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Abstract
In this article, we investigate regular curves whose derivatives have vanishing mean
oscillations. We show that smoothing these curves using a standard mollifier one gets
regular curves again. We apply this result to solve a couple of open problems. We
show that curves with finite Möbius energy can be approximated by smooth curves

in the energy space W
3
2 ,2 such that the energy converges which answers a question

of He. Furthermore, we prove conjectures by Ishizeki and Nagasawa on certain parts
of a decomposition of the Möbius energy and extend a theorem of Wu on inscribed
polygons to curves with derivatives with vanishing mean oscillation. Finally, we show
that the result by Scholtes on the Γ -convergence of the discrete Möbius energies
towards the Möbius energy also holds for curves of merely bounded energy.

Keywords Vanishing mean oscillation · Möbius energy · Gamma convergence
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1 Introduction

Approximating functions by functions with better regularity properties was, is, and
will certainly remain to be one of the most important techniques in analysis. In this
short note, we want to contribute to this topic. We consider regularly closed curves
with regularity somewhere between C1 and merely Lipschitz continuity. One ends up
looking at such curves, if one assumes that the curve is parameterized by arc length
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and lies in some critical fractional Sobolev spaceW 1+s, 1s , s ∈ (0, 1)—which is known

not to embed into C1. But still the fact that the curve is of classW 1+s, 1s gives us some
subtle new information on the derivative that we will use in this article. For example,
the derivative of the curve γ : R/Z → R

n then belongs to the space V MO(R/Z,Rn)

of all functions with vanishing mean oscillation, i.e.,1

lim
r→0

(
sup

x∈R/Z

( 
Br (x)

|γ ′(y) − γ ′
Br (x)|dy

))
= 0.

Here γ ′
Br (x):=

ffl
Br (x)

γ ′(y)dy:= 1
2r

´
Br (x)

γ ′(y)dy denotes the integral mean of the
function γ ′ over the ball Br (x). Let η ∈ C∞(R, [0,∞)) be such that η ≡ 0 on
R \ (−1, 1) and

´
R

η(x)dx = 1. For ε > 0 we consider the smoothing kernels
ηε(x) = 1

ε
η( x

ε
) and set

γε(x) = (γ ∗ ηε)(x) =
ˆ
R

γ (x − y)ηε(y)dy. (1.1)

Though for merely regular curves γ ∈ C0,1(R/Z,Rn) we cannot expect that the
smoothed functions γε are regular curves, the situation changes drastically, if we
assume that γ ′ has vanishingmean oscillation.Wewill start with proving the following
theorem:

Theorem 1.1 Let γ ∈ C0,1(R/Z,Rn) be a curve parameterized by arc length with
γ ′ ∈ V MO(R/Z,Rn). Then the speed |γ ′

ε| of the convolutions γε defined by (1.1)
converges uniformly to |γ ′| = 1 as ε → 0. So especially, the curves γε are regular if
ε is small enough.

Let us also state a useful uniform bi-Lipschitz estimate for the smoothed functions
γε, that we will need in the applications later on.

Lemma 1.2 Let γ ∈ C0,1(R/Z,Rn) be an injective curve parameterized by arc length
with γ ′ ∈ V MO(R/Z,Rn). Then there is an ε0 > 0 such that

inf
x �=y,0<ε<ε0

|γε(x) − γε(y)|
|x − y| > 0.

Sometimes one might need that also the approximating curves are parameterized
by arc length and have the same length as the original curve. In the case that the curve

belongs to the fractional Sobolev space W 1+s, 1s for some s ∈ (0, 1) the following
theorem can help. We denote the length of a curve γ by L(γ ).

Theorem 1.3 Let γ ∈ C0,1(R/Z,Rn) ∩ W 1+s, 1s be a curve parameterized by arc
length and let γε again denote the convolutions given by (1.1). Furthermore, let γ̃ε :
R/Z → R

n be the re-parameterization by arc length of the unit length curve 1
L(γε)

γε

that satisfies γ̃ε(0) = 1
L(γε)

γε(0). Then γ̃ε still converges to the curve γ in W 1+s, 1s .

1 We give an elementary argument for this fact at the end of Sect. 2.1
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3272 S. Blatt

In the last section, we will show how to apply the techniques of this article in order
to answer some open questions in the literature and settle some conjectures in the
context of knot energies. All the statements of the theorems are known for curves that
possess more regularity than we can naturally assume. The approximation techniques
above allow to extend these statements to curves of bounded Möbius energy—which
is the most natural assumption for these theorems. Let us just present one particular
open question due to He here.

O’Hara introduced the Möbius energy [10]

Emöb(γ ):=
¨

R/Z

(
1

|γ (x) − γ (y)|2 − 1

dγ (x, y)2

)
|γ ′(x)||γ ′(y)|dxdy

for regular curves γ ∈ C0,1(R/Z,Rn), which was the first geometric implementation
of the concept of knot energy. In the influential paper [6], Freedman et al. discussed
many interesting properties of this energy including its invariance underMöbius trans-
formations.

In his article [7], He asked whether any regular curve of bounded Möbius energy
can be approximated by smooth curves such that the energy converges. We will use
the above approximation result together with the characterization of curves of finite
Möbius energy in [3] to give the following answer:

Theorem 1.4 Let γ ∈ C0,1(R/Z,Rn) be a curve parameterized by arc length such
that the Möbius energy Emöb(γ ) is bounded. Then there is a constant ε0 > 0 such that

the γε are smooth regular curves for all 0 < ε < ε0 converging to γ in W
3
2 ,2 and in

energy, i.e., Emöb(γε) → Emöb(γ ) for ε → 0.

We hope that the list of applications, although far from being complete, convinces
the reader that the results and techniques developed in this article are of considerable
importance for the analysis of critical knot energies for curves.

2 Preliminaries

2.1 Fractional Sobolev Spaces

In the applications, we will use the classification of curves of finite energy Eα in [3]
using fractional Sobolev spaces. For s ∈ (0, 1), p ∈ [1,∞), and k ∈ N0 the space
Wk+s,p(R/Z,Rn) consists of all functions f ∈ Wk,p(R/Z,Rn) for which


 f (k)�Ws,p :=
(ˆ

R/Z

ˆ
R/Z

| f (k)(x) − f (k)(y)|p
|x − y|1+sp

dxdy

) 1
p

is finite. This space is equipped with the norm ‖ f ‖Wk+s,p :=‖ f ‖Wk,p + 
 f (k)�Ws,p .

