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 Some interior regularity theorems for
 minimal surfaces and an extension

 of Bernstein's theorem
 By F. J. ALMGREN, JR.*

 Introduction

 Among all k-dimensional surfaces having a prescribed boundary, is there

 one having the least k-dimensional area? There have been several formulations

 of this question in recent years utilizing different definitions of surface and

 boundary [Al] [FF] [FL2] [Z]; and there has been success in each case showing
 the existence of solutions having the geometric properties of compact rectifiable

 sets, even though the topological type or the set of admissible singularities of

 these solutions was not prescribed beforehand. A discussion of the phenomena

 of least area problems appears in [Al, 11.1] and [A2, 1].

 There has also been progress in the study of the regularity properties of

 the various solutions. De Giorgi [DG1] and Reifenberg [R3] have shown that
 their minimal surfaces are real analytic manifolds except for a set of measure

 zero on the surfaces. (Reifenberg's surfaces are of all codimensions, while those

 of De Giorgi are exclusively of codimension one). Reifenberg [R1] [R3] and
 Fleming [FL1] have shown that solutions to certain formulations of the problem
 of least area for two dimensional surfaces in R3 are real analytic manifolds at all

 non-boundary points. More precisely, regularity is known in case the minimal

 surfaces in question are two dimensional integral currents [FF] (which include
 the two dimensional surfaces of De Giorgi), flat 2-chains over the group of inte-

 gers modulo two [FL2], or the proper minimal surfaces of Reifenberg [R1] with
 boundary D a cyclic subgroup of the one dimensional Cech homology group with

 coefficients in the group of integers modulo two of the boundary sets.

 In this paper we show that three dimensional minimal surfaces in R4 are

 three dimensional real analytic submanifolds of R4, except perhaps at their

 boundaries, where we mean by minimal surface:

 ( 1 ) an oriented frontier of least three dimensional measure [DG1, p. 3],
 (2 ) a minimal three dimensional integral current [FF 9.1],

 (3 ) a minimal flat 3-chain over the group of integers modulo two [FL2], or
 (4 ) a proper minimal surface of Reifenberg [R1] with boundary D a cyclic

 * This work was supported in part by National Science Foundation grants NSF-GP
 2439 and NSF-GP 3946.
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 278 F. J. ALMGREN, JR.

 subgroup of the two dimensional Cech homology group with coefficients in the

 group of integers modulo two of the boundary set.

 Note that there has been no assumption that the minimal surfaces above

 could be expressed locally in non-parametric form. The fact that we have made

 no such assumption allows us to use our regularity results for three dimensional

 minimal surfaces in R4 to conclude regularity results for non-parametric four

 dimensional minimal surfaces in RK. For example, one can use the work of

 Miranda [Ml] to conclude the existence, uniqueness, and interior analyticity
 of solutions to the boundary value problem for the minimal surface equation

 over bounded uniformly convex regions in R4.

 A further generalization of Bernstein's theorem is another consequence.

 Fleming showed [FL2, p. 15] that an n-dimensional generalization of Bernstein's
 theorem (that a globally defined non-parametric n-dimensional minimal surface

 in R"+1 must be a hyperplane) would be a consequence of an interior regularity

 theorem for minimal n-dimensional integral currents in Rn+'. His two dimen-

 sional regularity results thus furnished another proof of the usual two dimen-

 sional Bernstein's theorem. De Giorgi then showed [DG2] that an n-dimensional
 generalization of Bernstein's theorem would follow from an interior regularity

 theorem for minimal (n - 1)-dimensional integral currents in Rn. A three

 dimensional generalization of Bernstein's theorem then followed from two

 dimensional regularity, and a four dimensional regularity theorem is a con-
 sequence of the three dimensionel regularity theorems of this paper.

 The fact that a minimal surface is stationary implies the existence of a non-

 empty set of tangent cones at each point. The minimality of the surface implies

 that each of these tangent cones is itself a minimal surface and, in particular,

 must be stable with respect to its boundary. One can use two dimensional regu-

 larityresultsto conclude that the boundary of each cone is a compact, orientable,
 two dimensional, manifold analytically imbedded as a minimal surface on the

 three dimensional sphere. The stability of the cone over this manifold implies

 that the manifold topologically must be a two dimensional sphere (Lemma 2).

 We then show that the only way a two dimensional sphere can be imbedded

 as a minimal surface on the three dimensional sphere is as a great two sphere

 (Lemma 1). Thus each tangent cone is a three dimensional disk. Regularity of

 the minimal surface then follows from results of De Giorgi [DG1] and Triscari

 [T], or from results of Reifenberg [R3].
 We include also in this paper a new interior regularity theorem for some

 two dimensional minimal surfaces in R I.

 The main results of this paper appear as corollaries to Theorem 1. This

 theorem is stated in the terminology of [FF].
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 LEMMA 1. Let f: S2 - S3 c S4 be a real analytic immersion of the two
 dimensional sphere S2 as a minimal surface in the unit three dimensional

 sphere S3 in R4. Then f imbeds S2 in S3, and f(S2) = S3 n {x: xv o} for

 some v E S3.

