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Abstract. We study completeness properties of the Sobolev diffeomorphism groups Ds(M) en-
dowed with strong right-invariant Riemannian metrics when M is Rd or a compact manifold with-
out boundary. We prove that for s > dimM/2 + 1, the group Ds(M) is geodesically and metri-
cally complete and any two diffeomorphisms in the same component can be joined by a minimal
geodesic. We then present the connection between the Sobolev diffeomorphism group and the large
deformation matching framework in order to apply our results to diffeomorphic image matching.
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1. Introduction

The interest in Riemannian geometry of diffeomorphism groups started with [Arn66],
where it was shown that Euler’s equations, describing the motion of an ideal, incom-
pressible fluid, can be regarded as geodesic equations on the group of volume-preserving
diffeomorphisms. The corresponding Riemannian metric is the right-invariant L2-type
metric. This was used in [EM70] to show the local well-posedness of Euler’s equations
in three and more dimensions. Also following [Arn66], the curvature of the Riemannian
metric was connected in [Mis93, Shk98, Pre04] with stability properties of the fluid flow.
The Fredholmness of the Riemannian exponential map was used in [MP10] to show that
large parts of the diffeomorphism group are reachable from the identity via minimizing
geodesics.

Other equations that have been recognized as geodesic equations on the diffeomor-
phism groups include the Camassa–Holm equation [CH93], the Korteweg–de Vries equa-
tion [OK87, Seg91], the quasigeostrophic equation [Ebi12, EP15], the equations of a
barotropic fluid [Pre13] and others; see [Viz08, BBM14] for an overview. In [EK11], the
Degasperis–Procesi equation is identified as being a geodesic equation for a particular
right-invariant connection on the diffeomorphism group.
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Right-invariant Sobolev metrics. LetM be either Rd or a compact C∞-manifold with-
out boundary of dimension d . The group Ds(M), with s > d/2 + 1, consists of all
C1-diffeomorphisms of Sobolev regularity H s . It is well-known that Ds(M) is a smooth
Hilbert manifold and a topological group [IKT13]. Right-invariant Sobolev H r -metrics
on diffeomorphism groups can thus be described using two parameters: the order r of the
metric and the regularity s of the group. Obviously one requires r ≤ s for the metric to
be well-defined.

As far as the behaviour of Sobolev metrics is concerned, the regularity s of the group
is less important that the order r of the metric. Many properties like smoothness of the
geodesic spray, (non)vanishing of the geodesic distance, Fredholmness of the exponential
map are not present for H r -metrics with r small and then “emerge” at a certain critical
value of r . For some, like the Fredholmness properties of the exponential map, the critical
value is independent of the dimension of M , in other cases the independence is conjec-
tured, and in yet others, like the completeness results in this paper, the critical value does
depend on the dimension. The range of admissible values for s is in each case usually an
interval bounded from below, with the lower bound depending on r .

The study of Sobolev metrics is complicated by the fact that, for a given order r , there
is no canonical H r -metric, just like there is no canonical H r -inner product on the space
H r(M,R). The topology is canonical, but the inner product is not. For r ∈ N, a class of
“natural” inner products can be defined using intrinsic differential operations onM . They
are of the form

〈u, v〉H r =

∫
M

〈u,Lv〉 dµ, (1.1)

where L is a positive, invertible, elliptic differential operator of order 2r . For (possibly)
noninteger orders, the most general family of inner products is given by pseudodifferen-
tial operators L ∈ OPS2r of order 2r within a certain symbol class. The corresponding
Riemannian metric is

Gϕ(Xϕ, Yϕ) =

∫
M

〈Xϕ ◦ ϕ
−1, L(Yϕ ◦ ϕ

−1)〉 dµ,

and it can be represented by the operator Lϕ = R∗ϕ−1 ◦L◦Rϕ−1 with RϕX = X◦ϕ denot-
ing right-translation by ϕ. Note, however, that ϕ is not smooth, but only in Ds(M), and
thus Lϕ is not a pseudodifferential operator with a smooth symbol any more. Pseudodif-
ferential operators with symbols in Sobolev spaces were studied for example in [ARS86b,
ARS86a, BR84, Lan06], but technical difficulties still remain.

Strong Sobolev metrics. Historically most papers dealt with right-invariant Sobolev
metrics on diffeomorphism groups in the weak setting, that is, one consideredH r -metrics
on Ds(M)with s > r; a typical assumption is s > 2r+d/2+1, in order to ensure that Lu
is still C1-regular. The disconnection between the order of the metric and the regularity
of the group arose, because one was mostly interested in L2- or H 1-metrics, but Ds(M)

is a Hilbert manifold only when s > d/2 + 1. It was however noted already in [EM70]
and again in [MP10] that theH s-metric is well-defined and, more importantly, smooth on
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Ds(M), for integer s when the inner product is defined in terms of a differential operator
as in (1.1). The smoothness of the metric is not obvious, since it is defined via

Gϕ(Xϕ, Yϕ) = 〈Xϕ ◦ ϕ
−1, Yϕ ◦ ϕ

−1
〉H s

and the definition uses inversion, which is only a continuous, but not a smooth operation
on Ds(M).

Higher order Sobolev metrics have been studied recently on diffeomorphism groups
of the circle [CK03], of the torus [KLT08] and of general compact manifolds [MP10]. The
sectional curvature of such metrics was analysed in [KLMP13], and in [BHM11, BHM12]
the authors considered Sobolev metrics on the space of immersions, which contains the
diffeomorphism group as a special case.

Diffeomorphic image matching. Another application of strong Sobolev metrics on the
diffeomorphism group is the field of computational anatomy and diffeomorphic image
matching [GM98]. Given two images, represented by scalar functions I, J : Rd → R,
diffeomorphic image registration is the problem of minimizing

J (ϕ) = 1
2 dist(Id, ϕ)2 + S(I ◦ ϕ−1, J )

over a suitable group of diffeomorphisms; here S is a similarity measure between images,
for example the L2-norm, and dist is a distance between diffeomorphisms [BMTY05]. In
the large deformation matching framework this distance is taken to be the geodesic dis-
tance of an underlying right-invariant Riemannian metric on the diffeomorphism group.
Thus Sobolev metrics form a natural family of metrics to be used for diffeomorphic image
registration.

Completeness. The contributions of this paper are twofold. First we show that strong,
smooth Sobolev metrics on Ds(M) are geodesically and metrically complete and that
there exist minimizing geodesics between any two diffeomorphisms. We recall here that
the Hopf–Rinow theorem is not valid in infinite dimensions, namely Atkin [Atk75] gives
an example of a geodesically complete Riemannian manifold where the exponential map
is not surjective. For the Sobolev diffeomorphism group with s > d/2+1, the best known
result can be found in [MP10, Thm. 9.1], which is an improvement of the positive result
of Ekeland [Eke78].

Geodesic completeness was shown for the diffeomorphism group of the circle in
[EK14] and in a weaker form on Rd in [TY05] and [MM13]. Metric completeness and
existence of minimizing geodesics in the context of groups of Sobolev diffeomorphisms
and its subgroups is—as far as we know—new. We prove the following theorem:

Theorem 1.1. Let M be Rd or a closed manifold and s > d/2 + 1. If Gs is a smooth,
right-invariant Sobolev metric of order s on Ds(M), then:

(1) (Ds(M),Gs) is geodesically complete.
(2) (Ds(M)0, dists) is a complete metric space.
(3) Any two elements of Ds(M)0 can be joined by a minimizing geodesic.
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Here dists is the geodesic distance induced by Gs (see Sect. 6.3) and Ds(M)0 is the
connected component of the identity. We expect that the same methods of proof can also
be applied to the subgroups Ds

µ(M) and Ds
ω(M) of diffeomorphisms preserving a volume

form µ or a symplectic structure ω.
The crucial ingredient in the proof is showing that for each t the flow map

Flt : L1(I,Xs(M))→ Ds(M), (1.2)

assigning to a vector field its flow at time t , exists and is continuous; see Sect. 3.1 for
definitions. The existence was known for vector fields in C(I,Xs(M)) and the continuity
as a map into Ds′ for s′ < s was shown in [Inc12]. We extend the existence result to vector
fields that are L1 in time and show continuity with respect to the manifold topology. The
flow map allows us to identify the space of H 1-paths with the space of right-trivialized
velocities,

Ds(M)× L2(I,Xs(M))
∼=
−→ H 1(I,Ds(M)), (ϕ0, u) 7→ (t 7→ Flt (u) ◦ ϕ0).

The inverse map of the identification is given by H 1(I,Ds) 3 ϕ 7→ (ϕ(0), ∂tϕ ◦ ϕ−1).
Since L2(I,Xs(M)) is a Hilbert space, we can use variational methods to show the exis-
tence of minimizing geodesics.

In order to show metric completeness, we derive, in the case M = Rd , the following
estimate on the geodesic distance:

‖ϕ − ψ‖H s ≤ C dists(ϕ, ψ),

which is valid on a bounded metric dists-ball. In other words, the identity map between
the two metric spaces

Id : (Ds(Rd), ‖ · ‖H s )→ (Ds(Rd), dists)

is locally Lipschitz continuous. For compact manifolds we show a similar inequality in
coordinate charts. The Lipschitz continuity implies that a Cauchy sequence for dists is a
Cauchy sequence for ‖ · ‖H s , thus giving us a candidate for a limit point. One then pro-
ceeds to show that the limit point lies in the diffeomorphism group and that the sequence
converges to it with respect to the geodesic distance.

Applications to image matching. The second contribution concerns the groups of dif-
feomorphisms introduced by Trouvé [Tro98, TY05] for diffeomorphic image matching
in the large deformation framework [BMTY05]. In this framework one chooses a Hilbert
space H of vector fields on Rd with a norm that is stronger than the uniform C1

b -norm1,
i.e., H ↪→ C1

b , and considers the group GH of all diffeomorphisms that can be generated
as flows of vector fields in L2(I,H), I being a compact interval.

1 The C1
b

-norm is the supremum norm on the vector field and the first derivative, ‖u‖
C1
b
=

‖u‖∞ + ‖Du‖∞.
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When s > d/2+ 1 the Sobolev embedding theorem shows that H s ↪→ C1
b , allowing

us to consider the group GH s as a special case of the construction by Trouvé. It is not
difficult to show, for t fixed, the existence of the flow as a map

Flt : L2(I,H)→ Diff1(Rd)

into the space of C1-diffeomorphisms. Thus we can view the existence of the flow map in
the sense (1.2) as a regularity result when H = H s . With the help of this regularity result
we are able to show the following:

Theorem 1.2. Let s > d/2+ 1. Then GH s = Ds(Rd)0.

This means that if we choose H to be a Sobolev space, then the framework of Trouvé
yields the classical groups of Sobolev diffeomorphisms. As a consequence, GH s is a
topological group and the paths solving the image registration problem are smooth. We
also deduce, using the proximal calculus on Riemannian manifolds [AF05], that Karcher
means of k diffeomorphisms—and more generally shapes—are unique on a dense subset
of the k-fold product Ds

× · · · ×Ds .

2. The group Ds(Rd)

The Sobolev spaces H s(Rd) with s ∈ R can be defined in terms of the Fourier transform

Ff (ξ) = (2π)−n/2
∫
Rn
e−i〈x,ξ〉f (x) dx,

and consist of L2-integrable functions f with the property that (1 + |ξ |2)s/2Ff is
L2-integrable as well. An inner product on H s(Rd) is given by

〈f, g〉H s = Re

∫
Rd
(1+ |ξ |2)sFf (ξ)Fg(ξ) dξ.

Denote by Diff1(Rd) the space of C1-diffeomorphisms of Rd , i.e.,

Diff1(Rd) = {ϕ ∈ C1(Rd ,Rd) : ϕ bijective, ϕ−1
∈ C1(Rd ,Rd)}.

For s > d/2 + 1 there are three equivalent ways to define the group Ds(Rd) of Sobolev
diffeomorphisms:

Ds(Rd) = {ϕ ∈ Id+H s(Rd ,Rd) : ϕ bijective, ϕ−1
∈ Id+H s(Rd ,Rd)}

= {ϕ ∈ Id+H s(Rd ,Rd) : ϕ ∈ Diff1(Rd)}

= {ϕ ∈ Id+H s(Rd ,Rd) : detDϕ(x) > 0, ∀x ∈ Rd}.

