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Existence of Embedded Solutions of Plateau’s Problem (*)

FREDERICK J. ALMGREN Jr. (**) - LEON SIMON (***) (~)

Consider a uniformly convex open set A c R3 such that aA is C2, and
let h be a C3 Jordan curve contained in aA. The classical approach to
Plateau’s problem, as formulated by Douglas [D], Rado [R], and Courant [C],
together with the work of Osserman [0], Alt [Al, 2] and Gulliver [G] con-
cerning branch points (see also [GOR]), demonstrates that there is a minimal
immersion X from the disc Dl = fx c- R2: IX I  11 into R3 such that XIAD,,
is a homeomorphism onto F. Furthermore X is area minimizing relative
to all immersions Y from Di into R3 such that YlaD., is a homeomorphism
onto t’.

Osserman conjectured that (for convex A) the immersion .X might be
an embedding; that is, the solution surface might have no self intersections.
This was proved subject to the (rather stringent) condition that t’ has total
curvature 4yc by Gulliver and Spruck [GS-1] (1). Also, there is recent

work of Tomi and Tromba [TT] which, based on an intriguing analysis of
the pathwise connectivity of spaces of suitable minimal surfaces, asserts
that .f bounds a (perhaps unstable) embedded minimal surface.

We here wish to demonstrate by a geometric measure theory argument
(quite different than these other approaches) that one can always find an
embedded minimal surface X c A which is diffeomorphic to D1, satisfies

8M = F, and minimizes area relative to all diffeomorphs N of Di having
aN = r. (See Theorem 6 in § 8 below.)

(*) This research was partly supported by NSF grants at Princeton and Stan-
ford universities. The research of the second author was also partly supported by
a Sloan Foundation grant.

(**) Princeton University.
(***) Stanford University, University of Adelaide.

I’) Results announced in part in Notices A.M.S. (1977) A-13, Abstract No.
77T - B15.

(1) See also the correction [GS2] relating to Lemma 4.2 of [GS1].
Pervenuto alla Redazione il 13 Giugno 1978.
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We here also discuss (in § 9) extensions of the result to the case when h
consists of two or more contours, and (in § 10) we consider the case when
the surfaces under consideration are allowed to have higher genus; Appendix B
illustrates the fact that surfaces of higher genus will often have smaller area
than the area minimizing discs obtained in § 8.

Concerning uniqueness, even in the single contour case, it is clear, by
a slight modification of an argument of Nitsche [N, Section 2], that the
embedded discs of § 8 are not necessarily unique. However, by using the
methods of Morgan [M], it can be shown in a rather straightforward manner
that there is a non-trivial (geometrically natural) measure g defined on 02,rx
curves .T’ contained in the boundaries of uniformly convex regions in R3,
such that the set of curves which do not bound a unique area minimizing
disc has p-measure zero.

We have also very recently received an announcement by Meeks and
Yau [MY] dealing with similiar questions on three dimensional manifolds
from a somewhat different perspective and by different methods (viz.
showing «Douglas-Morrey » immersed solutions to Plateau’s problem are

in fact embedded). The techniques of our paper extend in a straightforward
manner to yield embedded minimal surfaces in three dimensional manifolds
(provided boundary regularity is guaranteed by convexity hypotheses, etc.).
In this regard, see also [P].

1. - Terminology.

B(xo, e), U(xo, e) will denote respectively the closed and open balls,
with radius e and centre xo , in R3.

jek , k&#x3E;O, denotes k-dimensional Hausdorff measure in R3.

Dl = fx c- R2: H1}.
M, denotes the collection of all surfaces-with-boundary in R3 which

are C2 diffeomorphs of D1.
If y is a Jordan curve in R2, int y denotes the bounded component of

R2 _ More generally, given -31 E A and a Jordan curve d c M, we let
intM 4 denote the (unique) component .M’ of M - 4 such that M’ n aM = 0.