 PROOF. Part 1. Let f: S2 SIS3 c R4 be a real analytic immersion of S2 as

 a minimal surface in S3. Let g: 52 S3 C R4 be chosen continuously as a vector

 field tangent to S3 (i.e., fg = 0, where fg denotes the inner product in R4 of f

 with g) and perpendicular to f(S2) (i.e., if u and v are differentiable coordinates

 on S2, then fug = fg = 0, where f.-af/au, f, = af/av). Let k1, k2: S2 -R
 denote the principal curvatures of f(S2) with respect to g with the convention

 that k1 _ k2. Since f satisfies the minimal surface equation with respect to S3,

 k1 + k. - 0. We will show k1 = k2 -0. Our argument depends ultimately on

 the non-existence of non-zero complex quadratic forms on S2 considered as a

 Riemann surface, and is similar to the argument used to prove that a compact

 two dimensional manifold of genus zero imbedded in R3 with constant mean

 curvature is a standard sphere [H IV, 2.1, p. 83].
 We define two covariant tensor fields p, r of degree two on S3. If u, v are

 local coordinates in a neighborhood U of p in S3, we set

 - ffdu 0 du + fuv(du 0 dv + dv 0 du) + f'fvdv 0 dv
 * = f..gdu 0 du + fuvg(du (0 dv + dv (0 du) + f~vgdv 0 dv.

 po is, of course, the metric tensor induced on S3 by its imbedding in R4, and r
 is a generalization of the sccond fundamental tensor.

 We now choose and fix coordinates u, v in a neighborhood Uof p in S2 which

 are isothermic with respect to the metric p. We have then

 (1) f f = f, fV

 (2) ff O.

 (3 ) k1k.= (fjf-)-2[(f .g)(f"'g)_(f.,g)2], and
 (4) k1 + k2 = (fufu)-1Lfu.g + fV1g].

 One verifies (3) and (4) as follows. Choose orthonormal coordinates y', y, y3 y4

 for R4 such that, identifying R4 with its various tangent spaces, one has d/dy=

 g(p), &/ay4 f(p), and for some neighborhood V of p in S2 and for some s > 0,

 f(V) = R4n {x: ix-f(p) < ,
 y3(X) _2-'k(p)y'(x)2 + 2-1k.(p)y2(x)2 + 0( X - f(p) 3)

 and y4(x) =-2-y' (X)2 - 2y1y2(X)2 + 0( X - f(p) 31 )}

 Let r = y' of and s y2 of. Then r and s are coordinates on V. One computes

 frr(P)g(P) = k,(p), frs(p)g(P) 0 ?, f (pP)g(p) k2(P), fr(P)fr(P) fs(P)fs(P) = 1,
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 280 F. J. ALMGREN, JR.

 and fr(P)fs(p) 0 O. The change of coordinates formulas for tensors give

 f-ug = frrgr' + 2 frsgrusu + ftgs2
 fuxg = frrgrurv + frsg(rusv + surV) + fS8g8USV s

 fvvg - frrgr + 2frsgrvsv + fsgsv,

 and

 fu = frfr'u + 2frfsrusu + fjfs 2
 We have thus

 fuu(p)g(p) = k,(p)ru(p)2 + k2(p)sU(p)2

 fujp)g(p) = k,(p)ru(p)rj(p) + k2(P)Su(P)SV(P)

 fv(p)g(p) = k1(p)rv(p)2 + k2(p)sv(p)2

 fu(p)fjp) = r.r(p)2 + s.(p)2 .

 The equalities (3) and (4) now follow by direct substitution, utilizing the

 relations following from the geometrically obvious fact that the matrix

 D(r, s) (P) r_(p) rV(p)N
 (U, v) su(p) SV(P)

 is ru(p)sv(p) - su(p)rv(p) times an orthogonal matrix.

 Part 2. Let f, g, q be as in part 1, with coordinates u, v defined in a
 neighborhood U of p in S2 which are isothermic with respect to the metric p.
 Then in U we have

 ( 5) (fufu)gu =-(fuug)f -(fu0g)fv, and

 ( 6 ) (fufu)gV = -(fU1g)f.- (fvv)fV.
 We will verify (5). Since gf = gf = 0, guf = 0. Since I g I = 1, gug = 0. We

 can therefore write gu = afu + bfv for some a, b: U-> R. Since fug = fvg = 0,

 fuug -fu =-aff. - bfvfu = -afufu

 and

 fuvg -u afufv - bfvfv -bfvfv (by 2)

 Thus a =-(fufu)-'(fuug) and b =-(fvfv)-'(fuvg) =-(fufu)-'(fuvg), which
 implies (5), and (6) follows by similar arguments.

 Part 3. Let f, g, pq u, v, U, p be as in Part 2, and k1, k2 as in Part 1 with
 k1 + k2 - 0. Then the following relations are valid in U.