If we denote the three sets on the right by A1, A2 and A3, then it is not difficult to see the
inclusions A1 ⊆ A2 ⊆ A3. The equality A1 = A2 has first been shown in [Ebi70, Sect. 3]
for the diffeomorphism group of a compact manifold; a proof for Ds(Rd) can be found in
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[IKT13]. Regarding the inclusion A3 ⊆ A2, it is shown in [Pal59, Cor. 4.3] that if ϕ ∈ C1

with detDϕ(x) > 0 and lim|x|→∞ |ϕ(x)| = ∞, then ϕ is a C1-diffeomorphism.
It follows from the Sobolev embedding theorem that Ds(Rd) − Id is an open subset

of H s(Rd ,Rd) and thus a Hilbert manifold. Since each ϕ ∈ Ds(Rd) has to decay to
the identity for |x| → ∞, it follows that ϕ is orientation preserving. More importantly,
Ds(Rn) is a topological group, but not a Lie group, since left-multiplication and inversion
are continuous, but not smooth.

The space of Sobolev vector fields on Rd is denoted either Xs(Rd) or H s(Rd ,Rd).

2.1. Boundedness of composition. We will use the following lemma to estimate compo-
sition in Sobolev spaces. The first two parts are [IKT13, Cor. 2.1 and Lem. 2.7]; the third
statement is a slight refinement of [IKT13, Lem. 2.11] and can be proven in the same way.
Denote by Bε(0) the (open) ε-ball around the origin in H s(Rd ,Rd).

Lemma 2.2. Let s > d/2+ 1 and 0 ≤ s′ ≤ s.

(1) Given ψ ∈ Ds(Rd) there exist ε,M > 0 such that ψ + Bε(0) ⊆ Ds(Rd) and

inf
x∈Rd

detDϕ(x) > M for all ϕ ∈ ψ + Bε(0).

(2) Given M,C > 0 there exists Cs′ = Cs′(M,C) such that for all ϕ ∈ Ds(Rd) with

inf
x∈Rd

detDϕ(x) > M and ‖ϕ − Id‖H s < C,

and all f ∈ H s′(Rd),
‖f ◦ ϕ‖

H s′ ≤ Cs′‖f ‖H s′ .

(3) Assume additionally s′ > d/2. Let U ⊂ Ds(Rd) be a convex set and M,C > 0
constants such that

inf
x∈Rd

detDϕ(x) > M and ‖ϕ − Id‖H s < C for all ϕ ∈ U.

Then there exists Cs′ = Cs′(M,C) such that for all f ∈ H s′+1(Rd) and ϕ,ψ ∈ U ,

‖f ◦ ϕ − f ◦ ψ‖
H s′ ≤ Cs′‖f ‖H s′+1‖ϕ − ψ‖H s′ .

Proof. For the sake of completeness we give a proof of the third statement. We may
assume that f ∈ C∞c (Rd), since C∞c (Rd) is dense in H s′+1(Rd). Introduce δϕ(x) =
ϕ(x)− ψ(x) and note that ϕ + tδϕ ∈ U for any 0 ≤ t ≤ 1. Since ϕ,ψ ∈ Diff1

+(Rd), we
have, for all x ∈ Rd ,

f ◦ ϕ(x)− f ◦ ψ(x) =

∫ 1

0

d

dt
(f ◦ (ϕ + tδϕ)(x)) dt

=

∫ 1

0
Df ((ϕ + tδϕ)(x)).δϕ(x) dt.
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Hence

‖f ◦ ϕ − f ◦ ψ‖
H s′ ≤ C

′

s′

∫ 1

0
‖Df ◦ (ϕ + tδϕ)‖

H s′ ‖ϕ − ψ‖H s′ dt

≤ C′′s′‖Df ‖H s′ ‖ϕ − ψ‖H s′ ≤ Cs′‖f ‖H s′+1‖ϕ − ψ‖H s′ ,

with some constants Cs′ , C′s′ , C
′′

s′
. ut

3. Convergence of flows in Ds(Rd)

In this section we want to clarify, what is meant by the flow of a vector field, in particular
for vector fields that are only L1, and then prove some results about the convergence of
flows given convergence of the underlying vector fields. The main result of the section is
Theorem 3.7, which shows that for s > d/2 + 1 the flow map—assuming it exists—is
continuous as a map

Fl : L1(I,H s(Rd ,Rd))→ C(I,Ds′(Rd)),

where d/2 + 1 < s′ < s. The result will be strengthened by Theorem 4.4, which will
show the existence of the flow as well as the convergence for s′ = s.

3.1. Pointwise and Ds-valued flows. Let s > d/2 + 1 and I be a compact interval
containing 0. Assume u is a vector field, u ∈ L1(I,H s(Rd ,Rd)). It is shown in [You10,
Sect. 8.2] that there exists a map ϕ : I × Rd → Rd such that

• ϕ(·, x) is absolutely continuous for each x and
• ϕ(t, ·) is continuous for each t ,

and this map satisfies the equation

ϕ(t, x) = x +

∫ t

0
u(τ, ϕ(τ, x)) dτ. (3.1)

We will call such a map ϕ the pointwise flow of u or simply the flow of u. It then follows
that for each x ∈ Rd the differential equation

∂tϕ(t, x) = u(t, ϕ(t, x))

is satisfied t-almost everywhere. It is also shown in [You10, Thm. 8.7] that ϕ(t) is a
C1-diffeomorphism for all t ∈ I .

We will denote by Fl(u) : I → Diff1(Rd) the flow map of the vector field u. Given
t ∈ I , the flow at time t is Flt (u) ∈ Diff1(Rd). If ϕ is the map solving (3.1), then
ϕ = Fl(u) and ϕ(t) = Flt (u). Note that (3.1) implies Fl0(u) = Id; we shall use this
convention throughout the paper.
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If we additionally assume that ϕ ∈ C(I,Ds(Rd)), i.e., ϕ is a continuous curve in
Ds(Rd), then Lemma 3.2 below shows that the function t 7→ u(t) ◦ ϕ(t) is Bochner
integrable in H s and the identity

ϕ(t) = Id+
∫ t

0
u(τ) ◦ ϕ(τ) dτ (3.2)

holds in Ds(Rd); furthermore, (3.2) implies that the curve t 7→ ϕ(t) is absolutely con-
tinuous. We will call a curve ϕ ∈ C(I,Ds(Rd)) a flow of u with values in Ds(Rd) or a
Ds-valued flow of u. The pointwise flow of a vector field is unique, and therefore if the
Ds-valued flow exists, it is also unique. It will be shown in Theorem 4.4 that every vector
field u ∈ L1(I,H s) has a Ds-valued flow.

Lemma 3.2. Let s > d/2+ 1, u ∈ L1(I,H s(Rd ,Rd)) and ϕ ∈ C(I,Ds(Rd)). Then:

(1) The function t 7→ u(t) ◦ ϕ(t) is Bochner integrable.
(2) If ϕ satisfies (3.1), then the identity (3.2) holds as an identity in Ds(Rd).

Proof. (1) The map t 7→ u(t)◦ϕ(t) is weakly measurable, and thus measurable sinceH s

is separable [SY05, Prop. 1.1.10]. Since I is compact, the set ϕ(I) satisfies the conditions
of Lemma 2.2(2), i.e., there exists a constant C such that

‖v ◦ ϕ(t)‖H s ≤ C‖v‖H s

for all v ∈ H s and all t ∈ I . Thus∫
I

‖u(t) ◦ ϕ(t)‖H s dt ≤ C‖u‖L1 <∞,

via [SY05, Thm. 1.4.3], which implies that t 7→ u(t) ◦ ϕ(t) is Bochner integrable.
(2) Denote by evx : H s(Rd ,Rd)→ Rd the evaluation map. Since s > d/2, this map

is continuous, and thus (3.1) can be interpreted as

evx(ϕ(t)− Id) =
∫ t

0
evx(u(τ ) ◦ ϕ(τ)) dτ.

The Bochner integral commutes with bounded linear maps [DU77, Thm. 6], and the set
{evx : x ∈ Rd} is point-separating. Thus we obtain

ϕ(t)− Id =
∫ t

0
u(τ) ◦ ϕ(τ) dτ in H s(Rd ,Rd),

which concludes the proof. ut

The meaning of Lemma 3.2 is that the notions of Ds-valued flow and pointwise flow
coincide if we know a priori that ϕ is a continuous curve in Ds(Rd). The next lemma
shows the basic property that being a flow is preserved under uniform convergence of
flows and L1-convergence of vector fields.
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Lemma 3.3. Let s > d/2 + 1 and let un ∈ L1(I,H s(Rd ,Rd)) be a sequence of vector
fields with Ds-valued flows ϕn. Assume that un → u and ϕn − ϕ → 0 in L1(I,H s) and
C(I,H s) respectively. Then ϕ is the Ds-valued flow of u.
Proof. We need to show two things: that ϕ(t) ∈ Ds(Rd) and that ϕ is the Ds-valued flow
of u. First note that ϕn(t)− ϕ(t) ∈ H s implies ϕ(t)− Id ∈ H s .

As ϕn is the flow of un, it satisfies the identity

ϕn(t, x) = x +

∫ t

0
un(τ, ϕn(τ, x)) dτ (3.3)

for all (t, x) ∈ I × Rd . From the estimates∣∣∣∣∫ t

0
[un(τ, ϕn(τ, x))− u(τ, ϕ(τ, x))] dτ

∣∣∣∣
≤

∫ t

0
[|un(τ, ϕn(τ, x))− u(τ, ϕn(τ, x))| + |u(τ, ϕn(τ, x))− u(τ, ϕ(τ, x))|] dτ

≤

∫ t

0
[‖un(τ )− u(τ)‖∞ + ‖Du(τ)‖∞‖ϕ

n(τ )− ϕ(τ)‖∞] dτ

≤ C

∫ t

0
[‖un(τ )− u(τ)‖H s + ‖u(τ)‖H s‖ϕn(τ )− ϕ(τ)‖H s ] dτ

≤ C‖un − u‖L1(I,H s ) + C‖u‖L1(I,H s )‖ϕ
n
− ϕ‖C(I,Ds ),

with the constant C arising from Sobolev embeddings, we see by passing to the limit
in (3.3) that ϕ is the pointwise flow of u. As remarked at the beginning of the section,
it is shown in [You10, Thm. 8.7] that the pointwise flow ϕ(t) is a C1-diffeomorphism,
and together with ϕ(t) − Id ∈ H s this shows ϕ(t) ∈ Ds(Rd). Finally, it follows from
Lemma 3.2 that ϕ is the Ds-valued flow. ut

We will use the following decomposition method repeatedly.

Remark 3.4. A recurring theme is to show the existence of the flow

Flt : L1(I,Xs)→ Ds, u 7→ ϕ(t),

and its continuity—either pointwise or uniform in t—where Xs is the space of vector
fields of a certain Sobolev regularity s on Rd or on a manifold M . This is often done by
proving the statement in question first for small vector fields, i.e. those with ‖u‖L1 < ε

for some given ε. The statement then follows for all vector fields via the following general
principle.

Let ε > 0 be fixed. Given a vector field u ∈ L1(I,Xs), there exists an N and a
decomposition of I into N subintervals [tj , tj+1] such that on each subinterval we have∫ tj+1

tj

‖u(t)‖H s dt < ε.

Note that while the points tj will depend on u, their total number N can be bounded
by a quantity depending only on ‖u‖L1 ; indeed, we have N ≤ ‖u‖L1/ε + 1. To see this,
assume without loss of generality that I = [0, 1] and define f (t) =

∫ t
0 ‖u(τ)‖H s dτ .
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This function is nondecreasing and maps [0, 1] to [0, ‖u‖L1 ]. Subdivide the latter interval
into N subintervals [sj , sj+1] of length less than ε and set t0 = 0 and tj = sup f−1(sj )

for j = 1, . . . , N .
Let uj = u|[tj ,tj+1]. We have ‖uj‖L1 < ε and we can apply the proven statement to

obtain the existence of a flow, which we denote ϕj ; here we let ϕj (tj ) = Id. Then we
define, for t ∈ [tj , tj+1],

ϕ(t) = ϕj (t) ◦ ϕj−1(tj ) ◦ · · · ◦ ϕ1(t2) ◦ ϕ0(t1).

It can easily be checked that ϕ is the flow of u—on Rd this can be done directly and on a
manifold M using coordinate charts. As the flow is put together using only finitely many
compositions, and Ds is a topological group, any statement about continuity of the flow
map can be transferred from uj to u.

Another reformulation of the decomposition principle is that any diffeomorphism ϕ

that is the flow of a vector field u with ‖u‖L1 < r can be decomposed into ϕ1 ◦ · · · ◦ ϕN ,
where each ϕj is the flow of a vector field uj with ‖uj‖L1 < ε, and N depends only on r .

A first example that uses this method is the proof of the following lemma, showing that
Lemma 2.2 can be applied on arbitrary geodesic balls.

Lemma 3.5. Let s > d/2 + 1 and 0 ≤ s′ ≤ s. Given r > 0 and n ∈ N, there exists a
constant C such that

‖v ◦ ϕ‖
H s′ ≤ C‖v‖H s′

for all v ∈ H s′(Rd ,Rn) and all ϕ ∈ Ds(Rd) that can be written as ϕ = ψ(1), where ψ
is the Ds(Rd)-valued flow of a vector field u with ‖u‖L1(I,H s ) < r .