Jt will denote the collection of surfaces of the form intm li , where ME M
and d is a piecewise C2 Jordan curve in lVl.

A denotes a uniformly convex open subset of R3 with C2 boundary aA.
7 denotes a C3 Jordan curve contained in aA.

The remaining notation concerning varifolds and currents is the standard
notation of [AW1, 2] and [FH].

Now let {ifj be a sequence in M with aNk = h, k = 1, 2, ..., and
lim Je2(Mk) = inf fJC2(M): M E A, alVl = Fl.k-+oo
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We can assume, by taking a subsequence if necessary, , that there is a

varifold TT E V2(R3) such that TT = lim v(Mk). TT is of course stationaryk--

in R3 - 1-’ (in the sense of [AWI, 4.2]) because

whenever U is a bounded open subset of R3 and h is a diffeomorphism of U
leaving a neighbourhood of a u U r fixed. Also, by the convex hull property
for stationary varifolds (see the appendix), we have

Our ultimate aim is to prove that there is an M E M such that aM = .T’

and V = v(M). (Of course it will then follow that JC2(M) = inf {Je2(N):
N E M and aN = Tj because of the manner in which TT was constructed.)
An outline of the remainder of the paper is as follows:

In §§ 2-4 we prove some preliminary results (of a rather elementary
nature). In § § 5-6 these are used to prove interior regularity of V : it is

proved that for each x,, E spt 11 V 11 - T there is a positive integer nxo, , a posi-
tive ex(,, and an analytic hypersurface hlxo such that

In § 7 the corresponding boundary regularity results are given: we prove
that for each ro E .r there is a e = Q(x,,) &#x3E; 0 and a C2 surface-with-bound-

ary Mxo such that oMxonU(xo,e)==rnU(xo,e) and VL((R3I’.1F)n
n U(xo’ e)) x G (3, 2) = v(-Mxo n U(xo, I e)) -

In § 8 it is shown that these regularity results imply the existence of
the required minimizing M c- A. In § 9 an analogous existence result is

proved for the case when T is a union of k &#x3E; 2 smooth Jordan curves, and

in § 10 we consider the possibility of finding area minimizing surfaces of
higher genus.

2. - Some preliminary lemmas.

LEMMA 1. Suppose F1, .F2 acre oriented compact connected surfaces-with-
boundary, and suppose aF1,, = a.F2 . Suppose further that for each j = 1, 2,
there is a di f f eomorphism lzj of Fj onto a subset Ej of S2.

Then there is a diffeomorphism X of F1 onto F2 such that y coincides with
the identity map on oFl.
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PROOF. By replacing flj by Oouj if necessary, where 8 is any orientation
reversing diffeomorphism of ,S2, we can assume that flj is an orientation

preserving map from Fj onto Ej, j = 1, 2. (We give El, .E2 the orientations
induced by the inclusions Ej c S2, j == 1, 2.) Since IU20/ti ’JaE, is then an

orientation preserving diffeomorphism of aE1 onto aE2, it is a standard

fact that we can find an orientation preserving diffeomorphism p of El
onto E2 such that

We then define

Before stating the next lemma, we need the following additional ter-

minology.
We let Ti, ..., rn be pairwise disjoint 02 Jordan curves in R3 and

D c R2 we let be the union of a pairwise disjoint collection D(1), ..., D(R)
of diffeomorphs of Dl. ’Y == ’Y(Fl, ..., rn) denotes the (possibly empty) col-

lection of Lipschitz maps Y: D --&#x3E;- R3 satisfying the following conditions

n

(2.1) U Y-’(Ij) _ ,u1 U ... U ,u"t , where fll, ..., flm are pairwise disjoint C2
;=1

