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 ON A SHARP INEQUALITY CONCERNING THE DIRICHLET

 INTEGRAL

 By S.-Y. A. CHANG and D. E. MARSHALL

 1. Introduction. If f is an analytic function defined in the unit disk,

 A, let

 )D(f) = (t If'(z)12 dX dy)2 (z = x + iy)

 be the Dirichlet integral of f. In this note, we will answer the following

 question mentioned in a paper of J. Moser [3]: Does there exist a constant

 C < oo such that for all functions f analytic in A with D(f) c 1 and

 f(O) = 0

 27r io dO
 e If(e'0)12 2 < C?

 o 2 x

 This integral, of course, can be written in terms of the distribution func-

 tion of f. For each M > 0, let EM = {0 E [0, 2-fi: If(ei0)I > M} and let
 IEM I denote the normalized Lebesgue measure of EM. Then

 (1.1) ,9 elf(e'0)e 2 dO = 1 + 2 i IEMI eM2 MdM.
 o 2 x o

 In his influential study of majorization and the length-area principle,

 A. Beurling [1] proved the following estimate for such functions f:

 (1.2) IEMI | e-M2+1

 Manuscript received June 2, 1982.

 The authors were supported in part by N.S.F. grants MCS 79-03199 and MCS 77-

 01873A01.

 1015
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 1016 S.-Y. A. CHANG AND D. E. MARSHALL

 Moreover, he proved that for the function

 B,(ei)= (log 1 i)! log 1a2 0 < a < 1,

 the estimate (1.2) is sharp in the sense that there is a constant c (indepen-

 dent of a) such that

 2 1 1
 IEEMI |- ce&M if M log 12

 If we let D denote the set of analytic functions f on A with f(O) = 0 and

 D(f) c 1, then from these facts, one easily concludes that

 (1.3) sup,j ealf(e'0)12 dO
 o) 0 2 7

 is finite if xe < 1 and is infinite if xe > 1. A further observation (pointed out

 to us by J. Garnett) from Beurling's estimate is that for each et > 0 and

 each f E D it is true that

 27r iO 2 dO ealf(e @)I do < Co.
 o 2 - 0

 Indeed if f = E,=' a,,z" then D(f) = (E,,1 n I a,, 12)1/2, so we may find a
 polynomial p and an analytic function g with f = p + g and D(g) <

 1/ 3c. Thus if we let A = IIP 11X

 27r 27r

 et If(e i) i 2dO c e2aA2 2a Ig(ei) I 2dO < 0
 o o

 At this point we will formulate our result in a conformally invariant

 form and compare it to a famous theorem in real analysis. The quantity

 OD(f ) is the area of the image of A under the map f, counting multiplicity,

 and so D(f o T) = D(f) for any conformal map T of A onto itself.

 THEOREM 1. There is a constant C < oo such that iff is analytic on

 A and D(f) c 1 then
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 THE DIRICHLET INTEGRAL 1017

 sup ea If(ei _f(z) 1 2Pz(O) do C

 where Pz is the Poisson kernelfor the point z E A and 0 ca c 1. If a > 1,
 the integral can be made arbitrarily large with the functions

 B" (z) = log log 1 0 < a < 1.

 COROLLARY 1. There is a constant C < oo such that iff is analytic

 on A, f(O) = 0 and D(f) c 1 and if EM = {O: If(e"0)I > M} then

 00

 S IEM | eM 2 C.
 M=1

 The following corollary is a real-variable version of Theorem 1. Forf a

 real valued function in L1(dO), we will use the same notationf(z), z E A, to

 denote the harmonic extension of f at z, supposef(O) = 0 and let

 t)(f) (J| fx + fy) r

 COROLLARY 2. There is a constant C < oo such that iff EL1 is real- valued with 2 f(ei0)dO 0 O and tD(f) c 1, then

 27r io) ~ dO
 sup, eaIf(e0)f-(z)12P (O) o C
 ZEA o 2 7r

 where 0 ce c 1. If et > 1, the integral can be made arbitrarily large by
 the functions

 Re Ba(Z) = log| 1-az 0/log 1-a O < a <1.

 This corollary of Theorem 1 should be compared to the following well-

 known theorem of Helson-Szego and Hunt, Muckenhoupt, Wheedon (cf.,

 e.g., Garnett [2, Chapter VI]), which also motivates out initial interest in

 the problem.
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 1018 S. -Y. A. CHANG AND D. E. MARSHALL

 THEOREM 2. Thefollowing are equivalentfor a real-valuedfunction

 f E L' :

 (a) sup e lf(e0)-f(z)IP (0) 2e < X

 (b) f = u + vfor some u, v e L= with 11 vi < < 12,

 where v is the boundary value function of the harmonic conjugate of v.