For a thorough discussion of the subject of fractional Sobolev spaces, we point the
reader to the monograph by Triebel [12], Chapter 7 of [1], and the very nicely written
and easily accessible introduction to the subject [5].
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Curves Between Lipschitz and C1 3273

The following result is a special case of Theorem 1.1 in [3]:

Theorem 2.1 (Classification of curves with finite Möbius energy) Let γ ∈ C0,1

(R/Z,Rn) be a curve parameterized by arc length. Then the Möbius energy Emöb(γ )

is finite if and only if γ is bi-Lipschitz and belongs to W
3
2 ,2(R/Z,Rn).

We will also use the well-known fact, that f ∈ Ws,p(R/Z,Rn), s ∈ (0, 1), p = 1
s ,

implies f ∈ V MO(R/Z,Rn). This follows, for example, from

1

2r

ˆ
Br (x)

| f − f Br (x)|dy ≤ 1

(2r)2

ˆ
Br (x)

ˆ
Br (x)

| f (y) − f (z)|dydz

≤ 1

(2r)2/p

(ˆ
Br (x)

ˆ
Br (x)

| f (y) − f (z)|pdydz
) 1

p

=
(ˆ

Br (x)

ˆ
Br (x)

| f (y) − f (z)|p
2r2

dydz

) 1
p

≤
(ˆ

Br (x)

ˆ
Br (x)

| f (y) − f (z)|
|y − z|1+sp

dydz

) 1
p

≤
(ˆ

R/Z

ˆ
B2r (0)

| f (z + w) − f (z)|p
|w|1+sp

dwdz

) 1
p → 0

for r → 0.
Applying this to f = γ ′, in view of Theorem 2.1, the velocity of a curve parame-

terized by arc length of finite Möbius energy belongs to V MO . Hence, we can apply
Theorem 1.1 in this situation.

2.2 Vitali’s Theorem

Apart from the approximation results from the last section, our applications heavily
rely on Vitali’s characterization of L1 convergence.

Theorem 2.2 (Vitali’s theorem, cf. [2]). A sequence fn, n ∈ N, of L1 functions in
a measure space (X , σ, μ) converges to f in L1 if and only if the following three
conditions hold:

(1) fn converges in measure to f , i.e., for all ε > 0

lim
n→∞ μ(| fn − f | > ε) = 0.

(2) fn is uniformly integrable, i.e., for every ε > 0 there is a δ > 0 such thatμ(E) < δ

for a measurable E ⊂ X implies

ˆ
E

| fn|dμ < ε

for all n ∈ N.
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3274 S. Blatt

(3) fn is tight, i.e., for every ε > 0 there is a measurable E ⊂ X of finite measure
such that

ˆ
X\E

| fn|dμ < ε

for all n ∈ N.

Of course, every sequence of measurable functions on a finite measure space is
tight.

3 Approximation by Smooth Curves: Proof of Theorem 1.1,
Lemma 1.2, and Theorem 1.3

Proof of Theorem 1.1 Note that
´
R

ηε(x)dx = 1 and ‖γ ′‖L∞ ≤ 1 imply

|γ ′
ε(x)| =

∣∣∣∣
ˆ
R

γ ′(x − y)ηε(y)dy

∣∣∣∣ ≤
ˆ
R

|ηε(y)|dy = 1

for all x ∈ R/Z.
For r ≤ 1

2 , let us set

V MO(r) = V MOγ ′(r) = sup
x∈R/Z

 
Br (x)

|γ ′(y) − γ ′
Br (x)|dy,

where

γ ′
Br (x):=

 
Br (x)

γ ′(y)dy

denotes the integral mean.
We calculate using the triangle inequality and the estimate above

|γ ′
Br (x)| =

 
Br (x)

|γ ′
Br (x)|dy ≥

 (
|γ ′| − ||γ ′

Br (x)| − |γ ′||
)
dy

≥ 1 −
 
Br (x)

|γ ′
Br (x) − γ ′|dy ≥ 1 − V MO(r). (3.1)

So we derive

|γ ′
ε(x)| =

∣∣∣∣
ˆ
Bε(0)

γ ′(x − y)ηε(y)dy

∣∣∣∣
≥ |γ ′

Bε(x)| −
ˆ
Bε(0)

|γ ′(x − y) − γ ′
Bε(x)||ηε(y)|dy

≥ 1 − (1 + ‖η‖L∞) · V MO(ε)). (3.2)
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Curves Between Lipschitz and C1 3275

Since

V MO(ε) → 0

as ε → 0 since γ ′ has vanishing mean oscillation, we deduce that |γ ′
ε| → |γ ′| = 1

uniformly as ε → 0. So especially γε is a regular curve for ε > 0 small enough. This
completes the proof of Theorem 1.1.

Proof of Lemma 1.2 We first note that the bound in V MO of the first derivative for
γ is inherited by the curves γε; more precisely, we have (using Fubini twice and
substituting variables appropriately)

 
Br (x)

|γ ′
ε(y) − (γ ′

ε)Br (x)|dy

=
 
Br (x)

∣∣∣∣
ˆ
R

(
γ ′(y − ζ ) −

 
Br (x)

γ ′(z − ζ )dz

)
ηε(ζ )dζ

∣∣∣∣dy
≤
ˆ
R

( 
Br (x)

∣∣∣∣γ ′(y − ζ ) −
 
Br (x)

γ ′(z − ζ )dz

∣∣∣∣dy ηε(ζ )

)
dζ

≤
ˆ
R

( 
Br (x−ζ )

|γ ′(y) − γ ′
Br (x−ζ )|dy ηε(ζ )

)
dζ

≤ V MOγ ′(r).

So we have

V MOγ ′
ε
≤ V MOγ ′ . (3.3)

For x �= y, r = |x−y|
2 , and z = x+y

2 , we can now estimate

|γε(x) − γε(y)| = |
ˆ
Br (z)

γ ′
ε(τ )dτ |

≥
ˆ
Br (z)

|γ ′
ε(τ )|dτ −

ˆ
Br (z)

|γ ′
ε − (γ ′

ε)Br (z)|dτ |
≥ 2r(1 − C(V MOγ ′(ε) + V MOγ ′(r)))

= |x − y|
(
1 − C

(
V MOγ ′(ε) + V MOγ ′

( |x−y|
2

)))
, (3.4)

where we have used (3.1) with γ replaced by γε, (3.2), and (3.3). If we now choose
r0 > 0 and ε0 > 0 small enough, we get

|γε(x) − γε(y)| ≥ 1

2
|x − y|

for all 0 < ε < ε0 and 0 < r < r0.
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3276 S. Blatt

Since γ is injective, continuous, and K :={(x, y) ∈ (R/Z)2 : |x − y| ≥ r0} is
compact, we furthermore have

inf

{ |γ (x) − γ (y)|
|x − y| : (x, y) ∈ K

}
=: 4d > 0.