Jordan curves contained in D - aD ;
m 

(2.2) for any component U of D - U Iti, YIU is a C2 embedding of U
into R3 ; i=1

m

(2.3) for any pair of components U, W of D - Uui, either Y( U) r1
n Y(W) == 0, or else Y( U) = Y(W). i= 1

n 

Notice that the above conditions imply that Y(D) u r,) u Y(8D))j=1

is a 2-dimensional submanifold of R3, each component of which has closure
_ 

m

of the form Y( U), where U is a component of D - Uui
Subsequently, for Y c- 9J, we use the notation ;=1

If B is a Borel subset of D, then we let A(YIB) denote the area asso-
ciated with Y IB; that is

(In case Y is 1-1 on B, A(YIB) is just Je2(Y(B)).)
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LEMMA 2. Suppose X E ’Y. Then there is X E’Y such that

and such that for each q &#x3E; 0 there is aC2 embedding X of D into R3 with

Before giving a proof of this lemma, we note the following corollary.

COROLLARY 1. Suppose Mi , ... , lkiR G fl with 8Mi , ... , BMR pairwise
disjoint and

where B is a diffeomorph of the closed unit ball in R3.
Then for each q &#x3E; 0 there exist pairwise disjoint M I, ..., 2, E M with

for each

PROOF OF COROLLARY 1. The proof is by induction on R. The result is
trivial if .R = 1. Hence take R&#x3E;2 and assume that there exist pairwise
disjoint M1, ..., MR-1 such that (2.8) holds with fli i in place of Mi,,
i == 1, - - ., R - 1. Next, let MR E JL be such that a.MR = MR, MR - a.MR c
c B - aB, j2(MR)  Je2(MR) + n, and such that MR intersects each of

.Ml, ... , MR-l transversally. (Such MR can of course be obtained by making
R-1 n

a slight perturbation of MR.) We can then write MR n ( U Mi) = U ri, .
where r1, ..., Fn are pairwise disjoint C2 Jordan curves. i=l i=l

We now let X be a C2 immersion of D into R3 such that the restriction
R

of X to each D(i) is a C2 diffeomorphism of D(’) onto m- (i). (Here D = U D(j)
is as defined above.) ; = 1

It is now easy to see that X E 1J and hence by the lemma there is an
embedding t of D onto R3 satisfying X(3D(i») = aMi, X(D ~ aD) c B - aB
and R2(8(Di)) A + n, i = 1, ..., -B. Then, defining fli = ±(D(’)),
i = 1, ... , .R, we see that (2.8) holds with 2q in place of q. This completes
the proof.
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PROOF OF LEMMA 2. For Ye’y we define y(k): D -* R3 as follows:

(i) If Y-’(Fk) = 0, define y(k) = Y;
m

(ii) if Y-’(Tk) # ø, then (since Y E ’Y) we have Y-’(F,,) = U /-li for
i=1

some pairwise disjoint C2 Jordan curves /-ll, ..., pm in D - aD. We let

l E 11, ..., m} be such that

(notice that then (int pi) (-) I-tj = 0 for j =A 1), and let U1,..., Up be the
w

components of U int p; . For j - 1, ..., p let OJ be any C2 diffeomorphism
- 

i=l

of Uj onto int Ilz such that

We then define y(k) by

Of course yk), so defined, depends on the choice of 017 ..., () 1J (and on
the choice of 1 in case there is more than one integer 1 satisfying (2.9)).

For each j = 1, ..., n define

m

We note that ’Y(i) c U, and Y E ’Y(i) if and only if Y e U and Y-l(rj) == U fli,
4=1

where intal, ..., int flm are pairwise disjoint and such that there are C2 dif-
feomorphisms 0, of intuj onto intfll with Ylillt#i == (Ylint!ll)o(jj, j ==
= 1, ...,m.

The following properties, except possibly the first, are straightforward
consequences of the definition of y(k):
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(iv) A (U(k) I U I) A(YIU’) whenever U’ is a component of U( Y) .