Proof. For the purposes of this proof we set I = [0, 1]. Choose an ε > 0 such that
Id+ Bε(0) ⊆ Ds(M) with Bε(0) being the ε-ball in H s(Rd ,Rd). Using Remark 3.4 it is
enough to prove the lemma for vector fields u with C‖u‖L1 < ε. Let ψ be the Ds-valued
flow of such a vector field; the existence of ψ is guaranteed by the assumptions of the
lemma. We claim that ψ(t) ∈ Id+ Bε(0). Assume the contrary and let T be the smallest
time such that either ‖ψ(T )− Id‖H s = ε or T = 1. Then for t < T we have

‖ψ(t)− Id‖H s ≤

∫ t

0
‖u(τ) ◦ ψ(τ)‖H s dτ ≤ C

∫
I

‖u(τ)‖H s dτ < ε.

The curve t 7→ ψ(t) is continuous in Ds(Rd), and since the rightmost inequality does not
depend on t , it remains strict even in the limit t → T , thus showing ‖ψ(T )− Id‖H s < ε.
This implies that T = 1 and ϕ = ψ(1) ∈ Id+ Bε(0).

This shows that given ϕ, we can decompose ϕ into ϕ1
◦ · · · ◦ϕN with ϕk ∈ Id+Bε(0)

for all k = 1, . . . , N . For each ϕk we can apply Lemma 2.2(2) to obtain

‖u ◦ ϕ‖
H s′ ≤ C

N
1 ‖u‖H s′

for some constant C1. As N depends on ϕ only via r , this completes the proof. ut
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Remark 3.6. With a bit more work one can show that for each r > 0, there exist con-
stants M and C such that the bounds

inf
x∈Rd

detDϕ(t, x) > M and ‖ϕ(t)− Id‖H s < C

hold for diffeomorphisms that are flows of vector fields with L1-norm less than r; then it
is possible to apply Lemma 2.2(2) directly.

The next theorem shows that L1-convergence of H s-vector fields implies uniform con-
vergence of the flows, not in Ds(Rd), but in Ds′(Rd) with s′ < s. The proof is a general-
ization of the proof in [Inc12, Prop. B.1].

Theorem 3.7. Let s > d/2+ 1 and let un ∈ L1(I,H s(Rd ,Rd)) be a sequence of vector
fields with Ds-valued flows ϕn. Assume that un → u in L1(I,H s). Then there exists a
map ϕ : I × Rd → Rd such that ϕ ∈ C(I,Ds′(Rd)) for all s′ with d/2+ 1 < s′ < s,

ϕn→ ϕ in C(I,Ds′(Rd)),

and ϕ is the Ds′ -valued flow of u.

Proof. Let Bsε (0) be the ε-ball in H s(Rd ,Rd). As s > d/2+ 1 we obtain via Lemma 2.2
an ε > 0 and a constant C = C(ε) such that Id+ Bsε (0) ⊆ Ds(Rd) and the estimates

‖u ◦ ϕ − u ◦ ψ‖H s−1 ≤ C‖u‖H s‖ϕ − ψ‖H s−1 , (3.4)
‖u ◦ ϕ‖H s−1 ≤ C‖u‖H s−1 , (3.5)
‖u ◦ ϕ‖H s ≤ C‖u‖H s (3.6)

are valid for all u ∈ H s and all ϕ,ψ ∈ Id+ Bsε (0).

Step 1: Reduction of the problem to Id + Bsε (0). Using the decomposition method of
Remark 3.4 it is enough to prove the theorem for vector fields u with C‖u‖L1 < ε. Since
un→ u in L1, we can also assume that C‖un‖L1 < ε for all n ∈ N.

As part of the proof of Lemma 3.5 it was shown that if un satisfies C‖un‖L1 < ε, then
its flow ϕn remains in Id+ Bsε (0). Thus we can restrict our attention to diffeomorphisms
lying in the ε-ball around Id.

Step 2: Convergence in H s−1(Rd ,Rd). We show that (ϕn(t) − Id)n∈N are Cauchy se-
quences in H s−1, uniformly in t . Using (3.4) and (3.5) we can estimate

‖ϕn(t)− ϕm(t)‖H s−1 ≤

∫ t

0
[‖un ◦ ϕn − um ◦ ϕn‖H s−1 + ‖u

m
◦ ϕn − um ◦ ϕm‖H s−1 ] dτ

≤ C

∫ t

0
[‖un − um‖H s−1 + ‖u

m
‖H s‖ϕn − ϕm‖H s−1 ] dτ.

Via Gronwall’s inequality we get, for some C1 > 0 independent of t ,

‖ϕn(t)− ϕm(t)‖H s−1 ≤ C1

∫ t

0
‖un(τ )− um(τ )‖H s−1 dτ. (3.7)

Thus there exists a continuous limit curve ϕ(t)− Id ∈ H s−1.
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Step 3: Convergence in H s′(Rd ,Rd) with s − 1 < s′ < s. We apply the following
interpolation inequality (see, e.g., [Inc12, Lem. B.4]):

‖f ‖H λσ+(1−λ)s ≤ C2‖f ‖
λ
H σ ‖f ‖

1−λ
H s ,

valid for 0 ≤ σ ≤ s, f ∈ H s(Rd ,Rd) and a constant C2 independent of f . Choose
σ = s − 1 and 0 < λ ≤ 1. Then

‖ϕn(t)−ϕm(t)‖H s−λ ≤ C2‖ϕ
n(t)−ϕm(t)‖λ

H s−1‖ϕ
n(t)−ϕm(t)‖1−λH s

≤ C2‖ϕ
n(t)−ϕm(t)‖λ

H s−1(‖ϕ
n(t)− Id‖H s +‖ϕm(t)− Id‖H s )1−λ

≤ C2‖ϕ
n(t)−ϕm(t)‖λ

H s−1(2ε)1−λ.

Since ϕn(t)− Id→ ϕ(t)− Id in H s−1, uniformly in t , it follows that (ϕn(t)− Id)n∈N is
a Cauchy sequence in H s′ for s − 1 ≤ s′ < s, uniformly in t . As ϕn(t)− Id converges to
ϕ(t)− Id inH s−1, it must also converge to the same limit inH s′ . By applying Lemma 3.3
we see that ϕ ∈ Ds′(Rd) and that it is the Ds′ -valued flow of u. ut

4. Existence of the flow map

The main result of this section is the existence and continuity of the flow map

Fl : L1(I,Xs(Rd))→ C(I,Ds(Rd))

for s > d/2 + 1, with I being a compact interval containing 0. This result will be the
crucial ingredient in proving that the group GH s (Rd ,Rd ), introduced in Sect. 8, coincides
with the connected component of the identity of Ds(Rd). We now make some comments
about this result.

Since the flow ϕ of a vector field u is defined as the solution of the ODE

∂tϕ(t) = u(t) ◦ ϕ(t), ϕ(0) = Id, (4.1)

the first attempt at showing the existence of ϕ would be to consider (4.1) as an ODE in
Ds(Rd)—the latter being, up to translation by Id, an open subset of the Hilbert space
H s(Rd ,Rd)—with the right hand side given by the vector field

U : I ×Ds
→ H s, U(t, ϕ) = u(t) ◦ ϕ. (4.2)

This runs into two sets of difficulties.
Firstly, the Picard–Lindelöf theory of ODEs requires the right hand side f (t, x) of an

ODE to be (locally) Lipschitz continuous in x and continuous in t . Under these conditions
the theorem of Picard–Lindelöf guarantees the local existence of integral curves. In our
case the right hand side is not continuous in t , but only L1. The usual way to prove
existence of solutions in the framework of Picard–Lindelöf involves the Banach fixed
point theorem, and the proof can be generalized without much difficulty to ODEs that
are not continuous in t . It is enough to require that f (t, x) is Lipschitz in x and only
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measurable in t and that the Lipschitz constants are locally integrable, i.e., there exists a
function `(t) with

∫
`(t) dt <∞ such that

‖f (t, x1)− f (t, x2)‖ ≤ `(t)‖x1 − x2‖

is valid for all x1, x2 and t-almost everywhere. This class of differential equations is called
ordinary differential equations of Carathéodory type. We have summarized the key facts
about ODEs of Carathéodory type in the Appendix.

Secondly, the vector field U from (4.2) is also non-Lipschitz in ϕ. The composition
map H s

× Ds
→ H s is continuous, but not Lipschitz continuous. In finite dimensions

the theorem of Peano shows that vector fields f (t, x) that are continuous in t and x have
flows, but the flows might fail to be unique. In infinite dimensions this is not the case
anymore; an example of a continuous vector field without a flow can be found in [Dei77,
Example 2.1].

For a continuous vector field u, i.e., u ∈ C(I,H s), the existence of a Ds-valued flow
has been shown in [FM72] and using different methods also in [BB74] and [Inc12]. We
will briefly review the proofs to choose the one that most easily generalizes to vector
fields u ∈ L1(I,H s).

If we only require s > d/2+ 2, then the proof is much shorter than the more general
case s > d/2 + 1 and can be found already in [EM70]. First one considers the equation
(4.1) as an ODE on Ds−1(Rd). Due to the properties of the composition map, the vector
field U : I × Ds−1

→ H s−1 is a C1-vector field and hence has a Ds−1-valued flow ϕ.
This is worked out in detail in Lemma 4.2 below. To show that ϕ ∈ Ds , one considers the
differential equation for Dϕ(t),

∂t (Dϕ(t)− Idd×d) = (Du(t) ◦ ϕ(t)).(Dϕ(t)− Idd×d)+Du(t) ◦ ϕ(t).

This is a linear differential equation on H s−1, thus showing Dϕ − Idd×d ∈ H s−1 and
ϕ ∈ Ds . The details of this argument can be found in Lemma 4.1.

Improving the hypothesis on s to s > d/2+ 1 requires a bit of work. For vector fields
u ∈ C(I,H s) that are continuous in time and not just L1 this result has been proven by
three different methods.

1. The approach used in [FM72] was to derive an equation for ϕ−1(t) instead of ϕ(t).
Write ϕ−1(t) = Id+f (t) with f (t) ∈ H s . Then ∂tϕ−1(t) = −Dϕ−1(t).u(t) and so f (t)
satisfies the equation

∂tf (t) = −Df (t).u(t)− u(t). (4.3)

This is a linear, symmetric, hyperbolic system and the theory developed in [FM72] can
be applied to show that, given u ∈ C(I,H s), the system (4.3) has a solution f (t) ∈ H s

and hence ϕ−1(t) ∈ Ds(Rd). To extend this method to vector fields that are only L1 in t ,
one would need a theory of linear, hyperbolic systems with nonsmooth (in t) coefficients.

2. The method of [BB74] covers not only the groups Ds(Rd) which are based on
the spaces H s , but the more general family W s,p and the corresponding diffeomor-
phism groups, which we shall denote by Ds,p(Rd). One can prove that vector fields
u ∈ C(I,W s,p) with s > d/p + 1 have Ds,p-valued flows. The existing proof is for
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s ∈ N only and proceeds by induction on s. The induction step uses the fact that given s
satisfying s > d/p + 1 we can find p′ > p such that s − 1 > d/p′ + 1, and hence we
can apply the induction hypothesis to the pair (s−1, p′). Extending this method to s ∈ R
and vector fields u ∈ L1(I,W s,p) would require studying properties of the composition
map on the spaces Ds,p(Rd)—this has not been done yet for s ∈ R \ N.

3. The idea of [Inc12, App. B] is to approximate a vector field u ∈ C(I,H s) by a
sequence of vector fields inH s+1 and then to show that the corresponding flows converge
as well. This method is ideally suited to be generalized from continuous vector fields
to L1 vector fields and it will be the path we follow here.

To prepare the proof of the main result, Theorem 4.4, we will need some lemmas. The
first lemma—which can be traced back to [EM70, Lem. 3.3]—shows that the flow of a
vector field is as regular as the vector field itself.

Lemma 4.1. Let d/2 + 1 < s′ ≤ s and u ∈ L1(I,H s(Rd ,Rd)). Assume u has a flow
in Ds′(Rd). Then in fact ϕ ∈ C(I,Ds(Rd)).