Making ε0 > 0 smaller if necessary, we can guarantee that

‖γε − γ ‖L∞ < r0d

for all ε < ε0 which together with the last estimate yields

inf

{ |γε(x) − γε(y)|
|x − y| : (x, y) ∈ K , ε < ε0

}
≥ 4d − 2r0d

r0
≥ 2d > 0.

Hence

inf
x �=y,0<ε<ε0

|γε(x) − γε(y)|
|x − y| ≥ min

{
2d, 1

2

}
> 0.

Remark 3.1 If we assume that our curve γ ∈ C0,1 is not parameterized by arc length
but uniformly regular in the sense that

m:= essinf
x∈R/Z

|γ ′(x)| > 0

then the argument of the proof above still shows that γε is a regular curve for all ε > 0
small enough.

Proof of Theorem 1.3 Let us now consider the curves γ̃ε which obviously converge to
γ uniformly and hence especially in L p for p = 1

s . We now show that the derivatives
of these curves satisfy

lim
ε→0


γ̃ ′
ε − γ ′�Ws,p = 0 (3.5)

using Vitali’s theorem where


 f �2Ws,p =
ˆ
R/Z

ˆ
R/Z

| f (x) − f (y)|p
|x − y|1+sp

dxdy =
ˆ
R/Z

ˆ
R/Z

| f (x) − f (y)|p
|x − y|2 dxdy

denotes the Gagliardo semi-norm that we introduced in Sect. 2.1.
We therefore consider the integrand

Iε(x, y):= |(γ̃ ′
ε(x) − γ ′(x)) − (γ̃ ′

ε(y) − γ ′(y))|p
|x − y|2 .
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To show that for a sequence εi ↓ 0 the integrands Iεi are uniformly integrable, we use
the inequality |a + b|p ≤ 2p−1(|a|p + |b|p) to estimate these integrands from above
by

2p−1
( |γ̃ ′

ε(x) − γ̃ ′
ε(y)|p

|x − y|2 + |γ ′(x) − γ ′(y)|p
|x − y|2

)
.

Let us now consider the transformation

ψε : (R/Z)2 → (R/Z)2

(x, y) �→ (s(x), s(y))

where s = sε denotes the re-parameterization of 1
L(γε)

γε by arc length such that
s(0) = 0. Note that since γ ′

ε is uniformly bounded away from 0 by Theorem 1.1, these
transformations are uniformly bi-Lipschitz for ε > 0 small enough. For E ⊂ (R/Z)2,
we therefore have

¨
E

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|p
|x − y|2 dxdy ≤ C

¨
ψ−1

ε (E)

|γ ′
ε(x) − γ ′

ε(y)|p
|x − y|2 |γ ′

ε(x)||γ ′
ε(y)|dxdy

≤ C
¨

ψ−1
ε (E)

|γ ′
ε(x) − γ ′

ε(y)|p
|x − y|2 dxdy.

Let us show that the integrands

|γ ′
εi
(x) − γ ′

εi
(y)|p

|x − y|2

are uniformly integrable. For this, for ε0 > 0, we first chose an i0 ∈ N such that


γ ′
εi

− γ ′�Ws,p ≤ (ε0)
1
p

2
,

for all i > i0. We then chose δ > 0 such that for every set F ⊂ (R/Z)2 with |F | ≤ δ

we have

¨
F

|γ ′(x) − γ ′(y)|p
|x − y|2 dxdy ≤ ε0

and

¨
F

|γ ′
εi
(x) − γ ′

εi
(y)|2

|x − y|2 dxdy ≤ ε0

2p

for the finite set of indices i ∈ {1, 2, . . . , i0}. We hence get for i ∈ Nwith i > i0 using
the triangle inequality in L2
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(¨
F

|γ ′
εi
(x) − γ ′

εi
(y)|2

|x − y|2 dxdy

) 1
p

≤
(¨

F

|γ ′(x) − γ ′(y)|2
|x − y|2 dxdy

) 1
p

+ 
γ ′
εi

− γ ′�Ws,p ≤ √
ε0

for all F ⊂ (R/Z)2 with |F | ≤ δ. This proves that the integrands

|γ ′
εi
(x) − γ ′

εi
(y)|p

|x − y|2

are indeed uniformly integrable.
Hence, for every ε0 > 0 there is a δ > 0 such that |ψ−1

εi
(E)| ≤ δ implies

¨
ψ−1

ε (E)

|γ ′
εi
(x) − γ ′

εi
(y)|2

|x − y|2 dxdy ≤ ε0

for all i ∈ N. But, as the ψ−1
ε are uniformly Lipschitz for ε > 0 small enough, we get

that there is a δ̃ > 0 such that |E | ≤ δ̃ implies |ψ−1
ε (E)| ≤ δ and hence

¨
E

|γ̃ ′
εi
(x) − γ̃ ′

εi
(y)|2

|x − y|2 dxdy ≤ C
¨

ψ−1
ε (E)

|γ ′
εi
(x) − γ ′

εi
(y)|2

|x − y|2 dxdy ≤ Cε0.

Thus, the Iεi are uniformly integrable.
To show that Iε converges in measure to 0 we show that γ̃ ′

ε converges to γ ′ in L p.
This can be seen from the estimate

‖γ̃ ′
ε − γ ′‖L p ≤ ‖γ̃ ′

ε − γ ′ ◦ sε‖L p + ‖γ ′ ◦ sε − γ ′‖L p .

Since the functions sε are uniformly bi-Lipschitz for ε > 0 small, we get

‖γ̃ ′
ε − γ ′ ◦ sε‖L p ≤ C‖γ ′

ε − γ ′‖L p
ε→0−−→ 0.

Furthermore, for a smooth function f we have

‖ f ◦ sε − f ‖L p
ε→0−−→ 0.

