal representation of the admissible

 surface R near 0. The only reason we use F which is multiple-valued instead

 of (u , k) which is single valued is that IDFi(q)I = 1 + O(jqIe) so the induced
 metrics by Fi are similar to the Euclidean metric on Bp .

 Multiple-valued functions over branched surfaces. Throughout this paper, we are

 primarily interested in multiple-valued functions over admissible surfaces. We

 often consider a multiple-valued function

 fo: W c R --+ Qj(R 2+h

 where R is an admissible surface as in Definition 3.7 with K > 1, W is an

 open neighborhood of 0 E R and with W D F(Bp) for some p > 0.

 Let U c Bp be open, connected, and simply connected, and let Fi, i =
 1. K, as in Definition 3.7. If

 fo: W -Qj(R )
 then we can define the following function:

 K

 f (X) = fo o FI(x) EEQKJ(R 2)h
 i=l1

 For x E U, we can always write fo at Fi(x) E W as

 J

 fo o F, (x)=Z fOoF,(x)], i = I, K.
 J=1

 We let fi (x) = foj o F, (x), then we define

 Definition 3.9.

 K J

 (14) (F + f)(x) = EIF,(x) + f,1(x)]
 i ,J
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 713

 If fo is Lipschitz, then we have fo o Fi almost everywhere affine approximable.

 Thus F + f is almost everywhere affine approximable. If we let D(fo o Fi)-
 E l[Lfij, then

 K J

 (15) Df(x) =Z>Z E iLLI
 i=1 j=1

 Hereafter we let

 (16) fij , = Li. 0490
 (17) fij = Li ( )

 Definition 3.10. We call f: B -- QKJ(R 2+h) R-admissible if it is generated

 from a function fo: R -* QJ(R 2+) as above.

 Remark. Using the notation in ( 1), we can write any R-admissible function
 f as

 f (q)= E fo o k(p)
 PK=

 We adopt the following conventions for R-admissible functions: Let x , y e

 Bp x, y $ 0, let U be an open, connected, and simply connected domain
 containing x y , (r, 0) be the polar coordinates system on Bp, and let Fi, i =
 1. K, be the same as in Definition 3.7. We define

 K

 jq of(x)f = E1o(fOoFi(x))I,
 i=l

 K

 S(f(X) I f (Y)) = E '(fo o F, (x), fo ?F, (y))
 i=1

 K

 2 If 1ff I Z'f& Fi 1
 i=l1

 K

 Ifr(x)l2 = E l(fo o Fi)r(X)12,
 i=l

 K

 If0(x)I = f(fo o t)O(x)l ,
 i-l1

 K

 (fr' f0) = (fo o Ff)r(fo ? Fl)O
 i=1

 Definition 3.11. The Dirichlet integral for an R-admissible function f over Bs
 is defined by

 D(f,s)=f fDfI2 d 2?

 2 If22 with IDf I=jfr ~1f012 /r2
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 714 S. X.-D. CHANG

 The height integral of f, H(f, s), is defined by

 H(f , s)Ajf I d&

 An R-admissible function is said to minimize the Dirichlet integral if it is

 minimizing among the R-admissible functions.

 Remarks. (1) The definition of Dirichlet integrals for multiple-valued functions

 over surfaces given here is slightly different from the one given in [A]. Our

 definition is more convenient for calculations. The reason that we can use the

 estimates involving the Dirichlet integrals in [A] will be explained in Appendix

 C.

 (2) For any R-admissible function g generated from go: W cR -* QJ(R 2+),
 if g minimizes the Dirichlet integral then the map Fo = (u o v , k o v) onto a
 neighborhood of 0 E R as introduced in ( 11) gives a go o Fo which minimizes
 the Dirichlet integral in the sense of Theorem 3.1. So all the results there apply.

 If V is an admissible neighborhood of R, from the discussion after Defini-

 tion 3.8, we know near 0, V admits a nearest point retraction map NP onto

 an open neighborhood of 0 E R. We define

 (18) Vr = NP (F(Br))

 which makes sense for each small r > 0.

 Definition 3.12. A (V, r)-admissible vector field is a C' a map

 X: B2+h R 2+h

 such that X = 0 outside Vr.

 Associated with each (V, r)-admissible vector field X, there is a C'a map:

 L(t): B2+h R2+h

 L(t)(p) = p + tX(p), p E B2+h.
 2+h

 Obviously, L(t)I(B1 Vr) is the identity map and for small t, L(t) is a
 diffeomorphism of Vr onto its image.

 4. ASSUMPTIONS AND SQUASH DEFORMATION

 Assumptions. From now on through ? 12, we assume the following:

 T, M, 0 are as before.
 N is an admissible surface as defined in Definition 3.7 with F the multiple

 conformal representation of N having estimates on the first three derivatives
 as in Lemma 3.2.

 f is an N-admissible function associated with

 fo:N - Q(R )2+m+n
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 and V is an admissible neighborhood of N which has the nearest point retrac-

 tion map NP described in Lemma 3.1. Vr is defined by equation (18).

 Furthermore we have the following assumptions on fo, f, N, and T.

 (1 9) spt (T L Vr) c Vr u {O}, spt a (T L Vr)c NP (9Br).

 Let 0 V U c Br be open, connected, and simply connected and Fi, i
 1,..., K, as in Lemma 3.2.

 1 2 1 2
 We have Br = Cr' U Cr, Crl n Cr' = 0 such that for any x E U

 sptfo o Fi(x) c TFj(X)Nn M

 and for any x E U n C1

 fo Fi (x) = To (Fi(x))(T, NPFi(x))

 where (T ,NP, Fi(x)) is the slice of T by NP (x), cf. [F, slice theory].
 We let I; = T L NP1 I(F(C, )).

 2
 The bad set Cr , the part of the current

 Tr2= T L (Vr n NP (F(Cr))

 missed by the multiple-valued function f, the integral of I o fI (recalling
 Definition 3.2) which tells how centered N is near 0 and the Lipschitz constant

 of flBr satisfy the following:

 (H1) f I ofIsdsd6?< C3( (If12 + IfI2Sl+e) sds dO + rD(r) 1),

 (H2)

 | f12S1 S sds'dH'< C3' 2S_ ' +If S )dsdOf+D (r),

 (M) ~2 2112 2s-2a sd1O1Y+ D+ r (H3) M(Tr2)M M(Cr)ifC3K IIS sdsdI) +D 2'(r),

 (H4) LiP(fIBr) < C3D (r) + C3 r(s)yds < C3r

 with constants 0 < , y, a, T < 1 .

 First variations. We are going to use the formula for first variations to derive

 two very important formulas.
 First we do some calculations for first variation.

 Let X be a (V, r)-admissible vector field and L(t) a family of local diffeo-
 morphisms for small t associated with X as in Definition 3.12.

 Let T L Vr be denoted by Tr. Using the area formula (see [F]), we get

 (20) M(L(t) l(Tr)) IDuL(t) A DvL(t)l dIlTrll = J Ju Avil ITrI
 Here u and v span the tangent plane of Tr at p, since Tr admits a tangent
 plane at almost every point.
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 716 S. X.-D. CHANG

 For two vectors a, b E R h, we let

 (21) la A bl = (la l b1 - (a * b) 1
 Let Xr denote the plane spanned by u , v, then the deformed unit square on

 this plane under the map L(t) has area

 IDuL(t) A DvL(t)l
 U A vi

 We let

 (22) div X =- IDuL(t) A DvL(t) t wdt t=O |UAvi
 Hereafter whenever we integrate divX, it is assumed that div is taken with

 respect to the tangent planes of the relevant integral current. The tangent plane

 exists almost everywhere according to [F]. Hence the integrals involving diver-
 gence are well defined.

 We let G2 TM denote the fiber bundle of planes in TM, then there is a

 function

 (23) h:G2TM-*T M
 with h(p , 7r) being the mean curvature of M restricted to the plane ir E

 G27pM. Hereafter whenever we integrate h over an integral current, it is
 understood that 7r refers to the tangent plane of the the integral current. As

 before, the tangent planes are almost everywhere well defined and the integral
 is meaningful.

 According to [A, Chapter 2], the multiple-valued function F + f maps any

 measurable set U c Br with its natural orientation to an integral current in

 R2+m+n denoted by (F + f),(U), spt(F + f)"(U) = graph(F + f I U) the
 orientation is induced by D(F + f ) (see Definition 3.3).

 From Definition 3.9 and the discussion after it, we know it makes sense to

 talk about F, Is + f,j 5, etc.
 If we let

 (24) uij = Fi s + f,J Is9
 (24) vu1 = I (F

 we have the following version of the area formula which is particularly useful
 to us.

 Area formula. Let k: graph((F + f )Br) -- R be a measurable function, then

 K,J

 k dll(F + f)BrIB = Lr E JuI Av Ik (Fl(x) +f(x)) x

 Proof. Let NP be the nearest point retraction map for the surface N. We
 define

 1: V Br
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 by 1(q) = x if NP(q) E spt F(x) . This is a well-defined function since

 spt F(x) n spt F(y) = 0

 for x #& y. Then we apply the co-area formula to I to get the desired formula

 after observing that

 iIA2D1 I F, (x)+f ,(x) = UV A v,jj

 Lemma 4.1. (a)

 Ivl2Dj - v + Jul 2Dj - v + (u - v)(DuX - v + DvX . u) Jv~2D. V uID?,Xu A V 12 dlj(F + f)0(B)Ij

 =1 X h dII(F + fIl$Br)II + f(divX-X- h) dIl(F + f)0(Cr )

 -f(divX-X*h)dIITr2II.

 (b) Let u=Fi s + fij,3, v = (Fi 6 + f 16)/s,

 J divXdll(F +f)0(Br)ll

 [vK (DuX - uIvI2 + D _,X vIu12 -u * v(DuX * v + Dj - u)) 2
 IBrjji-Ii j=luAvI

 Proof. By definition of div (in (22)) and direct calculations, we have

 div,X = i2 (Iv 2DuXu+Iu12 D ,X-v-u-v(DuX*v+ D1,x-u))

 since

 dt I=O

 If we calculate the derivative of (20), then we have

 (26) d M(L(t)f(Tr)) divXdlTrll

 On the other hand we have the well-known formula for first variation, cf. [WA],

 (27) d M(L(t) (Tr)) =JXhdIITrI.
 dt 1

 Using the definition of C
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 718 S. X.-D. CHANG

 thus

 I divXdll(F + f)O(Br)I

 = fdivXdllTr ll- divXdIITr2II + f divXdII(F +f)O(C2)II

 =fx.h dIITrII7-1I divXdIITr211 + f divXdll(F + f),(C,.r

 = fX* h dll(F + f)O(Br)ll + X* h dlITi2 II - X* h dII(F + f)(Cr)II

 + divX dII(F +f)O(Cr2)II- div X dIITr2II .

 Hence we have (a).

 Part (b) is obtained by using the definition of div X and the area formula.

 Squash deformation.

 We use the squash deformation to get the following.

 Theorem 4.1. For almost every sufficiently small r > 0, we have

 D(r) - (f , fr)r d| < ?, (r)

 where

 1(r) = C1f (jl ? f Is + Df1 + if 12S )sdsdO

 + C, /B (iDfl3lfl + lDfllfl2r 1'+)rdO

 + Cl Lip(flBr)M(1.)+ XsEup Bf( )l-(r )

 Proof. We choose

 o: V u {0} -R,

 (28) p(p)=O, for p E V V,
 (PI Vr-Ar =

 IDoI < 3(1/Ar),

 and (p(q) = (0(NP(q)) where NP is the same as in Lemma 3.1. Also r(F(x))
 does not depend on 0. Eventually we let ep go to the characteristic function
 of NP (Nr)nlV. Define

 X = (p(id -NP)
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 with id the identity map. Following the convention in Lemma 4.1 for vectors
 u, v and using the Taylor expansion, we have the following three expressions:

 2 (2 F _
 (29) l v =1+j If 2 _ i +2Fi s fijs -2 f *ij,@0 JuAvi 2p U s US s s}

 + C1O(1f12s-2+e + IDf 4),

 iu2 1 ( 2 F f _____ I _f_j _ 2,0 f 1j,0 (30) lA = 1 +Ifi,sl+2 s s 2

 + Ci0(1f f2s 2+2e + jDf 14),

 (31) uAvj = (Fi.s * fij,0 + Fi 0 * f115s + fij 1 * fij,s) + CIO( If I + IDf l )

 where

 F1'0 2

 p = IFi 12 = Fi1

 and CIO is a constant. Using the definitions of X u, v, it is easy to check

 DuX = sfii + v fii ,s, DI X ( f j5
 S

 So (we omit the lower indices to simplify the calculation)

 IvI 2DuX - u ___
 u(pfs + epsf) * (Fs + fs)

 luAvi luAvi
 = (04f1 2+ PFs - fs + psf fs)

 (1 1+ (If -lfsl2+ 2-* f ?- 2Fs - s)

 +CIO(Ifj2s-2 + 2e + IDf 12))

 - p((Ifs2 Fs fs) + CI(if2Sf2+26 +IDf1

 + ps(f fs + C,I(IfIlDfI3 + IDfI If s2- ))+

 jul2D1X v = u2 fo {f Fo)
 IuAvl IuAVi s S S

 ,9o1 F0 fo)

 x (1+y2 (Ifr!2|I - s +2Fsf52-Li)

 +C(jf 1j2s-2+2e + IDf 14))

