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ON A SHARP INEQUALITY CONCERNING THE DIRICHLET
INTEGRAL

By S.-Y. A. CHANG and D. E. MARsHALL

1. Introduction. If fis an analytic function defined in the unit disk,
A, let

dx dy
T

1/2
D(f) = (H @ ) C=x+ip
A

be the Dirichlet integral of f. In this note, we will answer the following
question mentioned in a paper of J. Moser [3]: Does there exist a constant
C < oo such that for all functions f analytic in A with D(f) < 1 and
f0)=10

27
S el.ﬂe"”)lz_‘fg < C?
0 27

This integral, of course, can be written in terms of the distribution func-
tion of f. For each M > 0, let £y, = {6 € [0, 27]:| f(e?®)] > M} and let
| E)| denote the normalized Lebesgue measure of E),. Then

elf =1+2 S |Er| eM* MdM.
0

0 ™

2T
0y 2 df
1.1 10)|2
1.1 S e

In his influential study of majorization and the length-area principle,
A. Beurling [1] proved the following estimate for such functions f:

(1.2) |Ey| < e=M*+1,

Manuscript received June 2, 1982.
The authors were supported in part by N.S.F. grants MCS 79-03199 and MCS 77-
01873A01.
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1016 S.-Y. A. CHANG AND D. E. MARSHALL

Moreover, he proved that for the function

) 1 1
Ba(e:f)) = <10g m)/ log —l—ja—z, 0<acxl,

the estimate (1.2) is sharp in the sense that there is a constant ¢ (indepen-
dent of a) such that

1
|Eu| = ce™™ it M= [log——

If we let D denote the set of analytic functions f on A with f(0) = 0 and
D(f) = 1, then from these facts, one easily concludes that

2T
i0y,2 do
1.3 al fe?)|? 2
( ) Sgl)p So ¢ 27!'

is finite if « < 1 and is infinite if &« > 1. A further observation (pointed out
to us by J. Garnett) from Beurling’s estimate is that for each « > 0 and
each f € D it is true that

27
S ealf(e’”)lzﬁ < oo,
0 27!'

Indeed if f = £°_, a,z" then D(f) = (E_, n|a,|H'"?, so we may find a
polynomial p and an analytic function g with f = p + g and D(g) <
1/V/3a. Thus if we let A = ||p ||,

2T

2T
S eal S’ gp < eng e2e1ee’gp < oo,
0 0

At this point we will formulate our result in a conformally invariant
form and compare it to a famous theorem in real analysis. The quantity
D(f) is the area of the image of A under the map f, counting multiplicity,
and so D(f o 1) = D(F) for any conformal map 7 of A onto itself.

THEOREM 1. There is a constant C < oo such that if f is analytic on
Aand D(f) < 1 then
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THE DIRICHLET INTEGRAL 1017

2w
supj el/€=/@1%p_(9) ;I—O =C
T

zeA JQ

where P, is the Poisson kernel for the pointze Aand 0 < a < 1. Ifa > 1,
the integral can be made arbitrarily large with the functions

B.(z) = log

1
log ———— .
l—az/ Ogl—az’ 0<axl1

CoROLLARY 1. There is a constant C < oo such that if f is analytic
on A, f(0) = 0 and D(f) < 1 and if Eyy = {0:|f(e?)| > M} then

fo]

L |EyleM < cC.
M=1

The following corollary is a real-variable version of Theorem 1. Forfa
real valued function in L'(df), we will use the same notation f(z), z € A, to
denote the harmonic extension of f at z, suppose f(0) = 0 and let

dx dy >1/2
———r .

D(f) = <HD fr + 1)

COROLLARY 2. There is a constant C < o such that if f € L' is real-
valued with (}™ f(e®)d0 = 0 and D(f) < 1, then

27
Supj el /) —@17p_(9) 9 <C
zEA J( 27!'

where 0 < a < 1. If a > 1, the integral can be made arbitrarily large by
the functions

Re B,(z) = log

1 1
_— 1.
z'/ logl_a2 0<ax<

This corollary of Theorem 1 should be compared to the following well-
known theorem of Helson-Szegs and Hunt, Muckenhoupt, Wheedon (cf.,
e.g., Garnett [2, Chapter VI]), which also motivates out initial interest in
the problem.
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1018 S.-Y. A. CHANG AND D. E. MARSHALL