 (7) fuug + fvvg = 0 (follows from (4)),

 (8) fuuug + fuugu + fUVV9 + fVV~u 0 ?
 (follows by differentiating (7) with respect to u),

 (9) fuu fu - fuf 0 (follows by differentiating (1) with respect to u),

 (10) fuv f-fvv f (follows by differentiating (1) with respect to v),
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 REGULARITY THEOREMS FOR MINIMAL SURFACES 281

 (11) f .fu + f..f, 0 (follows by differentiating (2) with respect to u),
 (12) fJf. + f.,f, 0 (follows by differentiating (2) with respect to v),
 (13) f..fv + fvvfv 0 (subtract (10) from (11))
 (14) f .fu + fvvf. 0 (add (9) and (12))
 (15) (f.,g). + (ffvg)v = 0.

 We verify (15):

 (fuug). + (furg)v

 - fuuug + fuugu + fuvvg + furvg

 - fuuug - (fUfU (fUU)(fUUfU) - (fufu) (fUVg)(fUUfV)

 - f~g -fuugu - - _1f~)f~U - fuuug- u~-vvgu (fu fu) fv)uf)

 - (fUfU)-lVVg)(fUVfV) (by (5), (8), (6))

 -fuugu- fvvgu (by (7) and (9), and (11))

 - +(fUfU) [(fUU)(fUUfU) + (fUV9)(fUUfV)

 + (fuu9)(fVVfU) + (fUV9)(ffV)] (by (5))

 -o (by (13) and (14))
 (16) (fuug)v -(fuvg)u = .

 We verify (16):

 (fuug)v - (fu,9)u

 = fuuVg + fuugv -fuug - fugu

 = (fUfU --(fUVg)(fUUfU) -(fvg)(fUUfV) + (fUUg)(fUVfU)

 + (fU0g)(fUVfV)1 (by (5) and (6))
 - O (by (7) and (11), and (9))

 Part 4. Let f, g, p, u, v, U, p, k1, k2 be as in Part 3. We define complex

 parameters w, w- on U by setting

 w = u + iv, w = u-i .

 We define the complex valued function iD on U by setting

 = fuug- iffug
 which gives

 (17) 21 4P = (fufu) I k1 -k21.
 We verify (17):

 k- 1- k = k 2-2klk2 + k2
 - kl2 + 2kik2 + k 2 - 4klk
 = (k, + k2) - 4(klk2)
 -4( fUfU) [(fUUg)(f -(fuvg)2]

 (by (3) and our hypothesis that k1 + k. 0)

 =4(fUfU)-2[(fUUg)2 + (fuvg)2] (by (7))
 - 4(f f)-21 K 2.
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 282 F. J. ALMGREN, JR.

 Note that (17) implies that P(q) - 0 if and only if k,(q) = k2(q) for q E U. We
 assert that d) is a complex analytic function. To see this, one observes

 b = 2-1((f..g). + (f.vq)U) + i2 1((f..g) -(f- .)
 = 0 (by (15) and (16))

 so that, in particular, the Cauchy-Riemann equations are satisfied. We assert

 also

 (18) d) =-2fwgwg

 We verify (18). Since fug = fg 0,

 (19) fuug + fugu 0,

 (20) fuvg + fug 0,
 (21) fuv + fag 0, and

 (22) f,,g + fog. 0.
 Thus

 fwgw = [2 1(f - ifj)][2 1(g - ig,)]
 - 4-1[-2f..g + 2if.,g] (by (7), (19), (20), (21), (22))
 - 2-4qp.

 We assert that (in the terminology which is usual in the theory of Riemann

 surfaces) b(dw)2 is a complex quadratic differential (where 4P is a function of w

 and iv). We see this as follows. Suppose x, y are coordinate functions in a neigh-

 borhood of p in S2. Then these new parameters are isothermic with respect to

 the metric p if and only if z = x + iy is an analytic function of w = u + iv
 with non-vanishing derivative; i.e., z = z(w), z' # 0, and, in particular, the

 correspondence between the w-plane and the z-plane is conformal. If T(z, z-) is

 the function analogous to 4D(w, iv-) for the parameters z and z-, then T -2f~gz
 by (18). But one checks

 f-. = f2(dz/dw) , - = g,(dz/dw),

 which gives P = P(dz/dw)2, which is the change of coordinates formula one

 must verify to show P(dw)2 is a complex quadratic differential. By [H VI (2.6),.

 p. 85], 1 is identically zero since its domain S2 is of genus zero. By (17), k, =
 k. = 0. Using (18), (19), (20), (21), (22), and our observation in the verification

 of (5), we have

 gu- - gug gufu gufv 0,

 gjvf - gg gvfu gvfv 0,

 which implies that g is constant. Since fg 0,

 f(S2) = S3 n {x: xg(p) - 0} S9.
 Since f is an immersion, f must cover S3 n {x: xg(p) 0}. Since S3 n {x: xg(p) -
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 REGULARITY THEOREMS FOR MINIMAL SURFACES 283

 O} S2 is simply connected, f must be one to one.