Proof. We will first handle the case s′ < s ≤ s′ + 1. This is equivalent to s − 1 ≤
s′ < s. Our aim is to show thatDϕ(t)− Idd×d is a continuous curve inH s−1(Rd ,Rd×d),
implying that ϕ(t) − Id is a continuous curve in H s(Rd ,Rd). Note that the derivative
Dϕ(t) satisfies the following ODE in H s′−1, t-a.e.:

∂t (Dϕ(t)− Idd×d) = (Du(t) ◦ ϕ(t)).(Dϕ(t)− Idd×d)+Du(t) ◦ ϕ(t). (4.4)

Consider the linear, inhomogeneous, matrix-valued differential equation

∂tA(t) = (Du(t) ◦ ϕ(t)).A(t)+Du(t) ◦ ϕ(t) (4.5)

on H s−1(Rd ,Rd×d). Since H s−1 is a Banach algebra, we can interpret Du(t) ◦ ϕ(t) as
an element of L(H s−1), i.e., a linear map from H s−1 to itself, and there exists a constant
C > 0 such that

‖Du(t) ◦ ϕ(t)‖L(H s−1) ≤ C‖Du(t) ◦ ϕ(t)‖H s−1 .

Lemma 3.2 shows that Du(t) ◦ ϕ(t) is Bochner integrable in H s′ and thus in H s−1. This
allows us to apply the existence theorem for linear Carathéodory equations (Thm. A.3),
giving us a solution A ∈ C(I,H s−1) of (4.5). Since Dϕ − Idd×d satisfies (4.4) in H s′−1

and A(t) satisfies (4.5) in H s−1, it follows that they are equal, Dϕ(t) − Idd×d = A(t),
thus showing that Dϕ(t)− Idd×d ∈ H s−1.

In the general case we have s′ + k < s ≤ s′ + k + 1 with k ∈ N. The argument
above proved the lemma for k = 0. If k ≥ 1, we apply the above argument with the
pair (s′, s′ + 1) in place of (s′, s). This shows that ϕ(t) ∈ Ds′+1. Then we can apply the
argument with (s′ + 1, s′ + 2) to obtain ϕ(t) ∈ Ds′+2, and so one shows inductively

ϕ(t) ∈ Ds′
⇒ ϕ(t) ∈ Ds′+1

⇒ · · · ⇒ ϕ(t) ∈ Ds′+k
⇒ ϕ(t) ∈ Ds .

In the last step we use the argument with the pair (s′ + k, s) to conclude that ϕ(t) ∈ Ds .
ut
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As stated in the introduction to this section, we will first show the existence of flows
for H s vector fields when s > d/2+ 2. This involves applying the existence theorem for
Carathéodory differential equations to the equation (4.1).

Lemma 4.2. Let s > d/2 + 2 and u ∈ L1([0, 1], H s(Rd ,Rd)). Then u has a flow
in Ds(Rd).

Proof. For ε > 0 define the open ball

Bs−1
ε (0) = {f ∈ H s−1(Rd ,Rd) : ‖f ‖H s−1 < ε}.

Since s − 1 > d/2 + 1, Lemma 2.2 yields an ε > 0 and a constant C = C(ε) such that
Id+ Bs−1

ε (0) ⊆ Ds−1(Rd) and the estimates

‖u ◦ ϕ1 − u ◦ ϕ2‖H s−1 ≤ C‖u‖H s‖ϕ1 − ϕ2‖H s−1 ,

‖u ◦ ϕ‖H s−1 ≤ C‖u‖H s−1

are valid for all u ∈ H s and all ϕ, ϕ1, ϕ2 ∈ Id+ Bs−1
ε (0).

Using the decomposition method of Remark 3.4 it is enough to show the existence of
the flow when C‖u‖L1 < ε. Under this assumption, define the vector field

U : I × Bs−1
ε (0)→ H s−1(Rd ,Rd), U(t, f ) = u(t) ◦ (Id+ f ),

where u(t) is given. The mapping U has the Carathéodory property (Def. A.1), be-
cause composition is continuous in Ds−1(Rd) and H s−1 is separable. The functions
m(t) and `(t) required in Theorem A.2 are given by m(t) = C‖u(t)‖H s−1 and `(t) =
C‖u(t)‖H s . Then by Theorem A.2 we have a solution ϕ ∈ C([0, 1],Ds−1(Rd)) of the
equation

ϕ(t) = Id+
∫ t

0
u(τ) ◦ ϕ(τ) dτ.

Thus ϕ is the Ds−1(Rd)-valued flow of u, and Lemma 4.1 shows that in fact ϕ is Ds(Rd)-
valued. ut

The next lemma shows how to approximate vector fields in H s(Rd) by a sequence of
vector fields in H s+1(Rd), whilst preserving integrability in time.

Lemma 4.3. Let s ≥ 0 and f ∈ L1(I,H s(Rd)). For k ≥ 0, define χ(ξ) = 1{|ξ |≤k}(ξ)

and let χk(D) be the corresponding Fourier multiplier. Then

χk(D)f ∈ L
1(I,H s+1(Rd)),

and χk(D)f → f in L1(I,H s(Rd)) as k→∞.

Proof. For all t ∈ I we have

‖χk(D)f (t)‖
2
H s+1(Rd ) =

∫
|ξ |≤k

(1+ |ξ |2)s+1
|f̂ (t)(ξ)|2 dξ ≤ (1+ k2)‖f (t)‖2

H s (Rd ),
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and thus χk(D)f ∈ L1(I,H s+1(Rd)); in fact, χk(D)f (t) ∈ H∞, but this will not be
needed here.

To show convergence we note that

‖χk(D)f (t)− f (t)‖
2
H s (Rd ) =

∫
|ξ |>k

(1+ |ξ |2)s |f̂ (t)(ξ)|2 dξ ≤ ‖f (t)‖2
H s (Rd ).

By the dominated convergence theorem we obtain first∫
|ξ |>k

(1+ |ξ |2)s |f̂ (t)(ξ)|2 dξ → 0

for all t ∈ I and thus χk(D)f (t)→ f (t) in H s(Rd), and by applying it again,

lim
k→∞
‖χk(D)f − f ‖L1(I,H s ) =

∫ 1

0
lim
k→∞
‖χk(D)f (t)− f (t)‖H s (Rd ) dt = 0,

showing that χk(D)f → f in L1. ut

We are now ready to prove the main theorem.

Theorem 4.4. Let s > d/2+1 and u ∈ L1(I,H s(Rd ,Rd)). Then u has a Ds(Rd)-valued
flow and the map

Fl : L1(I,H s(Rd ,Rd))→ C(I,Ds(Rd)), u 7→ ϕ,

is continuous.

Proof. Given u ∈ L1(I,H s), it follows from Lemma 4.3 that there exists a sequence
un ∈ L1(I,H s+1) converging to u,

un→ u in L1(I,H s(Rd ,Rd)).

According to Lemma 4.2, each un has a Ds(Rd)-valued flow; in fact they have Ds+1(Rd)-
valued flows. As un→ u in L1, it was shown in Theorem 3.7 that u itself has a Ds′(Rd)-
valued flow ϕ for each s′ with d/2 + 1 < s′ < s and that ϕn → ϕ in C(I,Ds′(Rd)).
Finally, we use the regularity result from Lemma 4.1 to conclude that the flow ϕ of u is
Ds(Rd)-valued.

To prove the continuity of the flow map, consider a sequence un converging to u in
L1(I,H s) and denote by ϕn and ϕ the Ds-valued flows of un and u respectively. The
H s-norm ‖u‖H s is equivalent to the norm ‖u‖L2 + ‖Du‖H s−1 , and since ϕn(t) → ϕ(t)

uniformly in Ds−1(Rd), we only need to show that Dϕn(t) − Dϕ(t) → 0 uniformly
in H s−1. We will do this by applying Gronwall’s lemma to

Dϕn(t)−Dϕ(t) =

∫ t

0
[(Dun(τ ) ◦ ϕn(τ )).Dϕn(τ )− (Du(τ) ◦ ϕ(τ)).Dϕ(τ)] dτ.
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Taking norms we obtain

‖Dϕn(t)−Dϕ(t)‖H s−1 ≤

∫ t

0
[‖(Dun(τ ) ◦ ϕn(τ )).(Dϕn(τ )−Dϕ(τ))‖H s−1

+ ‖(Dun(τ ) ◦ ϕn(τ )−Du(τ) ◦ ϕ(τ)).Dϕ(τ)‖H s−1 ] dτ

≤

∫ t

0
[C‖Dun(τ ) ◦ ϕn(τ )‖H s−1‖Dϕ

n(τ )−Dϕ(τ)‖H s−1

+ ‖Dun(τ ) ◦ ϕn(τ )−Du(τ) ◦ ϕ(τ)‖H s−1(1+ C‖Dϕ(τ)− Idd×d‖H s−1)] dτ

and the constant C arises from the boundedness of pointwise multiplication.
Choose s′ with s − 1 < s′ < s and s′ > d/2 + 1. As ϕ(I) ⊂ Ds′(Rd) is compact

and ϕn(t) → ϕ(t) uniformly in Ds′(Rd), it follows that the set {ϕn(t) : t ∈ I, n ∈ N}
satisfies the assumptions of Lemma 2.2(2), i.e., detDϕn(t, x) is bounded from below and
‖ϕn(t)− Id‖

H s′ is bounded from above. Thus

‖Dun(τ ) ◦ ϕn(τ )‖H s−1 ≤ C1‖Du
n(τ )‖H s−1 ≤ C2‖u

n(τ )‖H s .

Also note that ‖Dϕ(τ)− Idd×d‖H s−1 is bounded, since ϕ(I) is compact in Ds(Rd). Next
we estimate, omitting the argument τ from now on,

‖Dun ◦ ϕn −Du ◦ ϕ‖H s−1 ≤ ‖(Du
n
−Du) ◦ ϕn‖H s−1 + ‖Du ◦ ϕ

n
−Du ◦ ϕ‖H s−1

≤ C2‖u
n
− u‖H s + ‖Du ◦ ϕn −Du ◦ ϕ‖H s−1 .

Hence

‖Dϕn(t)−Dϕ(t)‖H s−1 ≤ C3

∫ t

0
‖un‖H s‖Dϕn −Dϕ‖H s−1 dτ

+ C4‖u
n
− u‖L1(I,H s ) + C5

∫ 1

0
‖Du ◦ ϕn −Du ◦ ϕ‖H s−1 dτ.

In the last integral we note that since composition is a continuous map H s−1
× Ds′

→

H s−1, the integrand converges pointwise to 0 as n→∞. Because

‖Du ◦ ϕn −Du ◦ ϕ‖H s−1 ≤ 2C1‖Du‖H s−1 ≤ 2C1‖u‖H s ,

we can apply the dominated convergence theorem to conclude that∫ 1

0
‖Du ◦ ϕn −Du ◦ ϕ‖H s−1 dτ → 0 as n→∞.

Thus we obtain, via Gronwall’s inequality

‖Dϕn(t)−Dϕ(t)‖H s−1 ≤

(
C4‖u

n
− u‖L1(I,H s )+C5

∫ 1

0
‖Du ◦ ϕn−Du ◦ ϕ‖H s−1 dτ

)
·
(
1+ C3‖u

n
‖L1(I,H s ) exp(‖un‖L1(I,H s ))

)
,

the required uniform convergence of Dϕn(t)−Dϕ(t)→ 0 in H s−1. ut
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5. Diffeomorphisms of a compact manifold

5.1. Sobolev spaces on domains. Let U ⊂ Rd be a Lipschitz domain, i.e., a bounded
open set with a Lipschitz boundary. For s ∈ R we can define the Sobolev space on U as
the set of restrictions of functions on the whole space,

H s(U,Rn) = {g|U : g ∈ H s(Rd ,Rn)},

and a norm is given by

‖f ‖H s (U) = inf{‖g‖H s (Rd ) : g|U = f }.

For each Lipschitz domain U and each s ∈ R, there exists an extension operator (see
[Ryc99]), i.e., a bounded linear map

EU : H
s(U,Rn)→ H s(Rd ,Rn).

5.2. Sobolev spaces on compact manifolds. Throughout this section, we make the fol-
lowing assumption:

M is a d-dimensional compact manifold and N an n-dimensional manifold, both
without boundary.

For s ≥ 0 a function f : M → R belongs to H s(M) if around each point there exists
a chart χ : U → U ⊂ Rd such that f ◦ χ−1

∈ H s(U,R). Similarly the space Xs(M) of
vector fields consists of sections u : M → TM such that around each point there exists a
chart with T χ ◦ u ◦ χ−1

∈ H s(U,Rd).
To define the spaces H s(M,N) we require s > d/2. A continuous map f : M → N

belongs to H s(M,N) if for each point x ∈ M , there exists a chart χ : U → U ⊆ Rd
of M around x and a chart η : V → V ⊆ Rn of N around f (x) such that η ◦ f ◦ χ−1

∈

H s(U,Rn). If N = R, then H s(M) = H s(M,R), and Xs(M) ⊂ H s(M, TM) consists
of those u ∈ H s(M, TM) with πTM ◦ u = IdM .

In order to define norms onH s(M) and Xs(M) and to introduce a differentiable struc-
ture on H s(M,N), we define, following [IKT13], a special class of atlases.