 One way of proving that (b) implies (a) in Theorem 2 is to prove that if

 f = u + v with 1I v ll,oo < ir/2 then

 (1.4) mz ({ 0: IfeiO) )-f(z) I > )})< Ce-X,

 for all z E A and for some constant c, independent of z, where m, is the
 measure Pz(0) dO/2r. Notice that (1.4) implies

 27r

 (1.5) sup ea If(ei')-f(z) IPz (0)dO < oo
 zEA 0

 for all a < 1. So starting withf = u + v;, 11 v < /2, we may apply (1.5)
 to (1 + c)f for some c > 0 and obtain (a). The analogous statement to (1.4)

 for functions f with 12, f(ei0)dO = 0 and D(f) c 1 which comes from
 Beurling's estimate (1.2) is

 (1.6) mz({0:If(ei0) -f(z)I > X}) < e eX2.

 Comparing the inequalities (1.4) and (1.6), the statements (1.3) and (1.5),

 and observing that the strict inequality 11 v ll co < r/2 is essential in Theo-
 rem 2, we were led to believe that Theorem 1 would be incorrect at the

 critical index ae = 1. Also, J. Garnett has shown that if

 f(x) = (log x )l, for 0 < x < 7r,

 and

 f(x) -(log 2 r)"2 for 7r < x c 27r,
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 THE DIRICHLET INTEGRAL 1019

 thenf satisfies (1.6) yet 2 e If(x) 1 dx = oo. This says that (1.6) alone is
 not sufficient to bound the integral (1.1).

 On the other hand the result in Moser [3], where our problem was

 mentioned, led us to believe that the problem had a positive answer. Moser

 proved a sharp form of an inequality originally studied by N. Trudinger in

 connection with embedding Sobolev spaces into Orlicz spaces. Suppose D

 is an open domain in R", let WT,(D) denote the Banach space obtained
 from the Cl-functions u with compact support in D by completion with the

 norm

 O,,(u)= (D Iuxlldx)

 Moser proved that there exist constants ce,, and c,, which depend only on n

 such that

 (1.7) Ae ?uP(x)dx c c,,m(D),
 D

 where p = n/n -1, m(D) = IDdx, for each xe < xe,, and for all functions
 u in the unit ball {u:OD,,(u) c 1} of W,(D). Furthermore if et > ce,,, the

 integral can be made arbitrarily large by an appropriate choice of u. As

 Moser states [3]: "The remarkable phenomenon is that the inequality still

 holds for the critical value (ae,,) itself." The difference between Moser's

 result, for n = 2, and ours, is that his integral (1.7) takes place on the disk

 and is concerned with real-valued functions. Thus he is able to symmetrize

 his functions and reduce his problem to a problem about Cl functions on

 the interval [0, oo). Our integral (1.1) takes place on the boundary of the
 disk and is concerned with analytic functions.

 We wish to emphasize here the influence of the works of Beurling and

 Moser on our proof of Theorem 1. As the discerning reader will undoubt-

 edly notice, it is Beurling's proof of (1.2) that we modify and it is Moser's

 method of splitting and estimating the integral (1.7) that motivates our

 splitting and estimating the analogous integral (1.1). We are grateful to

 John Garnett for several discussions.

 2. The Beurling Functions. Since the functions

 Ba(z)1= log 1o,
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 1020 S.-Y. A. CHANG AND D. E. MARSHALL

 which Beurling considered, yield the extreme cases for the estimate (1.2) of

 the distribution function I EM I, we will first show that Theorem 1 holds for

 these functions. This is accomplished by improving the estimate (1.2)

 when

 M < log 1 .

 LEMMA 1. There exist constants co and ao so that if ao < a < 1 and if
 M2?1

 1 {0: IBa(e0) I > M} I c coe-M"%a

 where No, = log(1/(1 - a2)).