To check (i), we first let ,u1, ..., fir be pairwise disjoint Jordan curves in
r r m

D - aD such that (y(k)) -1 (_p k) = U fii (2). (Thus U int fii = U int g; , where
i=l i=l i=l

Jul .... pm are as in the definition of y(k).) Since Y E 1j(i), one can now check
r

that if a component y of (y(k))-l(rj) is contained in U int fi, , then any other
t=i

r

component y’ is either likewise contained in lJ int ,u i , or else int yn
r i=i

U intai) - 0. (Otherwise it is quite a straightforward matter to de-
i=l

duce that there is an i E {1, ..., rl with ui c int ul,, thus contradicting (2.9).)
Using the above fact, together with the definition of y(k) . it then quite
easily follows that y(k)c"J(I) as required.

We are now ready to define X ; we define X = Xn, where X’n is the

final element in the sequence Xo, X1 , ..., X,, defined inductively as follows:

(ac) Xo = X.

(b) Assume k c {1, ..., nj and suppose Xo,..., Xk-1 E 1J have already
been defined. Then define Xk = (Xk-l)(k).

By properties (ii)-(iv) above, it is clear that X has the required proper-
ties (2.6). It remains to show that there exists a suitable embedding t for
each 77 &#x3E; 0.

First, note that by property (i) above we have the implication

(Here we adopt the convention that Mo = Tj in case k == 1.) Hence from

definition of X we have X E ’Yn.
The proof will now be completed by showing that for each Y G Mn and

each q &#x3E; 0, there is a C2 embedding Y of D1 into R3 with

and

for each component

From now on we thus take Y to be an arbitrary fixed element of 1)".

(2) In case (Y(k))-I(F,) = 0, then Y(k) = Y and hence Y(k) E 1)(;) trivially in
this case.
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We let

n

We want to show that .K is closed. Let y be any component of U Y-1(rj),
n j = i

and let U y Uy be the (unique) components of D - U Y-1(1’j) such that
_ 1=1

y c UY n U-, int y n U- =A 0, (D - int y) n U +:A 0. By (2.3) we have
either Y(U,+) n Y(U-) = 0 or Y( U/ ) = Y(U-). We claim that since YE’Yn
the latter possibility cannot occur. Indeed suppose Y(U,+) = Y( UY ), and
let ,u1 denote the outermost component of a UY . Note that then PI n 3D == 0

n 

by (2.1), hence ,u1 is a component of U Y-I(Fj). Since Y( UY ) = Y( UY ),
1=1

it then follows that there is a P2 c a UY with Y(,u2) = Y(,u1) Fj for some
j E {I, ..., nl. On the other hand, because of our selection of ,u1, we have

int ,u2 c int gi . However, since Y(P2) = Y(Pl) = Fj, this contradicts the fact
that Y E’YnC’Y(i) (in particular, see the characterization of’Y(i) following (2.10)).
Thus we deduce that Y(U+) n Y( UY ) == 0 for any component y of
n 

U Y-I(Fj). Because of this, it is now quite a straightforward matter to
i=l

show that K is closed. (One now needs only to use the fact that Y E ’Y;
no further use need be made of the fact that Y E 1Jn . )

We let .Kl, ..., .KR denote the (compact) components of K, so that

and we define E, = Y-’(K,), r = 1, ..., R.
]If k = 1, we simply set f = Y and we are finished. Hence we assume

k &#x3E; 1. Using (2.1)-(2.3) we can see that card (Y-l(p)) is constant on each

component of and

Also, if F, n K,:A 0, then, by (2.11) and the fact that Y E 1In c 11(;) c 11,
we have

for some pairwise disjoint smooth Jordan curves y, ...,,y’ with
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By combining (2.11 ), (2.12), (2.13) with the fact that Kr is closed, we
deduce that

where Ei, ..., .Ek are pairwise disjoint diffeomorphs of Dl with
and

By (2.11) and (2.15) it is clear that YIE,’ is 1-1 f or i = 1, ..., k. Notice
k

also that Y(B - Ei ) n Y(E’) = 0 whenever B nn U Er = 0, because other-
Z=l,Z=i=i

wise by (2.15) we would have a contradiction to the definition of k. Using
this fact together with the definition of U, it then follows that we can find
pairwise disjoint subsets F1’, ... , .Fk of D - aD having the properties