Definition 5.3. A cover UJ = (Ui)i∈J of M by coordinate charts χi : Ui → Ui ⊂ Rd is
called a fine cover if:

(C1) J is finite and Ui are bounded Lipschitz domains in Rd .
(C2) If Ui ∩ Uj 6= ∅, then χj ◦ χ−1

i ∈ C
∞

b (χi(Ui ∩ Uj ),R
d).

(C3) If Ui ∩ Uj 6= ∅, then the boundary of χi(Ui ∩ Uj ) is a bounded Lipschitz domain.

The spacesH s(M) and Xs(M) are Hilbert spaces and a norm can be defined by choosing
a fine cover UJ of M . On H s(M) the norm is

‖u‖2H s ,UJ =
∑
i∈J

‖u ◦ χ−1
i ‖

2
H s (Ui )

.
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Similarly for vector fields u ∈ Xs(M) we define

‖u‖2H s ,UJ =
∑
i∈J

‖T χi ◦ u ◦ χ
−1
i ‖

2
H s (Ui ,Rd ).

In the above formula we identify the coordinate expression T χi◦u◦χ−1
i : Ui → T Ui with

a map Ui → Rd obtained by projecting T Ui = Ui × Rd to the second component. The
norms depend on the chosen cover, but choosing another fine cover will lead to equivalent
norms. We will write ‖u‖H s for the norms on H s(M) and Xs(M).

5.4. Diffeomorphism groups on compact manifolds. To define a differentiable struc-
ture on H s(M,N) we introduce the notion of adapted fine covers. For details on these
constructions and full proofs we refer the reader to [IKT13, Sect. 3].

Definition 5.5. A triple (UJ ,VJ , f ) consisting of f ∈ H s(M,N), a fine cover UJ of M
and a fine cover VJ of

⋃
i∈J Vi ⊆ N is called a fine cover with respect to f or adapted to

f if f (Ui) ⊆ Vi for all i ∈ J .

Given f ∈ H s(M,N) one can show that there always exists a fine cover adapted to it.
Let (UJ ,VJ , f ) be such a fine cover and define the subset Os

= Os(UJ ,VJ ) by

Os
= {h ∈ H s(M,N) : h(Ui) ⊆ Vi},

as well as the map

ı = ıUJ ,VJ : O
s
→

⊕
i∈J

H s(Ui,Rd), h 7→ (ηi ◦ h ◦ χ
−1
i )i∈J ,

where χi : Ui → Ui and ηi : Vi → Vi are the charts associated to Ui and Vi respec-
tively. Then ı(Os) is a C∞-submanifold of

⊕
i∈J H

s(Ui,Rd). We define a topology on
H s(M,N) by letting the sets Os(UJ ,VJ ) form a basis of open sets, and we use the maps
ıUJ ,VJ to define a differentiable structure makingH s(M,N) into a C∞-Hilbert manifold.
This differentiable structure is compatible with the one introduced in [Eel66, Pal68] and
used in [EM70].

For s > d/2+ 1 the diffeomorphism group Ds(M) can be defined by

Ds(M) = {ϕ ∈ H s(M,M) : ϕ bijective, ϕ−1
∈ H s(M,M)}

= {ϕ ∈ H s(M,M) : ϕ ∈ Diff1(M)},

with Diff1(M) denoting the C1-diffeomorphisms of M . The diffeomorphism group is an
open subset of H s(M,M) and a topological group.

It will later be convenient to work with fine covers (UJ ,VJ , Id) of M adapted to the
identity map with the additional constraint that the coordinate charts of UJ and VJ are
the same, i.e., χi = ηi |Ui . Such covers can always be constructed by starting with a
fine cover VJ of M and shrinking each set Vi slightly to Ui , so that the smaller sets still
cover M and Ui ⊆ Vi . Then (UJ ,VJ , Id) is an adapted cover.
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5.6. Flows on compact manifolds. Given a vector field u ∈ L1(I,Xs(M)) with I a
compact interval containing 0, we call a map ϕ : I ×M → M the pointwise flow of u if
ϕ(0, x) = x and for each pair (t, x) ∈ I ×M there exists a coordinate chart χ : U → U

around x and a chart η : V → V around ϕ(t, x) such that with v = T η ◦ u ◦ η−1 and
ψ = η ◦ ϕ ◦ χ−1 the flow equation

ψ(s, y) = ψ(t, x)+

∫ s

t

v(τ, ψ(τ, y)) dτ

holds for (s, y) close to (t, χ(x)). For smooth vector fields this coincides with the usual
definition of a flow.

If additionally ϕ ∈ C(I,Ds(M)), i.e., ϕ is a continuous curve with values in Ds(M),
then we call ϕ the Ds(M)-valued flow of u. In this case let (UJ ,VJ , ϕ(t)) be a fine cover
adapted to ϕ(t) with t ∈ I and set ui(t) = T ηi ◦ u(t) ◦ η−1

i and ϕi(t) = ηi ◦ ϕ(t) ◦ χ−1
i .

Then the equality

ϕi(s) = ϕi(t)+

∫ s

t

ui(τ ) ◦ ϕi(τ ) dτ

holds for s close to t as an identity in H s(Ui,Rd).

5.7. Existence of flows. To deal with vector fields and flows on M , we need to pass to
coordinate charts. The following is a general technique that will be useful throughout the
section. Fix a fine cover (UJ ,VJ , Id) of M with respect to Id with χj = ηj |Uj and let
u ∈ L1(I,Xs(M)) be a vector field. We define its coordinate expression

vj = T ηj ◦ u ◦ η
−1
j ∈ L

1(I,Xs(Vj )),

and extend these vector fields to all of Rd using the extension operators EVj ,

wj = EVj vj ∈ L
1(I,Xs(Rd)).

Note the equivalences of norms

‖u‖L1(I,Xs (M)) ∼

∑
j∈J

‖vj‖L1(I,Xs (Vj ))
∼

∑
j∈J

‖wj‖L1(I,Xs (Rd )). (5.1)

From Theorem 4.4 we know that the vector fields wj have flows

ψj = Fl(wj ) ∈ C(I,Ds(Rd)).

To glue them together to a flow of u, the flows ψj must not be too far away from the
identity. To ensure this, we fix ε as in Lemma 5.9 below and assume from now on that
‖u‖L1(I,Xs (M)) < ε. Then Lemma 5.9 implies that ψj (Uj ) ⊆ Vj and we define

ϕ(t)|Uj = χ
−1
j ◦ ψj (t) ◦ χj . (5.2)
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It is shown in Lemma 5.10 that ϕ(t) is well-defined and ϕ(t) ∈ Ds(M). It also follows
from (5.2) that ϕ(t)(Uj ) ⊆ Vj , and thus ϕ(t) ∈ Os(UJ ,VJ ) and

ı(ϕ(t)) = (ψj (t)|Uj )j∈J ∈
⊕
j∈J

H s(Uj ,Rd).

Obviously ϕ is the Ds-valued flow of u. This leads to the following result on existence
and continuity of the flow map.

Theorem 5.8. Let s > d/2 + 1 and u ∈ L1(I,Xs(M)). Then u has a Ds-valued flow ϕ
and for each t ∈ I the map

Flt : L1(I,Xs(M))→ Ds(M), u 7→ ϕ(t),

is continuous.

Proof. The above discussion shows the existence of a Ds-valued flow ϕ for vector fields u
with ‖u‖L1 < ε, with ε given by Lemma 5.9. To show that Flt is continuous, let un → u

in L1(I,Xs(M)). Since the norms in (5.1) are equivalent, it follows that wnj → wj in
L1(I,Xs(Rd)), and by Theorem 4.4 also ψnj → ψj in C(I,Ds(Rd)). Thus we see that
ı(ϕn(t))→ ı(ϕ(t)) in

⊕
j∈J H

s(Uj ,Rd), which implies ϕn(t)→ ϕ(t) in Ds(M).
Using Remark 3.4 we can extend these results from vector fields u with ‖u‖L1 < ε to

all vector fields. ut

Now we prove the two lemmas that were used in the above proofs.

Lemma 5.9. Let s > d/2+1 and (UJ ,VJ , Id) be a fine cover ofM with respect to Id with
χj = ηj . Then there exists an ε > 0 such that if ‖u‖L1(I,Xs (M)) < ε, then ψj (t)(Uj ) ⊆ Vj
for all j ∈ J .

Proof. As (UJ ,VJ , Id) is a fine cover, it follows that for Uj = χj (Uj ) and Vj = χj (Vj )
we have Uj ⊆ Vj and all these sets are bounded. Thus there exists δ > 0 such that

Uj + Bδ(0) ⊆ Vj ,

where Bδ(0) is the δ-ball in Rd . By Theorem 4.4 there exists ε such that if ‖wj‖L1 < ε,
then ‖ψj − Id‖∞ < δ, i.e., for all (t, x) ∈ I ×Rd we have |ψ(t, x)−x| < δ; in particular
this implies ψj (t)(Uj ) ⊆ Uj +Bδ(0) and thus ψj (t)(Uj ) ⊆ Vj . Using (5.1) we can bound
‖wj‖L1 via a bound on ‖u‖L1 . ut

Lemma 5.10. Let s > d/2 + 1 and (UJ ,VJ , Id) be a fine cover of M with respect to Id
with χj = ηj |Uj . With ε as in Lemma 5.9, take a vector field u with ‖u‖L1(I,Xs (M)) < ε

and define ϕ(t) via (5.2). Then ϕ(t) is well-defined and ϕ(t) ∈ Ds(M) for all t ∈ I .

Proof. To show that ϕ(t) is well-defined we need to show that whenever Ui ∩Uj 6= ∅, we
have on that intersection the identity

η−1
i ◦ ψi(t) ◦ ηi = η

−1
j ◦ ψj (t) ◦ ηj .
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Omitting the argument t , we note that the identity T ηi ◦ u = vi ◦ ηi means that u is
ηi-related to vi , i.e., u ∼ηi vi ; hence on ηi(Ui ∩ Uj ) we have the relation ui ∼ηj ◦η−1

i
uj ,

implying for the flows the identity

ηj ◦ η
−1
i ◦ ψi(t) = ψj (t) ◦ ηj ◦ η

−1
i ,

and thus showing the well-definedness of ϕ(t). From (5.2) we see that ϕ(t) ∈ H s(M,M),
that ϕ(t) is invertible and that ϕ−1(t) ∈ H s(M,M) as well. Thus ϕ(t) ∈ Ds(M). ut

The following lemma is a generalization of Lemma 2.2 to manifolds. Its main use will be
when reformulated as a local equivalence of inner products in Sect. 6.

Lemma 5.11. Let s > d/2 + 1 and 0 ≤ s′ ≤ s. Given r > 0 there exists a constant C
such that

‖v ◦ ϕ‖
H s′ ≤ C‖v‖H s′ , (5.3)

for all ϕ ∈ Ds(M) that can be written as ϕ = Fl1(u) with ‖u‖L1 < r , and all v ∈ H s′(M)

or v ∈ Xs
′

(M).

Proof. Choose a fine cover (UJ ,VJ , Id) of M with respect to Id with χi = ηi |Ui . Let
ε > 0 be such that if ϕ = Fl(u) with ‖u‖L1 < ε then ϕ ∈ Os(UJ ,VJ ). Such an ε exists,
because Os is open in Ds(M) and Fl1 is continuous. We will show the inequality (5.3)
first for r ≤ ε.

Given ϕ = Fl1(u) with ‖u‖L1 < ε, define ϕi = ηi ◦ ϕ ◦ η−1
i and ui = T ηi ◦ u ◦ η−1

i ,
the extensions ũi = EViui and their flows ϕ̃i = Fl1(ũi). Given f ∈ H s′(M), we have

‖f ◦ ϕ‖
H s′ (M)

∼

∑
i∈I

‖(f ◦ ϕ)i‖H s′ (Ui )

with (f ◦ ϕ)i = f ◦ ϕ ◦ η−1
i . Setting fi = f ◦ ηi , since ϕ ∈ Os , we obtain (f ◦ ϕ)i =

fi ◦ ϕi = EVifi ◦ ϕ̃i on Ui , and thus

‖(f ◦ ϕ)i‖H s′ (Ui )
≤ ‖EVifi ◦ ϕ̃i‖H s′ (Rd ) ≤ C1‖EVifi‖H s′ (Rd ) ≤ C2‖fi‖H s′ (Vi )

.

The constant C1 arises from Lemma 3.5, since all ϕ̃i are generated by vector fields with
bounded norms. For v ∈ Xs

′

(M) the proof proceeds in the same way.
When r > ε, we use the decomposition in Remark 3.4 to write ϕ = ϕ1

◦ · · · ◦ϕN with
ϕk ∈ Ds(M), where ϕk = Fl1(uk) with ‖uk‖L1 < ε. Since N , the number of elements in
the decomposition, depends only on r , the inequality (5.3) can be shown inductively for r
of any size. ut

To formulate the next lemma we need to introduce the geodesic distance of a right-
invariant Riemannian metric on Ds(M). Fixing an inner product on Xs(M), we define

dists(ϕ, ψ) = inf{‖u‖L1([0,1],Xs (M)) : ψ = Fl1(u) ◦ ϕ}.