 Proof. Fix a, 0 < a < 1, and let N Na. Then

 {0:IB, (ei0)I > M} c {0: log 1 > M l MN}

 Thus if IB,1(e 0)I > M, then either I1 -aei0I < e-mWNor 1 -aei0I >
 em/N. In the second case, we have 2 2 1 - ae0 I > emNNwhich does not
 occur when M 2 1 and N 2 1 (i.e. when a 2 aO 2 (1 - 1/e)l 2). In the
 first case, we have

 1012 0 ~ ~ i _1 4a 72 < 4a sin 2 < 11- ae e2 < eM2-,IN

 Thus l{0: I B,(e0)l > M}l < coe Mm/ with co = ir/2a 12.
 We can now see that the Beurling functions Ba satisfy the conclusion

 of Theorem 1. While this fact follows from the proof of Theorem 1 below,

 we mention it here because the division of the integral (1.1) for general f E

 D will result in similar integrals. By Lemma 1 and Beurling's estimate

 (1.2), for the function Bb,, we have

 (2.1) | EMleM2MdM ' coeM2 MMdM + eMdM.
 I I Nta,
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 THE DIRICHLET INTEGRAL 1021

 Looking at the Taylor series expansion of Ba, we know that

 IIBa - -N ( I- a -N = ( (1 + a)+ ? N) - N

 c I + 2 log 2

 if N1, 2 N1o ? 1, and therefore the last integral in (2.1) is uniformly
 bounded. That the first integral on the right-hand side of (2.1) is uniformly

 bounded follows from the lemma below, which we will use several times in

 the proof of Theorem 1.

 LEMMA2. IfB > A 2 O, then

 B ~~~2(A ? B)
 e(M-A)(M-B)MdM <
 A B-A

 Proof. On the interval A ' M C (A + B)/2, estimate the parabola

 y = (M - A)(M - B) by the liney =-(M - A)(B - A)/2, and on the
 interval (A + B)/2 S M C B, estimate the parabols by the line y

 (M - B)(B - A)/2. Integrate each term by parts.

 For the Beurling function Ba, we use this lemma with A = 0 and B

 N Na0 ? 1.

 3. A technical lemma. Let f = E ,z a1z be analytic in A with

 5)(f) = (EO=O n Iall 12)1/2 < 1, and as before let EM = {O: If(ei0)I > M}.
 To prove the theorem, we will show EM eM2MdM c C for some con-

 stant C, independent of f. We first notice that it suffices to assume

 E|a,, I < oc. Indeed, if fr(ei0) = f(rei0) then

 Jfe I rIde = F, - I fr A12n do.
 n =O n!

 Since the L2", norms of fr increase with r to the L2n norm of f, we see that

 lim eIfrI2dO = ief12dO.
 r-1
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 1022 S.-Y. A. CHANG AND D. E. MARSHALL

 Secondly, we remark that J. Clunie has observed that we may suppose that

 a,, 2 0 for all n. Indeed

 00 2
 If 1211 dO = k= r+ , ail * *in

 which is not decreased if each a,, is replaced by I a,, 1. Clearly this replace-
 ment doesn't affect

 / X 1/2

 MD) = (S nla,,12

 We do not need this latter observation in what follows, but it simplifies the

 presentation.

 We now give the main technical lemma which is a slight variation of
 the original argument of Beurling. We also include a proof since [1] is not
 readily available.

 LEMMA 3. If 1 - r2 IEM I /e then

 X \1/2 X0

 (3.1) M c 2 ( nla,, 12(1 - r2)) + Ia,,Ir"'.

 Proof. For each subset E C aA and r c 1 let

 IE(r) = IE d | If O(te') I dt 2

 Then

 ___ ~ rdO

 NE1 (|(iO |f'(tei)ndt) f'(reiO)l fd

 ' JEI(J (l If (te'O) I dt) 2 ) (E If (reiO) 12 2-

 c_ 2._ ( I f, riO) 1 2 _0l
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 THE DIRICHLET INTEGRAL 1023

 Hence

 IE(1) - IE(r) = Ik(t)dt
 r

 <- 2() / IEM If '(teiO) 12 dO) dt
 (3.2)

 <- 2 f1)1/( ' |J(teiO) 12 du dt)( dt)

 < 2( n la, 12(1 - r2n)(1- r))

 We also have that

 (3.3) IE(r) ' k nYa,,|t"-dt) 2 < (E I a1,Ir")

 We deviate here from Beurling by using the estimate A2 < AB + C2 im-
 plies A < B + C to obtain from (3.2) and (3.3)

 ) 1/2 0
 (3.4) (IE(1))112 < 2 na,, 2(1-r2") + E la,,1r". 12= 11=1

 If E = EM, choose r such that 1-r - I EM I/e and then observe

 1 ~~~ dO 1 dO

 f|ei|) I\EM <7r IEMI NE If'(te )Idt) < E(j))1/2

 Together with (3.4), this gives the desired estimate.