 (continues
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 (I06 2 ) C ( 2+2)+IDfI4),

 ~~~S S SSS u * v(DUX * v + DVX * u)

 jUAVI

 = fp 2fs * fo + f F + 2f+Fs2

 S s S S/

 + (j (F (ftf + F + f + f j 2+2 C+ (1f12s2+ + IDf I ))
 X fs ( Is f ot + Cl(f les +C S-t)

 =~ ~ ~~~~~~F f1 ?(l 1252 + 2+2c + Df14 2 2+2e~~~~~~

 = C11I(D(IfI 2S22 + IDf I4)

 + C1 I'Ps(If I IDf Is-I+, + If I IDf 13 + IDf I If s3)-2+2.)
 We used Lemma 3.2 (c) in the above calculations. Putting back the subindices

 and summing over i j, we get

 Kz (DX *ulvl2 + DX . vIuI2 - u * v(DuX * v + DX * u))

 _=l =l |u Avl

 JX 2 fjj____ 2 2+2c D 14

 i (p I fij 'Si +|- ) + 3CI I ((I f S-+2+ I Sf14

 + ( F fi, + FiO f + (Ps (f) + ij

 + CI(ps(IfIlDfI3 + IDf IIfI2S- +,).

 After noticing that fij(x) E TF/(X) N and applying Lemma 3.2(c), we have

 | E (~~~~~Fi.s fii.s + s1 s' )il

 =B Lz (Fi I E fij.s + 5 E s#) dY2

 < | o f IS- +1 sds do IrI

 Also we have
 2

 I n * (P - q)l < F,Ip - ql2

 for unit vector n E 7T1,M, p ,q E M. By the definition of h, we have

 h(P) E T1M, so p

 lh(p) (p - NP(p))I ?5 IF I1p_N N(p)I1
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 We apply this to

 |h *Xdll(F +f )o(Cr')I

 and obtain

 K,J

 f|h.Xdll(F+f)o(C)II ' Ir S Iij 12IUA VI dy2
 i=1 ,j=1

 If we let (0 go to the characteristic function (same as letting Ar go to 0), then

 all the integrals involving (o, become the boundary integral over OBr.
 As for the term involving 2r, using the properties of ( and

 I(id-NP)(x)I < r

 for q E spt I, we have

 f divXdIITr2 ? C- M(T2 L r n --Ar) + CM( Tr )

 Using the slicing theory of 4.3 in [F], we conclude for almost all r,

 d"dI2I d 2 2 |divXdlTr2 11 < CrTdM(Tr) + CM(Tr).
 2 2

 We treat the term involving Cr' similarly after noticing that Cr' is the image

 of spt T2 under NP .

 Combining all those results and applying Lemma 4. 1, we get the theorem.

 Remark. In case the function f minimizes the Dirichlet integral, then the error

 term ?I (r) is zero.

 5. SQUEEZE DEFORMATION

 A harmonic function h over Br satisfies the following two equalities:

 (32) 'B IDhdY2 = i(h hrh )dY

 (33) f IhrI2dX1=f dX'.

 In order to calculate the derivatives of the function which defines the order of

 contact, we need the analogous formulas for multiple-valued functions which

 approximate the area minimizing currents. In ?4, we already obtain the anal-
 ogous formula for (32). In this section we show how to get the second one by
 using the so-called squeeze deformation.

 Theorem 5.1. For almost every sufficiently small r > 0, we have

 rj ISr 12 f d If <X%(r)
 dBr ~~r1
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 with

 (34) F2(r) = C2 (IfI2S-2+2 + If f/Df S-j+Ef +Df13)dy2
 + IBrI1fS

 + C2 |I ? o f Is -I +E dY 2

 (35) + C2 (IL 0 fIsE + If 2S + slDfj ) dtf

 + c2 (M( Tr) + r M( Tr))

 Proof. Let q: Vr - R be the same as in the proof of Theorem 4.1. Let U and
 Fi, i = 1. K, be the same as in ?4, then we can define a vector field

 Y: Nr -- R2+m+n

 over Nr by letting Y(p) = IxIF, 5(x) E R 2++n with p = Fi(x). Then let

 X: VJ R2+m+n

 by setting X(q) = q(q)Y(NP(q)) e R 2+m+n. Let (s ,0) be the polar coordi-
 2

 nates over R . As before we keep

 U = JFi + t s v= f+ ij,O
 I ij,s ~~S S

 It is easy to verify

 DuX = qssFis+ F,s + PSsF DJ,X=, sFisO
 S

 Using (29), (30), (31), and the expressions for DuX , u v , we calculate
 the following (as before we omit the index i for F and i j for f),

 I _vj2DuX * u
 - IuAVI

 -' IuAvl2

 = A vl (pssFs + (pFs + (psFss) - (Fs + fs)

 2SuAvlAv
 =?(IFsI +2Fss-Fs+Fs*fs+sFs t) uAvI

 2 lvl~~~2
 +ps5(sIFs2 +sFs fs). luiAv

 (36) = (jFsj + sFss - Fs + Fs * fs + sFs * fs)

 (37) + D li(lF5l2+sF55*F5) (t L| + 2Fl f522 _2F fs)

 + C20(lfIlDfIs -I+E + Ifl 2S-2+2E + IDf I3)

 + ps5(slFs 2 + sFs * fs)
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 +? (sSIFs (J2 fe 2 _ 2+ 2FO f? -2F - )
 2p ks I f I s)

 + C20(If 12S-2+2e + IDf 13),

 lul2DJX v
 |u A vi|

 S F k fJ luAvi = pF5* + Lo)
 Sa s )UV

 X(1+2 (Itsl2-|to| 2+2 + 2Fe 4o

 +C10(IfIs5 +2 + IDfI1))

 (38) = (FSO * + FsF * 0 )

 2 2sp e 3|f 2

 + C2(IfI s25-2+2 +j Df 13)

 III= u. v (DuX .v + D1,X . u)

 = 38 (Fs - + Fs( * +

 x ( (F5*f6+ F6f*)+f5.f6+ C1o(fI252+2e +IDfI ))

 +39) s (pFs * Ff 2 _ F'F-f-2 . f?

 x ( l(FS. fo+2F,fS+f.fO)+ClO(IfI2s +IDfI )) .

 Before we calculate the divergence by putting I, II, III together, we notice that

 F ., i= 1,...,K, are conformal maps (see Lemma 3.2), i.e.

 (40) IFI 12=|f C = p, Sp1) Fis*Fi6i=?

 (41) F,FsF-6=O.
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 Hence we have the following identities:

 F 2

 Fse s 2s ds
 (42) _ 1 ds IFi's 12

 2s ds

 =IFi - I 2+ sfi ,,, Fi .s

 Differentiating (41), we get

 F1 .F + Fi .Fis = F. * F. o. i'ss i'O ds i's i -

 Using (42) we conclude that the expressions (37) in I and (39) in II are the same

 except with opposite signs. So we have

 I+I,= 9(jFI2 +sFss * Fs +Fs fs +sFs *fs)

 + F(s F + Fe 6 )

 + C20(IfIDfIs-+ + If I2S-2+c + IDf I3

 + ps(sIFsl2 + sFs * fs)

 2 (| S +2-* S - 2Fs fs
 + C20(o (If 12 1+2 sIDf 13I

 (P(s I) + (Fs s+sFss*f+ O )
 + C20(D(IfIIDf Is 1+ If I2s2+e + IDf I3

 + f( If

 12 +SFO 3

 + C20(os(If 12s-1+2c + slDf 1)3

 As for expression III, we apply the condition (41), its consequence (43) and

 Lemma 3.2(c) to get

 III= f (Fs * S + FSS * fi + Fs' * fs)

 xI (F*. F+ *f fi . f -+c10(IfI2s 2+2c + IDf 14))

 + (ps(Fs * Fe + fs * fe)

 X D (Fs * 5? + - * fs + -o *S + Cl"(If 12S +6+gfl)
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 725

 = fC20(IDfllf Is I+c + If I2s-2+2c + Df 14)

 + C20s I (if 12 -1+2e + IDf 14).

 We put back the subindices and integrate I + 11 - III over Br to get the following

 K E (DuX * UIV 12 + DJ VX U1 - vu u * v(DuX * V + DVX * U)) dY 2

 I K,J2 2 2

 JE(D -WXsuIv D,Xvs I + u(vdYXvDXu)y

 KJ

 + Er (4F+ s -Ifjs + siss -fis +dF5s92 * sFi f j's dY
 fi=l,J=l

 +4 C20 (#(f I s +2 if I lf its-l + IDfI ) dS

 K.J F f

 + | 3 s ijO s d
 'Br i= S,j-

 + fC20(s(If2Isl+2e +SDfI3)d d2

 Using polar coordinates (s , 0) on Br ,we have

 'B ((do f(s2,FiF12) + pssIFj sI2) sdsd6
 f27 ArJrd (( 02 K IFI2) dsdG=O,

 because I9dB,r .
 If we let v go to the characteristic function of Br as in the proof of Theorem

 4.1, immediately we see that p can be ignored in those integrals over Br and

 those integrals involving (0s become the boundary integrals over dBr . We treat
 the following integrals as we did in the proof of Theorem 4;1 to conclude that

 J divXdII(F+f)0(C')|I I divXdl Tr,2 |

 are less than

 Crd 2+ 2 Cr-M(Cr) + CM(CQ)

 and

 Cr d M( 2 2
 Tr-MTr, ) + M(1)
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 726 S. X.-D. CHANG

 with constant C respectively, since

 IDXj < IDpjjYj + olIIDYI.
 As for the cross terms involving f and F, we have

 K J fi,
 | E (F s * ij s + sF- ss * fij s + Fi so + sF s* fij s) d.S

 I ~ KFiO( of)
 rt i=l I

 'B ? (Fis.Z,o f s+ F7.f(rl ji)o +sFiss(rIo fi)s) dY2
 We estimate the first two terms as in the proof of Theorem 4.1 and for the third

 term we integrate by parts and apply the estimates of the third derivative of F

 as in the Lemma 3.2 to get

 K

 IIBZE sFi,ss - (1 o f,)s dY2

 f d d y2
 = IB| d (sFi ss * (s s 1 o fi)s) - (?I o fi) d (sFiss) d|

 K

 = | E ~sFi ss (r o f,) d,,T,
 =B, B= I

 + J fi * d-(sFis s)dy2

 < | r 'Br I dX' + s 1+e6I1f I dY2.

 To finish the proof we need to calculate the term involving the mean curva-
 ture. Let

 q E spt(F + f)U(Cl) = spt r,' c M,
 p = NP(q) e N c M,

 by definition of X, X(q) = X(p) e TpN. We observe that at the tangent
 planes irp, 7rq at p, q are spanned respectively by F1 I F1 6 and F, +
 s(F .+ i )

 Assertion.

 (44) X(q) . h(q, 7rq) = X(p)Z(p)(q - p) ? C22(1DfIIf I + f l 2)

 with Z: N -- Hom(R 2+m+n ,R) dependent only on M.

 Proof of the Assertion. Let Bp: Tp M x TpM - Tp M be the second fundamental
 p

 form of M in R ++, and let p M ,irM, mcp TpM where irp is aplane with
 the orthonormal frame { u v }, then

 h(p, 7rp) = Bp(u, u) + Bp(v, v)

This content downloaded from 129.49.5.35 on Sat, 09 May 2020 20:12:16 UTC
All use subject to https://about.jstor.org/terms



 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 727

 Let ea , a = 1. n, be orthonormal normal vector fields on M D Vr, let
 Ba(7r) = ea * h(p, 7rp), then by definition of second fundamental form we have

 Ba(7r) = uDea (p)u + vDe a(P)V.

 Using Taylor expansion, derivative estimates of 0 whose graph is M, and
 elementary linear algebra, we get

 (45) ~ p(p-qa(7q)l < Q(p - l + 117rp - 7ll)
 < C(fjI + Dfj)

 with C a constant just depending on M.

 Applying X(p) = X(q) and X(p) * h(p, 7p) = 0, we have

 X(q) *h(q, 7 mq)

 =X(p) * (h(q, 7rq) - h(p, 7fip))

 X(p) B a(7 )ea(q) - Ba(rp)ea(p))

 -X(P) Ej ((BeBq q (7p))ea(q) + B(7)(ea(q) a
 a

 Using Taylor expansion of ea(q) at p,

 ea(q) - ea(p) = Dea(p) * (q - P) ? C22lq - p2

 Using Iq-pl < Ifj,we have

 X(q) Ih(q, 7r) = (X(p) L BpDe ) (q-p) + C(lDf lf l + If 2)

 Hence we have the assertion.

 Using the assertion and noticing p = Fi, q = Fi + fij , if we sum over j,
 we have the following

 K

 (46) fX. hdll(F+f),C r'II < f C(1(1f)il + IfjDfI + Ift2) dy2.

 Combining all those and applying Lemma 4.1, we have the result.

 6. COMPARISON SURFACE

 In order to get useful information about the area minimizing integral cur-
 rent, it is important to construct 'good' comparison surfaces. Here we present
 comparison surfaces which are built from multiple-valued harmonic functions.

 Let

 g:B~~*QJ(R2+m+n g: Br-* QKj (R)
 be an N-admissible function, cf. Definition 3.10. We let

 F + g: Br QKJ (R )
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 728 S. X.-D. CHANG

 be as in Definition 3.9. So (F + g)O(Br) makes sense. We have the following
 results:

 Lemma 6.1. If (F + f )IdBr = (F + g) 1OBr . spt(F + g)CBrC M, and D(g, r)
 is well defined, then

 (a)

 M((F + f)O(Br)) < M((F + g):(Bd)) + 2M((F + f),( 2
 (b)

 D(r) < D(g, r) + ?3(r)
 with

 D(r) = D(f, r) = IDf 12dY2

 ?3(r) = C3 (jI o f s+ + In o gls )d59

 + C3B (lfl2 2S22e + IDf 1) dY2

 + 2M((F +f):( 2
 Proof. Since

 Tr=Tr +Tr =(F+f)(Cr)+Tr

 = (F + f)O(Br) + Tr2 - (F +
 using the boundary condition on F + g, we have

 aTr = 0 ((F + f)O (Br) + Tr -(F + f)oCr)

 = a ((F + g)O(Br) + Tr -(F + f)o(

 It is known that T is area minimizing and the current (F + g)oBr also has
 support on M, hence

 M(Tr) < M((F + g) "(B)) + M(Tr7) + M((F + C,
 or

 M(TrI) < M((F + g)O(Br)) + M((F + f)O(Cr2))
 2

 Adding M((F + f)O(Cr)) to both sides we get (a).

 Proof of (b). As in ??4 and 5, we let pi = IF, ,,l2 IF 10 S12 and

 u11=F~5+t~ v1 = 1 (F1,6+ f110O) iXj= i',s + fli Is I vj-S F +f,)
 Applying the conformal condition of F and Lemma 3.2, lipschitz condition on

 f, we have

 u1ij A v,1 = pi+ 2 (ii 2 + 2f 1 l2)

 1 - 2 2-c 2 +1D11)
 + l,fl,s+ -2 F,f10f6,?C(jIfIs
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 729

 We apply the area formula in ?4 to get

 K ,J

 M((F + f )O(Br))=| E I uij A v,jl dy2
 Bti=l ,j=l

 I 2 ~~1+e 3"\ 2

 =Lpi+ IDfI ?Ilo f A IDf j d' d
 Also we have

 M((F + g) (Br)) < t (FiS + gijS) A '(Fi.6 + gij ) dY2

 A K_J IFis + gi |I+ IFi6 + giJ I2 d52

 L| ( ipj+-IDgI +I?1ogls+) dY .
 Thus (b) follows from (a).

 The following part is an elaborate construction of a comparison function g

 which has the same boundary value as f on 0Br1, the function is built from a
 multiple-valued harmonic function. The construction is lengthy, since we deal
 with functions which are multiple-valued and have to guarantee that the image

 of F + g is on the ambient manifold M in order to apply the area comparison
 lemma.

 Let

 Fo: B, R2+m+n
 as in (11), let

 fo: Nr -QJ(R 2+m+n
 be the function from which f is generated. Then

 f (x) = E fo ? Fo(y)
 yA =X

 Over 9B,, fo a Fo is the sum of I elementary functions with multiplicities,
 following the remark after Definition 3.5. In other words, there are

 VI: aBt- Qj (R2+m+n I L
 so that

 L

 fo oFo= c,V,
 1=l

 with J, cl E Z+ , EL IcJCl = J and
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 730 S. X.-D. CHANG

 Here a1 j and f,3 - are in R ' . We extend y,i over Bt to get

 /: Bt Qj Q(R 2+m+n

 defined by

 VI (p,wi)

 J, 0 p j/JI iw?27rb w?/I o+27rb