 LEMMA 2. Let T be a compact orientable real analytic two dimensional

 manifold which is not topologicallyS'2 and letf: T -S 3 cR4be a real analytic

 imbedding of T into S3 as a minimal surface in S3. Then the cone Of(T)

 over f(T) with vertex at the origin 0 in S4 is not stable with respect to S3.

 PROOF. Let S = f(T) c 53 c R4 where f and T are as in the hypotheses.

 Let g: S3 R4 be chosen of class 4 so that xg(x) = 0 for each x e S3, and g(y)

 is perpendicular to S with I g(y) I = 1 for each y e S. For each x e S, let k(x)
 denote the absolute value of the principal curvatures of S at x with respect to

 g(x), which principal curvatures are equal in absolute value since S is minimal

 with respect to S3. For each x e S, let K(x) denote the gaussian curvature of

 S at x. We assert that, for each x e S5

 ( 1 ) K(x) = 1-k(x)' .

 We see this as follows. Let p e S and choose orthonormal coordinates y1, y2, y3

 Y' for R4 so that, identifying R4 with its various tangent spaces, one has a/ay3
 g(p), D/ay4 =p, and for some neighborhood U of p in R',

 s nU un {x: y:4(x) =2-k(p)y1(x)2 -2-2k(p)y2(X)2 + -(l x - 1p3)
 and y4(x) = 2--1yl(X)2 - 2-1y2(X)2 + 0(l x-p 1-)p

 Then r y ofos y2of are coordinates for T in V= f-'(U). The metric

 tensor p on T induced by f is

 cp = frfdr (& dr + frf8(dr ;g ds + ds 0 dr) + fffds 0 ds .

 We compute

 f, = (a/Day) +- (k(p)r + 0(r2 + s2))(D/Dyl) - (r + 0(r2 + s2))(a/ay4)

 f = (a/Day2) - (k(p)s + 0(r2 + S2))(a3/ay) _ (S + O(r2 + s2))(a/ay4)

 which gives

 P = (1 + k(p)2 + r2-+ rO(r2 ? s2))dr (0 dr

 + (-k(p)2rs + rs + (r + s)O(r2 + s2))(dr ( ds + ds 0 dr)

 + (1 + k(p)2s2 + S2 + sO(r2 + s2))ds 0 ds .

 In the notation usual for two dimensional manifolds, we set E = ffT, F

 frf,9 G = fjf and compute

 H (EG - F2)112

 [1 + (r2 + S2)(1 + k(p)2) + 4r2s2k(p) + (r + s)0(r2 + S2)]1/2

 K = H-(2HE)-'(FE. - EG)]7 +-- H4[(2HE)-(2EF - FE, - EES)]s

 from which one computes
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 284 F. J. ALMGREN, JR.

 K(f-'(p)) = K(p) = - + FS = 1 - h(p)2.

 Since T is an orientable two dimensional manifold which is not S2, the Euler

 characteristic of T is non-positive. The Gauss-Bonnet formula [AL] implies

 (2) s[1 - k(x)']dH x < O .

 We choose orthonormal coordinates x1' x2, x3, x4, for R4 by setting x= y'

 for i 1, 2, 3, and x4 = y4 + 1. Then, in particular, S3 = R4 n {z: E. Xi(Z)2 1}.
 We set g' = xi o g for i = 1, 2, 3, 4. Since g is perpendicular to S and of unit

 length along S, we have in V

 (3) 0 (gof))f(aD/r) = (glof) + (g3 of)[k(p)r + O(r2 + S2)]

 + (g4of)[-r + O(r2 + S2)]

 (4) 0 (gof)f#(a/3s) = (g2of) + (g30f)[-k(p)r V O(r2 + S2)]
 + (g4of)[-r + O(r2 + 82)]

 and

 (5) 1 = (giof)2

 Thus

 (6) [a(g of)/1r](f-1(p)) - (Dg1/Dly)(p) =-k(p)
 (follows by differentiating (3) with respect to r),

 (7) [a(gl of)/Ds](f-1(p)) = (Dgl/ay2)(p) = 0
 (follows by differentiating (3) with respect to s),

 (8) [D(g2of)/&s](f1-(p)) = (Dg2/ay2)(p) = k(p)
 (follows by differentiating (4) with respect to s),

 (9) [a(g3 of)/&r](f1-(p)) = (ag/y')(p) = 0

 (follows by differentiating (5) with respect to r),

 and

 (10) [a(g3Of)/&s](f-1(p)) = (ag3/ay2)(p) = 0

 (follows by differentiating (5) with respect to s)

 For each sufficiently small s > 0, choose p,: R + R+ of class such that

 Tp(z) 1 _ z2 for 2Z _ z < 1 -e

 TJz) = O for O _ z < s and 1 z <o
 Lip (p, {z: s < z < 2}) ? 261

 and

 Lip(p {vz: 1 -s < z 1}) < 3 .
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 We define

 G,: R4 R4

 G,(x) = q,(1 x )g(l x j-'x) for x e R4 - {O}

 G,(O) = 0

 and set

 F.: R x Ri4 R 4

 F,(t, x) - x + tG,(x) for x eR4.