THEOREM 2. The following are equivalent for a real-valued function
felL':
2T 0 do
(a) supS el /)= /@IP,() — < o
zeA JO 27

(b) f = u + ¥ for some u, v € L* with |v|» < /2,

where V is the boundary value function of the harmonic conjugate of v.
One way of proving that (b) implies (a) in Theorem 2 is to prove that if
f=u + v with |v||« = /2 then

(1.4) m,({0:]f(e?) — f(z)| > \}) = Ce™,

for all z € A and for some constant ¢, independent of z, where m, is the
measure P,(0) d6/2x. Notice that (1.4) implies

27
(1.5) supg ea|f(e'9)—f(z)lpz(o)de < oo

zeA JO

forall @ < 1. So starting withf = u + ¥, ||v||» < 7/2, we may apply (1.5)
to (1 + ¢€) f for some e > 0 and obtain (a). The analogous statement to (1.4)
for functions f with 5(2)” f(e®)dd = 0 and D(f) < 1 which comes from
Beurling’s estimate (1.2) is

(1.6) m,({0:]f(e?) — f(z)| > A} < e-e M.
Comparing the inequalities (1.4) and (1.6), the statements (1.3) and (1.5),
and observing that the strict inequality ||v||» < w/2 is essential in Theo-

rem 2, we were led to believe that Theorem 1 would be incorrect at the
critical index o = 1. Also, J. Garnett has shown that if

x\172
flx) = <log —;) , for 0 <x =<,

and

172
, for ™ <x < 2m,

fx) = —<log

2T — x
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THE DIRICHLET INTEGRAL 1019

then f satisfies (1.6) yet 3(2," el fO)] ’dx = oo. This says that (1.6) alone is
not sufficient to bound the integral (1.1).

On the other hand the result in Moser [3], where our problem was
mentioned, led us to believe that the problem had a positive answer. Moser
proved a sharp form of an inequality originally studied by N. Trudinger in
connection with embedding Sobolev spaces into Orlicz spaces. Suppose D
is an open domain in R”, let I?V,II (D) denote the Banach space obtained
from the C'-functions u with compact support in D by completion with the

norm
1/n
3),,(u)=<§ |ux|”dx> .
D

Moser proved that there exist constants «, and ¢, which depend only on n
such that

1.7) S ex’Wdy < ¢, m(D),
D

where p = n/n — 1, m(D) = (pdx, f%r each o < «a,, and for all functions
u in the unit ball {z:D, () < 1} of W,',(D). Furthermore if « > «,,, the
integral can be made arbitrarily large by an appropriate choice of u. As
Moser states [3]: “The remarkable phenomenon is that the inequality still
holds for the critical value («,) itself.”” The difference between Moser’s
result, for n = 2, and ours, is that his integral (1.7) takes place on the disk
and is concerned with real-valued functions. Thus he is able to symmetrize
his functions and reduce his problem to a problem about C! functions on
the interval [0, o). Our integral (1.1) takes place on the boundary of the
disk and is concerned with analytic functions.

We wish to emphasize here the influence of the works of Beurling and
Moser on our proof of Theorem 1. As the discerning reader will undoubt-
edly notice, it is Beurling’s proof of (1.2) that we modify and it is Moser’s
method of splitting and estimating the integral (1.7) that motivates our
splitting and estimating the analogous integral (1.1). We are grateful to
John Garnett for several discussions.

2. The Beurling Functions. Since the functions
1 / | 1
1—az|N BT —a
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1020 S.-Y. A. CHANG AND D. E. MARSHALL

which Beurling considered, yield the extreme cases for the estimate (1.2) of
the distribution function | Ey, |, we will first show that Theorem 1 holds for
these functions. This is accomplished by improving the estimate (1.2)

when
M= |lo 1
=< / g T

LeEMMA 1. There exist constants coand ayso thatifay < a < 1 and if
M=1

[{6:|B.(e?)| > M}| < cope=MVNa

where N, = log(1/(1 — a?)).

Proof. Fixa,0 <a < 1,andlet N = N,. Then

{60:|B,(e?)| > M} {0: log

> Mx/ﬁ}.