 = E ai,,(j ) cos j ( )+fl j 1(P)/ sin] (

 (47)
 Ji

 PIb(P,'w)
 b=1

 Next we try to push the graph of y,1 into M. Let T e ToM denote the image
 2?m?n

 of orthogonal projection of x e R , let D = (0, g) where 0 is associated
 with M as in ?3. Thus we have

 x=Y+4(Y), xEM.

 We define

 Fo + go: B Qj(R 2?m)
 L

 (Fo + go)(p, wi) = Scl ZIFo(p, wi) + P,b(P, I) + ?(FO(p, wi) + PIb(P OJ)A
 1=1 b=l

 L J/

 = cl I1q/b(p,w)]
 1=1 b=1

 go is defined by taking the difference of Fo + go and Fo which is well defined.
 Apparently go generates an N-admissible function g and F + g defined by

 (F + g)(x) = (Fo +go)(Y)
 yK=X

 whose image is supported on M and has the same boundary values as F + f.

 For the convenience of the following calculation, we let Fo + gO bear its
 obvious meaning.

 Lemma 6.2. (a) Let p be the function defined in (47), then

 D(g, r) < (1 + Cr)D(p, r) + CrH(r).

 (b) There is a constant depending only on K, J such that

 D(g, r) ? C(K, J) * rD'(f , r) + rH(r)

 (c)

 j1 o gls-I+6 dy2 < / 1 o fIre dX .
 r "D
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 731

 Proof. In the proof of this lemma, we write go as g' to avoid too many lower
 indices.

 By definition of go, we have

 9b=s O,s

 = Plb,s + Fos + %(PIb + FO)(Pib,s + Fo s) - Fo.s

 Since

 Fo(p,O) EM

 we have

 Fo(p, wi) = Fo(p, wi) + D(Fo(p, wj))

 Fo,s = F0s + (i (FO)F .

 If we use the Taylor expansion and this expression we obtain

 lb,s = Plb,s + oi(Plb + FO)PIbls

 ?ij (F0)F + %Ib k (Fo + CPlb)FO.sPlbPlb

 Also we know that

 I%(b + Fo)j ? CIb+FoI? < Cs

 loijkI < ID3I < C.

 Hence

 Iglb5I = IPlb,s

 -k2
 + i(PIb +O)PIbs + 0FPij(Fl)F0s b + Fik(FO + CPlb)FOsPlbPlb

 IPlb,sl + C(sLTib sl + lPIbi + IPlbIsIPIb I)

 < IPIlb,s + C(slPlbsl + IPlbI )

 The last line is obtained by using the fact that ITIb I < s and s < 1. Do the
 same calculation for Iglb ,,we have the similar estimates:

 / ~ ~ ~~2-2 \

 |9lb C < PSbI +C S Pb + 1P,2L

 hence

 f IDgl2 sds d6 < ' (IDTP2 + CsIDTP2 + IP2 )sdsd.
 Br B~~~~~~~~~~~~r

This content downloaded from 129.49.5.35 on Sat, 09 May 2020 20:12:16 UTC
All use subject to https://about.jstor.org/terms



 732 S. X.-D. CHANG

 From the definition of Plb (P Iw(), we calculate

 IT12L J/ oo r2 \
 1=1 b=i +=

 Lr Ip2 sds 6 = ?5 1f C o ( 21;J, + 2 , (Ia,Il + I2zl)
 L JI oo 2

 < E ClE E_r (1',>,2 +- 12) ? ~~~~2 + IlI1I2I
 1=l b=i j=O

 < 2 1 Iy(r, 0) 2rdo

 < 2H(r).

 Using the power series defining p, we obtain

 L J/ 00

 D(T, r) = E cI E (1j 12 + )/3 12)
 l=i b=i j=O

 I27r To2 L 00 .2
 r d6 = Ec EjII + I,%I2)

 Jo I r I r 1=1 j=1 K0 /

 Using the above expressions and the fact gl9Br = fI9Br and the definition of
 T, we conclude that there is a constant C(K, J) such that

 D(p, r) < C(K, J)r P | r d2

 < C(K J)rj I rdO

 < C(K,J)rD'(r).
 Thus part (b) follows.

 Using Poisson's formula for harmonic functions we get the following:

 ) 1 j27r t2 p 2 o(t,v)dv

 Using the fact that Bt is a K-sheet covering of Br and z = w , we have

 J og(s,0)Is-'+" sdd6

 = p 11 ? go(P COP ' P K pdp dwo

 <- 27 J ( JB |le/v ;eIoI2P KdpdW )I1ofo(t,v)Idv

 K(I )t 1t1 o f(t, v)I dov
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 TWO DIMENSIONAL AREA MINIMIZING INTEGRAL CURRENTS 733

 The last equality is obtained by using the property of Poisson's integral

 j27r t2 -p d2 = 1
 22 ot iteiv _ pe'N 12

 Using the fact z = w , we have

 f ;27Kl+I Ke)It 1o0 A(t, v)ldo j 1 r 11o f (r,0)1rdO

 fBr

 thus we have (c).

 7. HEIGHT CONTROL

 In this section we present one of the main estimates in this paper. We prove

 that the height integral introduced in ?3,

 H(r) = |fB d If 2

 for the approximation function f can be bounded by its Dirichlet integral.
 This enables us to calculate the derivatives of the function which defines the

 order of contact in the next section.

 The height control estimates is analogous to Poincare inequality and is proved

 by using the formula proved in Theorem 4.1 and the comparison surface con-

 structed in ?6.

 The complication of the proof is due to the following fact: To estimate the

 height integral, we need to calculate its derivative and then use the formula in

 Theorem 4.1 to estimate that derivative in terms of the Dirichlet integral. But

 the formula in Theorem 4.1 is not exact and the error terms involve the height

 integral itself. So we need to iterate the argument several times to achieve the

 desired result.

 Theorem 7.1. There are constants C, rO > 0, so that

 (48) H(r) < CrD(r)

 whenever 0 < r < rO.

 First we prove the following lemmas.

 Lemma 7.1. Let e a and T be the small positive constants appearing in the

 hypotheses in ?4. For 0 < A = min(e, a) and small r > 0, the following holds:

 jr 752-A < C4 r-A+ r D(r))
 Proof. We calculate the left side of the inequality directly by using integral by

 parts,

 jr H(s) jr H(s) s A H(s) jr SH(s)
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 734 S. X.-D. CHANG

 We use the fact that for almost all r

 2g K,J

 d H(s) _ 2r d( K,J
 dr =, S ds ijd 1 dO

 ? =l j=l
 2 f fij=1 1 fii s d

 = = -| j Itt)o

 f2r KJ

 -j 2Ef1. jfj1s3d6

 S B

 i=Ij=1I

 S1LB(f fr) dY'
 =Is(D (s) i 1(s)),

 by Theorem 4.1. Thus

 j 2S(5) ds A(r) - f - (D(s) ? 9 (s)) ds

 H () A)f-1 | 1( ) ds ? f?1ds. S )'.Jo S OSi
 Next we calculate the integral

 /r (S)
 JOsA

 Let

 el (S) el I (S) + g'12 (S)
 with

 2(n0f-(t O)t1+z + D3 + f2t2+2,e elI(s)=C1M(Ts)+C1](I?,of(t,O)It C+IDfI +IfI F )tdtdO,

 Gl (s = sds M(2 +C (I|Df I3f I + IDf l f 12 s ")s dO cFj2(S) = CISW'-M(Ts) + C1 If3f DfIIsI6d

 First we have

 jr 1(s-A ds < 9l, (r) | -A ds = , I (r)

 since the function ?I is increasing. We estimate F12 as follows:

 j r 1(SA ds < CjJ Sd -M(Ts

 +C1 (]Df If is l+A + IDfIf 2S-2++A) sd dsO

 ? C1r M(Tr) + C1 /r(C3IDfI3St+1 + C IfI2s sds)s ddO

 ? C1C3r A9I(r).
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 The last part is obtained by using the definition of F. So we have

 r H(5) < H(r) + CC3rF I(r).

 Using (H2) and (H3) in the beginning of ?4 to replace the terms in F, (r)
 involving I', o f I and M(2), we get

 jrH(s) H "+CCr')' (r
 | -< C_ C CCr Dl (r)

 s2-A ri f22? 2 -ie 22e33
 +C C3r A |(if2s 2+a + sl2 -+E + sl2s-2+2z + IDf I3) dy2

 Since A < min(2e, a), we can move the terms involving If I on the right side
 of the inequality to the left side when r is small enough, then we have the
 conclusion.

 Lemma 7.2. There is a constant C > 0 such that for A > 0 as in Lemma 7.1
 and each small r > 0, the following holds

 frD(s) 1 +2
 (50) H(r) < 41 s ds + C4r D(r)

 Proof. We keep the notation in the proof of Lemma 7.1. Using (H2) and (H2),
 we obtain

 jr 1(s) ds
 s

 r |0j(M( 2) + (I fIt-l+e + IDfI3 +IfI2t-2+2e)zd 2)

 <CiC |ji(jIfI2-2r d2+ D'+Y( )) ds

 + CC3 y-|(IfIt + IfIt )d5s +d D ()) ds

 + c 1 c3 ( I Dft- + I 2 D2+2e)dS2 ) d

 <3CC j'(j1f1r2(t-2+a + -2+2e + )5+e d 2)ds
 <3CIC f 1 f I2rt +t +
 +3C C -(C3S2TD (s) + D ' (s)) ds

 <c4j -( i rI +sHDs)Ads

 + j (s D (s) + D +'(s)) ds

 If we apply Lemma 7.1 again, we get
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 736 S. X.-D. CHANG

 Using (H3) again, we estimate

 j 125 ds < C fr M(Ts )ds

 +C1 J I 3f Is + IDf IIf 12s-2+8) dy2

 Cl C3 (D 1+Y+ If I2S2+r d

 +C1 jB(S IDfI + S2T lfl2S 2+) dY2

 ? CHC3C4(f) F+(r2T + r2Y )D(r)).

 Thus we have

 H(r) = r f(H(s))ds

 ri
 = 2r] - (D(s) + 9 (s)) ds

 DOs

 = 2r fr D(s)ds+r II (S)+12(S) ds

 r D(s 1+2T 1s2y
 ? 2r j ds + Ci(rAH(r) + (r + r )D(r))

 ? 2r D(s) ds + C4(r-H(r) + 2r D(r)) S

 When C4rA <2, we have the desired result.

 Proof of Theorem 7.1. Using Lemma 6.1 (b), Lemma 6.2(a), we obtain

 H(r) < 4rj (S)ds+C5r1 D(r)

 ? rD (g,s) + 9'3(s S)l, ? 4r t (,s)+t(5 ds + C r +D(r)

 4r C(K, J)sD (s) + sH(s) + 3 (s) ds + C5r+D(r)
 S

 < 4C(K, J)rD(r) + 4 j3V') + sH(s) ds + C5r D(r).

 It is easy to see

 g3(S) < el(S)+ j1? o gs 1+e sdsdO

 < el(s)+Cf 11ofIsesd6,
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 using the definitions of F., F and applying Lemma 6.2(c). So

 fr I(s 3 (S) ds < 2f ((s) +f Iofjs-1+eSdo) ds
 J: s 10(s lB

 We already know

 r jr ( ds < C4(r H(r) + rl+ D(r)).
 S

 Using (H3) and Lemma 7.1, we get

 rfl Jofls + dy2 < C3r If l s22e sdsd6+D (r)

 < C3C4(r H(r) + r +TD(r)) + C3D +'(r).

 So we have

 r10 ds < 2rf ( + Jofjs esd) ds

 ? 2rC4(r H(r) + rl+ D(r)) + 2r I| fIs- dY

 < C5(rAH(r) + r D(r)).

 By letting 0 < r < 1 and using Lemma 7.1, we have

 rj H(s)ds<rI 2(jS) ds < C4(rAH(r) + rTD(r)).

 So

 H(r) < C5 (rD(r) + r AH(r) + 3rl+uD(r))

 If C5rA < , then
 H(r) < C6rD(r)

 8. ORDER OF CONTACT

 In this section we define the order of contact, or rather the inverse of it,
 between the branched center manifold and the approximation function. The
 bulk of the text is devoted to prove it is a well-defined quantity. In the next
 section we shall prove the order of contact is not oo, unless the current coincides
 with the center manifold N. To start with, we define

 K(r) =rH(r) rD (r)
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 738 S. X.-D. CHANG

 The major result in this section is

 Theorem 8.1. 1imr-O K(r) exists.

 Remark. In case f is a harmonic function, limr-O K(r) is the inverse of the
 order of the first nonzero term appearing in the power series.

 It is proved by establishing a differential inequality to prove a certain mono-

 tonicity property of K(r).

 We need the following lemmas in the proof of the theorem.

 Lemma 8.1.

 D (s) |(f ,fs) dr' < H (s) S 12s dXI+ D (s)?, (s)

 Proof.

 D(s)| (f,fs) dX

 < D(s) (fBs If 12 d ) 1/2 12 d I) 1/2

 i f 2 1f12 = tH(s) s 12fdX + 2D (S)

 < H(s) j I2 Sdo +i2D(s) (f , fs) dl +c?I(S)

 by using Theorem 4.1. So

 D(s)| (f fs) dX' H(s) S 1s2 dA + D (s) ?I(s)*

 Applying the height control estimates, we can simplify the four hypotheses

 in ?4 as follows. Using

 H(s) < IsD(s)
 we estimate

 / 2 -2+A Ir 2n 2 -2 A

 Lr If2~ =S/ If If1S2 S ds dO
 fr

 - 10 H(s)s ds
 r

 < / sD (s)s ds

 r

 < |rD (s)s - ds

 r 1 +A

 A

 < r'D(r) r
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 for any A > 0. As a consequence of this, we have the following simplified
 version of (H2), (H3), and (H4):

 2e

 (52) ' l o fIs 1+e sds dO < Cj- 2D(r) + C3D +Y(r)

 (53) M(Tr2) M(Cr) < C? D
 (54) Lip(f B ) < CD T(r)

 Lemma 8.2. Let O < A < A = min(e, y, , T), where , y, O, T appear in
 Hypotheses (HI), (H2), (H3) and (H4) in ?4. Then

 (a)

 (55) s.(r)= en(S) ds < Crio? J s' D (s)

 (b)

 (56) ',r)=f ds < CrAo~
 Jo s DD(s)

 We denote ze0 (s) ,p0 (s) by Ze (s), W (s) respectively.

 Remark. Part (a) is similar to the estimates in ?7, but we are unable to prove
 this until we have the height control estimates.

 Proof. Let

 el (S) = el I(S) + F12(S)
 with

 3' I(s =C,M 2 1' D If 2s 1+z s d = MTs2 + C1| IDfIIfIs sd6

 + C1 1 o f (s,5 0)Is + IDfI3 + If 12)-2+2e)sd dO

 '12(S) = CIds dM(Ts7) + C1 L IDf I3If Is dO.

 As a consequence of (52), (53), and (54), we have the following

 (57) Fl I (s) < C' D +'(s) + S2eD(s)
 Thus

 j ds) ? r (DY(s) +ST ds-
 r TA D(s) ds < |C' (D(2)+A ds

 < CII | 2y- I-A + ST-I-A) ds

 (58) < C2r(Ao-A)

 by the assumption on AO
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 As to the term involving 12 first we estimate If(t 0)I < Lip(f IBt)t < t
 and IDf (t, 0)1 <D T(s) 0 < t < S. Thus

 (59) f 2 dt < C' (D'+(s) + D (s))

 Using (59) and integration by parts, we have

 r1? K2(S) d
 j +A ds

 =(rAD(r))- f 2 1(S) ds

 + J sD(s)) t lg'l2(t) dt ds
 < (rAD(r)) 1 C' (Dl+'(r) + D I+T (r))

 +j (+A + -A D2(S)) (D'1 +(s) + D ?(s)) ds J(s D(s) s D ()
 fr (1DY(s) +DT(s) D 12(s) D'(s) DT/2(s) D'(s)'1
 = Jo kt SA + s A D1 Y/2(S) S A D1-T/2)

 < C2DAO/2(r)

 by using the fact that DC(s) < CS2C which is a consequence of (54) and the
 assumption on AO

 As to part (b), we let

 F2(r) = C?21 (r) + F22(r)

 with

 21 (iB 2S- 2+2e + If I IDfIs- 1+6 + IDf 13) d5

 Br + 1?11y fSle dy 2 1' 2f l-12e Z

 + C2M(Tr ) C

 F22 C2 |0 I1?fS+sDl) dar + C2rdr M(T2)

 We notice most terms in 2 are the same as in ?I and we indicate how to get
 the others. The additional terms in e21 but not in ?I are

 A(r) = L I lDf Is- +" d 2 + LBr If2S- 1+2e X
 rQ . r
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 and the following estimates hold for A(s) by using Cauchy-Schwarz inequality