In Sect. 6 it is shown that dists is indeed the geodesic distance associated to a Riemannian
metric, and in Sect. 7 that the infimum is attained.
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Lemma 5.12. Let s > d/2 + 1. Given a fine cover (UJ ,WJ , Id) of M with respect to
IdM with χi = ηi , there exists an ε > 0 and a constant C such that for ϕ ∈ Ds(M),
dists(Id, ϕ) < ε implies ϕ ∈ Os(UJ ,WJ ), and such that∑

i∈J

‖ϕi − ψi‖H s (Ui ) ≤ C dists(ϕ, ψ)

for all ϕ,ψ ∈ Ds(M) in the metric ε-ball around Id in Ds(M); here ϕi = ηi ◦ ϕ ◦ η−1
i

denotes the coordinate expression of ϕ.

Proof. Choose first an intermediate cover VJ = (Vi)i∈J such that both (UJ ,VJ , Id) and
(VJ ,WJ , Id) are fine covers of M with respect to Id and they all use the same coordinate
charts ηi . This implies in particular the inclusions Ui ⊆ Vi and Vi ⊆ Wi . Let ε > 0 be
such that

dists(Id, ϕ) < 3ε ⇒ ϕ ∈ Os(UJ ,VJ ) and ϕ ∈ Os(VJ ,WJ ).

Note that since dists(Id, ϕ) = dists(Id, ϕ−1), the same holds for ϕ−1.
Let ϕ1, ϕ2 be inside the metric ε-ball around Id in Ds(M). Then

dists(ϕ1, ϕ2) ≤ dists(ϕ1, Id)+ dists(Id, ϕ2) < 2ε.

Let v be a vector field with Fl1(v) = ϕ2
◦ (ϕ1)−1 and ‖v‖L1 < 2ε. Denote its flow by

ψ(t) = Flt (v). Then

dists(Id, ψ(t)) ≤ dists(Id, ϕ1)+ dists(ϕ1, ψ(t)) < 3ε,

and thusψ(t) ∈ Os(VJ ,WJ ). Define vi(t) = T ηi ◦v(t)◦η−1
i andψi(t) = ηi ◦ψ(t)◦η−1

i .
Then vi(t) ∈ Xs(Wi) and

(ϕ2
◦ (ϕ1)−1)i(x)− x =

∫ 1

0
vi(t, ψi(t, x)) dt for x ∈ Vi . (5.4)

Because ϕ1, (ϕ1)−1, ϕ2
◦ (ϕ1)−1

∈ Os(VJ ,WJ ) we have

(ϕ2
◦ (ϕ1)−1)i(x) = ϕ

2
i ◦ (ϕ

1
i )(x) for x ∈ Vi, (5.5)

and since ϕ1
∈ Os(UJ ,VJ ), equality (5.4) together with (5.5) implies

ϕ2
i (x)− ϕ

1
i (x) =

∫ 1

0
vi(t) ◦ ψi(t) ◦ ϕ

1
i (x) dt for x ∈ Ui . (5.6)

Note that the domain where the equality holds has shrunk from Vi toUi . This is the reason
for introducing the intermediate cover VJ .

Since dists(Id, ϕ1) < ε, we can write ϕ1
= Fl1(u1) for a vector field u1 with

‖u1
‖L1 < ε. Set ϕ(t) = Flt (u1). Introduce the coordinate expressions u1

i = T ηi◦u
1
◦η−1
i ,

extend them to ũ1
i = EWiu

1
i and denote their flows by ϕ̃i(t) = Flt (ũi). Since

dists(Id, ϕ(t)) < ε, it follows that ϕ(t) ∈ Os(UJ ,VJ ), and thus ϕi(t, x) = ϕ̃i(t, x)

for x ∈ Ui ; in particular ϕ1
i = ϕ̃i(1) on Ui .
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Similarly we define the extension ṽi = EWivi and its flow ψ̃i(t) = Flt (ṽi), and by the
same argument we obtain ψi(t, x) = ψ̃i(t, x) for all t and x ∈ Vi . The advantage is that
ϕ̃i(1) and ψ̃i(t) are defined on all of Rd and are elements of Ds(Rd). Thus (5.6) can be
written as

ϕ2
i (x)− ϕ

1
i (x) =

∫ 1

0
ṽi(t) ◦ ψ̃i(t) ◦ ϕ̃i(1)(x) dt for x ∈ Ui,

and we can estimate

‖ϕ2
i − ϕ

1
i ‖H s (Ui ) ≤

∫ 1

0
‖ṽi(t) ◦ ψ̃i(t) ◦ ϕ̃i(1)‖H s (Rd ) dt

≤ C1

∫ 1

0
‖ṽi(t)‖H s (Rd ) dt ≤ C2‖v‖L1([0,1],Xs (M)). (5.7)

The constant C1 comes from invoking Lemma 3.5, since both ϕ̃i and ψ̃i are generated
by vector fields with bounded L1-norms. Since v was taken to be any vector field with
Fl1(v) = ϕ2

◦ (ϕ1)−1, we can take the infimum over v in (5.7) to obtain

‖ϕ1
i − ϕ

2
i ‖H s (Ui ) ≤ C2 dists(ϕ1, ϕ2),

from which the statement of the lemma easily follows. ut

6. Riemannian metrics on Ds(M)

6.1. Strong metrics. Let (M, g) be Rd with the Euclidean metric or a closed d-dimen-
sional Riemannian manifold and s > d/2+ 1. On the diffeomorphism group Ds(M) we
put a right-invariant Sobolev metric Gs of order s, defined at the identity by

〈u, v〉H s =

∫
M

g(u, Lv) dµ (6.1)

for u, v ∈ Xs(M), where L ∈ OPS2s
1,0 is a positive, self-adjoint, elliptic operator of

order 2s. By right-invariance the metric is given by

Gsϕ(Xϕ, Yϕ) = 〈Xϕ ◦ ϕ
−1, Yϕ ◦ ϕ

−1
〉H s (6.2)

for Xϕ, Yϕ ∈ TϕDs(M). Since Ds(M) is a topological group, the metric Gs is a continu-
ous Riemannian metric.

When s = n is an integer and the operator is

L = Id+1n or L = (Id+1)n,

where 1u = (δdu[ + dδu[)] is the positive definite Hodge Laplacian or some other
combination of intrinsically defined differential operators with smooth coefficient func-
tions, then one can show that the metric Gn is in fact smooth on Dn(M). Since the inner
products Gn generate the topology of the tangent spaces, this makes (Dn(M),Gn) into a
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strong Riemannian manifold; see [EM70] and [MP10] for details and [Lan99] for infinite-
dimensional Riemannian geometry for strong metrics.

The existence of strong metrics is somewhat surprising, since a result by Omori
[Omo78] states that there exist no infinite-dimensional Banach–Lie groups acting effec-
tively, transitively and smoothly on a compact manifold. Ds(M) acts effectively, transi-
tively and smoothly on M . While Ds(M) is not a Lie group, but only a topological group
with a smooth right-multiplication, the definition (6.2) of the metric uses the inversion,
which is only a continuous operation. It turns out that one can have a smooth, strong,
right-invariant Riemannian metric on a topological group that is not a Lie group.

Remark 6.2. Most of the results in this paper—in particular the existence and continuity
of flow maps and estimates on the composition—depend only on the topology of the
Sobolev spaces and are robust with respect to changes to equivalent inner products. The
smoothness of the metric does not fall into this category. Assume 〈·, ·〉1 and 〈·, ·〉2 are two
equivalent inner products on Xs(M) and denote byG1 andG2 the induced right-invariant
Riemannian metrics on Ds(M). Then the smoothness of G1 does not imply anything
about the smoothness of G2. To see this, factorize the map (ϕ,X, Y ) 7→ Gϕ(X, Y ) into

TDs
×Ds TDs

→ Xs × Xs → R,
(ϕ,X, Y ) 7→ (X ◦ ϕ−1, Y ◦ ϕ−1) 7→ 〈X ◦ ϕ−1, Y ◦ ϕ−1

〉.

Changing the inner product corresponds to changing the right part of the diagram. How-
ever the left part of the diagram is not smooth by itself, i.e., the map (ϕ,X) 7→ X ◦ ϕ−1

is only continuous. The smoothness of the Riemannian metric is thus a property of the
composition.

Open question. What class of inner products on Xs(M) induces smooth right-invariant
Riemannian metrics on Ds(M)? Does this hold for all s > d/2 + 1, noninteger, and all
metrics of the form (6.1)?

6.3. Geodesic distance. Given a right-invariant Sobolev metricGs , the induced geodesic
distance is

dists(ϕ, ψ) = inf{L(η) : η(0) = ϕ, η(1) = ψ},
with the length functional

L(η) =
∫ 1

0

√
Gsη(t)(∂tη(t), ∂tη(t)) dt,

and the infimum is taken over all piecewise smooth paths. Due to right-invariance we
have

L(η) = ‖∂tη ◦ η−1
‖L1([0,1],Xs (M)),

where Xs(M) is equipped with the inner product 〈·, ·〉H s . Since piecewise smooth paths
are dense in L1, one can also compute the distance via

dists(ϕ, ψ) = inf{‖u‖L1([0,1],Xs (M)) : ψ = Fl1(u) ◦ ϕ}.

It was shown in Theorems 4.4 and 5.8 that the flow map is well-defined. To define the
geodesic distance a continuous Riemannian metric is sufficient, and thus the following
results hold for s > d/2+ 1.
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6.4. Uniform equivalence of inner products. Since the open geodesic ball around Id of
radius r coincides with the set

{Fl1(u) : ‖u‖L1([0,1],Xs (M)) < r} = {ϕ : dists(Id, ϕ) < r},

we can reformulate Lemmas 3.5 and 5.11 as follows.

Corollary 6.5. Let s > d/2 + 1 and 0 ≤ s′ ≤ s. Given r > 0 there exists a constant C
such that

‖v ◦ ϕ‖
H s′ ≤ C‖v‖H s′

for all ϕ ∈ Ds(M) with dists(Id, ϕ) < r and all v ∈ H s′(M) or v ∈ Xs
′

(M).

Since dists(Id, ϕ) = dists(Id, ϕ−1), we have for some constant C on every geodesic ball
the inequalities

C−1
‖v‖H s ≤ ‖v ◦ ϕ−1

‖H s ≤ C‖v‖H s ,

stating that the inner product induced byGs(·, ·) is equivalent to the inner product 〈·, ·〉H s

on every geodesic ball with a constant that depends only on the radius of the ball.
This result enables us to prove that on Rd the Xs(Rd)-norm is Lipschitz with respect

to the geodesic distance on any bounded metric ball. We will use this lemma to show that
the geodesic distance is a complete metric.

Lemma 6.6. Let s > d/2+ 1. Given r > 0, there exists a constant C such that

‖ϕ1 − ϕ2‖H s ≤ C dists(ϕ1, ϕ2)

for all ϕ1, ϕ2 ∈ Ds(Rd) with dists(Id, ϕi) < r .

Proof. We have

dists(ϕ1, ϕ2) ≤ dists(ϕ1, Id)+ dists(Id, ϕ2) < 2r.

Let u be a vector field with ϕ2 = Fl1(u) ◦ ϕ1 and ‖u‖L1 < 2r . Denote its flow by
ψ(t) = Flt (u). Then

dists(Id, ψ(t)) ≤ dists(Id, ϕ1)+ dists(ϕ1, ψ(t)) < 3r,

and thus by Corollary 6.5 there exists a constant C such that

‖ϕ1 − ϕ2‖H s ≤

∫ 1

0
‖u(t) ◦ ψ(t) ◦ ϕ1‖H s dt ≤ C

∫ 1

0
‖u(t)‖H s dt.

By taking the infimum over all vector fields we obtain the result. ut

On an arbitrary compact manifold M we can show only a local version of Lemma 6.6,
which we did in Lemma 5.12. This local version will however be enough to show metric
completeness.
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7. Completeness of diffeomorphism groups

In this section we will combine the results on flows of L1-vector fields and estimates
on the geodesic distance, to show that Ds(M) with a Sobolev metric Gs of order s is a
complete Riemannian manifold in all the senses of the Hopf–Rinow theorem.

The completeness results are valid for the class of metrics satisfying the following
hypothesis:

(H) LetM be Rd or a closed manifold and let 〈·, ·〉H s be an inner product on Xs(M) such
that the induced right-invariant metric

Gsϕ(Xϕ, Yϕ) = 〈Xϕ ◦ ϕ
−1, Yϕ ◦ ϕ

−1
〉H s

on Ds(M) is smooth, thus making (Ds(M),Gs) into a strong Riemannian manifold.