Using again that the sε are uniformly bi-Lipschitz for small ε together with the triangle
inequality, we get

‖γ ′ ◦ sε − γ ′‖L p ≤ ‖γ ′ ◦ sε − f ′ ◦ sε‖L p + ‖ f ′ ◦ sε − f ′‖L p + ‖ f ′ − γ ′‖L p

≤ C‖ f ′ − γ ′‖L p + ‖ f ′ ◦ sε − f ′‖L p

ε→0−−→ C‖ f ′ − γ ′‖L p
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and choosing smooth functions f converging to γ in W 1,p we get that

‖γ ′ ◦ sε − γ ′‖L p
ε→0−−→ 0.

Hence, the integrands Iε converge locally in L1 to 0 on {(x, y) ∈ (R/Z)2 : x �= y}
and hence in measure. As Iεi converges to 0 in measure and is uniformly integrable,
we can apply Vitali’s theorem (Theorem 2.2) to prove the claim.

4 Applications

We want to present several applications of Theorem 1.1. We will start with analyzing
the convergence of the Möbius energy and the parts of its decomposition found by
Ishizeki and Nagasawa if the original curve has bounded Möbius energy. Unfortu-
nately, the smoothed curves γε in general do not converge in W 1,∞—so we cannot

apply the fact that the Möbius energy is C1 inW
3
2 ,2 ∩W 1,∞ [4, Theorem II]. We will

show how to use the convergence of |γ ′
ε| from Theorem 1.1 together with bi-Lipschitz

estimates in order to prove convergence in energy.

4.1 Convergence of Some Critical Knot Energies

4.1.1 The Möbius Energy

As a first application, we want to answer a question due to He [7, Question 8 in Sect.
7]. He asked, whether a curve of bounded Möbius energy can be approximated by
smooth curves such that the energies of these curves converge to the energy of the
initial curve. The following lemma shows that this is indeed the case and that one can
just use the mollified curves γε. This lemma together with Theorem 1.1 obviously
proves Theorem 1.4.

Lemma 4.1 (Convergence of the Möbius energy) Let γ ∈ C0,1(R/Z,Rn) be param-
eterized by arc length of finite Möbius energy. Then we have Emöb(γε) → Emöb(γ ).

Proof We use Vitali’s convergence theorem to prove this lemma. Setting

Iγ (x, w):=
(

1
|γ (x+w)−γ (x)|2 − 1

dγ (x,x+w)2

)
|γ ′(x)| |γ ′(x + w)|, we get

Emöb(γ ) =
ˆ
R/Z

ˆ 1
2

− 1
2

Iγ (x, w) dxdw.

As |γ ′
ε| converges pointwise to |γ ′| by Theorem 1.1 and γε converges to γ pointwise,

the integrand Iγε (x, w) also converges to Iγ (x, w) pointwise. Let us show that the
integrands are uniformly integrable. For this purpose, we only have to consider points
close to the diagonal, i.e., we will only integrate over x, y ∈ R/Z with |x − y| ≤ 1

4 ,
since on the rest of the domain the bi-Lipschitz estimate gives us a uniform bound on
the integrand.
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Wehave for ε>0 small enough and |w|≤ 1
4 that dγε (x+w, x) = ´ 1

0 |γ ′
ε(x+sw)|ds.

Together with the identity γε(x + w) − γε(x) = w
´ 1
0 γ ′

ε(x + sw)ds, we get

Iγε (x, w)

=
(

1

|γε(x + w) − γε(x)|2 − 1

dγε (x, x + w)2

)

= |w|4
|γε(x + w) − γε(x)|2dγε (x, x + w)2

(
dγε (x, y)

2 − |γε(x + w) − γε(x)|2
|w|4

)

= |w|4
|γε(x + w) − γε(x)|2dγε (x, x + w)2

×
⎛
⎝
´ 1
0

´ 1
0

(
|γ ′

ε(x + s1w)||γ ′
ε(x + s2w)| − 〈γ ′

ε(x + s1w), γ ′
ε(x + s2w)〉

)
ds1ds2

|w|2

⎞
⎠ .

Using the uniform bi-Lipschitz estimate Lemma 1.2, we get

Iγε (x, w)

≤ C

⎛
⎝
´ 1
0

´ 1
0

(
|γ ′

ε(x + s1w)||γ ′
ε(x + s2w)| − 〈γ ′

ε(x + s1w)γ ′
ε(x + s2w)〉

)
ds1ds2

|w|2

⎞
⎠

for all ε > 0 small enough.
As all vectors a, b ∈ R

n \ {0} satisfy

|a||b| − 〈a, b〉 = |a||b|
2

∣∣∣∣ a

|a| − b

|b|
∣∣∣∣
2

and ∣∣∣∣ a

|a| − b

|b|
∣∣∣∣ ≤ |a − b|

|a| + |b|
∣∣∣∣ 1

|a| − 1

|b|
∣∣∣∣ ≤ 2|a − b|

|a| ,

we get

|a||b| − 〈a, b〉 ≤ 2
|b|
|a| |a − b|2.

Applying this inequality to a = γ ′(x + s1w) and b = γ ′(x + s2w) , we arrive at

|Iγε (x, w)| ≤ C

(´ 1
0

´ 1
0 |γ ′

ε(x + s1w) − γ ′
ε(x + s2w)|2ds1ds2

|w|2
)

=:C Ĩγε (x, w)

(4.1)

for all |w| ≤ 1
4 and ε > 0 small enough. Let us now show that Ĩγε (x, w) converges

to Ĩγ (x, w) in L1(R/Z × [− 1
2 ,

1
2 ]) which implies that Iγε (x, w) ≤ C Ĩγε (x, w) is

uniformly integrable.
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Jensen’s inequality followed by Fubini’s theorem and the substitutions x = x+s2w,
w = (s1 − s2)w give

ˆ
R/Z

ˆ 1
2

− 1
2

| Ĩγε (x, y) − Ĩγ (x, w)|dwdx

=
ˆ 1

0

ˆ 1

0

ˆ 1
2

− 1
2

ˆ
R/Z

×
( |γ ′

ε(x + s1w) − γ ′
ε(x + s2w)|2 − |γ ′(x + s1w) − γ ′(x + s2w)|2

|w|2
)

× dwdxds2ds1

≤
ˆ 1

0

ˆ 1

0
|s1 − s2|

ˆ 1
2

− 1
2

ˆ
R/Z

×
( |γ ′

ε(x + w) − γ ′
ε(x)|2 − |γ ′(x + w) − γ ′(x)|2

|w|2
)
dwdxds2ds1

≤
ˆ 1

2

− 1
2

ˆ
R/Z

( |γ ′
ε(x + w) − γ ′

ε(x)|2 + |γ ′(x + w) − γ ′(x)|2
|w|2

)
dwdx .