 and the height control estimates Theorem 7.1,

 A(s) ? (f If2 t dY ) l( IDf2d2) /2 | + If fs

 (15 -2+28 ) 1/2 1/2 1
 H(t)t dt ) D11 (s) +H(s)s- l+

 (60) <C ((I D(t)t l+ dt) D12 (s) + D(s)se)

 < C's"D(s)

 Using (60) then

 | A( ds < j s ds
 os D (s) o

 (61) < CrA-

 The additional term appearing in ?22 not in t12 is the following

 (62) B(s) =j I o f Is dy.

 We integrate by parts to get

 fr B(s) -1 r I
 105 +AD(s) ?(r D(r)) js B(s)ds

 (63) lo Jr Dts)d Q f

 (64) =1 + J2 -
 We use (62), (H2) in ?4 and height control estimates to get

 |t- B(t) dt < | I7 ? f lt-1+8 dY2

 (65) < If12t-2+2e do'2 + D1'+(s)

 It will not work if one tries to put this estimate directly back into (63), instead
 we do the following:

 Using the height control estimates, we see

 J1i < Cr

 As for J2,

 fr( A D'(s)\ /+7 f 2 2+2e 2
 1 J21? ik s' +Ds + ) D (s) +IBf I t dY) ds

 o s D(s) + D2(s)

 < CDy12 (r) + J3 .
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 Use the fact that ((s D(s))')' is negative, since the function is decreasing to
 get

 fr(l \ 2 2?2e 2 J3 = Io-(s D(s))IBds

 s= (r) ' I IIffl2t-2+2e d-?2

 jr 1 f If I-2+2e 2 ds
 o S D(s) as

 < SAD(s) fI fs d2 ds <; AD Is CD(s)s +2ds

 < Cr d Combining the estimates for J1 J2, J3 we get the estimates for (64), thus we
 have the estimates for ?22 to conclude (b).

 Proof of Theorem 8.1. We prove the theorem by calculating the derivative of
 K(r) to establish a differential inequality. For almost all r,

 K' (s) = D2( ) (( ((s) D (s)Hs)D )

 D-2(2f) (ff )dD(s). (S)DI(s))

 = sDI2 (2f (ff5) sdD(s)

 -2H(s) f jfsj2sd6 + H(s) / (ftl2 - f 2))

 ? sjs)2 (2 (s)D(s) +s2H(s)2( ))

 The last inequality is obtained by using Lemma 8.1 and the squeeze deformation

 Theorem 5.1. So

 K' 2(S)?2()K (s

 K2H(s) (s< sD s + H(s) . _

 Or we can write this as

 (66) (K(s)-2 f) & 'dt) < e-2 2L Fs/DD(()sd ( )/ D(s)
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 which is the same as

 -2.~() ? ( s __ 4S s (67) (K(s)e ) < 2e- (s) < I (s)
 sD(s) - sD(s)

 by using the definitions of v , and their properties in Lemma 8.2. If we
 integrate this inequality, then for 0 < s < r,

 ds F
 K(r)e-2q(r) - K(s)e- 2(s) < 4 I D(s) ds = 4V(r) - 4sV(s)

 which is the same as

 (68) K(r)e 2(r) - 4V(r) < K(s)e 2 -(s) _4-Vs(s)

 Hence the limit lims_0 (K(s)e 2-(s) - 4.V(s)) exists. As a consequence of
 Lemma 8.2, we know that

 limY (s) = 0, limp9(s) = 0

 so the limit
 lim K(s)

 exists. From height control estimates Theorem 7.1, we conclude that

 lim K(s) oo0.

 In the next section we show that if

 lim K(s) = 0,

 then the current T coincides with the center manifold N near 0.

 9. ORDER OF CONTACT REVISITED

 In ?8 we proved that the order of contact of the multiple-valued approxima-
 tion function to the area minimizing current with the center manifold is well
 defined.

 Here we show that the behavior of this multiple-valued function is some-
 what similar to the analytical function: The order of contact N = K' -
 limr oK (r) is finite unless the current coincides with the center manifold
 itself. In that case the regularity problem is already settled since the center
 manifold is a C3 ' branched disk.

 We prove the following lemma first.

 Lemma 9.1. Let 0 < A < 2 min(y, r) with y ,r appearing in ?4. If K = 0,
 then

 K(r) < 2D A(r).

 Proof. It is done by using the monotonicity result in ?8. There we proved

 K(r)e '2(r) - 4Y(r) < K(s)e- 2(s) - 4s1(s)
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 for r>s> O. If we let s -O, then

 lim K(s) = K = O, lim /(s) = O. s--O s vo
 So

 K(r)e-2_q(r) < 4sl(r)
 Using our knowledge of S7 from Lemma 8.2, we conclude that

 (69) K (r) < &8X(r)

 when r is small enough. Thus it is enough to prove

 (r) < F2D (r).
 Notice that V(s) involves the height integral itself. Small K(s) leads to

 small ?I hence small X(s), thus makes K(s) smaller, thanks to (69).
 Now we verify this idea by analyzing the error term ?I (s) from the squash

 deformation in detail. Applying (H2) and (H3) in ?4 to ?I (s) defined in The-
 orem 4.1, we obtain

 (r)= f D(s) ds
 JosD(s)

 1 (f 2 f 2+2e 2 D+T
 JosD(s) kB ~ i'+D+()

 +j sD(s) (fBjIDfI3If + IDfIIfI s 1+e)sd6+ s M(TS2))

 < j sD(s) K(t)D(t)t 1+2e + D1+ (s)) ds

 I ( ( 31fl I + IDfIIfI s2 )sd +sd M(12) ds

 I sD(s) (S 1+2e d +T(S) dS

 + jo (D (s)D(s + K(s)ss + D(S) d M(T2)) ds

 <-sD(r)+D (r)+s D(s)ds

 We estimate the last term in the last inequality by using integration by parts

 and (52),

 D(s (sD(Ts)d K=(sTs ) +J|M(Ts) Ds

 < C D (r) + j Ds +YD'(s) ds

 =M cdD (r)+ )( ))
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 Putting back this estimate, then

 r e r6 D/2 _ r_
 s/(r) <vl(r) (e+ e)+D I (r)+C3 KD7(r)+D(r))

 When (r 2/2e + rC/e) < 1/2, we move the first term on the right to the left side
 and the lemma follows. Now we are ready to prove the theorem.

 Theorem 9.1.

 K = lim K(s) :$ 0
 s--O

 unless the current Tr coincides with Nr for small r > 0.

 Proof. We use the formula obtained from the squash deformation to show there
 is a contradiction if K = 0 and D(r) > 0 for all small r > 0.

 D(s) < / (f, fs) dX + 9 (s)

 - (fDB5 It ) (S2 1/2 )If (1/2 <'JOBS s dO1 '\ s J2sd +?

 < (H(s))1/2 (D'(s))1/2 + g (s)

 < D A2(s)sD'(s) + D-/2 H(s) + I(s)

 by Cauchy-Schwarz inequality. Using

 K(s) < r2D

 which is equivalent to

 H(s) < sD' +A(s)

 we have

 D(s) < F2D 1 +A/2 (s) + DA12 (s)sD'(s) + 9e (s).

 When s is small, move the first term on the right to the left, then for C > 0

 S - IA1/2(S) + CsD (s)
 We integrate this inequality, then the following holds for 0 < s < r for small

 r ,

 log (r) < 2 (D '2(r) - DA12(s)) + _V (r) - (s)

 (recalling the definition of ? (s) in Lemma 8.2). Let s go to 0, then we have a
 finite number on the right and positive ox on the left, an obvious contradiction.

 So we have D(r) = 0 for small r > 0, assuming K = 0. From the height
 control estimates we conclude that

 H(r) = 0
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 for each small r > 0. So the part of the current T,1 which is in the graph
 of F + f lies on the center manifold. Using (H3) in ?4, we conclude that
 the whole current Tr lies on the center manifold for small r. Since (9Tr is

 supported in NP I(9B,) we conclude that T7 = kffNrI where [Nr] is the
 current associated with Nr.

 10. RATE OF CONVERGENCE

 From ?9, we know that the function

 N(r) = K 1 (r)

 is a well-defined function for sufficiently small r > 0, and

 N = lim N(r) 5 O
 r-+O

 unless Tr coincides with N>, in which case we need not to do anything further.
 So we shall assume that N < x. The fact that N > 0 is already known
 following the work on height control estimates.

 The result in this section is essential to this paper. We prove the following

 estimates for the rate of convergence for the function N(s) which defines the
 order of contact.

 Theorem 10.1. Let 0 < A < I min(e, 7y , c T), then there is a constant C such
 that

 IN(s) - NJ < Cs'

 for each small s > 0.

 In the next section we shall use this estimate to prove that the normalized

 sequence of the approximation function restricted to &Bs uniquely converges
 to a multiple-valued homogeneous function. The estimate is obtained using the

 comparison surface constructed in ?6.

 There we show that for any r small, we have a g with the same boundary
 values as f and its Dirichlet integral can be estimated by

 D(r, g) < (1 + Cr)D(r ) + CrH(r).

 Here the function

 p: Br __QKJ(R2?mx {0})

 is the multiple-valued harmonic function with the boundary value f. Using
 the expression in ?6 defining the function p, we obtain

 L +o

 (70) 1 ID P12 dy2 =C E j(Zlj 12 + -I 2)
 Br 1=1 ~~j=O
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 and

 (71) fBr~~ 2 L 00 .2 (71) | | |r df = -E c/ KJ ,j+ 4l)

 H(p, r) = ! If I2r dO

 L 00

 (72) =r Ec, E KJi(Izij 12 + 10l/i2)
 1=1 j=O

 We first prove the following elementary algebraic fact:

 Lemma 10.1 There is AO > 0, just depending on K > 0, such that for any
 0 <A < AO the following holds:

 .2

 KJ -K KJI > (2K+ A)(j-KKKJI)

 for jEZ+U{O}.

 Proof. It is easy to check that there is Ao > 0, for any 0 < A < AO and for any

 jeZ+U{0}

 we have either

 (73) j = KKJI or I - KKJI ? > AKJI.

 If j < KKJ1, then

 j + KKJI < 2KKJI < (2K+ A))KJ1

 and

 j - KKJI < 0

 so

 (j + KKJ1)(j-K KKJI) > (2K + A))KJ ( j-KKJI),

 (J K 2KI) > (2K +A)(j-KKJ1).

 If j> KKJ, then using (73), we know that

 j + KKJ, > 2KKJI + AKJ/

 so

 (j + KKJ1)(j- KKJI) > (2KKJ1 + AKJI) (j- KKJI)

 J - KKJi) > (2K + A)(j - KKJI).

 Combining those two cases, we have the desired result.
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 This inequality enables us to get the following:

 Lemma 10.2 For the function p constructed in ?6, we have that for any K > 0,
 there is Ao > 0 such that for 0 < A < AO the following holds:

 D( )?(2, A) (sf - | < s do+ K(K +))(PIS))

 Proof. Using the expressions (70), (71), (72) and applying Lemma 10.1 to every
 coefficient in those expressions, we obtain

 S BS sdO-K S( ) > (2K+A) (D(pi,s)-K S
 which is equivalent to the Lemma 10.2.

 Proof of Theorem 10. 1. Since g|0B, = f lB,'

 I' 0g2 fo f2
 sd6= - sdO SB 5OB, S

 From the definition of g in ?6 (6.2), we see immediately that

 -T|o| dZl < 90 dgo| I
 d)s S d)s S

 H(-p, s) < H(g, s),

 since pJ is the projection of g into the tangent space ToM. Using Lemma
 6.1(b), Lemma 6.2(a), Lemma 10.2 by setting K = N and choosing A <
 2 min(e, y,a,), we have

 D(s) < D(g, r) + 3(s)

 < (1 + Cs)D(p ,s) + CsH(s) + ?3(s)

 <(1+ CS) f6 2H0\) +s()~s
 < 2N+A S5 |, S sdf + (N +A)N S ) +CsH(s) + 3(s)

 - 2N+)~ k\IOBf 2
 <2(I + Cs) ( D (5)+ J)B(SI Ifts l)S df + (N + A))N H(s)) 2N+)L 2 2J0 S S

 (74) + CsH(s) + ?3(s)

 < (2 + ) 2D/(s)+ (N+A)N (s ,+CsH(s)+ 3(s)+22(s)
 the last inequality is obtained by using Theorem 5.1. By rearranging this in-
 equality, we have

 sD'(s) > (2N + A)D(s) - N(N+) H( ) 2 s
 (75) - C (sH(s) + 922js) + e9'3(s) + sD (s))
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 Let

 (76) t4(s) = C (sH(s) + sD(s) + ?2(s) + ?3(s))

 Multiplying by H(s)/s on both sides of (75), we have

 H(s)D'(s) (2N+ )D(s)H(s) -(N+ )NH 2(s) H (s)

 so

 D2 (s) _H(s)D'(s) < D2 (s) (2N + A)D(s) (s)
 (s) - 2 ?D (s) H2 s) H (s)

 (77) + (N+ NH s) + , (s)

 Using Lemma 8.1 and (77), the derivatives of K(s) can be estimated by

 K'/(s) 2 = fOB 2 (f, f,)sd6D(s) - H(s)D'(s)
 sD2 (s)

 - D2 (s) - H(s)D'(s)/2 + (s) 2 ~ ~~+ I
 sD2(s) sD(s)

 1 (2 H(s) _ s_
 < sD( (D (s) - (2N+)A)D (s) +(N+A)N S2

 1 H(s), 97,(s)
 (78) + sD2 (s) s g4(5) + sD(s)

 The first term on the right can be rewritten as

 1 2 HN +2Ds' H()s__
 sD2 (s) (D2(s) - (2 )()s + (N AN 2

 (I (-(2N + A)D H(s ) + (N + A)N ( H(S)
 s ( sD(s) (sD(s) )

 = -N (K(s) ((N + A)K(s) - 1)
 5 N\

 by definition of K(s). Putting this back into (78),

 K (s) < -N (K(s) - I ((N + ))K(s) - 1)

 (79) + 1 H(s),(S)+ 1 t(s)
 sD(s s ()+sD (s)I

 Using the monotonicity of K(s)eZw(s) - 4s? established in ?8 and Lemma 8.2,
 we have
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 for s small enough. Since (N + A)K(s) goes to (N + A)K = 1 + AK, there is a

 4 > 0 such that

 (81) (N + A)K(s) - I > (I - ,)AK > O.
 As a consequence of (80) and (81), we have

 ((N + A) )K(s) - 1 ) (K(s) - K - 45{(s) - (s))

 (82) < (1 - ) AK (K(s) - K - 4s(s) - 4,(s))

 which is the same as

 (K(s) -k) ((N + ))K(s) - 1)

 (83) < KA(I - c) (K(s) - ) + CsNI(S) + C (s).

 Using (83) to bound the left side of (79), we have the following differential
 inequality:

 (K(s) - K)' = K'(s)

 < -KA(I - )N (K(s) -N

 (84) + K(s)'I (s) + 1F.(S) + C +() + C ( ) S)D-(s) s D_(s) I S S

 Using KN = 1, the fact that K(s) < C, and dividing both sides by 1 IsA(
 we finally have

 d (K(s) - K )< c 4(S) + F, (S)
 ds 5A( I-O) J - S' D (s)

 (85) + C (S) + 'q (S)
 S 1+A

 Using Lemma 8.2 and the choice of A, we know that

 _v(s) M(s) 921(s)
 s+A sI+A sI+AD(s)

 are integrable over (0, r) for small r . As for h4(s), by definition

 (86) X4(s) = C (sH(s) + sD(s) + F2(s) + X3(s))

 Obviously
 sH(s) + sD(s) + F2(s)

 s'+AD(s)
 is integrable as a consequence of the height control estimates Theorem 7.1 and