11— ae?|

Thus if | B,(e?)| > M, then either |1 — ae®| < e MYV or |1 — ae?| >
eMYN_ In the second case, we have 2 = |1 — ae®| > eMVN which does not
occur when M = 1 and N = 1 (i.e. whena = ay = (1 — 1/¢)'/?). In the
first case, we have

10

2

., 0 )
4a < 4a smzi < |1 — ae?|? < e 2MN,

Thus |{0:|B,(e?)| > M}| < coe MYV with ¢y = 7/2a}%.

We can now see that the Beurling functions B, satisfy the conclusion
of Theorem 1. While this fact follows from the proof of Theorem 1 below,
we mention it here because the division of the integral (1.1) for general f €
D will result in similar integrals. By Lemma 1 and Beurling’s estimate
(1.2), for the function B,, we have

*® ) VN, 1Bl
2.1 S |Ey|e™ " MdM < S coeMZ_MWMdM + S eMdM.
i 1 N,
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THE DIRICHLET INTEGRAL 1021

Looking at the Taylor series expansion of B,, we know that

1 2
log———_ )
”BuIIi_Na:(#) _Na=<1°g_(ltﬂ+\/ﬁa> — N,

VN, VN,
<1+ 2log2
it N, = N,, = 1, and therefore the last integral in (2.1) is uniformly

bounded. That the first integral on the right-hand side of (2.1) is uniformly
bounded follows from the lemma below, which we will use several times in
the proof of Theorem 1.

LEmMMA 2. IfB > A = 0, then

M-AM=-BMIM <
A ¢ B - A

r 2A + B)
Proof. On theinterval A < M < (A + B)/2, estimate the parabola
y =M — AYM — B) by the liney = —(M — A)(B — A)/2, and on the
interval (A + B)/2 = M < B, estimate the parabols by the line y =
(M — B)(B — A)/2. Integrate each term by parts.
For the Beurling function B, , we use this lemma withA = 0 and B =

VN=+VN, =1

3. A technical lemma. Let f = I_, a,z" be analytic in A with
D(f) = (£, nla,|)HV? < 1, and as before letEM ={0:|f?)| > M}.
To prove the theorem, we will show {7° | Ey| eM*MdM < C for some con-
stant C, independent of f. We first notice that it suffices to assume
Lla,| < o. Indeed, if f,(e??) = f(re?) then

Selfr ao = )_j _S | £,|2"d6.

Since the L2” norms of £, increase with r to the L>" norm of f, we see that

1im§ el dp = S el/1%ap.

r—1
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1022 S.-Y. A. CHANG AND D. E. MARSHALL

Secondly, we remark that J. Clunie has observed that we may suppose that
a, = 0 for all n. Indeed

Y a g
=1 |ji+- - +j,=k N In

| vfimas =

which is not decreased if each a, is replaced by |a,|. Clearly this replace-
ment doesn’t affect

Rt 172

We do not need this latter observation in what follows, but it simplifies the
presentation.

We now give the main technical lemma which is a slight variation of
the original argument of Beurling. We also include a proof since [1] is not
readily available.

LemMmA 3. If1 — r* = |Ey|/e then

/ o]
3.1) M < 2< Y nla,|*( — r2")> + 2_:1 la,|r".

n=1

Proof. For each subset E C dA andr < 1 let

Ie(r) = I;:l S (X | (te"’)ldt) d—:_

Then

1 i . .. do
|E| g <So |f’(te’9)|dt>[f'(re"’)|ﬁ

I?zl_q q Lf (te"’)|dt>2 i:) <SE|f,(rei9)|2%>1/z
(1))1/2@ e |2 >1/2.

It(r) =

IA
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THE DIRICHLET INTEGRAL 1023

Hence

1
I:(1) — Ig(r) = S IL(Hdt
1 12
2<I 1)>1/2 Sd |f’(tei0)]2£l‘0‘> dt
2T
2/(1 /2
2< (1)>1/2<SE If'(te'0)|2—0dt>l/ d dt)l

12
2( [2(1 — )1 — r)> .