We set

f (x, w):=γ ′
ε(x + w) − γ ′

ε(x)

w
and g(x, w):=γ ′(x + w) − γ ′(x)

w
.

Combining || f |2 − |g|2| = (| f | + |g|)|| f | − |g|| ≤ (| f | + |g|)| f − g| with Cauchy’s
inequality, we get

ˆ
R/Z

ˆ 1
2

− 1
2

|| f (x, w)|2 − |g(x, w)|2|dxdw ≤ (‖ f ‖L2 + ‖g‖L2
) ‖ f − g‖L2 .

Spelling out the above inequality gives

ˆ
R/Z

ˆ 1
2

− 1
2

∣∣∣∣ |γ ′
ε(x + w) − γ ′

ε(x)|2
w2 − |γ ′(x + w) − γ ′(x)|2

w2

∣∣∣∣ dwdx

≤ (
γ ′
ε�W 1

2 ,2 + 
γ ′�
W

1
2 ,2)
γ ′

ε − γ ′�
W

1
2 ,2

ε→0−−→ 0.

This shows that the family of functions Ĩγε converge to Ĩγ in L1. Hence, for every
sequence εi ↓ 0, the integrands Iγεi

are uniformly integrable and Vitali’s theorem

(Theorem 2.2) implies E(γεi )
i→∞−−−→ E(γ ). ��
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4.1.2 Ishizeki’s and Nagasawa’s Decomposition of the Möbius Energy

In [9], Ishizeki and Nagasawa found the decomposition

Emöb(γ ) = E1(γ ) + E2(γ ) + 4

of the Möbius energy where

E1(γ ):=
¨

(R/Z)2

|τ(x) − τ(y)|2
2|γ (x) − γ (y)|2 |γ ′(x)||γ ′(y)|dxdy

τ = γ ′
|γ ′| and

E2(γ ):=
¨

(R/Z)2

2

|γ (x) − γ (y)|2

det

( 〈τ(x), τ (y)〉 〈(γ (x) − γ (y)), τ (x)〉
〈(γ (x) − γ (y)), τ (y)〉 |γ (x) − γ (y)|2

)
× |γ ′(x)||γ ′(y)|dxdy.

As in the proof of Lemma 4.1, we can show the following.

Lemma 4.2 Let γ ∈ C0,1(R/Z,Rn) be a curve of bounded Möbius energy. Then

lim
ε→0

E1(γε) = E1(γ ) and lim
ε→0

E2(γε) = E2(γ ).

Proof It is enough to show the convergence for E1, as the statement for E2 follows
from the decomposition

Emöb = E1 + E2 + 4

by Ishizeki and Nagasawa [9]. As γ has bounded Möbius energy, we know that γ ′ ∈
V MO . As in the proof of Theorem 1.3 one shows that the integrand in the definition
of E1 converges in measure. From the uniform bi-Lipschitz estimate in Lemma 1.2
and the estimate∣∣∣∣ a

|a| − b

|b|
∣∣∣∣ = ||b|(a − b) + (|b| − |a|)b|

|a||b| ≤ 2
|a − b|

a

and the fact that |γ ′
ε| is uniformly bounded away from 0 for all ε sufficiently small,

we get

|τε(x) − τε(y)|2
2|γε(x) − γε(y)|2 |γ ′

ε(x1)||γ ′
ε(x2)| ≤ C

|γ ′
ε(x) − γ ′

ε(y)|2
|x − y|2 . (4.2)
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We have shown in the proof of Lemma 4.1 that the right-hand side of this inequality
is uniformly integrable for every sequence εi ↓ 0—and thus the integrands in the
definition of E1 are uniformly integrable and Vitali’s theorem (Theorem 2.2) implies
the assertion. ��

4.2 Proof of a Conjecture by Ishizeki and Nagasawa

In [9], Ishizeki and Nagasawa proved that for all curves γ in C1,1 we have E1(γ ) ≥
2π2 and conjectured that the same is also true under the weaker but more natural

condition γ ∈ W
3
2 ,2. Using the techniques we developed so far, we can now prove

this conjecture quite easily.

Theorem 4.3 (A conjecture by Nagasawa and Ishizeki). We have E1(γ ) ≥ 2π2 for

all regular curves γ ∈ W
3
2 ,2(R/Z,R3).

Proof Let γε = γ ∗ ηε. Since

E1(γε) → E1(γ )

and E(γε) ≥ 2π2 as the inequality holds for smooth curves, we get E1(γ ) ≥ 2π2. ��
In the same paper, Ishizeki and Nagasawa also showed theMöbius invariance of the

energies E1 and E2 for curves of bounded Möbius energy except for one important
case: the case of an inversion in a sphere centered on the curve. For applications this
seems to be one of the most important cases. We can now show that in this last case
the energy E1 decreases by 2π2, whereas E2 increases by the same amount

Theorem 4.4 Let γ ∈ C0,1(R/Z,R3) be a regular curve with boundedMöbius energy
and I be an inversion in a sphere centered on γ . Then

E1(I ◦ γ ) = E1(γ ) − 2π2 and E2(I ◦ γ ) = E2(γ ) + 2π2.

Proof We only have to show the statement for E1 as due to a theorem of Ishizeki and
Nagasawa the sum

E1 + E2

is known to be invariant under all Möbius transformations [8].
Let us assume that γ is parameterized by arc length. We set γε:=γ ∗ηε and assume

without loss of generality, that 0 is the center of the inversion I . Thenwe can find xε →
0 such that 0 ∈ γε(R/Z) + xε. Let us denote by γ̃ε : R → R

n a re-parameterization
of I ◦ (γε − xε) by arc length such that γ̃ε(0) = (I ◦ γε)(0) and let γ̃ : R → R

n

a re-parameterization of I ◦ γ by arc length such that γ̃ (0) = (I ◦ γ )(0). Then γ̃ε

converges pointwise to γ̃ .