 4. Proof of Theorem 1. Supposef = E= a,, zn is an analytic func-
 tion on A with f(O) = 0 and

 00

 D2(f) = S n|ar,j2 1
 i = 1
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 1024 S.-Y. A. CHANG AND D. E. MARSHALL

 and, without loss of generality, a,, 2 0 for each n and E a, I < oo. We will
 begin by comparing our f with the Beurling functions

 1 /1co ait
 Ba(z) = log / log E-

 1- az 1 - 2 ii1 fl VNa

 where

 Na = log 1

 For this purpose, let

 00 \2

 ( a,,r")

 (4.1) sup
 O<r log1

 Since

 ( a,,r")2 < ( na -) log 1 2

 we always have 6 2 0. Since E I a,, I < oo, there is a number a, 0 < a < 1,
 such that

 00 \2

 |a,, |all

 (4.2) Q =a11:1.

 log 1-a2

 If we write Ba(Z) = E't1 b,,z'l, (4.2) says that

 00 00

 (4.3) D2(f-BO) = B n(a,, - b,)2 = 2 - 2 E nanbn
 n1=l n=1

 = 2(1- (1 - 6)1/2) C 26.
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 THE DIRICHLET INTEGRAL 1025

 In other words, the Dirichlet norm off - B0 is at most 2& Henceforth,
 let

 1
 N = log 1 2

 We have already noted that in Section 1 the integral (1.1) is uniformly

 bounded forf= B, i.e. in case 6 = 0. Let 60 be a fixed small number to be

 chosen later. We begin by considering the case 6 - 60, then by Lemma 3, if

 we choose r so that 1 -r2 = EM I/e, then

 00 eX/ 0" 1/2~~~(~1/ (o
 M's 2+ ? ~a,,r" 2 + (1 - )1/2 log-

 EM )

 s 2 + (1- bo)1/2(log E )m

 Thus we have

 (4.4) -EM eM2 c eM2-(M-2)2/1-60 < eM2<1-1/(1-6 )1/2)
 e

 when M 2 2/(1 - (1 - 60)1/4). From Beurling's estimate (1.2), we also
 have that

 (4.5) EM eM2 < e

 when M < 2/(1 - (1 - 6o)1/4). From (4.4) and (4.5) it is easy to obtain

 that

 00

 |EMleM2MdM 5 Cl < o0

 where c, is a constant depending only on 60.
 To further orient the reader we consider another simple, special case.

 We suppose that N < Nao No, with No > 1. In other words, we suppose
 a c ao, where ao is to be chosen later. We assume also in this case that 6 <

 60 < 1/8. Then
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 1026 S.-Y. A. CHANG AND D. E. MARSHALL

 B,, (ei0) I c log1 _ / = N? + log(1 + a)/@ N + 1 N0 + 1.

 Thus by (4.3) and estimate (1.2) we have

 EMI I{0: If(e0) - Ba(eo0)I > M - NN -1

 < e -(M - -N1-1)2/26

 Thus if M > 2( + 1) then

 (4.6) | EM |eM c eM2(1-1/86)

 Using Beurling's estimate (1.2) again when M < 2(VN0 + 1) we obtain

 lEMleM2MdM c C2 < 00

 where c2 is a constant depending only on ao and 60.

 Henceforth we will suppose 6 c bo and N 2 No 2 4. Following Moser

 [31, we will choose some constant c = C3 and split our integral into five

 pieces:

 00 AN/2 c ?-C XN (1 +C6)viN

 V EMleM2MdM= ? + +
 1 1~ ~~~ ~ VNV12 (I-6@

 (4.7) ?X30NX

 (I +CThfN 3J1V

 We remark here that the estimate which we will use below to estimate the

 first and fifth terms in (4.7) really works for the integrals 5('-cV6) Nand

 00I +^4Nrespectively. But it is the delicate method of estimation in Moser
 [3] that we adapt to our integrals which allows the passage from N/ito 6 in

 the central terms of (4.7).

 On the first term 1 c M < VN/2. Here we use the fact thatf is close

 to B, in the Dirichlet norm and that the distribution functions of Ba can be

 easily controlled via Lemma 1. We have

 EM C {0:If-Bal > M} U 0:IBaI > 2M}
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 THE DIRICHLET INTEGRAL 1027

 Applying Beurling's estimate (1.2) and Lemma 1, we observe that

 IEM I C eeM/86 + coe-M

 By Lemma 2, for 60 < 1/8 we obtain

 ('4N/2

 (4.8) A EM|em 2MdM c e + 2co.