As discussed in Sect. 6, this hypothesis is satisfied for a large class of Sobolev metrics of
integer order.

First we show the existence of minimizing geodesics between any two diffeomor-
phisms in the same connected component. This extends [MP10, Thm. 9.1], where exis-
tence of minimizing geodesics was shown only for an open and dense subset.

This existence result is shown using the direct method of the calculus of variations.
Namely, the variational problem we consider consists in the minimization of an energy
which is, under a change of variables, a weakly lower semicontinuous functional on a
weakly closed constraint set. The change of variables is simply given by a vector field
associated with a path; in the next lemma, we also prove that the constraint set is weakly
closed.

Lemma 7.1. Let ψ0, ψ1 ∈ Ds(M) and define

�ψ0H
1
= {ϕ : ϕ(0) = ψ0} ⊆ H

1([0, 1],Ds(M))

as well as
�ψ0,ψ1H

1
= {ϕ : ϕ(0) = ψ0, ϕ(1) = ψ1} ⊆ �ψ0H

1,

which are submanifolds of the manifold H 1([0, 1],Ds(M)) of H 1-curves with values
in Ds(M). The map

2 : �ψ0H
1
→ L2([0, 1],Xs(M)), ϕ 7→ (t 7→ ∂tϕ(t) ◦ ϕ(t)

−1),

is a homeomorphism for the strong topologies, and the set 2(�ψ0,ψ1H
1) is closed with

respect to the weak topology on L2([0, 1],Xs(M)).

Proof. The definition of 2 is a direct consequence of Lemma 2.2. The inverse of 2 is
given by the flow with initial condition ϕ(0) = ψ0, 2−1(u) = (t 7→ Flt (u) ◦ ψ0). The
flow belongs to H 1([0, 1],Ds(M)) by Theorem 4.4 for M = Rd and by Theorem 5.8 for
M a closed manifold.

We now prove the second part of the lemma in the caseM = Rd . Consider a sequence
un ∈ L2([0, 1], H s(Rd ,Rd)), converging weakly to u. Denote by ϕn and ϕ the respective
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flows. We will show that ϕn(t, x)→ ϕ(t, x) pointwise in x and uniformly in t . Because
s > d/2+1, we have the continuous embeddingH s(Rd ,Rd) ↪→ C1

b(R
d ,Rd), where C1

b

denotes the space of C1-functions with bounded derivatives, and we let C > 0 be such
that ‖u‖C1

b
≤ C‖u‖H s for all u ∈ H s .

Take (t, x) ∈ [0, 1] × Rd . Then

|ϕn(t, x)− ϕ(t, x)| ≤

∣∣∣∣∫ t

0
[un(τ, ϕn(τ, x))− u(τ, ϕ(τ, x))] dτ

∣∣∣∣
≤

∫ t

0
|un(τ, ϕn(τ, x))− un(τ, ϕ(τ, x)| dτ +

∣∣∣∣∫ t

0
[un(τ, ϕ(τ, x))− u(τ, ϕ(τ, x)] dτ

∣∣∣∣.
(7.1)

For the first term we have∫ t

0
|un(τ, ϕn(τ, x))− un(τ, ϕ(τ, x)| ds ≤

∫ t

0
‖un(τ )‖C1

b
|ϕn(τ, x)− ϕ(τ, x)| dτ

≤

∫ t

0
C‖un(τ )‖H s |ϕn(τ, x)− ϕ(τ, x)| dτ.

The second term can be written as |〈mt,x, un − u〉|, where

〈mt,x, v〉 =

∫ t

0
v(τ, ϕ(τ, x)) dτ,

which is a linear mapmt,x : L2([0, 1], H s)→ Rd . Fix x ∈ Rd and consider the functions

mn : [0, 1] → Rd , t 7→ 〈mt,x, u
n
〉.

They converge pointwise mn(t) = 〈mt,x, un〉 → 〈mt,x, u〉 = m(t) for each t ∈ [0, 1].
Because un ⇀ u weakly, the sequence (un)n∈N is bounded in L2([0, 1], H s), and hence
the following estimates show that the sequence (mn)n∈N is equicontinuous:

|〈mt,x −mr,x, u
n
〉| ≤

∣∣∣∣∫ t

r

un(τ, ϕ(τ, x)) dτ

∣∣∣∣ ≤ C√|t − r| ‖un‖L2([0,1],H s ).

By Arzelà–Ascoli it follows that 〈mt,x, un〉 → 〈mt,x, u〉 uniformly in t .
Going back to (7.1), we define A(t) = |ϕn(t, x)− ϕ(t, x)| and we have the estimate

A(t) ≤

∫ t

0
C‖un(τ )‖H sA(τ) dτ + |〈mt,x, u

n
− u〉|.

Gronwall’s inequality then leads to

|ϕn(t, x)− ϕ(t, x)| ≤ |〈mt,x, u
n
− u〉|

+ C

∫ t

0
|〈mτ,x, u

n
− u〉| ‖un(τ )‖H s exp(C‖un‖L1([0,1],H s )) dτ.
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The uniform convergence of 〈mτ,x, un−u〉 → 0 shows that ϕn(t, x)→ ϕ(t, x) pointwise
in x and uniformly in t .

Now consider a sequence of paths ϕn ∈ �ψ0,ψ1H
1 such that un = 2(ϕn) converges

weakly to u = 2(ϕ). We have to show that ϕ(1) = ψ1. We have ϕn(1) = ψ1 for all
n ∈ N and using the pointwise convergence of the flow established above, also ϕ(1, x) =
limn→∞ ϕ

n(1, x) = limn→∞ ψ1(x) = ψ1(x). This concludes the proof for M = Rd .
When M is a compact manifold, the result follows by reduction to Rd and the use of

a fine cover. ut

Theorem 7.2. Let (Ds(M),Gs) satisfy hypothesis (H). Then any two elements of
Ds(M)0 can be joined by a minimizing geodesic.

Proof. Let ψ0, ψ1 ∈ Ds(M)0 be two diffeomorphisms. Our aim is to minimize

E(ϕ) =
∫ 1

0
Gϕ(t)(∂tϕ(t), ∂tϕ(t)) dt (7.2)

on �ψ0,ψ1H
1. We have

E(ϕ) =
∫ 1

0
‖2(ϕ)‖2H s dt = ‖2(ϕ)‖

2
L2([0,1],Xs )

.

Consider a minimizing sequence ϕn ∈ �ψ0,ψ1H
1, thus 2(ϕn) ∈ L2([0, 1],Xs) is

bounded and after extraction of a subsequence, we can assume that 2(ϕn) weakly
converges to 2(ϕ∗). Lemma 7.1 ensures that ϕ∗ ∈ �ψ0,ψ1H

1. Because the norm
on L2([0, 1],Xs) is sequentially weakly lower semicontinuous, we have E(ϕ∗) ≤
lim inf E(ϕn). Thus ϕ∗ is a minimizer of E .

To show regularity of minimizers, we consider E given by (7.2) as a functional on the
space H 1([0, 1],Ds(M)). This functional is differentiable and the derivative is given by

DE(ϕ).h =
∫ 1

0
Gϕ(t)(∂tϕ(t),∇∂tϕ(t)h(t)) dt

with ∇ denoting the covariant derivative of the metric G [Kli95, Thm. 2.3.20]. The mini-
mizer ϕ∗ constructed above is thus a critical point of E . By standard bootstrap methods it
follows that critical points are smooth in time and thus solutions of the geodesic equation,
e.g., it is shown in [Kli95, Lem. 2.4.3] that critical points of E , restricted to paths with
fixed endpoints, are geodesics on the underlying manifold.2 ut

Remark 7.3. LetM and (Ds(M),Gs) satisfy the assumptions of Theorem 7.2. The same
proof can be used to show the existence of minimizing geodesics for subgroups of the dif-
feomorphism group: the group Ds

µ(M) of diffeomorphisms preserving a volume form µ

2 In [Kli95] the space of paths, H 1([0, 1],M), is constructed only for finite-dimensional mani-
folds M . However, the results that are necessary for us remain valid with the same proofs when M
is a strong Riemannian manifold modelled on a separable Hilbert space. The important point is that
[0, 1] is finite-dimensional and compact.
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or the group Ds
ω(M) of diffeomorphisms preserving a symplectic form ω. In fact the proof

can be generalized to any closed, connected subgroup C that is also a Hilbert submani-
fold of Ds(M), since TIdC is a closed Hilbert subspace of Xs . Then L2([0, 1], TIdC) is a
closed subspace of L2([0, 1],Xs), and thus weakly closed. Therefore, the limit found in
the proof will satisfy the boundary conditions and will also belong to C.

Next we show that the the group of diffeomorphisms with the induced geodesic dis-
tance is a complete metric space. There is a related result by Trouvé (see [You10, Thm.
8.15]) which shows metric completeness for the groups GH of diffeomorphisms gener-
ated by an admissible space of vector fields H; see Sect. 8 for details. Since we obtain
Ds(Rd)0 = GH s (Rd ,Rd ) in Theorem 8.3, this provides another proof of metric complete-
ness of Ds(Rd)0.

Theorem 7.4. Let (Ds(M),Gs) satisfy hypothesis (H). Then (Ds(M)0, dists) is a com-
plete metric space.

Proof. Consider first the case M = Rd . Let ε > 0 be such that Id + Bε(0) ⊂ Ds(Rd),
where Bε(0) is the ε-ball in H s(Rd ,Rd). By Corollary 6.5 there exists a constant C such
that

‖ϕ − ψ‖H s ≤ C dists(ϕ, ψ) (7.3)

on the metric ε-ball around Id in Ds(Rd).
Let (ϕn)n∈N be a Cauchy sequence in Ds(Rd)0. We can assume without loss of gener-

ality that dists(ϕn, ϕm) < 1
2ε/C for all n,m ∈ N, and since the distance is right-invariant,

we can also assume that ϕ1
= Id. Then (7.3) shows that (Id − ϕn)n∈N is a Cauchy se-

quence in H s(Rd ,Rd). Denote the limit by Id− ϕ∗. From

‖Id− ϕ∗‖H s = ‖ϕ1
− ϕ∗‖H s ≤ C lim sup

n→∞
dists(ϕ1, ϕn) ≤ 1

2ε

it follows that ϕ∗ ∈ Ds(Rd), and since the manifold topology coincides with the metric
topology, we also have dists(ϕn, ϕ∗)→ 0. Thus Ds(Rd)0 is complete.

The proof for a compact manifold proceeds in essentially the same way; the added
complication is that one has to work in a coordinate chart around the identity. Choose a
fine cover (UJ ,VJ , Id) of M with respect to Id such that ηi = χi |Ui . There exists ε1 > 0
such that if dists(Id, ϕ) < ε1, then ϕ ∈ Os

= Os(UJ ,VJ ). For h ∈ Os
⊆ H s(M,M) we

define
hi = ηi ◦ h ◦ η

−1
i ∈ Ds(Ui,Rd).

By Lemma 5.12 there exists a constant C such that

‖ϕi − ψi‖H s (Ui ) ≤ C dists(ϕ, ψ) (7.4)

for all i ∈ J and all ϕ,ψ ∈ Ds(M) in the geodesic ε1-ball around Id. Furthermore, since
Ds(M) is open in H s(M,M), there exists an ε2 > 0 such that

h ∈ Os and ‖Id− hi‖H s (Ui ) < ε2, ∀i ∈ J ⇒ h ∈ Ds(M). (7.5)
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Given these preparations, let (ϕn)n∈N be a Cauchy sequence in Ds(M)0. We can as-
sume without loss of generality that dists(ϕn, ϕm) < min(ε1,

1
2ε2/C) for all n,m ∈ N,

and because the distance is right-invariant also that ϕ1
= Id. It then follows from (7.4)

that for all i ∈ I , the sequences (ϕni )n∈N are Cauchy sequences in H s(Ui,Rd). Denote
their limits by ϕ∗i . Whenever Ui ∩ Uj 6= ∅, we have the compatibility conditions

η−1
i ◦ ϕ

n
i ◦ ηi = η

−1
j ◦ ϕ

n
j ◦ ηj on Ui ∩ Uj ,

and since convergence in H s(Ui,Rd) implies pointwise convergence, the compatibility
conditions also hold for the limit ϕ∗i . Thus we can define a function ϕ∗ on M via ϕ∗|Ui =
η−1
i ◦ ϕ

∗

i ◦ ηi and ϕn→ ϕ∗ in H s(M,M). We also have

‖Id− ϕni ‖H s (Ui ) ≤ C dists(Id, ϕn) ≤ 1
2ε2,

and so using (7.5), we see after passing to the limit that ϕ∗ ∈ Ds(M). As the manifold
topology on Ds(M)0 coincides with the metric topology, it follows that dists(ϕn, ϕ∗)→0,
and hence Ds(M)0 is a complete metric space. ut

Remark 7.5. LetM and (Ds(M),Gs) satisfy the assumptions of Theorem 7.4. Consider
a closed, connected subgroup C and denote by distsC the geodesic distance of the sub-
manifold (C,Gs). Then (C, distsC) is a complete metric space as well. This follows from
the closedness of C and the inequality dists(ϕ, ψ) ≤ distsC(ϕ, ψ), which holds for all
ϕ,ψ ∈ C.