The proof now relies on the following
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Claim 4.5 We have

lim
ε→0


γ̃ ′
ε − γ̃ ′�

W
1
2 ,2

(R)
= 0,

where


 f �
W

1
2 ,2

(R)
:=

(ˆ
R

ˆ
R

| f (x) − f (y)|2
|x − y|2 dxdy

) 1
2

denotes the Gagliardo semi-norm on R.

Let us use this claim to prove the statement for E1 in Theorem 4.4. On the one
hand, Lemma 4.2 and the Möbius invariance for smooth curves imply

E1(γ̃ε) + 2π2 = E1(I ◦ (γε + xε)) + 2π2 = E1(γε + xε)
ε↓0−−→ E1(γ ). (4.3)

Note that γ̃ε have uniformly bounded Möbius energy and are thus uniformly bi-
Lipschitz. So on the other hand, we can use the estimate

|τ̃ε(x) − τ̃ε(y)|2
2|γ̃ε(x) − γ̃ε(y)|2 |γ̃ ′

ε(x)||γ̃ ′
ε(y)| ≤ C

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2

and follow the argument in the proof of Lemma 4.1 to see that the integrands in the
definition of the energies E1(γ̃ε) satisfy the assumptions of Vitali’s theorem. Hence,

lim
ε→0

E1(γ̃ε) = E1(γ̃ ). (4.4)

But (4.3) and (4.4) imply

E1(γ̃ ) + 2π2 = E(γ ).

��
Proof of Claim 4.5 We will show that the integrands appearing in the definition of


γ̃ ′
ε − γ̃ ′�

W
1
2 ,2

(R)

are tight and uniformly integrable on compact subsets and converge in measure on
compact subsets to 0. Then the claim essentially follows from Vitali’s theorem. These
integrands are

|(γ̃ ′
ε(x) − γ̃ ′(x)) − (γ̃ ′

ε(y) − γ̃ ′(y))|2
|x − y|2 .

As in the proof of Theorem 1.3, one sees that γ ′
ε converge in measure to γ ′ and

hence the integrands converge in measure to 0 on compact subsets.
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Let us first deal with the point ∞ and show that for every δ > 0 there is an R > 0
such that

¨
R2\(BR(0))2

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2 dxdy ≤ δ (4.5)

for all ε > 0 small enough. For this, we use the Möbius invariance of the Möbius
energy [6, Theorem 2.1]. Together with Fatou’s lemma the latter implies

Emöb(γ̃ ) ≤ lim
ε→0

Emöb(γ̃ε) = lim
ε→0

Emöb(γε) − 4 = Emöb(γ ) − 4 = Emöb(γ̃ ).

Hence,

lim
ε→0

Emöb(γ̃ε) = Emöb(γ̃ ). (4.6)

For δ > 0, we now choose R > 0 such that

EBR(0)(γ̃ ):=
ˆ
BR(0)

ˆ
BR(0)

(
1

|γ̃ (x) − γ̃ (y)|2 − 1

|x − y|2
)
dxdy ≥ Emöb(γ̃ ) − δ.

Then

EBR(0)(γ̃ε) ≥ Emöb(γ̃ ) − 2δ

for ε > 0 small enough, since else the lower semi-continuity of the Möbius energy
would imply

EBR(0)(γ̃ ) ≤ lim inf
ε→0

EBR(0)(γ̃ε) ≤ Emöb(γ̃ ) − 2δ ≤ EBR(0)(γ̃ ) − δ.

In view of (4.6), we even obtain

Emöb(γ̃ ) + 2δ ≥ Emöb(γ̃ε) ≥ EBR(0)(γ̃ε) ≥ Emöb(γ̃ ) − 2δ

for all ε > 0 sufficiently small and hence

¨
R2\(BR(0))2

(
1

|γ̃ε(x) − γ̃ε(y)|2 − 1

|x − y|2
)
dxdy

= Emöb(γ̃ε) − EBR(0)(γ̃ε) ≤ 4δ. (4.7)

So the energy does not concentrate at the point infinity. Let us translate this into a
statement for the Gagliardo semi-norm.
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One estimates

1

|γ̃ε(x) − γ̃ε(y)|2 − 1

|x − y|2

= |x − y|2
|γ̃ε(x) − γ̃ε(y)|2

⎛
⎝1 − |γ̃ε(x)−γ̃ε(y)|2

|x−y|2
|x − y|2

⎞
⎠

≥
1 − |γ̃ε(x)−γ̃ε(y)|2

|x−y|2
|x − y|2

= 1 − ´ 1
0

´ 1
0 〈γ̃ ′

ε(x + t1(y − x)), γ̃ ′
ε(x + t2(y − x))〉dt1dt2

|x − y|2 .

With f (t):=γ̃ ′
ε(x + tw), we find using that γ̃ε is parameterized by arc length that

1 − 〈 f (t1), f (t2)〉 = 1

2
| f (t1) − f (t2|2

and hence

¨
R2\(BR(0))2

(
1

|γ̃ε(x) − γ̃ε(y)|2 − 1

|x − y|2
)
dxdy

≥ 1

2

¨
R2\(BR(0))2´ 1

0

´ 1
0 |γ̃ ′

ε(x + t1(y − x)) − γ̃ ′
ε(x + t2(y − x))|2dt1dt2

|y − x |2 dydx

≥ 1

2

ˆ
R2\(BR(0))2

ˆ
R´ σ

0

´ 1
1−σ

|γ̃ ′
ε(x + t1(y − x)) − γ̃ ′

ε(x + t2(y − x))|2dt1dt2
|y − x |2 dwd.

(4.8)

Applying Lemma 2.2 in [3] with q = 2 and ε = 1
2 , we get

| f (t1) − f (t2)|2 ≥ 1

2
| f (0) − f (1)|2 − C

(
| f (0) − f (t1)|2 + | f (1) − f (t2|2

)
.

Thus the right-hand side of (4.8) can further be estimated from below by

σ 2

4

¨
R2\(BR (0))2

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|y − x |2 dxdy

− C
¨

R2

´ σ

0

´ 1
1−σ

|γ̃ ′
ε(x) − γ̃ ′

ε(x + t1(y − x))|2 + |γ̃ ′
ε(x + t2(y − x)) − γ̃ ′

ε(y)|2dt1dt2
|y − x |2 dwdx .
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Using Fubini and substitutingw = t1(y− x) andw = (1− t2)(y− x), respectively,
we get the estimate

¨
R2

´ σ

0

´ 1
1−σ

|γ̃ ′
ε(x) − γ̃ ′

ε(x + t1(y − x))|2 + |γ̃ ′
ε(x + t2(y − x)) − γ̃ ′

ε(y)|2dt1dt2
|y − x |2 dydx

≤ 2σ 3
ˆ
R

ˆ
R

|γ̃ ′
ε(x) − γ̃ ′

ε(x + w)|2
|w|2 dwdx .