 Let x e R4 with 0 < t x t < 1 and t x j-1x e S. We compute the increment of
 second variation with respect to F, to be

 [(DG1/Dx1)(x)]2 + [(DG3/Dx2)(X)]2 + [(DG3/DX4)(X)]2

 + 2[(&G'/Dx1)(x) * (DGl/Dx2)(x) + (&GU1ax1)(x) . (aG X4)(X)

 + (DG /Dx2)(x) (aG /Dx4)X(x)]

 + 2[(aG/lDx2)(x). (aG1/ax')(x) + (aG'/DX4)(X). (aG 4/Xl)(X)

 - (aG 2laX4)(X) -(aG 41Xa2)(X)]

 - [(DG3/DX4)(X)]2 + 2[(DG'/Dx1)(x) * (aG 2/DX2)(X)]

 (by (7), (9), (10) and the fact that OS is a cone)

 - (dp./dz)2(l 1) - 2[qe(l x x- I x I 1-X)]2
 (by (6), (8), and the fact that OS is a cone)

 The second variation of the cone OS with respect to the deformation F, is
 thus

 | ~~~((Pl(1 X 1)2-[ X] x ) -l I -lX)]2)dH3X
 xespt(OiS )-O} )d

 _ |O~z~I i z~xE _ 2[cE(Z)Z-lk(Z-lx)]2dH2xdz
 O<z-<1 z-1IES

 - | E~z21E2 4z2 - 2z-2(1 - 2z2 + z4)k(x)2dH2xdz O 0(e)

 =2E~z~1-E tf t [4z4 - 4z4k(x)2 + k(x)2(4z4 - 2 + 4z2 - 2Z4)]dH2xdz 26<z:51-6 xes

 + 0(s)

 =-| 4z4dzv (1 - k(X)2)dH2X
 2e6zz51-e xes

 + | (2z4 + 4z2 - 2)dz\; k(x)2ddHx + 0(() 2F=<z<1-6 xes

 which, in view of (2), is strictly negative for all sufficiently small s > 0. Thus
 OS = Of(T) is not stable with respect to S3.

 THEOREM 1. Let Q, Ucz Ri4 be open with Q c 14(R4), and suppose aQ is of
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 286 F. J. ALMGREN, JR.

 least mass in U, i.e., M(DQ + X) > M(DQ) whenever Xc 13(R4) with AX -0

 and spt(X) c U. Then spt (DQ) n U is a three dimensional real analytic

 submanifold of R4 satisfying the minimal surface equation.

 PROOF. Let p ? spt (DQ) n U, and let T ? 12(S3) be such that the cone OT

 over T with vertex at the oringin 0 in R4 is a tangent cone to aQ at p, i.e., for

 each s > 0, there exists 0 < r < s such that

 F(OT - f(p, r)-'(DQ) n {x: I x I < 1}) <e.

 Here f(p, r): R4 R4, f(p, r)(x) p + rx for each x e R4. Theexistenceof OT
 follows from [FF 3.9, 8.13, 9.16]. Note that we are not assuming the existence

 of a unique tangent cone to aQ at p. Clearly AT =0. Also since aQ is of least

 mass in U, OT is of least mass with respect to T. One verifies the existence

 of an open set Vc RI such that Vc 14(R4) and aV n {x: I x I < }- OT. The
 methods of [T] imply that spt (OT) n {x: I x I < 1} is a real analytic submanifold
 of R4except possibly at the origin 0. In particular then, spt (T) is a real analytic

 submanifold of S3 which is minimal on S3. Since OT is of least mass with respect

 to T. 0 T must be both stationary and stable with respect to spt (T). Lemmas 1

 and 2 imply that spt (T) is a great two sphere on S3. Thus spt (OT) is a unit

 three disk in R4. [DG1, p. 56] together with [T. p. 370] imply the theorem since

 p E spt (DQ) n U is arbitrary.

 COROLLARY 1. Let EQ R4 be measurable and U c R4 be open. Suppose

 E has a locally oriented frontier of least measure in U [DG1, p. 3]. Then

 E i U is a three dimensional real analytic submanifold of RI satisfying the

 minimal surface equation.

 PROOF. [DG1, p. 56] and [F 2.2] reduce the corollary to the theorem.