IA

(3.2)

IA

IA

We also have that

1 e do o 2
(3.3) Ig(r) < TET SE<S r nla,,]t” ldt> —2—1r“ = <"§1 |a,,|r"> .

on=1

We deviate here from Beurling by using the estimate A2 < AB + C? im-
pliesA < B + C to obtain from (3.2) and (3.3)

o<

1=r Y nla,|?2(1 —r2")>/ + E la,|r".
|E| n=1 " n=1 "

@4 ()" =< 2<

If E = E);, choose r such that 1 — r2 = |E),|/e and then observe

1

! . df
|E | S <So |f’(te'9)|dt> 5;5 I(1)V2.
M

1
M= g |, e 5

Together with (3.4), this gives the desired estimate.

4. Proof of Theorem 1. Suppose f = L.
tion on A with £(0) = 0 and

ne1@y2" is an analytic func-

DX(f) = I nla,|? <1
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1024 S.-Y. A. CHANG AND D. E. MARSHALL

and, without loss of generality, a, = 0 foreachn and E|a, | < o. We will
begin by comparing our f with the Beurling functions

1 1 zatzt
B,(z) = lo / lo, =
@ =log T = [le T = 5 U,
where
1
N,, - log ?‘12
For this purpose, let
o 2
(Far)
4.1 sup ———— =1 — 4.
O<r=<1 lo 1
E1—r

Since
n)2 2 1 2n 1
(Xa,rP < (Xna){E—=r") < log —
n 1—r

we always have & = 0. Since L|a,| < o, there is a numbera, 0 < a < 1,
such that

If we write B,(z) = L_, b,z", (4.2) says that

(4.3) DX(f— B,) = Z_:l na, — b,)?=2—2 §1 na,b,

=21 — (1 — §)?) =< 20.
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THE DIRICHLET INTEGRAL 1025

In other words, the Dirichlet norm of f — B, is at most v26. Henceforth,
let

N = log

1 —a*

We have already noted that in Section 1 the integral (1.1) is uniformly
bounded for f = B,, i.e. in case 6 = 0. Let §; be a fixed small number to be
chosen later. We begin by considering the case & = &, then by Lemma 3, if
we choose 7 so that 1 — r? = |Ey|/e, then

o 172
M<2+ L arm=2+01- 5)1/2<log ¢ )
1 | En|

n=

2+ (1 -5 )1/2<1 ¢ >U2

= - o .

Thus we have

(4.4) i IEMfeMZ < eMI-M=22/1-8) < oM2(1~1/(1~-50)1"?)
e

when M = 2/(1 — (1 — 8¢)'%). From Beurling’s estimate (1.2), we also
have that

(4.5) |EyleM® < e

when M =< 2/(1 — (1 — §p)'/%). From (4.4) and (4.5) it is easy to obtain
that

S |Ey|eM*MdM < ¢, < o
0

where ¢, is a constant depending only on §.

To further orient the reader we consider another simple, special case.
We suppose that N < N,, = Ny, with Ny = 1. In other words, we suppose
a < ag, where aq is to be chosen later. We assume also in this case that § <
6o < 1/8. Then
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1026 S.-Y. A. CHANG AND D. E. MARSHALL

1
1—

| B.(e")| < log - /NN =~/N + log(1 + a)/NN =VN+1 <Ny + 1.

Thus by (4.3) and estimate (1.2) we have

IA

|Eu| = [{0:]£(®) — B,(e")] > M — NNy — 1}

< e~ (M—VNg—12/28
Thus if M > 2(vNy + 1) then
(4.6) | Ep|eM? < eMP0-1/80,
Using Beurling’s estimate (1.2) again when M < 2(vN, + 1) we obtain

S |Ey|eM*MdM < ¢; < o
0

where ¢, is a constant depending only on a4 and §.
Henceforth we will suppose 6 < 6pand N = Ny = 4. Following Moser
[3], we will choose some constant ¢ = c¢3 and split our integral into five

pieces:
) NN/2 (1—céWN (1+cdVN
| Er|eM*MdM = S + S + S
J1 1 VN/2 (1—cd)VN
4.7) WN

4 j 4 g .
(1+cdVN 3WN

We remark here that the estimate which we will use below to estimate the
first and fifth terms in (4.7) really works for the integrals | ~aVN and
§ 3 +evswa respectively. But it is the delicate method of estimation in Moser
[3] that we adapt to our integrals which allows the passage from v/6 to 6 in
the central terms of (4.7).