Plugging these estimates into (4.8), we get for σ ∈ (0, 1)

¨
R2\(BR(0))2

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2 dxdy

≤ 2

σ 2

¨
R2\(BR(0))2

(
1

|γ̃ε(x) − γ̃ε(y)|2 − 1

|x − y|2
)
dxdy + Cσ
γ̃ε�2

W
3
2 ,2

.

TheGagliardo semi-norm on the right-hand side can be bounded by theMöbius energy
which is uniformly bounded for our curves. Choosing first σ ∈ (0, 1) small enough
and then R > 0 big enough we get (4.5).

We will now deduce that

lim
ε→0

ˆ
BR(0)

ˆ
BR(0)

|(γ̃ ′
ε(x) − γ̃ ′(x)) − (γ̃ ′

ε(y) − γ̃ ′(y))|2
|x − y|2 dxdy = 0 (4.9)

again using Vitali’s theorem. As noted before, we know that the integrand converges
to 0 in measure.

To show uniform integrability of the integrands, we use |a + b| ≤ 2(|a|2 + |b|2)
valid for a, b ∈ R

n to get the estimate

|(γ̃ ′
ε(x) − γ̃ ′(x)) − (γ̃ ′

ε(y) − γ̃ ′(y))|2
|x − y|2 ≤2

( |γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2 + |γ̃ ′(x) − γ̃ ′(y)|2

|x − y|2
)

.

Of course, one only has to show that the first summand is uniformly integrable for
a sequence εi ↓ 0. This can be done using the same arguments as in the proof of
Theorem 1.3.

Hence, Vitali’s theorem (Theorem 2.2) implies that

lim
ε→0

ˆ
BR(0)

ˆ
BR(0)

|(γ ′
ε(x) − γ̃ ′(x)) − (γ ′

ε(y) − γ̃ ′(y))|2
|x − y|2 dxdy = 0.

Let us now conclude the proof of the claim. For δ > 0 we first use (4.5) to get an
R > 0 such that

¨
R2\(BR(0))2

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2 dxdy ≤ δ
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for all ε > 0 small enough and

¨
R2\(BR(0))2

|γ̃ ′(x) − γ̃ ′(y)|2
|x − y|2 dxdy ≤ δ.

Then (4.9) implies

lim sup
ε→0


γ̃ ′
ε − γ̃ ′�2

W
1
2 ,2

= lim sup
ε→0

¨
R2\(BR(0))2

|γ̃ ′
ε(x) − γ̃ ′

ε(y)|2
|x − y|2 dxdy

+
¨

R2\(BR(0))2

|γ̃ ′(x) − γ̃ ′(y)|2
|x − y|2 dxdy ≤ δ.

and thus

lim
ε→0


γ̃ ′
ε − γ̃ ′�

W
1
2 ,2 = 0.

With the help of Theorem 4.4, we can now also discuss the case of equality in
Theorem 4.3 to get the following extension of Corollary 4.1 in [9].

Theorem 4.6 We have E1(γ ) ≥ 2π2 for all regular curves γ ∈ W
3
2 ,2(R/Z,R3) with

equality if and only if γ is a circle.

We omit the proof of Theorem 4.6 as it is literally the same as the proof of Corol-
lary 4.1 in [9] where one only uses Theorem 4.4 instead of Theorem 1.2 in [9].

4.3 Inscribing Equilateral polygons

With the tools we have at hand, we can also extend a result of Wu [13] on inscribed
equilateral polygons in the following way

Theorem 4.7 Let γ ∈ C0,1(R/Z,Rd) be a uniformly regular curve, i.e.,

essinf
x∈R/Z

|γ ′(x)| > 0

with γ ′ ∈ V MO that is injective. Then for every n ∈ N, n ≥ 2, and any x0 ∈ R/Z,
there is an inscribed equilateral n-gon with the starting point γ (x0).

The proof is based on the fact, that there is a lower bound cn > 0 of the Gromov
distortion of equilateral n-gons as the infimum of the Gromov distortion is attained for
an equilateral n-gon and thus cannot be 0. We approximate γ by the smooth curves γε.
Then Wu’s theorem guarantees the existence of an inscribed equilateral n-gon with
the starting point γε(x0) and the fact above will show that these polygons subconverge
to an non-vanishing equilateral n-gon that has all the desired properties.

123



Curves Between Lipschitz and C1 3289

Proof Let γε = γ ∗ηε be the standard mollified curves and ε > 0 be so small that γε is
a regular curve (cf. Remark 3.1). Furthermore, let pε be the in γε inscribed equilateral
n-gon through point γε(x0). Its existence is guaranteed byWu’s theorem.We first note
that infε>0 diam pε = 0 would imply due to the uniform bi-Lipschitz estimate from
Lemma 1.2

sup
x �=y∈R/Z,|x−y|≤diam pε

dγε (x, y)

|γε(x) − γε(y)|
≥ sup

x �=y∈R/Z,|γε(x)−γε(y)|≤ 1
C diam pε

dγε (x, y)

|γε(x) − γε(y)| ≥ cn > 0, (4.10)

where cn is a lower bound on the Gromov distortion of equilateral n-gons.
On the other hand, inequality (3.4) implies

|γε(x) − γε(y)| ≥ |x − y|
(
1 − C · V MOγ ′

( |x−y|
2

)
− C · V MO(ε)

)
which implies

sup
x �=y∈R/Z,|x−y|≤r

dγε (x, y)

|γε(x) − γε(y)| ≤ cn + 1

2

for all r > 0 and ε > 0 sufficiently small. But this contradicts inequality (4.10).
So we have shown that infε>0 diam pε > 0. As the vertices of the polygons pε

belong to a bounded set, we can chose a subsequence εi → 0 such that the vertices of
the polygons pεi converge inR

d to the vertices of an equilateral n-gon. As furthermore
γε converges uniformly to γ as ε ↓ 0, the equilateral n-gon is inscribed in γ with
starting point γ (x0). ��

4.4 0-Convergence of the Discrete Möbius Energies by Scholtes

Let us extend the Γ -convergence result by Scholtes in [11]. Scholtes introduced the
discretized Möbius energy

En(p) =
m∑

i, j=1

(
1

|p(ai ) − p(a j )|2 − 1

dp(ai , a j )2

)
dp(ai+1, ai )dp(a j+1, a j )

of a polygon p : R/Z → R
n with vertices p(ai ), ai ∈ [0, 1), i = 1, . . . ,m.