 Lemma 8.2. From the definition of F3(s) in Lemma 6.1 and using Lemma 6.2
 (c) we see immediately that X3(S) can be bounded by F (s) + F2(s) . Thus

 X3(S)

 s+A D(s)

 is integrable over (0, r) .
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 We integrate (85) over (s, r) for small 0 < s < r to obtain

 (87) K(r)-K < K(s) - K C

 which leads to

 K(s) -K > C'si(i(

 where the constant C' depends on r > 0, but we fix this r. On the other hand,

 following the monotonicity we have

 K(s)-K < 4.sV(s) + 4W(s) < Cs

 by Lemma 8.2. Hence we have

 JK(s)-KI < CsKj

 which is equivalent to the statement in the theorem, since N(s) = K 1(s) and
 N #4 oo.

 11. TOWARD UNIQUENESS

 In this section we prove one of the main results of this paper, that is the

 uniqueness of the limit of normalized sequences defined over the branched

 center manifold. This is the key step in separating the current near any singular

 point. The other fact we need is the pointwise convergence of the sequence
 which is proved in the next section.

 First we have the following theorem, which is a consequence of the theorem
 in the last section and which gives more evidence of the niceness of the multiple-
 valued function approximating area minimizing current.

 Let E, y, a, T be the small positive constants appearing in ?4, and let N be
 the order of contact defined in ?9.

 Theorem 11.1. There exist positive constants ho, do, such that for some constants
 C > 0, A < 3 min(EJ y, a, T) and for each small s > 0, the following hold:

 H (s) D____ <c 52N+1 ho| < Cs 2N Ds <dCs

 In particular, both

 lim (s) lim D(s)

 exist.
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 Proof. It is proved by calculating the derivative of log(H(s)/s2N+ ),

 d log (HNs ) = d (log (H (s) -log(s 2N))

 = H(s) |B( (s0),fs(s,0))sdd 2 -2

 2D(s) + (s) 2N + I
 H(s) H(s) s

 _ 2 sD (s) N + sD (s) eI (s)
 s H(s) H(s) sD(s)

 = -(N(s) - N) + H(s) s, (s)

 Using Theorem 10.1, estimates on _ (s) in Lemma 8.2, and the fact that

 N(s) = sD(s)/H(s) < 2N for small s, we have

 |dt log H(t2() )|< C + 2Nt 9,(t).

 We integrate over (s, r) for small r, s > 0 to get

 f8) r d 1 / H(t) dt < 2C (rA-S +2N(V(r) (s)),

 (H(r) S2N+1I 2C Ai A
 (89) log <r2N+1 H(s)) | y(r -s ) + 2N(s(r)- (s)).

 From this we see that
 H(s) -2Cs0A7-2N.V(s)
 52N+ e

 is a decreasing function and

 H(s) 2CsA/A+2N.(s)
 52N+ e

 is an increasing function, so

 lim H(s) = #o540 S 5mO 52N+1

 unless H(s) = 0 for small s > 0. Using the fact _V(s) < 5A and the mono-
 tonicity of the above two functions, we have

 ho < H(s) e2Cs0A/A+.(s) < H(s) (I + Cy)
 S2N+1 e N

 Also

 ho > H(s) e-2CsA/IA-5(s) > H(s) (1 - s ), h0? 2N+le - ~2N+1 C)
 so we have

 H (s) _ h <C sA
 52N+1I 0 -
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 Since

 D(s) sD(s) H(s) N H(s)
 s2N - H(s) s2N?+1 s 2N+1

 H(s) h<cf 2N+I -h0 ?Cs
 5

 and

 IN(s)-NJ < Cs?
 the following holds

 D(s) _Nh < C"/sA
 2N 0 Cs

 S

 in particular

 . D(s)

 S-O 52N 0

 exists.

 Using Theorem 1 1.1, we can prove the following:

 Theorem 11.2. (1) There is a multiple-valued function g defined over &BJ such
 that for small s > 0,

 j2 ?2 (f(Nj) ,g(6)) dO < Csa

 with constants C > 0, A > 0, where A is the same as in Theorem 1 1. 1.
 (2) g(s , 0) = sNg(0) is a strictly multiple-valued N-admissible function.
 (3) The function g minimizes the Dirichlet integral among all the N-admis-

 sible functions (see Definition 3.10).

 graph(F + g) is a multiple-sheet covering of the branched center manifold
 N = graph F.

 Remark. The third part relies on the pointwise convergence of the sequence

 to g, which is proved in the next section without relying on this part of the
 theorem (also see the end of the following proof).

 Proof. Let 3' denote the distance function on the space QKJ(R 2+m+) as de-
 fined in [A], the map

 : QK(R 2m+n) - (2+m*n)n(J)

 mentioned in ?3 (modified version of the map 4 defined in [A, Chapter 1.121)
 is the isometric map between this multi-valued space and a subset of the vector
 space of high dimension. For some of the properties of 4 one can look up ?3
 or [A] for more details. The following calculations adopt the conventions for
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 754 S. X.-D. CHANG

 N-admissible functions as mentioned in ? 3 after Definition 3.10.

 27n 2 (f (s j) f(rj)) d

 ?CJN ___ N dO S N r < g 7 l< ol f (S, 0) - o f (Nr 0)2|d

 < ,, N, N 4?4( ) t d^y
 < Nj r (oftt6)) | dt)dO

 =J/27rr-s (jr (v/?f t' n2

 < -(r - s,) (4o f )(t, 0)) 2f dO (t,f)1 )dt) d

 - o27r (fr ( ptt 0)f 2

 _ f(f (t .6), f t(t , 6)) + N2 jf (t , 8i|) dt) 6

 -N t2N+ t2N + )I

 The last equality is obtained by using the properties of the map 4 mentioned
 before Definition 3.2. We change the order of the integration to get
 j*272 ( f(s tO) f(;1r:~) dO)

 < (r-s)J (j| ((')2N --N + N2 f ZNj21 ) dft) dt

 (90) = (r- s) J, (S, 2 ( -2N (t) + N2 H(t) ) dt

 (91) +(r-s), 2+ N2())d

 ] t~N22NN?2Idt2N

 The first part in the last inequality can expressed as

 (r-s)j / 021 2 N (f (t) I t-t ((t) )) dt

 (90) (r - s) ~ 2N?2 - N -tD) dt
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 If we let s = 2r and use Theorems 10.1 and 11.1, then

 (r -s)j (1 (D(t)) N2 D(t) (K- K(t))) dt

 - 2j;l (r (t2N ) + 4 2 tA) dt

 <1 D(r) D(s) | +

 < r2N s2N +Cr
 if A

 <C r

 by using Theorem 1 1.1 again for the first term involving Dirichlet integral. On

 the other hand we already know from Lemma 8.2 that

 (r s)fIs ((%t5N+2 ) dt = (r-S) ( (t) + (2(t) D()) dt

 1D (t) D2 (t) ) K (t)I

 t2N) t2N+1 t N+2

 which implies

 (j2lr I~~~~~ <C'F

 I lo (rN . (r/2)N - I
 By replacing r by r/2 , we obtain

 27t 2 f(r/2",6) f(r/2k+l 2 61d1/2 A/2
 [27T2 (f /k) __________) d ) < C'r

 Hence

 (fj2>7 g 2 (f (r, )) f (r/12 0k ) )df) <C1ZG2)
 \JO ~~r(r/2 E)2

 Ai~/2
 (92) < C1 r

 This is enough to conclude that the sequence {f (r, )/r } for small r is a
 Cauchy sequence. Therefore there is a unique limit

 g: OB I+ Qkj (R2+m+n

 and

 (93) lii m2j 2 (f(s 0) ,g()) dO < CA.
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 By passing to the K-sheet covering disc of Br where fo is defined, it is easy

 to see that the sequence O(pK, }O)IpKNI converges to some function gO, we
 conclude that the function

 g: Br -QKj(R 2+m+n

 g(S, 0) SNg(o)
 is an N-admissible function. Using the properties of L2 convergence which are
 valid for multiple-valued functions as well, by applying the map 4 mentioned

 before, we have

 | Ig(6)I2 dO = lim fN 2 do = lim H(s) = #0ho .

 So the function g is not a trivial function. Furthermore, the function is a

 strictly multiple-valued. This can be proved by the following argument. Using

 the centering hypothesis (H1) in ?4, we have

 1o f (s,6)j sdsd6 <Cl ]B If(' 0)12SI+e sds dr + Cl rD (r)

 From this we get

 N+2 2ir

 N+2 lo o ?g(O)l dO
 r

 < I a O g(s, 6)jsds dO

 Br

 Br +| iPof(s,6) -sNllog(o)Isdsdo

 <C j f(s 6)12 s-1+sds dO + C1rD Y(r)

 + C' | (f (S , 0), SNg(0))sds d6

 r 1+6 ~~~~2N 1+y
 -C H(s)s ds + 2C1r(dor )

 + Vr r '(f(s ) g(0))sds d)

 2N+1+e

 < 2C1h 2N + 1 +6 +2Ci r(dor )

 (j 2N (fo27r 2 ( Sj) 1) ))

 r2N+ I +e 2N + r2N+2 1/2
 < 2C1h02N+ + +2Clr(dor2N)1+ /+Wr(rCr 2N+2)
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 The above holds only when

 2r2

 fIlqogIdO = 0.

 Since we already know that the function g is not trivial, we conclude that g is

 strictly multiple-valued and its lifting to the K-sheet covering disc is also strictly

 multiple-valued following the definition of I o g I for N-admissible functions
 (see Definition 3.10).

 Thus the graph(F + g) defines a strictly multiple-sheet covering of graph F.

 This function g actually takes values in QKJ(R2+m x {0}) for the following
 reason.

 As in ?6,

 p=P + (D(f), pEMnB 2+m
 So we have

 Fi(x) + fi1(x) = Fi(x) + f ij(x) + FD(Fi(x) + f (x)),

 Fi(x) = Fi(x) + (D(Fi(x)).
 By omitting the lower indices, we can write

 f = f +D(F + 7)-?(F)

 f 7Ff(F)7 +CIf I2
 = f +R.

 The last part is obtained by using the Taylor expansion of (D. Using the as-

 sumption on 0 and knowledge of f, we have

 I(Di(F(s, 0))l < CS, If (S, 0)I i cs.
 Thus

 2t| R(s, O) 2 dO < (CS)2 f f(s ,) dO < 2h0(cs)2

 with ho in Theorem 1 1.1. So the projection of the sequence of the functions

 {f (s, 0)/SN} in the normal direction of ToM go to 0 with the rate of 0(s 2).

 So the limit function g takes values only in ToM = R2+m x {0} c R2+m+n
 As to the fact that g minimizes the Dirichlet integral, it can be verified by

 using the area comparison Lemma 6.1 and the pointwise convergence proved in

 the next section. The idea is to show that if there is an N-admissible function

 h which has less Dirichlet integral, then the savings in the Dirichlet integral
 can be translated into the savings of area to contradict the assumed fact that

 Tr is area minimizing. The pointwise convergence theorem in ?12 guarantees

 that there is a integral current S so that

 S = (F + f)O(Br) - (F + g)O(Br)

 with M(S) < CrN? a > 0.
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 The readers may also consult with [A, Chapters 2 and 3] for additional in-
 formation.

 12. SEPARATION

 From the previous section we know that the normalized sequence has a well-

 defined limit and the convergence has a certain rate. Here we prove that the

 convergence is actually pointwise. This result is crucial when one tries to sep-

 arate the current. It is well known that the L convergence does not imply
 the pointwise convergence, but with a certain extra condition, it is true. In

 particular, we have the following:

 Theorem 12.1. Suppose h : Br {O} -p RK is locally Lipschitz and that there
 exist constants a > 0, b > 0, c > 0 such that for small each r > 0 the following
 holds:

 (94) ' Ih(s, 0)l2sdsdO < cr2+4a,

 -b

 (95) Lip(hIBro Br) < cr
 (96) l iDh(s,0)2 sdsd? < clxla.

 (x ,IxI1+a)

 Then Ih(s, 0)i < Sa/4

 Proof. Suppose that lxl is very small and ih(x)l > ixia/4. Let

 S = {y E B(x,lxl )+a Ih(y)l > 4jxi a1}

 We estimate

 jXIIa/2 2(S) ? Ihfh2 dy2 < Ihi2 dy2 < cI2xi2+4a
 B(x.}xll+a) B(0,2x)

 by (96). So
 2 4+4a 2?3a

 ?(S) < 2 c12x I

 Also

 2(B(x, Ixl +a = lXl2+2a

 which implies

 (97) 2' (S) < c23+a lxa
 592 (B(x ,iXiI+a)) -

 Let Q c SI c R2 denotes all wi E S for which there is lxi1+a > p(w) > 0
 with

 Ih(x + p(wj)w))l < I ? Xja14
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 Applying the estimates on S we conclude that I (Q) > 7. Using Rade-
 macher's theorem we obtain for almost every w e Q that

 /Xa4 < |h(x) -h(x + p(oj)))

 rv(c)
 < I IDh(x+tco)Idt

 x ++++Ja+b lxl I+a

 < | iDh(x + tD))h I dt + |lh(x + t)t dt

 2 X 1+2-+b t

 + I 1/2+ 2 /1/2

 x+ )Dh (x +tco) I tddt
 XI + ((k ) o(2ai

 The last inequality is obtained by using the condition on Lipschitz constant
 (95) and the Cauchy-Schwarz inequality. Since the above inequality is true for
 almost every to E LI, we integrate over LI and get

 2t |X| / < 2 b+1C7rlXll+2a

 + log( 1I+2a+b}) IQI I IDh(x +tco) 2tdt) dco
 2a~~~~~~~~~ 1/2

 < C7Z|Xj2 + ((-k -a) log(lxl) . CjXja)

 If lxl is small enough, then

 0 < -(k + a) log(IXI)IXIa/4 < I

 hence

 iIXa/4 < 2c7rIX12a + (clxl 3a/4) 1/2

 This is impossible for small lxi.

 With this we can prove the following:

 Theorem 12.2. There is a constant C > 0. For afixed 0 < A < 4 min(e, y, a, T)
 and for each small s we have

 f (s, 0 cisi/16
 N(A g (0) < clSI'

 Proof. We let

 h(s ) = g o f (s, H) _ g(f)
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 From Theorem 11.2, and the Lipschitz condition on f we can see that condi-
 tions (94) and (95) can be satisfied with k = N. We need to check the third

 condition. We let a = A/4 and let

 U=(, x + lxl |1+a B(Ol IXII1+a ) B +(x, IXaIa)

 Then

 f ,Dh,2 d5'2
 JB(x ,IxIl+a)

 fJxxIa (|D ;?f |+ JX o g|2) dA

 < (D f(SN 0) + Dg(0)1) sdsdO

 I fsN 2 (fs f)N 2 + f S2 52 l 2 < ~~~2N+2N + N+2 +N 2 2N sds dO S2N S S22 S2S2

 +J IIIgl2sds dO

 JX + X (K D (s) )+2 H(s) + 2_ (s) XIIxI?II+U 12 f2N2272t + - ds J gS2dO
 IXI-IxI+a s

 1+a A x + ~lx +a
 < 2c2(2XI + lxl ) + 2holog (Xl + Il+a)

 +j27 Ig6l2dO log X +

 Since

 log X +X+a 1? log(l + 31xl a) < 4xa kHi - x +I
 we get

 J 12 dy2 CIXIa
 B(x ,xI I+a dI<)