Similar to Remark 7.3, this applies in particular to the groups Ds
µ(M) and Ds

ω(M) of
diffeomorphisms preserving a given volume form or symplectic structure.

We can now collect the various completeness properties of diffeomorphism groups en-
dowed with strong smooth Sobolev-type Riemannian metrics.

Corollary 7.6. Let (Ds(M),Gs) satisfy hypothesis (H). Then:

(1) (Ds(M),Gs) is geodesically complete.
(2) (Ds(M)0, dists) is a complete metric space.
(3) Any two elements of Ds(M)0 can be joined by a minimizing geodesic.

Proof. Geodesic completeness follows from metric completeness [Lan99]. It is also
shown in [GBR15, Lem. 5.2] that every strong right-invariant metric on a manifold that
is a topological group with a smooth right-multiplication, is geodesically complete.

Metric completeness is shown in Theorem 7.4 and the existence of minimizing geo-
desics in Theorem 7.2. For the statements about subgroups see Remarks 7.3 and 7.5. ut

Following Remarks 7.3 and 7.5 the methods of proof can also be applied to the subgroups
Ds
µ(M) and Ds

ω(M) of diffeomorphisms preserving a volume form µ or a symplectic
structure ω.
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8. Applications to diffeomorphic image matching

8.1. The group generated by an admissible vector space. Let (H, 〈·, ·〉H) be a Hilbert
space of vector fields such that the norm on H is stronger than the uniform C1-norm,
i.e., H ↪→ C1

b(R
d ,Rd). We call such an H an admissible vector space. This embedding

implies that pointwise evaluations are continuous Rd -valued forms on H: for x ∈ Rd ,
evx : H 3 f 7→ f (x) ∈ Rd is continuous and evvx(f ) := 〈f (x), v〉 is a linear form on H;
here v ∈ Rd and 〈·, ·〉 denotes the Euclidean scalar product on Rd . Such a space is called
a reproducing kernel Hilbert space and is completely defined by its kernel. This kernel
is defined as follows: denoting K : H∗ → H the Riesz isomorphism between H∗ (the
dual of H) and H, the reproducing kernel of H evaluated at points x, y ∈ Rd , denoted by
k(x, y) ∈ L(Rd ,Rd), is defined by k(x, y)v = evy(K evvx).

Given a time-dependent vector field u ∈ L1([0, 1],H), it admits a flow, i.e., there
exists a curve ϕ ∈ C([0, 1],Diff1

+(Rd)) solving

∂tϕ(t) = u(t) ◦ ϕ(t), ϕ(0) = Id, (8.1)

t-almost everywhere for t ∈ [0, 1].
We define the group GH of all flows that can be generated by H-valued vector fields,

GH = {ϕ(1) : ϕ(t) is the solution of (8.1) with u ∈ L1([0, 1],H)}.

Then GH ⊆ Diff1
+(Rd) and one can show that GH is a group. We can define a distance

on GH via

distH(ϕ, ψ) = inf
{∫ 1

0
‖u(t)‖H dt : u ∈ L

1([0, 1],H), ψ = Fl1(u) ◦ ψ
}
. (8.2)

Then (GH, distH) is a complete metric space and the infimum in (8.2) is always attained;
furthermore there always exist minima with ‖u(t)‖H constant in t . See [You10, Sect. 8]
for details and full proofs.

The space H where k is the Gaussian kernel

k(x, y) = exp(−|x − y|2/σ 2)Idd×d ,

or a sum of Gaussian kernels, is widely used for diffeomorphic image matching. For
numerical reasons, the kernel associated with Sobolev spaces is used less often.

Note that from an analytic point of view the class of admissible vector spaces is rather
large. It contains finite-dimensional vector spaces as well as spaces of real-analytic vector
fields; it involves no assumptions about the decay of the vector fields at infinity other than
that they are bounded; any closed subspace of an admissible vector space is itself admis-
sible. Therefore there are limits to how far a general theory can be developed: GH need
not have a differentiable structure; GH with the topology induced by the metric distH

need not be a topological group; there is no known natural topology on GH making it a
topological group.
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8.2. Equivalence of groups. The situation is more promising if H is a Sobolev space.
In this case we can use Theorem 4.4 to characterize the group generated by H: the group
GH s coincides with the connected component of the identity of the group of Sobolev
diffeomorphisms.

Theorem 8.3. Let s > d/2+ 1. Then

GH s (Rd ,Rd ) = Ds(Rd)0.

Proof. Let U be a convex neighbourhood of Id in Ds(Rd). Then every ψ ∈ U can be
reached from Id via the smooth path ϕ(t) = (1 − t)Id + tψ . Since ϕ(t) is the flow of
the associated vector field u(t) = ∂tϕ(t) ◦ ϕ(t)

−1 and u ∈ C([0, 1], H s), it follows
that ψ ∈ GH s . Thus U ⊆ GH s , and since GH s is a group, the same holds for the whole
connected component containing U . This shows the inclusion Ds(Rd)0 ⊆ GH.

For the inclusion GH s ⊆ Ds(Rd) we have to show that given a vector field u ∈
L1([0, 1], H s(Rd ,Rd)), the flow defined by (8.1) is a curve not only on Diff1

+(Rd), but
also in Ds(Rd). This is the content of Theorem 4.4. ut

So when H = H s is a Sobolev space, then the group GH s is a smooth Hilbert manifold as
well as a topological group. If additionally the right-invariant metric induced by the inner
product on H s is smooth, then the distance defined in (8.2) coincides with the geodesic
distance. In particular paths of minimal length are smooth in time.

Open question. When H is a Sobolev space and the induced right-invariant metric is
smooth on Ds(Rs), the corresponding geodesic equation is called the EPDiff equation. In
order to write the geodesic equation, one only needs the kernel k(·, ·) and it would be of
interest to study its solutions for those kernels, where the induced groups do not carry a
smooth structure.

8.4. Karcher means of images. Diffeomorphic image matching solves the minimization
problem [BMTY05]

J (ϕ) = 1
2 dists(Id, ϕ)2 + S(I ◦ ϕ−1, J ), (8.3)

where I, J : Rd → R are respectively the source image and the target image. The term S

measures the similarity between the deformed image I◦ϕ−1 and J . Its simplest form is the
L2-distance between the two functions. Therefore, optimal paths are geodesics on GH. At
a formal level, the situation can be understood as follows: The composition I ◦ϕ−1 is a left
action of the group GH of diffeomorphisms on the space of images. The strong Rieman-
nian structure on the group Ds(Rd) of diffeomorphisms and its completeness enable the
application of results showed using proximal calculus on Riemannian manifolds [AF05].

Proposition 8.5. Let I ∈ L1(Rd ,R) be an image and OI its orbit under the action
of Ds(Rd). There exists a dense set D ⊂ On

I such that if (I1, . . . , In) ∈ D, then there
exists a unique minimizer in OI of

n∑
k=1

d(J, Ik)
2, (8.4)
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where d is the induced distance on the orbit OI defined by

d(I, J ) = inf
ϕ∈Ds (Rd )

{dists(Id, ϕ) | I ◦ ϕ−1
= J }.

In other words, the Karcher mean of a set of images in D is unique.

Proof. Since the action of Ds(Rd) on L1(Rd ,R) is continuous, the isotropy subgroup
of I , denoted DI , is a closed subset of Ds(Rd). Since each image Ik lies in the orbit OI ,
there exist ϕk ∈ Ds(Rd) such that Ik = I ◦ ϕ−1

k . Define

C = ϕ1 ◦DI × · · · × ϕk ◦DI

Clearly, the set C ⊂ Ds(Rd)n is closed and nonempty. Note that the product distance
dists,n on Ds(Rd)n derives from a smooth Riemannian metric with the property that any
two points can be joined by a minimizing geodesic. By [AF05, Thm. 3.5], there exists a
dense subset D′ ⊂ Ds(Rd)n such that Ds(Rd) 3 9 7→ dists,n(8,C) is differentiable at
each 8 ∈ D′ and there exists a unique minimizing geodesic between 8 and C. We have

dists,n(8,C)2 = inf
ϕ∈Ds (Rd )

n∑
k=1

dists(ϕk, ϕDI )2 = inf
ϕ∈Ds (Rd )

n∑
k=1

dists(ϕkDI , ϕDI )2

= inf
ϕ∈Ds (Rd )

n∑
k=1

d(I ◦ ϕ−1
k , I ◦ ϕ−1)2. (8.5)

Therefore, the image of D′ by action on I gives the desired subset D dense in On
I . ut

This is a weak generalization of Ekeland’s result [Eke78] on generic uniqueness of
geodesics.

Appendix. Carathéodory differential equations

Let I be an interval,X a Banach space andU ⊆ X an open subset ofX. If f : I×U → X

is continuous and satisfies the Lipschitz condition

‖f (t, x)− f (t, y)‖X ≤ L‖x − y‖X

for all t ∈ I and x, y ∈ U , then the ODE

∂tx(t) = f (t, x(t)), x(t0) = x0,

with t0 ∈ I and x0 ∈ U has a unique solution on some small interval [t0− δ, t0+ δ]. This
result is a straightforward generalization from ODEs in Rd and can be found in several
books (see, e.g., [Mar76] or [Dei77]).

To apply techniques from variational calculus it is convenient to work with vector
fields u ∈ L2(I,H) where H is a Hilbert space of C1

b -vector fields on Rd . The flow
equation of these vector fields,

∂tϕ(t) = u(t) ◦ ϕ(t),
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leads to differential equations whose right hand side is not continuous in t any more,
but only measurable. Such ODEs are called differential equations of Carathéodory type.
Since Carathéodory differential equations might be unfamiliar to some readers, we will
state here the results that are used in this article. Following the exposition of [AW96] we
define:

Definition A.1. Let I be a nonempty interval, X a Banach space and U ⊆ X an open
subset. A mapping f : I×U → X is said to have the Carathéodory property if it satisfies
the following two conditions:

• For every t ∈ I the mapping f (t, ·) : U → X is continuous.
• For every x ∈ U the mapping f (·, x) : I → X is strongly measurable (with respect to

the Borel σ -algebras), i.e., f (·, x) is measurable and the image f (I, x) is separable.

We have the following basic existence result for Carathéodory type differential equations.

Theorem A.2. Given an interval I = [a, b] and a Banach space X, let U ⊆ X be an
open subset and let f : I × U → X have the Carathéodory property. Given x0 ∈ U let
ε be such that Bε(x0) = {x : |x − x0| < ε} ⊆ U . Furthermore let m, ` : I → R>0 be
locally integrable functions such that the estimates

‖f (t, x1)− f (t, x2)‖X ≤ `(t) ‖x1 − x2‖X, ‖f (t, x)‖X ≤ m(t)

are valid for almost all t ∈ I and all x, x1, x2 ∈ Bε(x0). Finally let δ > 0 be such that∫ a+δ

a

m(t) dt < ε. (A.1)

Then the differential equation

∂tx(t) = f (t, x(t))

has a unique solution λ : [a, a + δ] → Bε(x0) satisfying the initial condition λ(a) = x0,
i.e.

λ(t) = x0 +

∫ t

a

f (τ, λ(τ )) dτ

for all t ∈ [a, a + δ]. The function λ is absolutely continuous.

Proof. This is essentially [AW96, Thm. 2.4]. Condition (A.1) is taken from [Fil88, Thm.
1.1.1] to ensure that the mapping

T (µ)(t) := x0 +

∫ t

a

f (τ, µ(τ)) dτ

maps continuous functions µ : [a, a + δ)→ Bε(x0) to continuous functions with values
in Bε(x0). The rest of the proof in [AW96] can be used without change. ut

For linear equations it is enough that the right hand side be integrable. See [AW96, p. 55f].
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Theorem A.3. Given an interval I = [a, b], a Banach space X and an element x0 ∈ X,
let A : I → L(X) and b : I → X be Bochner integrable functions, i.e. both func-
tions are strongly measurable and the real-valued functions ‖A(·)‖L(X) and ‖b(·)‖X are
integrable. Then the differential equation

∂tx(t) = A(t).x(t)+ b(t)

has a unique solution λ : I → X satisfying the initial condition λ(a) = x0.

The theory of Carathéodory type differential equations can be found in [CL55] and
[Fil88] for dimX < ∞ and in [AW96], [Dei77] or [You10] for infinite-dimensional
spaces.
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