 COROLLARY 2. Let T ? 13(R4) be minimal [FF 9.1]. Then spt (T) -spt (DT)

 is a three dimensional real analytic submanifold of R' satisfying the minimal

 surface equation. If M1, M2, M3, * * * are the components of spt (T) - spt (DT),

 then each M, is oriented by T, and there exist positive integers a1, a2, a3

 such that T (R' - spt (aT)) - Ad aM,. If H3(spt (aT)) = 0, then T = aiM,*
 PROOF. One writes T = Ad T. in the manner of [FLi, 3.4]. The theorem

 applies to each Ti. Recall that if

 (x1, X;,g X3) - (x1, x9, X3, fi(X19 X2, X3))

 define minimal surfaces in R4 for real analytic functions f , i = 1, 2, in a

 neighborhood of the origin (0, 0, 0) E R3 if f1 > f2, and if f1(0, 0, 0) = f2(0, 0, 0),

 then the maximum principle for elliptic partial differential equations applied to

 f- f2 guarantees that A - f2 in a neighborhood of (0, 0, 0). Corollary 2 follows
 by elementary arguments.
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 COROLLARY 3. Let T be a flat 3-chain over the integers modulo two in R4

 [FL2] such that M(T) < ca, M(DT) < ca, and T is of least mass with respect
 to AT. Then spt (T) - spt (DT) is a real analytic submanifold of R satisfying

 the minimal surface equation. T n (R4 - spt (aT)) is the flat 3-chain over

 the integers modulo two corresponding to spt (T) - spt (DT). If H3(spt(DT))

 0, then T corresponds to spt (T) - spt (aT).

 PROOF. Let U be an open ball in RK whose closure does not intersect A T

 such that M(a( T n U)) < 00. Set T1 -T U. Then there exists an open set
 Q c U and a flat 3-chain S over the integers modulo two with spt (S) c a U and

 T, =aQ + S. The positive orientation of R orients Q and thus also orients T1.
 T1 so regarded is an oriented frontier of least measure in U in the sense of

 Corollary 1. Corollary 3 follows.

 COROLLARY 4. Let U c RK be an open bounded uniformly convex region

 in R4 and let P: a U-> R be continuous. Then among all continuous real valued

 functions defined on clos( U) which agree with c on a U, there exists a unique
 function f of least four dimensional area, i.e., the Lebesgue area of the

 function U > R5, x (x1, x2, X3, X4, f(x)), x E U, is least. f will be real analytic

 on U, and satisfy the minimal surface equation.

 PROOF. Miranda has shown the existence and uniqueness of f in [Ml]. The

 methods of Triscari [T] together with Corollary 2 show that f can have at most

 isolated singularities. De Giorgi and Stampacchia have shown that singularities

 of two dimensional measure zero can be eliminated [DS], which gives the interior

 regularity of f.

 COROLLARY 5. Let f: R 4 R be of class 3 and satisfy the minimal surface

 equation. Then f is linear.

 PROOF. The methods of [DG2] reduce the corollary to Corollary 2.

 THEOREM 2. Suppose A c R4 is compact, and h is a non-trivial cyclic

 subgroup of the Cech homology group H2(A) with coefficients in the group of

 integers modulo two. Let S Rc4 be a proper surface of minimum three

 dimensional area with boundary Dh [Ri, p. 4]. Then S-A is a three dimen-

 sional real analytic submanifold of R 4 satisfying the minimal surface

 equation.

 PROOF. Let S, A, h be as above. Since S-A is 3-rectifiable, I S-Al G IV3(R4)
 [R3] [Al, 5.3, 5.4]. Since S is of minimum area, (I S - A I, 0) is stationary with
 respect to A [Al, 6.5(1)].

 Let x E S - A and let Xe 1V2(S3) be such that the cone OX over X with

 vertex at the origin 0 in R is a tangent cone to S - A I at x, i.e., for cach
 E > 0 there exists 0 < r < s such that
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 F(OXf(x, r)-' S-A f lp: iPi < i}) <s.

 Here f(x, r) is as in the proof of Theorem 1. By [Al, 10.2], P(S3)(X, 0) = 0

 [Al, 6.4(10)].
 Let y E spt (X) c S3, and let YE IV1(R4) be such that O Y is a tangent cone

 to X at y. Since spt (X) c S3, spt (Y) is contained in a unit two dimensional

 sphere S2 =S3 n H lying in that three dimensional plane LI through the origin

 0 in R4, which plane is parallel with the three dimensional plane in R4 which

 is tangent to S3 at y. By [Al, 10.2], P(S2)(Y, 0) = 0.

 Let z E spt ( Y) c S2, and let Z E JV0(R4) be such that OZ is a tangent cone

 to Yat z. Since spt (Y) c S2, spt (Z) is contained in a unit circle S' S2 n X

 lying in that two dimensional plane E through the origin 0 in R4, which plane

 is parallel with the two dimensional plane in R4 which is tangent to S2 at z.

 Z consits of a finite number of points on S', each point having a positive

 integer multiplicity. Also for each s > 0, there exist r, > 0 and p. E R4 with

 dist (ps, A) > 2n r, such that

 '(S - A) n D c {p: dist (p, C) < s}

 and

 F(g-1 I S - Ai|n D, OX x [O. 1] x [O. 1]) < s .