 Thus we have
 f( (S, 0 ) a(1 ) c

 After replacing a by A/4 we have the desired result.

 Let

 Y ={p E R2+m+nj3x E B,, p E spt(F + g)(x)}
 and

 Wa(Y;) = {p E R 1]3q E dist(p, q) = dist(p, Y) <P
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 Theorem 12.3. (1) For 0 < a = A/20 and each small r > 0, we have spt Tr c

 WN+a (Yr')
 (2) The surface defined by graph(F + g) is a branched disc as smooth as the

 center manifold N = graph F itself and is a multiple-sheet covering of N .

 Proof. It is enough to show that spt Tr - spt TrJ2 C WN+a for all small r > 0.
 If p E spt TrF where 7r is defined in ?4, Assumptions, then p = Fi(x) + fi1(x)
 for some i j and x E Br. From Theorem 12.2, we know that

 dist(spt(F(x) + f (x)), spt(F(x) + g(x)) < CxN+1k 16

 Thus p E WN+j/l7 for small r. When p E sptTr, if p f WN?A120, then the
 Ths P W IpN+/20) Troutside of WI hence a of 2 support of F L B(p, lies pardeo N+I7TFr

 From monotonicity of area, we have a constant C(M) depending only on
 M such that

 M(T L B(PJ IpIN+A/20) > C(M)Ip12N+AIIO > Cr2N+?I'O

 since p E spt Fr - spt Fri2 But from the estimates of F2 in (52), Theorem
 1 1.1, and the assumption on A, we have

 M(FT) < D +(r) < Cr2N?2

 to contradict the above inequality when r is small enough.
 This enables us to conclude that Fr separates along the different branches of

 . The support of the current goes to the surface V' very fast.

 Since we proved Theorem 12.2, (3) in Theorem 11.2, is now valid. Thus g
 minimizes the Dirichlet integral. Using Theorem 12.3, Corollary 3.1 and the

 assumption that T is locally irreducible, we see immediately g0IOBt must be
 a single elementary function with possible multiplicity. Also from the proof of

 Theorem 11.2, we know that go is a strictly multiple-valued function. Thus
 F +g is a branched disc which is an admissible surface and covers N more than

 one time. From Theorem 12.2 we know T is in an admissible neighborhood

 of graph(F + g) . Using the regularity of multiple-valued functions minimizing

 the Dirichlet integral, we know g is smooth except at the branched point 0.

 Since F satisfies the estimates as in Lemma 3.2 and comes from Fo which is

 C3 3, sO graph(F) is the C3,E image of a disc. Thus (F + g)Br is the C3',
 image of a disc.

 13. APPENDIX A

 In order to prove the regularity result we assumed the existence of the
 branched center manifold and several conditions on the approximation function
 (see Assumptions in ?4). In the remaining part of this paper we verify those
 hypotheses.

 The discussion in this section is only for two dimensional currents. In [FM],

 F. Morgan proved that any area minimizing cone in Rk is a union of planes with
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 multiplicities and any two of such planes intersect only at the origin. Using this,

 B. White proved that the area-minimizing current in Rk has unique tangent

 cone at any interior point.

 We are going to generalize those two results to area minimizing currents on

 Riemannian manifolds and give a pointwise convergence estimate.

 First we embed the manifold M into R2+m+n , where 2+m is the dimension

 of M. Assume 0 E sptT , sptaT c M and ToM = R2+m x {O}. If {AiJ
 is a sequence of positive numbers such that Ai -? 0, then according to [F],
 there is a subsequence, let us say A) itself, such that u(l1A )1T L B,2+m+n)

 converges to a cone To in R2fm+n under the flat norm. We are going to give
 necessary refinement in the following theorem so that we can apply the results

 of F. Morgan and B. White.

 Theorem 13.1. The cone To obtained above is area minimizing in the tangent
 space ToM . Hence F. Morgan's result applies to To and

 To= En T.
 j=1

 with nj E Z+, planes {Tj} and T1 n T., = {0}.
 The tangent cone To is unique in the sense that it is independent of the choice

 of the sequence Ai .

 Proof. Let 0 be as in ?3. We define

 2+m n (A B2+m R2+m+n

 by  =8( I/A) oo8(A): B2+m+n Rn
 and

 (. (X)= (x , (x))
 Obviously if

 lo(x)1 < lxi2 IDk(x)l < lxi
 for xB m(O, 1), then

 (0AX)I < A2lxi2 IDO(x)l < Alxl
 and

 2+m n

 graph(O.) = image((D.) = MA = M(I/A) )(M n B x R )
 The proof of the fact that the cone To lies in the tangent space T0M is easy.
 Since

 spt p,(I IA) (T L B2A + )C MA
 = graph(O.)

 C B2+m (01)Bn (O22
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 so when A -O 0, we have

 spt(TO) c B 2+m(0, 1) x {O}.

 We denote the projection map onto TOM c R 2+m+n by P. Assume that the

 cone To is not area minimizing in B12+m c ToM = R2+m x {O}, then there is
 an integral current C such that

 OC O To

 and

 M(C) < M(TO) - a

 for some a > 0. Since the sequence of the current

 2?m?n

 TAI -u( 1 Ai) (T L B2++ (0, Ad))

 converges to To in the flat norm so we have a sequence of integral currents
 {S, } such that

 aTI =O(To + S) = N(C + S)'

 with M(S9) < a/4. Since the induced maps (D. and P, on the space of
 integral currents commute with the boundary operator 0 and the induced map

 O1 uP, is identity on the space of integral currents supported on M , we have

 a ((D A'Po(C + SO ) = OTA .

 Also the support of (. Po (C - S ) lies on the manifold M. . Using the fact T.
 is area minimizing in M., , we obtain the following comparison on the areas,

 M( TA) < M(OA1, ,PO (C - SA, ))

 < ( + Ad)m(po(c - SO,))

 < 0 + Adm(C -SO)

 < (1 + Ai)(M(C) + M(SO))
 < ? + Ai)(M(To) - a + a/4).

 Using the lower semicontinuity of the mass (or area) with respect to the flat
 norm convergence and the estimates above, we have

 M(To) < lim M(T1,) < M(To) - 3a/4

 This is impossible. So To is an area minimizing cone in the Euclidean space
 R2+m x {0} and we can apply the result of F. Morgan [FM] to conclude

 To = E n>jS
 j=-I

 where the support of Si is a plane and spt Si n spt SJ = 0.
 The uniqueness follows from [BW] with a little modification. For the com-

 parison surface F constructed in [BW], we use the induced map (D. on the
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 space of integral currents from (D to map the surface F into the manifold M, .
 Then we have the following estimates

 M(D; nF) < ( 1 + A)M(F)

 When A is small enough, it follows from White's estimates that the epiperimet-

 ric inequality holds for area minimizing currents on a Riemannian manifold.

 Hence we have the uniqueness result.

 Next we show that the sequence { T. } converges to To with a certain rate.

 Theorem 13.2. There are constants C, e > 0 such that for each small A > 0 the
 following hold:

 (TA, To) < CA,

 dist(spt(TL B 2++n (0,))), sptTo) <CA' /

 with 7 the flat norm and T. = y(;)O(T L B2++n ).

 Proof. According to [BW], there are constants c e > 0 such that for small A,

 M(&TA) - M(9TO) < cA

 Also he proved that for each small s > 0, the following estimates hold:

 (98) lim M(R"TS/2K) < ci

 where R:Bl+m+n {O} aB OBl'm+ is defined by R(x) = x/lxl and Ts s/2k
 denotes the integral current obtained by restricting the current T to the annulus

 region B 2+m+n(O,s) B2+m+n( s/2k)
 To show the first statement of the theorem, we need to demonstrate that there

 are currents A and B where A c M3(R 2+n+n), B W2(R 2+m+n) such that

 TA- TO = B + 9A

 with

 M(A), M(B) < cAf.

 The construction of A and B. . Let ZI = [3, 1] x TA be the three dimensional
 current in R x R 2+t+n as defined in [F], let d be the map d: R x R 2+tn+n R
 such that d(t,x) = t - IxI, also Ya = {(t,x): t - ?xl > a} where a > 0 is as

 small as we like. We denote the annulus region B 2+m+n(0, s) B 2+n+n(0 , t)
 by A(t, s) . We define

 2+tn+n 2+tn+n
 1:R xRR

 such that la(t , x) = (t - a)(x/lIx) . Also let

 Xa = ([, 1] x (TA L A(3, 1)) L Ya
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 It is obvious that

 OX = (9([v 1] X (TA L A(5, 1)))) L Ya

 +([3, 1] x (TA L A(3, 1)), d,a)
 = {1}xT,LA(6,1-a)

 -[ + a,l]xa0(T L A(O, a)) LYa+(Zb, d, a).

 Thus

 alatXa = RjT'LA(6,1-a)

 -Iaj ([V+a, 1] xOT) L A(O,3)) + la (Z da, a)
 It is easy to see that

 Ia (Z, da a)=TALA(6,1)

 since la(t x) = (t - a)(x/lIx) and t - a = lxI for (t ,x) c spt((Z,,d,a)). If
 we let a goto O,then RT TALA(,1-a) goto R,TALA(6,1),and

 lap([6 + a, 1] x O(TA L A(O ,a)))

 go to To L A(6, 1), hence we have

 04 X = RJTA L A(c , 1) - To L A(c , 1) + TA L A(, 1)

 So when 3 goes to 0,

 ai X = lim RT, L A(, 1) - TO + TA ,5--+O TL(,)T+A

 Welet A= IXo and B=lim,OR:T, LA(3,1),so
 (99) A = B - To + T,.

 From (98), we know that the B is well defined, and

 M(B) < cA).

 Next we estimate M(A) . We still let Z = (O, 1] x TA . First we notice that if Z

 is the tangent space for Z at (t ,x) c spt Z, then Z is spanned orthogonally

 by 0/Ot and T which is the tangent plane for the current TA at x E sptT, .
 Also it is easy to check that the image of 0/Ot under the differential of I is

 perpendicular to the image of T , since one is in the radial direction and the

 other is in the spherical direction. Furthermore at (t , x)

 dl (

 dl (T) = t dR( T)

 where R is the radial projection defined earlier. Hence the Jacobian of I at

 Z i

 (A31, Z (t,X))-t(A2R, T)
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 and

 M(A) f(A31. Z(t ))dlIZ L Y011(t, x) (A~3 t, X)),X

 < J(|t(A Rp T (X)) dl| TA||(X)) dt < cA

 The last inequality is obtained again by using (98) again. This proves the first

 part of the theorem. In order to prove the second part, we let Vb = {X:
 dist(x , spt To) < bIxi 1+e/2} . Using elementary slicing theory and the estimates
 on the area of the current A, we observe that for any small A > 0, there is a

 bA E [l/2, 1] such that

 ,Y(TJ L Vb 0 To) <CA12.

 Thus the sequence T. L Vb, converges to To under the 9 norm. If there is
 p E spt T) n A(1/2,l) such that

 dist(p , spt To) > A?14

 then according to monotonicity of area minimizing currents,

 M(TA L B(p, Ie/4)) /2
 with C(M) depending just on the ambient manifold M. Hence we have

 M(TA) > M(TA L Vb) + M(TA L B(p, I A,/4)

 (100) > M(T0) + C(M)Ae'2

 Similar to the proof of the last theorem, we use BA constructed from (99)

 (where we did not use subindices) to construct

 '4ZP(To - B,)
 with (D, P the same as in the proof of Theorem 13.1. We observe that this

 current is supported on MA and have the same boundary as T., hence

 M(T, ) < M(TAOPO(TO - BA))
 ? (I1 + A) (M( TO) + M(BE))

 ? (I + )(M(T,) + CT)
 which is not compatible with (100) when A is sufficiently small. Thus we have

 dist(spt To, spt T, n At (I /2, 1 )) < A.,/4.

 This is enough to conclude the second half of the theorem after scaling the space

 by A.

 Remark. If we estimate more carefully, we can prove the rate of convergence is

 actually e/2.
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 Once we know that the tangent cone of any area minimizing current on a

 Riemannian manifold is unique and the tangent cone is simply the union of

 planes with multiplicity, we conclude that

 0IM(T L B 2+m+n)
 E)(IITII ,o) =M(To) =limM(L r -lim9E(11jTjj , r)

 --+O r2 r--+O
 is a positive integer by using the lower semi-continuity of mass under the flat

 norm convergence and the fact that T. is area minimizing on M .

 14. APPENDIX B

 In this section, we present some important results of F. Almgren, in particular
 the result of representing area minimizing integral currents by multiple-valued

 functions under certain assumptions on the local properties of the currents. We

 include those which are necessary for the construction of the center manifold.
 All these results are proved in [A] which is certainly one of the longest papers

 ever written in mathematics.

 Before stating those results, we fix some notations.

 Let 0* , M*, and T* be as before with the obvious meanings assigned. We
 have the following bounds on the function q,

 k0*(x)I < /2JxJ2,

 (101) IDq*(x)l < llxl,
 IDJD*(x)l<Ij-l, j=l... S

 B(ir , p , t) is the disc of radius t with center p in the 2-plane Xr passing
 p.

 B(J, p , t , h) is the cylinder with base B(7 , p , t) and height h in the nor-

 mal direction of ir, here we allow h = oo.

 K(x, r) denotes the square in R x {0} c ToM c R2+m+n with sides parallel

 to a fixed coordinate system, center x E R 2, and side length r.

 Ri = R0/2'.
 P ~~~~~~~~~2+mn+n