 In each of the next three integrals we will use the estimate provided by

 Lemma 3. Henceforth we suppose 1 - r2 = I EM I /e. In each case we esti-
 mate the first term in (3.1) by comparing the coefficients a,, with the coeffi-

 cients of the Beurling function b,, = a"/nVN and using (4.3) as follows:

 /00 \1/2 00 1/2

 (4.9) 2 tF na,2(1 - r2")) < 2 n(a,, - b,,)2(1-r2" )

 /00 \1/2

 ? 2(ES nb 2(1 - r2" ))

 c 2(26)1/2 + 2 (log N

 The second term in (3.1) can be estimated similarly by

 (4.10) L a,,r" E a,,a" + E b,,(r" - a") + E (a,, - b,,)(r" - a")

 < (1 - 6)12N1X2 ? log ( l )/NI /2

 ? (E n(a,, -b,, )2)((E (r" '- a")2 )1 /2

 < N12 ? log 1 a2 lN1/2

 + (26)1/2(log (1 -ra) )1/2

This content downloaded from 129.49.5.35 on Sun, 17 May 2020 20:02:50 UTC
All use subject to https://about.jstor.org/terms



 1028 S.-Y. A. CHANG AND D. E. MARSHALL

 (log N-ra2)!N

 ( (1 - ra)2 1/2
 ? (2()1/2 lo ( -r2)(1 -a2) )

 On the second term (1/2) N C M < (1 - c3) N. Here c = C3 is a
 constant to be chosen later. Choose Mo > 0 with EMO I/e =

 (1 - a2)(1-c6)2. Such an Mo exists because (1 - a2)(I -c6)2 c

 (1-a20)(I -c6o)2 < 1/e, provided we choose ao sufficiently large, dependent
 on C= C3andb0. Notice that( -a2)(c6)2 = EM Il/e < eM by (1.2), and

 hence Mo < (1 - c3)VN.
 We will first consider the interval where (1/2) N C M ' Mo. Using

 estimate (1.2) again

 M2 g log eMI log -E log = (I1-cb)2N c log

 We may rewrite this as two inequalities:

 (4.11) r c a and log e < (1-cb)2N.
 lEM-

 Since r < a, we have 1- a2r2 = 1-a2 + a2(1 -r2) < 2(1 - r2) and
 1/(1 - ar) < 1/(1 - r) < 2/(1 -r2) and (1 - ra)2 < (1 - r2)2. By

 Lemma 3, (4.9) and (4.10) we obtain

 e 1/2 e
 lg2+N- log ~-log

 M ? 2(26)1 /2 ? 2 IEI ?~ EM
 (lo~2?N / / '/

 ? (26)1 /2(N log IE

 Multiplying by N112 and using the estimate A1/2 + B1/2 c 2(A + B)1/2,
 we obtain
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 THE DIRICHLET INTEGRAL 1029

 (4.12) M N c 2((bN)112 + 1)(N -log Em + 4)

 + log2 + log IEM.

 By (4. 11), if 6 _ 60 _ 1 /c, then c3N _ N - log e/ EM I and hence

 2V2 2V2 (e \1/2
 2((bN) 12 + 1) < (c3N + C)112 < IN -log ? + c)

 c1/2 (CbN c ~~~~~~~1/2 I Em I

 So by (4.12), if c > 128,

 MXN<_ (N-log e + c + log 2 + log e 4 og Em / Em I

 Thus for VN/3 _ M _ Mo

 (4 . 13 ) | EM |eM_C4eM2 M2-(4/3)MW+N+(1/3)N = C4e(M- N3) (M- NN)

 where 4 = el+c/3+(4/3)log2 whereC4= e

 Hence

 MO A

 (4.14) EM le M2dM _ C4 e(M-N/3)(M-,) MdM
 VN/2 VJN/2

 ? 4C4 by Lemma 2.

 Now if Mo _ M _ (1 - c3)N then

 I Em IIE o___-_b)

 log ? log EM? =-(1-c3)2N. e e

 Hence

 S (1-C6)'JIV (1-C6)oN
 (4.14)' | IEMleM2MdM ? e e-(' -c)2N eM 2MdM

 e

 2
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 1030 s.-Y. A. CHANG AND D. E. MARSHALL

 We have finished the estimate of the second term by combining (4.14)
 and (4.14)'.