 Here

 C= spt (OZ) x [0, 1] x [0, 1]ciX x R x R _ i4,
 D=, n {q: q <1} x [0, x x [0,1]c x R x R ~ if

 and g9 f(ps, rs) o 0 where X x R x R is identified with R4, 0': R4 R4 is
 orthogonal, and f(ps, rs) is as above.

 For each a > 0, we can thus find arbitrarily small values of s > 0 and a

 Lipschitz mapping em: R4 R', leaving A fixed such that e,(S) n g,(D) = g,(C)
 and

 W(ee(1 $-A l)) - H3(S - A) < (3H3(g'(C))
 We set Se = e(S).

 We assert that each point in spt (Z) must have multiplicity one. Suppose

 not. Let a = (W(Z) + 1)-1. Clearly then for sufficiently small s > 0 chosen with
 respect to a as above, H3(S, - A) < H3(S - A), contradicting the minimality

 of S.

 We assert that Z consists of two antipodal points. We see this as follows.

 Let a be a generator of h c1 H2(A) and

 AC = spt (Z) x [0, 1] x [0, 1] U spt (OZ) x {0, 1} x [0, 1]

 U spt (OZ) x [0, 1] x {Og 1} .
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 Since, for arbitrarily small s > 0, Se, being obtained by deforming S, is a surface

 with boundary Dh, there exists a cycle c modulo two on gj(C) which is homo-
 logous to a representative of a in (Se - g,(D)) U gj(C). Se is a surface with
 boundary Dh if and only if c is homologous to zero in S, f g(D) = g(C). Since

 c is a chain modulo two it can be identified with a subset of gj(C). Since c is
 a cycle modulo two, it is determined by specifying which of the points of

 g,(spt (Z)) are contained in the subset of gj(C) corresponding to c, and further-
 more the number of these points must be even. An argument similar to that of

 our previous assertion shows that, since S is minimal, those points of g,(spt (Z))

 corresponding to c must include all of g,(spt (Z)). Suppose now that there exist
 points p, q E spt (Z) c S' which are not antipodal. Let L denote the straight

 line segment connecting p to q, and let M denote the two dimensional region of

 X interior to the triangle having vertices 0, p, q. For each p > 0 let h": X X,
 hP(s) = ps for s E X and define

 CP = [spt (OZ) n {s: p < S < 1} u hP(spt (O I spt (Z)-{pq q} )) U L]

 x [0, 11 x [0, 1]

 U M x {0, 1} x [0, 1]

 U M x [0, 1] x {0, 11
 c Q x R x R I R4 .

 For all sufficiently small p > 0, H3(CP) < H3(C), and c is homologous to zero in

 g,(CP). Fix such a value of p, and set J = (2H3(C))-'(H3(C) - H3(Cp))> 0. Then
 for all sufficiently small s > 0 chosen with respect to 3 as above, SP -

 gj(CP) U (S, - g2(D)) is a surface with boundary Dh and

 H3(SP- A) - H3(S- A)

 - H3([SP n gn(D)] - A) - H3([Se n gF(D)] - A)
 + H3([S. n g,(D)] - A) - H3([S n g2(D)] - A)

 +F- H3(SP - [ge(D) U A]) - H13(S -[ge(D) U A])
 < [H3(C) 1H3(g(C))][H3(CP) - H3(C)j + 6H (g3(C))
 < 0.

 This contradicts the minimality of S and proves the second assertion.

 We conclude that OZ consists of a straight line segment with multiplicity

 one. Hence 0'(Wy, z) = o'(WOZ, 0) = 1. Since our choice of s G spt (Y) was

 arbitrary, we conclude that Y has density one at each point, and has only

 intervals as tangent cones. The fact that Y is stationary on S2 implies that

 spt (Y) is a great circle on S2, and that 0 Y is a unit two dimensional disk with
 multiplicity one. Hence 02(WX, y) -_ 02(WO Y, 0) = 1. Since our choice of

 y e spt (X) was arbitrary, we conclude that Y has density one at each point and
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 has only disks as tangent cones. It follows then that for each p E spt (OX) with

 O < I p I < 1, 0tWOX, p) = 1.
 One uses the methods of [R1, Th., p. 38; Th., p. 64] to conclude that, if

 p E spt (OX) with 0 < I p I < 1, then in some neighborhood Uof p, spt (OX) n u
 is topologically a three dimensional disk. Since S is minimal, one concludes that

 spt(OX) n U is of least area. If spt (OX) n U could be replaced by a three

 dimensional disk of smaller area having the same boundary, then arguments

 similar to those above involving S n g(D) and gS(C) contradict the minimality

 of S. One can thus use [R2] and [R3] to conclude that spt (OX) n U is a three

 dimensional real analytic manifold. Since our choice of p e spt (OX) with

 o < I p I < 1 was arbitrary, spt (OX) n {q: 0 < I q I < 1} is a real analytic
 manifold. Therefore spt (X) is a real analytic two dimensional submanifold of

 S3. Lemmas 1 and 2 and the minimality of OX imply that spt (OX) is a great

 two dimensional sphere on S3. This implies 03(WOX, 0) = 1 and thus S has three

 dimensional density equal to one at x. Since our choice of x was arbitrary in

 S- A, S has three dimensional density one at each interior point. [R3] implies
 the regularity of S.