 P, denotes the orthogonal projection of R onto the plane n . We
 sometime use i0 to denote the plane R2 x {0} which is the same as spt To.

 There exist constants 00, bo > 0 such that if we have a function

 g:B(7 ,p ,3Rk) -R+
 with in - nol < 00 and Igi < boRk , iDg < bo, we can always find

 g*: K(x, 2Rk) -- Rtn+n

 such that

 graph(g*) = K(x, 2Rk) x R n+n n graph(g).

 We define the excess of a two dimensional current S with respect to a two

 plane Xr E G2 by

 EXC(S, r) = J 1P7 -P I2dIISII.
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 Theorem 14.1. Let S = T* L B(7z, p, 4r) x Rm+, and (5 ,B are certain small
 constants. For r > 0, assume S satisfies the following:

 (1) sptS c B(r, p, 4r, l0r1l+), sptOS c OB(n, p, 4r) x Rm+n.
 (2) The excess of S with respect to the plane VT satisfies

 EXC(S, 7r) < 12-r4-

 (3) P,OS = JB(r, p, 4r),
 (4) M(S) - JM(B(7c, p, 4r)) < c .
 Then there is a multiple-valued function

 f: B(7c, p, 3r) --+Qj(R m+)

 and constants C , a , y > 0 such that the following are true:

 (a) B = B(7r, p, 3r) can be decomposed into C, C 2, B = CI u C2, C' n
 2 1
 C = 0. Over C , the graph of f coincides with the slice of the integral current
 in the normal direction, i.e. f (x) = (S , P , x) .

 (b) The set C2 and S2 = s L B2 x Rm+n satisfy

 Y 2(C2) M(S2) < Cl 2+r4+.

 (c) The function f has the following bound on its Lipschitz constant

 Lip(f ) < (1r)Y .

 This is one of the major results in [A]. The readers are referred to Chapter 3
 in [A] for the entire proof.

 For the construction of the center manifold mentioned before, the following

 theorem is important:

 Theorem 14.2. Let f be the function obtained in Theorem 14.1, then there is a
 single valued function g: B(7r , p , 3r) -+ Rm+n such that

 (a) There is a constant C > 0 such that for x E B(7r, p3r),

 Jg(x)J ' Cl#rl+#,

 (102) IDg(x)l < Cl? r

 (b) For any measurable set U c B(r , p, 3r),

 fIof-fgIdy2 < /1 1f12dY52+C1#r 2+
 (c) With the assumption on 7r as before, one can define g*: K(x, 2r) c

 ToM -- Rm+n such that graph(g*) = K(x,2r) x R m+n n graph(g) where
 x = P(p) . Also we define

 H: K(x, 2r) -Rm+n, H(x) = 0*(P,(g*(x)))
 One will see in the next section that this is the mean tool in the construction of

 the center manifold. As to the higher derivative bounds we know the following
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 result from [A]:

 Lemma 14.1. Let Sk = T L B(n , p, 4Rk) x Rm+n I, if Sk satisfies the same
 hypothesis as in the Theorem 14.1 with r there replaced by Rk for k = 1. N,

 let gk be the function in Theorem 14.2 corresponding to fk , then there are the
 following bounds on the functions and the derivatives:

 Igk(x)I < Cl'Rk A, k

 IDgk(x)I < Cl? R k

 ID'gk(x)I <?

 forxEB(7r,p,3Rk), i= 1,...,4, andk=1,..N.

 Remark. This lemma is the key step in [A] to prove the C3' condition on the

 center manifold. The function g is essentially a harmonic function plus a cor-

 rection term related to the mean curvature of the ambient manifold. To bound

 the high derivatives of harmonic functions over small domains is impossible

 without using additional information. The idea here is that if g is associated

 with f which approximates a small part of an area minimizing integral current,

 then it is possible to bound the high derivatives as we can always control the

 second derivatives of a harmonic function defined over a large domain.

 The following lemma gives estimates of the differences between two functions

 which are obtained as in Theorem 14.2 and are defined over nearby squares.

 Lemma 14.2. Let Sk fk , gk be the same as in Lemma 14.1, and let

 S = T* L B(, p', 4Rk) xRrn+n, k=1. N

 with IN - N'l < 1, and they satisfy the same conditions on the height of the
 support and the excess. Let k and g' related to them as in Lemma 14.1.

 Let x=P(p) , A x'P

 Assume Ix - x'l < 2R N and 1It - 7r'I < l'.
 Let

 g* K(x2R)N Rn+fl
 g/*: K(x', 2RN) Rm+n

 be associated with gN and gN, as in Theorem 14.2, then the following hold:

 Ig*(x) - gI*(x)l < ClIR3+,

 ID(g*(x) - gI*(x)l < ClR R

 D 2(g*(x) - g*(x)) < ClRN

 ID3(g *(x)- g1 (x))I < Cl RN

 ID4(g*(X)- g'*(X))I ' Cl'8Ro
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 The proof of this lemma is in 4.17 in [A] with slight modification, since

 we have a stronger conditions on the height and excess estimates. After go-

 ing through the machinery there one can readily verify that we have a slightly

 stronger estimate on those bounds. Namely in the estimates, the small constant
 I is present which is necessary for our purpose later on.

 15. APPENDIX C

 From ?4 to ?12, we described how to get Y, from N_-I if the current does
 not coincide with N,_1 near 0. In this section we give a description of how
 to get N1 from Y, for i = I, ... , k. That will complete the constructions of
 two sequences of branched discs as promised in the Introduction.

 Let T, M, etc. be the same as in ?3. There it is shown that we can always
 work just with locally irreducible current. From Appendix A, we know that the

 support of the tangent cone of T at 0 is a plane which we call the tangent

 plane as we do for smooth surfaces and is identified with R x {O} c ToM.
 We assume from now on that Y is either the tangent plane itself or is an

 admissible surface defined over a neighborhood of 0 in the tangent plane. Let

 W be an admissible neighborhood of Y in R2+m+n then over any simply

 connected region L in B(O, ro) excluding 0, Y is the union of Q pieces of
 surfaces and W is the union of Q corresponding neighborhoods, hence the

 current T restricted over L is the sum of Q currents which do not intersect

 each other.

 Theorem 15.1. Assume spt(T L Bro x Rm+n) c W U {O} for some ro > 0, then
 there is a (branched) center manifold N which is an admissible surface in the

 sense of Definition 3.7. There is 0 < r1 < rO such that

 NnBr xR n+, cWU{0}.

 Also there is a function

 fo: N -+Qj (R m),

 If we put the conformal structure on N as described in ?3, and let Nr, Br,

 F, and f associated with fo as in Definition 3.10, then we have that all the
 assumptions in ?4 are satisfied, in particular hypotheses (H 1), (H2), (H3), and
 (H4) are satisfied.

 Remark. This is essentially Theorem A in ? 1.

 The construction of the center manifold N here is a modified version of the

 construction in [A]. Since the original construction is very long (more than 700
 pages), it is impossible to write down the whole construction here. Instead, we
 give a very brief description and point out the necessary modification. We refer

 the readers to [A] to find how the estimates are obtained.
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 FIGURE 1

 The description of the construction. The construction of the branched center

 manifold involves the following steps:

 (1) First write K(0, 1) =U, A, , a e Z+ where

 Aa=K 2(t) 2a+2K)

 with a E Z+ . Then let A, = L u L' as shown in Figure 1. Over the simply con-
 nected region and connected region L, Y is decomposed into Q pieces and

 the admissible neighborhood W is also decomposed into Q disjoint neigh-

 borhoods, hence the current is decomposed into Q pieces whose supports are

 disjoint.

 (2) Construct a center manifold for each piece as similarly done in [A], we

 shall give more details on the construction later.

 (3) Estimate the derivatives of the center manifold.

 (4) Patch together those center manifolds over L and L' to get a connected

 surface which is Q sheet coverings of A(k.
 (5) Patch together those surfaces obtained from step 3 over different Aa to

 get a single branched surface over K(0, 1).

 (6) Verify those hypotheses (HI), (H2), (H3), and (H4).

 Next we describe how to achieve step 2 in the above description. We shall

 explain that step 4 and step 5 can be done without too much work. Step 3

 follows from the estimates in [A] with some modifications. Step 6 is achieved by
 applying the estimates in [A] to the center manifold(s) built over the connected

 and simply connected regions L (L') and then patch the results together to get

 the more global estimates.

 Throughout this section we let

 (103) A=1/2(k

 Let L2 = L n K(O, 1) L1 = L - L2 be the inner half and outer half of L
 respectively.

 Take A,* as in step 1. We normalize it by dilating the whole space by a factor

 of,A7X = 2.
 Let

 ,n+n

 M =,u(A),M n B(0, 3) x R

 0q (AI )o 0 o,u(A): B2+n (0, 3) c TOM- Rn
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 such that graph(o,) = Ma and 0 satisfies the following estimates:

 loa(x)l ' A 21X12,
 JD0,(x)J < Alxl,

 ID'da (x)I < iil i =2,3,4,5.

 Let 1 = Aa = (1/2' )a for a small constant a > 0. Let pf be the image of the
 2+m+n 2

 orthogonal projection of p E R into R .We say

 T(py, , k) = T L B(7i, p, 4Rk + ??)

 satisfying

 (1) HT condition if

 sptT(p,7r,k)cB(7r,p,4Rk, cl:R1+#). p k

 (2) EX condition if EXC(T(p , , k) , 7r) < cl 2Rk
 p '~~~~~~~p k

 whr p = p = I if T E L1 and c = 2 ,1) c' = 2(+)-) if -pE L2
 In the construction of the center manifold, the main ingredient is the follow-

 ing Z-procedure.

 The Z-procedure. Let H: K(x , 2Rk) R-v graph(H) c M , let P E Ma
 and ir be a certain plane. Assume that the current T(p , 7r , k) satisfies the HT
 and EX conditions.

 We let K(x , Rk) be the union of four small squares of length Rk+l Idenoted

 by K(xj ,Rk+l), j = 1, 2, 3 ,4.
 Let p' = (x' , H(x')) and 7ir be the tangent plane of graph(H) at p'.
 Assume the Theorem 14.1 is applicable to the currents T(p' , 7r' , k + 1) , i =

 1. 4, over B(ir, pi, 3Rk+l), then from Theorem 14.2, we get

 g : B (7 , p , 3Rk+ 1) R7r

 hence we get
 i* j ~~~m+n

 g ,H: K(x', 2R)k+l) R
 Thus we get four functions Hi whose graphs lie in the ambient manifold M

 a

 The construction of the center manifold as mentioned in step 2. In the following
 construction, if Theorems 14.1 and 14.2 are applicable to T(7 , p , k), then
 they are automatically applicable to the four induced currents. This follows

 from estimates in 4.28 of [A] by using the derivative estimates.

 Part 1. As mentioned earlier, we dilate the whole space by A = 2a when working
 with A Under this dilation, we have Ta and M . Let K(1) - K(1/2 2),

 which is the image of A," under dilation, be L u L' (here we do not use extra
 notations for the dilated ones). Over L, Y, L L x Rm+n = UQ= yi, in case Y
 is a branched surface. The integral current T is decomposed into Q pieces

 at
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 {T'}, since T is in an admissible neighborhood of the branched surface Y,

 and we take one of them. If the original Y is the tangent plane TO, we take
 just the restriction of Tk above the region L.

 In case Y is the tangent plane, we have the estimates

 dist(spt T , spt T0) < Ae, e>

 which implies that

 EXC(Ta , 7) < A2e

 (see [LS]). In case Y is a branched surface,

 dist(spt Ti yi Y) < AN-1+,,

 The first assertion follows from the estimates in Appendix A, the second case

 from ? 12.

 Also it follows from there that the function w: L -+ Rm+n such that graph(w)
 - y' has the following bounds:

 Iw(x)I <2i)

 (104) IDjw(x)I < A =e J. 3

 Part 2. Let Z be a set of squares of side length Ro such that

 L= U K,

 and K, K' in this decomposition do not intersect each other in the interior.
 This gives L the structure of a chess board.

 Part 3. We apply Theorems 14.1 and 14.2 to the area minimizing current

 T(x J O 4R0). T(x J o , 4RO) satisfies the HT and EX conditions because
 of the estimates in Part 1 on the distance between the current and the tangent

 plane. Applying Theorem 14.2, we get a function H: K(x , 2RO) -* Rm+n with
 graph(H) c M, for each K e X .

 Recall L2 = L n K(O, J) , L1 = L - L2 are the inner half and outer half of
 L respectively.

 We apply the s-procedure to all the squares in X c L' to obtain

 ,2' = {H(K) IK EE X2}

 where X2 is the collection of squares obtained by dividing every K in g into
 four small squares of side length R2 .

 For K E , K c L2, we divide K into four small squares K', i

 1. J 4, as before but instead of applying Theorems 14.1 and 14.2 to

 T(p', ir', 4R2), we apply those theorems to T(p', 7O, 4R2)- So we obtain