Theorem 4.8 (Γ -convergence of discrete Möbius energies) Let q ∈ [1,∞). We have

En
Γ−→ Emöb

on the space of curves C0,1(R/Z,Rn) of unit velocity equipped with the Lq and
W 1,q-norm.

123



3290 S. Blatt

Scholtes proved this theorem for curves that are in C1, a property that is not
implied by bounded Möbius energy. The respective lim inf-inequality was already
shown by Scholtes to hold in our more general setting. We will give two proofs of the
lim sup-inequality. The first one combines [11, Corollary 1.4] with our extension of
Wu’s result in the last section. The second proof reduces the problem to the known
lim sup-inequality for C∞ functions approximating the curve by smooth curves using
Theorem 1.3.

So the second proof does neither use the full strength of the results by Scholtes nor
does it rely on our extension of Wu’s theorem. It only relies on the fact that we can
approximate our curves and a lim sup-inequality for smooth functions—and hence the
method of proof in contrast to the first one should be applicable in other situations as
well.

Proof 1 of Theorem 4.8 By Theorem 4.7 we find an inscribed equilateral n-gon pn in
γ . [11, Corollary 1.4] then tells us that

lim
n→∞ En(pn) = Emöb(γ ).

So the only thing left to show is that the pn converge to γ in W 1,q for all q ∈ [1,∞).
But this follows from the observation by Scholtes, that pn converges to γ in W 1,2.
Since both pn and γ are uniformly bounded inW 1,∞ we get the convergence inW 1,q ,
q > 2 using the estimate

‖ f ‖qLq =
ˆ

| f |q−2| f |2dx ≤ ‖ f ‖q−2
L∞ ‖ f ‖2L2 .

Proof 2 of Theorem 4.8 Since the lim inf-inequality was already shown by Scholtes,
we again only have to prove the lim sup inequality. Scholtes has already shown that
the lim sup inequality holds for C1 curves parameterized by arc length. If now γ is
a regular curves with bounded Möbius energy, we can consider the smoothed curves
γε = γ ∗ ηε and let γ̃m the re-parameterizations of the curves 1

L(γ 1
m

)
γ 1

m
by arc length.

By Lemma 4.1 we have limm→∞ Emöb(γ̃m) = Emöb(γ ).
By the lim sup-inequality of Scholtes, we can find in γ̃m inscribed equilateral k-

gons pm,k with lim supk→∞ Ek(pm,k) ≤ Emöb(γ̃m). We observe that for all k, m̃, and
m′ ≥ m̃, we have

inf
m≥m̃

Ek(pm,k) ≤ Ek(pm′,k).

Taking the limes superior with respect to k of this inequality, we get

lim sup
k→∞

(
inf
m≥m̃

Ek(pm,k)

)
≤ lim sup

k→∞
Ek(pm′,k) ≤ Emöb(γ̃m′)

for all m′ ≥ m̃. Hence,

lim sup
k→∞

(
inf
m≥m̃

Ek(pm,k)

)
≤ inf

m≥m̃
Emöb(γ̃m) = Emöb(γ )
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for all m̃ ∈ N.
If now for every m̃, k ∈ N we pick mm̃,k ∈ N such that Ek(pmm̃,kk) ≤

infm≥m̃ Ek(pm,k) + 1
k , we get

lim sup
k→∞

Ek(pmm̃,k ,k) ≤ lim sup
k→∞

(
inf
m≥m̃

Ek(pm,k) + 1

k

)

= lim sup
k→∞

(
inf
m≥m̃

Ek(pm,k)

)
≤ Emöb(γ ).

Now we are ready to inductively define our sequence of polygons. We let pk be
equal to pm1,k ,k until Ek(pm2,k ) ≤ Emöb(γ ) + 1 for all bigger k. Then, we let pk be
pm2,k ,k until Ek(pm3,k ) ≤ Emöb(γ ) + 1

2 for all bigger k and so on.
This leads to a sequence pk of k-gons inscribed in the curves γ̃mk such that both

lim sup
m→∞

Ek(pk) ≤ Emöb(γ )

and mk → ∞.
We finally have to prove that the polygons pk = pmk ,k converge to γ in W 1,q for

k → ∞ for all q ∈ [1,∞). By construction, we know that the pmk ,k are uniformly
bounded in W 1,∞. Let pmk ,k(x

k
1 ) = γm(xk1 ), . . . , pmk ,k(x

k
k ) = γ (xkk ) be the vertices

of the k-gon pmk ,k . Due to the uniform bi-Lipschitz estimate, we have 1
Ck ≤ |xki+1 −

xki | ≤ C
k for a constant C < ∞ and hence we get for x ∈ [xki , xki+1] using Taylor’s

approximation of first order in xki

|pk(x) − γ̃m(x)| ≤ C |x − xki | ≤ C

k
.

So, the pk converge uniformly to γ .
To get the convergence of the derivatives, we use p′

k = (γ̃ ′
mk

)[xki ,xki+1] for x ∈
[xki , xki+1] to estimate

ˆ
R/Z

|p′
k − γ̃ ′

mk
|dx =

k−1∑
i=1

ˆ xki+1

xki

|(γ̃ ′
mk

)[xki ,xki+1] − γ̃ ′
mk

|dy

≤
k−1∑
i=1

|xki+1 − xki | · V MOγ̃ ′
mk

(C
k

)
≤ C · V MOγ̃ ′

mk

(C
k

)
.

From (3.4) and (3.3), we get V MOγ̃ ′
mk

≤ C ·V MOγ ′
mk

≤ C ·V MOγ ′ . So V MOγ̃ ′
mk

(r)

goes uniformly to zero as r → 0 and hence p′
k − γ̃ ′

mk converges to 0 as k goes to ∞.
Since γ ′

mk
converges to γ ′ in L1, we deduce that p′

k converges to γ ′ in L1. Since the
polygons are furthermore uniformly bounded in W 1,∞, we get convergence in W 1,q

for all q ∈ [1,∞) as at the end of proof 1.
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