 On the third term (1 - cb) N < M c (1 + c3) N. We first con-
 sider the simple special case, when Nb c c5 where C5 is a constant to be

 chosen later. By Beurling's estimate (1.2) we have

 X(1 +c6>JN

 EM IeM2MdM C e(l + c3)N 2c3 N c 4ecc5.
 (1 1-c6)'JN

 In the other case, when Nb> C5, we observe

 2 - IEMI < IE(-c6)- < e-(l-cb)2N < (1 - a2)1-26.
 e e

 Hence

 ( 1 -a2r2 c (o 2(1 -a )2)1 - 2c log 2
 log N < 1o ? =2c&.

 k\ 1 a 2, 1 - a2 )N= N

 For this integral, instead of (4.10) we use the simpler estimate that comes
 from (4.1) together with (4.9) to obtain from Lemma 3,

 (4.15)

 M < 2(26)1/2 + 2( log 2) + 2(2c)l 12 + (1 - 6)1/2(log e )1/2

 < c661/2 + (1 - 6)1/2(log m)

 where c6 2-Th + 2(log 2)1/2/c5/2 + 22hC1/2 2 1. Then (4.15) implies
 that

 Em e -(M-c661 /2)2/1-6
 e

 We thus obtain
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 THE DIRICHLET INTEGRAL 1031

 (I +c6)VN (1 +c6)V[N

 (1-cJ lEM I eM2MdM < e(-61(1-6))(M-c6/(6 l/2)2+c62MdM
 (I -cb),N(1cN

 c661/2)2 e2 c e(_6/(1-6))((1-c6)i-c6/\'& 62(1 + c43),NI 2c&\IN.

 Since ye-Y < l/e for all y ? 0, we obtain

 2
 ec6

 <f 11 _ cb )(1-bhN-l-

 2~~~~~~~~

 ec64dIN 2
 (4.16) < c 64cec6.

 ((1 -c)4 i-C6)2

 When we choose C3 = c < 1/26o and C5 with Nb 2 C5 2 16c2.

 On thefourth term (1 + c3) N < M c 3 N. We first notice that
 by Beurling's estimate (1.2),

 1 e e 1
 log = log > log > (1 + c)2N 2 log12-

 I - r2 EmI - og E(I +c6a\[N -2

 We may rewrite this as two inequalities:

 (4.17) r 2 a and log Ie > (1 + c3)2N.

 Following the same pattern of proof as in the estimate of the second term,
 we note that since r 2 a,

 1-a2r2 1-r2 r2(1-a2) <2(1-a2) and 1 2
 1 -ra 1-a - 1-a2

 and (1 - ra)2 < (1 - a2)2. By Lemma 3, (4.9) and (4.10), we obtain

 M ? 2(26) 1/2 + 2( ) 2 + N112 + (2)1/2 (log e - N)
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 1032 s.-Y. A. CHANG AND D. E. MARSHALL

 Multiplying by N1/2 we obtain

 M-N < 3 + N + (26N)1/2(log M -N + 4)

 By (4.17) we have 2cdN ? log e/l EMm -N. Thus for c 2 16

 MN?3?N?-Lj~~ylog e -N?4=7lg3-N 4 M-4N- c 3 + N + 4 (-N + 4) log IEMI 4

 Thus

 | EMle M2 c e 17 eM 2-4M1N1+ 3N

 and by Lemma 2,

 31N 3JN

 (4.18) |EMIem MdM c e 17 e N-4MN+3NMdM c 4e 17.
 (I +c6b)N IN

 On the fifth term 3 N c M < oo. We first observe that

 1

 log 1 N? logl? a _ N 1 2 IB,(i) - \[N =N w + 1 c 2,\N- Ia(eO/I N N -

 whenN No > 1 sothatEM C {0:If-Ba I> M -2 N}. ByBeurling's
 estimate (1.2) and by the estimates M c 3(M - 2 N) and 6 c 60 < 1/24
 we have

 (4.19)
 00 00

 | EEMIem2MdM < e * eM2-(M-2N)2/26MdM
 '3,1N 3,/N

 - 23e e-3(M-2N)2(M -2VN)dM c e
 2

 Combining (4.7), (4.8), (4.14), (4.16), (4.18), and (4.19) we see that if we

 choose c = 27, 60 = 2-8 and ao 0 (1 -e- 4)1/2 (i.e. No = 4) then all the
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 THE DIRICHLET INTEGRAL 1033

 estimates are satisfied and we get the desired estimate of the integral (1.1)

 and we have finished the proof of Theorem 1.

 UNIVERSITY OF CALIFORNIA, LOS ANGELES

 UNIVERSITY OF WASHINGTON
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