On the firstterm 1 < M < ~/N/2. Here we use the fact that f is close
to B, in the Dirichlet norm and that the distribution functions of B, can be
easily controlled via Lemma 1. We have

M
EyC [0:|f—3a| > 7} U {e:|3,,| > 324—}
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THE DIRICHLET INTEGRAL 1027

Applying Beurling’s estimate (1.2) and Lemma 1, we observe that
|Ey| < e co~MP85 4 coe MINZ2,

By Lemma 2, for §, < 1/8 we obtain

~V/N/2 e
(4.8) |Ey|eM*MdM < —T
1
2{———1
(&1
In each of the next three integrals we will use the estimate provided by
Lemma 3. Henceforth we suppose 1 — r> = | Ey| /e. In each case we esti-

mate the first term in (3.1) by comparing the coefficients a, with the coeffi-
cients of the Beurling function b, = a"/n\N and using (4.3) as follows:

+ 26‘0.

1/2

® 1/2 o
(4.9) 2<Zl; na%(l — r2")> < 2<zl; n(a, — b,)*(1 — r2”)>
® 172
+ 2<21: nb*(1 — r2”)>
1 — a2 172
= 2(26)V% + 2<log ﬁ/N> .
The second term in (3.1) can be estimated similarly by

(410) E anr" = E ana" + E bn(r" - (1") + E (an - b,,)(r" —a"

1 —a?
< (1 — 8)2N'2 + log : N2

—ra

+ <§ n(an - bll )2>1/2<E (r" _ a" )2 >1/2
1 n
/NI/Z

(1 — ra)Z >1/2
1 -0 —a?)

SN1/2+logi—a

2
—ra

+ (26)12 <log
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1028 S.-Y. A. CHANG AND D. E. MARSHALL

1
- N2
<log 1 —ra >/

A — ray >1/2
1—ma—a/

+ (26)172 <log

On the second term (1/2)NN <= M < (1 — ¢8)'N. Herec = cyisa
constant to be chosen later. Choose M, > 0 with |Ey,|/e =
(1 — 2= Sych an M, exists because (1 — a2 <
(1 —ad)i- —e%” < 1/e, provided we choose a, sufficiently large, dependent
onc = c; andd,. Notice that (1 — @?)1 ¢ = |Ey|/e = e~Miby(1.2), and
hence M, < (1 — ¢8)VN.

We will first consider the interval where (1/2)vN < M < M,. Using
estimate (1.2) again

M? < log

= (1 —¢d)>N < log

¢ = lo 1 <lo
[Ev]  B1—p = g|}~:MO| -

We may rewrite this as two inequalities:

4.11) r<a and log-—— =< (1 — cd)’N.

|M|

Sincer < a,wehavel —a?r2 =1 —a?2+ a®(1 — r») < 2(1 — ?) and
1/ —ar) = 1/0 —r) = 2/(1 — ) and (1 — ra)> = (1 — r22 By
Lemma 3, (4.9) and (4.10) we obtain

log2 + N —
M < 2(26)'? + 2

172 e
1 =
8 |EM|> + log 2 + & | Ep |

N NI/Z NI/Z

+(2a)'/2< — log — >”2.
| En|

Multiplying by N'/? and using the estimate A2 + B'/2 < v/2(4 + B)!”2,
we obtain
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THE DIRICHLET INTEGRAL 1029

(4.12) MYN < 2((6N)V2 + 1)< — log—— + 4>'/2

|EM|

+ log 2 + log ——— |E K
M

By (4.11), if 6 < 8, < 1/c, then ¢6N < N — log e/ |E);| and hence

AGN)2+ 1) <

2x/_ 22 172
So by (4.12), if ¢ = 128,

1
MWSZ( — log ——- >+log2+log

lEMl |En|
Thus for VN/3 < M < M,
(4.13) |EpleM? < cieM*~WIMNHBIN = ¢ oM—VN/)M—VW)
where cq = el te/3+@/3)log2
Hence
M, VN _
4.14) j |EM|eM2dM < S eM—NBYM—=N) MM
VN/2 JN/2
< 4cq by Lemma 2.
Now if My < M < (1 — ¢8)V/N then
E
jog 12l tog 1220l — _1 — capw,
e e
Hence
(1—cWN (1—coWN
(4.14)’ S IEMleMszM < e e (1=cO®N S eMANAM
M, M,

=

e
) .
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1030 S.-Y. A. CHANG AND D. E. MARSHALL

We have finished the estimate of the second term by combining (4.14)
and (4.14)".