 THEOREM 3. Let n > 2 be an integer.

 (1) Let T be a flat 2-chain over the integers modulo two in Rn such that

 M(T) < DC, M(&T) < DO and T is minimal with respect to AT. Then there

 exists a real analytic two dimensional manifold M, and a real analytic

 immersion f: M > Rn satisfying the minimal surface equation such that

 f(M) = spt (T) - spt (aT). Furthermore f is an imbedding except at, at most,

 isolated points on f(M), and T n [Rn - spt (aT)] is the flat 2-chain over the

 integers modulo two corresponding to f(M). If H2(spt (&T)) = 0, then T is the

 flat 2-chain over the integers modulo two corresponding to f(M).

 (2) Suppose A c Rn is compact, and h is a non-trivial cyclic subgroup

 of the Cech homology group H1(A) with coefficients in the group of integers

 modulo two. Let SciRn be a proper surface of minimum area with

 boundarymh [Ri, p. 4]. Then there exists a real analytic two dimensional

 manifold M and a real analytic immersion f: Ma) Rn such that f(M) =

 S - A. Furthermore f is an imbedding except at, at most, isolated points

 on f(M).
 PROOF. Let T be as above, and let p E spt (T) - spt (aT). Arguments simi-

 lar to those of the proof of Theorem 2 show that each tangent cone K to T at p

 is the sum of two dimensional disks K1, K2, * * Kmn each with multiplicity one.

 We assert the existence of an angle 0 > 0, depending only on n, such that

 the angle between Ki and K3 is not less than 0 whenever i # j. We see this as
 follows. Let K be a unit two dimensional disk in R n with center at the origin
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 and for each 0 < a < r/2, let K, denote a unit two dimensional disk in Rn with

 center at the origin which makes angle a with K. Now regard both Ka and K

 as flat 2-chains over the integers modulo two. Clearly lima o Ka + K 0 O. This

 implies that for all sufficiently small values of a > 0, K& + K is not of least
 mass with respect to &(Ka + K). The assertion follows.

 We assert that, for each sufficiently small s > 0, we can write T

 {x: Ix -pI <s} = T1+ T2 + + Tmwhere spt(aTj)e{x: Ix-pI e} for

 each i, and if L1, L2, * *, Lm are tangent cones to T1, T2, *.., T3 respectively
 at p, then each Li consists of a single unit disk. We see this as follows. Choose

 e > 0 so small that f(p, r)-'(spt (T)) n {x: 4-' < x < 1} c {x: dist (x, Q,) < ?/5}
 for each 0 < r s e. Here Q, is chosen corresponding to r to be a union of m
 unit disks each centered at the origin with no two disks making an angle less

 than 0 with each other, and f(p, r) is as in the proof of Theorem 1. Clearly then

 spt (T) n {x: 4-'e < x - p ? <s} can be separated into m pairwise disjoint sets,

 and our separation of T n {x: i x - p I e} has been completed down to radius
 s/4. Also spt (T) n {x: 8-'e I x- p ? < 2-'e} can be separated into pairwise

 disjoint sets. It is immediate then that spt (T) n {x: 8-'e < I x-p I ? e} consists
 of m pairwise disjoint sets. This completes our separation of T n {x: I -p ? e}
 down to radius 8- s. One continues in this manner to separate

 spt (T) n {x: o < ix-pi <a}

 into m pairwise disjoint sets M1, M2, ... , Mm. One sets Tj - T n Mi for each
 i. The methods of Reifenberg [R1] [R2] [R3] generalize to show that, for each

 sufficiently small r > 0, spt (Ti) n {x: I x - pI < r} is a real analytic manifold.
 Part 1 of the theorem is then immediate.

 A similar method proves Part 2 of the theorem. Here one uses varifold

 tangent cones as in the proof of Theorem 2.

 Remark. In Theorem 2 and 3(2) we require as an hypothesis that the

 homology subgroup h be cyclic. This is a necessary hypothesis for regularity.

 The following example of a one dimensional minimal surface in R2 illustrates

 the need for this hypothesis. Let A c R2 consist of three points p, q, r equally

 spaced around the unit circle S' in R2 and let

 h = {10 {p, q}, {q, r}, {p, r}} c1 Ho(A)
 Then the proper surface S with boundary D h of least length is unique, and

 consists of the cone OA over A with vertex at the origin 0 in R2. The surface

 S even though of codimension one, has an interior singularity, viz., the origin

 o where three line segments meet. Similar examples of surfaces of least area

 having singularities of codimension one can be constructed in higher dimensions.
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