 X / = {H(K)IK E ,2 JK c L } where H(K) corresponds to T(p', 7t0, 4R2)
 as in Theorem 14.2.
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 This difference in the construction is used later to patch the constructed

 surfaces over different Aa.

 Let X2= X2' uoX" . Let 22 be the set of those K in 2 such that T(K)
 fails to satisfy either the HT or EX condition.

 Part 4. Let K E f2 = >2 - Y25, then T(K) = T(p ,IR2) satisfies the
 condition in the E-procedure, hence we can apply it to T(K) and get K =
 UK' , p' and the functions {H(K')} corresponding to {T(p', 7r' ,4R3)}.

 Let 53f' be those K E X, (K-AK)nL=0, LE52 suchthat T(K) fails
 either the EX condition or the HT condition and let 3"' be the set of squares
 in X3 which is not a subset of any squares in Y2 but is the neighbor of one of

 2 . Then finally let 5' = Y3' U 23". We can apply the E-procedure for any
 squares in f3= J3- 3-2 5"L3 where

 ?L3 = {KIK E X3, K c L E2Y n21}-

 Part 5. In general we have the following inductive procedure: Given 2i, I,
 , we subdivide all the squares in J% to get a collection of squares of side

 length Ri+, to get Xi+, which gives an even finer chessboard structure for L.
 For any K e</,, we apply the E-procedure. Let Ji+ I consists of all the

 smaller squares generated from the s-procedure. Let 5" be the set consisting

 of all the elements in Ji+l such that T(K) E Ji+l fails to satisfy either
 the HT or EX conditions, and let f+1 be the subset of Ji+1 consisting of
 all the small squares which sit next to some larger square in 2'. 2+1 is the
 union of 5+' and 2 . Let

 ,_ i+1 = 9i+ 1 'Yi+1

 So the current T(K) associated with any square K in + which is of side

 length R,+1 will satisfy both HT and EX conditions, so we apply the -
 procedure again to them and continue the inductive procedure.

 Part 6. For any K E T, if it is in 0/ then there is the function H(K) associated

 with it. If K = K(x, Rj) is a subset of some K' E Y., I < i, then we simply
 define

 H(K) = H(K')I K(X 2R,): Rr+n
 so in any case we have a function whose graph lies in M associated with it .

 Let VI(K): K(x, 2R,) -R+ U {O} with

 V (K) K v (K) OK(x,2R,)

 IDy(K)I < 3R1,J i = 1,. 4.

 We define G' = ZKE%5t q/i(K)H(K) . From Chapter 4.19 in [A] we know that the
 limit of G' exists when i goes to infinity. Furthermore G has the following
 bounds:

 IG(x) ?< Cla, ID'(x)l < Cla
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 The proof of those two facts are in 4.19 of [A], except here we have a small

 factor la on the right side. It is there because we have a better estimate for the

 various H(K) since we start with the EX and HT conditions which involve this

 factor. If we go through all the proofs in [A], this factor will be maintained.

 The only exception is 4.17 in [A]. If we change the hypothesis Ix - x'l < 5SN

 III - 6j11 04.16 by Ix - x'l < RN Il -6 1 ? l a, the same proof goes through.
 This finishes steps 2 and 3 in the description of the main construction.

 Part 7. The constructions over L and L' agree over a slightly reduced domain

 in L n L', because both are very local constructions. If K E , lies in L n L'
 we know that the construction over it is the same. No matter whether we work

 over L or L', the subsequent constructions are the same inside K. So both

 constructions agree over K. Using the definitions of Gi and yg(K), we know
 that if K c L n L' with

 dist(K,9 a(L n L')) < Ro

 then the function G' agrees with the corresponding function constructed over

 L'. Hence we can patch those surfaces built for different pieces Ti and over
 L, L' together naturally to get a multi-sheet covering on the annulus region

 K(O, 1) -K(OJ)-

 Using the nearest point retraction of the ambient manifold M similar to a

 4.30 of [A], we project this multi-sheet covering of K(O, 1) - K(0, 4) into Ma

 to get the partly finished center manifold. We denote the surface by Ni .

 Part 8. Let Ga , Ga+I be the surfaces constructed as above over A and Aa +I a ~~~~~~~~~~~~a
 then the construction of #(1/2),(Ga+1) agrees with Ga over a slightly reduced

 domain of U(2a)Aa n (1 /2)u(2a+1 ) because the modification in Part 2 for 2
 and the deliberate difference of stopping conditions for squares in the outer

 half L of L and inner half L 2. This adjustment makes both constructions
 identical for squares in *U(2a)Aa nf,(l/2),u(2a+1 )A+1 Hence as in Part 7, the
 functions constructed over different annulus regions agree after suitable dilation.

 Thus those partial center manifolds {N* } patch naturally after the dilations.
 Hence we have N.

 Part 9. To complete the proof of Theorem A, we need to verify that the sur-

 face constructed stays inside the admissible neighborhood W so that different
 branches of the surface N* will not intersect with each other near 0. Before
 proving it, we observe that if the surface is exactly centered, then N* automat-
 ically stays inside the neighborhood W.

 Let AT and 2Ex be the collection of squares K such that T(K) fails to
 satisfy the HT and EX conditions respectively.

 Lemma 15.1. There is a constant C > 0, such that for K E HT U UEX we have

 RK < CN1N.
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 Remark. This lemma implies that if the current coincides with Y, then the

 surface N coincides with Y as well near 0.

 Proof. Let K' D K, then K HT U EX. Let

 B(K ) = B(7r(K') , p(K') , 4RK , ClIRK/

 and Bo, (K') be the cylinder with the same base and direction as the above one
 except with x as its height.

 Let

 B(K) = B(7r(K) , p(K) 4RK , cl"Rl+g)

 and B. (K) as above.
 Let p + r denote the plane parallel to ir and passing p .

 Then

 (105) spt T(K') c B(K ) ,

 (106) EXC(T(K') , r(K')) ?C12 4RK

 Since

 dist(spt T(K ) p Y n B (K )) < A'l+

 and Y satisfies (104), we have

 (107) dist(spt T(K') , (q + r') n Bo(K')) < N-+ + cA)Rk,
 with 7r' = T Y , q e Y. This implies

 dist(graph g(K ) (q + 7r') n Boo(K ))< A N l+E + cAER 2 K'

 with g(K') from Theorem 14.2, since g(K') is almost the average of T(K')
 near 7r(K'). The above inequality also holds if we replace the function g(K')
 by the function H(K') , following the estimates in 4.28 in [A].

 Using the estimates on the second derivative of H(K') and the fact that

 p (K) E graph H(K'), we have

 dist((7r(K) + p(K)) n BO(K )K (q + 7r') n BOO(K))

 (108) < 4(N- + C2
 Combining (107) and (108), we have

 (109) dist(spt T(K), (7r(K) + p(K)) n BjO(K)) < 8(A,N I+ +4ER2

 If K e 2HT' then immediately

 I9RK+# < dist(spt T(K) , (7r(K) + p(K)) n B. (K)) K - I

 (110) < 8(AN- IE + 4:R )2
 Hence the assertion follows. If K E YEX, then

 2-6 4>6
 EXC (T (K) ,7r (K))>c~ 1I R-
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 On the other hand (109) implies that

 (111) EXC(T(K) , 7r(K)) < 8R2 (A{N-N+E + 4,iR 2
 Recalling the definitions of 1 , A, we conclude that

 K-1 RK < CA

 This concludes the lemma.

 Now we are ready to prove that N n Br x Rm+nC w u {0}.
 From the lemma we conclude that RK < CAN I for K E Y since any

 K E5f iS either in AT n EX or is stopped by the neighboring condition.
 Using the same estimates as that of 4.33 (24) in [A], we obtain for any p E

 N n (K x Rm+n), K E g and q E NP 1 (p) the following holds

 (l112) IP - ql < 1#Rl+fl
 dist(p, Y n (K x R m+n)) < dist(p, q) + dist(q, Y)

 (113) < IR'K +2N1 K

 < 1flA(N- 1)( 1 +#) + AN-1I +E

 Thus we have N in W when A is small.

 Part 10. From 4.26, 4.33 in [A], the multiple-valued function defined over

 surfaces as constructed from Part I through Part 6 is constructed and is proved

 to have numerous properties. In particular, the function agrees with the slice of
 the relevant area minimizing current by the nearest point retraction associated
 with the center manifold for the most part. In our situation, we need to patch

 the functions in [A] over different pieces of the center manifold together to get

 a multiple-valued function defined over the whole N. Since those small pieces

 of center manifolds coincide over their common domains (maybe a slightly

 reduced one), the nearest point retractions for different center manifolds agree
 with each other over the common domain. This makes it possible to patch

 together the functions defined for those small pieces of center manifolds. The

 only difference is that we extend the multiple-valued function after patching

 them together, which makes no difference for the estimates.

 As for the hypotheses (H 1) through (H4), it follows from the similar estimates

 in 4.33, 5.11, 5.12, and 5.14 in [A]. The necessary modification we need is to
 apply the estimates in [A] for the surfaces built over different regions, then to
 assemble them together after suitable dilation. The proper scaling gives the term

 r +E in (H1) and r -2+ in (H2).
 The definition of Dirichlet integral is slightly different from the original defi-

 nition in [A]. Our definition makes it easy to calculate the integral, especially for
 those multiple-valued harmonic functions. In order to use the estimates there

 to get (HI) through (H4), we notice

 f ID*f I' d5 <2 IDf 2 y + / fl f
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 Here the left side is the Dirichlet integral used in [A]. This implies that we can

 replace the Dirichlet integrals in the estimates by ours after adding an additional

 term of the L2 integral of the function.
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 ABSTRACT. Geometric measure theory guarantees the existence of area min-
 imizing integral currents spanning a given boundary or representing a given

 integral homology class on a compact Riemannian manifold. We study the reg-

 ularity of such generalized surfaces. We prove that in case the dimension of the

 area minimizing integral currents is two, then they are classical minimal sur-

 faces. Among the consequences of this regularity result, we know now that any

 two dimensional integral homology class on a compact Riemannian manifold

 can be represented by a finite integral linear combination of classical closed
 minimal surfaces that have only finitely many intersection points.

 The result is proved by using the theory of multiple-valued functions devel-

 oped by F. Almgren in [A]. We extend many important estimates in his paper
 and extend his construction of center manifolds. We use the branched center
 manifolds and lowest order term in the multiple-valued functions approximating
 the area minimizing currents to construct two sequences of branched surfaces
 near an interior singular point to separate the nearby singularity gradually. The
 analysis developed in this paper enables us to conclude the generalized surface
 must coincide with one of the branched surfaces.

 DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

This content downloaded from 129.49.5.35 on Sat, 09 May 2020 20:12:16 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 699
	p. 700
	p. 701
	p. 702
	p. 703
	p. 704
	p. 705
	p. 706
	p. 707
	p. 708
	p. 709
	p. 710
	p. 711
	p. 712
	p. 713
	p. 714
	p. 715
	p. 716
	p. 717
	p. 718
	p. 719
	p. 720
	p. 721
	p. 722
	p. 723
	p. 724
	p. 725
	p. 726
	p. 727
	p. 728
	p. 729
	p. 730
	p. 731
	p. 732
	p. 733
	p. 734
	p. 735
	p. 736
	p. 737
	p. 738
	p. 739
	p. 740
	p. 741
	p. 742
	p. 743
	p. 744
	p. 745
	p. 746
	p. 747
	p. 748
	p. 749
	p. 750
	p. 751
	p. 752
	p. 753
	p. 754
	p. 755
	p. 756
	p. 757
	p. 758
	p. 759
	p. 760
	p. 761
	p. 762
	p. 763
	p. 764
	p. 765
	p. 766
	p. 767
	p. 768
	p. 769
	p. 770
	p. 771
	p. 772
	p. 773
	p. 774
	p. 775
	p. 776
	p. 777
	p. 778

	Issue Table of Contents
	Journal of the American Mathematical Society, Vol. 1, No. 4 (Oct., 1988) pp. 699-975
	Front Matter [pp. ]
	Two Dimensional Area Minimizing Integral Currents are Classical Minimal Surfaces [pp. 699-778]
	Convergence of the Random Vortex Method in Two Dimensions [pp. 779-804]
	Inertial Manifolds for Reaction Diffusion Equations in Higher Space Dimensions [pp. 805-866]
	Constructing Variations of Hodge Structure Using Yang-Mills Theory and Applications to Uniformization [pp. 867-918]
	Differential Posets [pp. 919-961]
	Sharp Effective Nullstellensatz [pp. 963-975]
	Back Matter [pp. ]