On the third term (1 — ¢cd)VN < M < (1 + ¢6)VN. We first con-
sider the simple special case, when N6 < cs where cs is a constant to be
chosen later. By Beurling’s estimate (1.2) we have

r +coWN

. |Er|eM*MdM < e(1 + cdWN - 2c0VN < deccs.
(1—cd)VN

In the other case, when N6 > cs, we observe

1—2 = | Em < | Ea—co] < e~ U=c?N < (] — g2)1=2,
e e

Hence

1 — a%? >/ < 2(1 — az)"m>/ log 2
- - log ———m —~ =
<log 1 —a? N'= {log 1 — a? N N

For this integral, instead of (4.10) we use the simpler estimate that comes
from (4.1) together with (4.9) to obtain from Lemma 3,

+ 2cé.

(4.15)

1 172 172
M < 20282 + 2<ﬁ3> +2(2e8)2 4+ (1 — a)'/2<1og ¢ >
N | En|

e \172
<ced?2+ (1 — 6)‘/2<log |EM|>

where ¢, = 2v2 + 2(log 2)""2/c}? + 2v2 ¢'/2 = 1. Then (4.15) implies
that

|En|
e

< o~ M—ced! 2215

We thus obtain
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o (1+c8)VN (14co)VN

|Eyi|eM’MdM < S el —II=ONM—ce/6 D+ praNg

J—csWN (1—csWN-

< ==~/ 21 + NN - 2cWN.

Since ye™ =< 1/e for ally = 0, we obtain

2
€6

Se<1 ia)(“ _c‘»\/i_;%)

- e64coN
T (1 — cSWNVE — )

5 (1 + ¢d) - 2c6N

(4.16) < 6dcece.

When we choose ¢; = ¢ < 1/28y and ¢5 with N6 = ¢5 = 16cf,.

On the fourth term (1 + ¢8)NN < M < 3+/N. We first notice that
by Beurling’s estimate (1.2),

e
_— =0+ coP)N=1lo
En] s

|Eqteswn]

log = log = log

_ 1
1—2 1—a%

We may rewrite this as two inequalities:
4.17) r=a and logL = (1 + cd)*N.
| £l

Following the same pattern of proof as in the estimate of the second term,
we note that since r = a,

1—ad?<1—r+r1—a®)<2(1—a? and ! =< <
l—ra 1—a 1—&

and (1 — ra)’> = (1 — a??. By Lemma 3, (4.9) and (4.10), we obtain

1 172
M < 2020 + 2<—°g 2) 4 log2

N1/2

e 172
v +N1/2+(2a)1/2<1og — > :

| En|
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Multiplying by N'/2 we obtain

MJN <3+ N+ (26N)”2<log E‘f

| Em|

1/2
—N+4> :

By (4.17) we have 2¢6N < log e/|Ey| — N. Thus for ¢ = 16

1 1
MJN <3+ N+ — <log —N+4> — log —— +3N+4
| Em IEMI

Thus
|EM|eM2 < e!7eM?—aMVN+3N

and by Lemma 2,

kN 3WN

(4.18) |Ey|eM MdM < eV S eM?—MINTINMAM < del7.
J (1 +coVN VN

On the fifth term 3NN < M < o. We first observe that

log
1 - log 1
< loa_yylelte

N NI <VN+1=<2/N

| B.(e™)|

when N = Ny > 1sothatEy C {6:|f — B,| > M — 2v/N}. By Beurling’s
estimate (1.2) and by the estimates M < 3(M — 2V/N) and § < b < 1/24
we have

(4.19)

» oo fo]

|EM|eM2MdM =< g e eMI=(M=2VN2/28 prang
VN Javn

@ —11
=< S 3e e 3M—NNE (M — 2NN)IM < e—.
WN 2

Combining (4.7), (4.8), (4.14), (4.16), (4.18), and (4.19) we see that if we
choosec = 27,8, =27 %and ay = (1 — e 42 (i.e. N; = 4) then all the
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THE DIRICHLET INTEGRAL 1033

estimates are satisfied and we get the desired estimate of the integral (1.1)
and we have finished the proof of Theorem 1.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
UNIVERSITY OF WASHINGTON
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