Since Y(8E§) is one of the rj, we can also clearly arrange

Furthermore by (2.3) we can arrange to choose the F’ so that, for each
i, j = 1, ..., k, either

or

Now let Y be a Lipschitz map of D into R3 such that

(i) JYj is a C2 embedding into R3, i = 1, k;

(ii) I Y(I’i) = Y(F,) for each i, j such that (2.18)’ holds
(11) 

i(F§) m I(F§) ’ = 0 for each I, j such that (2,18) holds ;Y(F!) n r(Fp = 0 for each i, j such that (2.18) holds;
R k n R k R k

(iii) U U Fl,) n (. U TI) = 0, R( U U Fi’) n Y(D - U U FI) = 0 j
r=1 i=1 j=1 

’ 

r=1 i=1 r=1 i=1 
’

R k

(iv) Y(x) = Y(x) f or x in some neighbourhood of D - U U interior (F!).
1=1 i= 1

(v) sup Y I ,q;
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(vi)

Because of (2.16), (2.17), (2.18), (2.18)’, it is clear that such a Y can be
constructed by a perturbation and smoothing of Y inside the sets .F2

R k

(holding Y fixed in some neighbourhood of D - U U interior (F’))
r=1 i=1

We now claim Y E tin. One can readily check this on the basis of (2.16),
(2.17) and (i)-(iv) above. It of course follows from the construction of Y
that max {card ( Y-1 ( p ) ) : p E R31  k.

Then in view of (iv)-(vi) and the arbitraryness of q, the existence of the
desired embedding f now follows by induction on k.

3. - A replacement theorem.

The following theorem guarantees that if U is an open convex subset

of R3 and if M E M intersects a U in a sufficiently nice manner (to be made
precise below), then we can always replace if by -H E M in such a way that
3M = a.M , M~ {0153 E U : dist (x, a U)  01 c ifM fx E U : dist (x, a U)  6}
(0 any preassigned positive constant), Je2(M) Je2(M), and such that ff r1 U
is a disjoint union of elements of A. The replacement procedure also has
other nice properties. The precise result is given in the following theorem.
In this theorem we use the notation that

THEOREM 1 (Replacement Theorem). Suppose 0 &#x3E; 0 is given and

(i) U is a C2 convex open set in R3;

(ii) M c- A, aM c R- - U, and aM a U is contained in the union of the
unbounded components of R3 _ (U U (M _ aM));

(iii) M intersects a U transversally ; in case aM n 0 U =F 0, we will always
take this to mean that there is a C2 (open) surface N with X c N, with
(N - M) ’n a U =: 0 and with N intersecting a U transversally.

Then there is k G fl such that

( iv ) a lVl = alVl , M "-’ U c M "-’ u, fin Ue c .lVr r’1 Ue ;
(v) fl intersects a U transversally (in the same sense as in (iii)) ;
(vi) R2 (k) + k2 ( ( M - M) n Uo)Je2(M);

_ 

k

(vii) M n U is a disjoint union U Nj of elements Nj c- A (and consequently
lVl c U in case aMcaU). ’ -1
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I f in addition to the hypotheses (i)-(iii) we have

(viii) Je2(M) :Je2(P) + 0 for every P E M with aP = aM, then there are non-
. k

negative numbers 01, ..., Ok with! OJ : 0 and

(iX) Je2(Nj)  JC2(p) -+- OJ for every P E A with aP = aNi, j == 1, ..., k.

PROOF. In the proof we will need the f ollowing area minimizing property
of subsets .I’ of a U:

Suppose F c a U and suppose each component of F is a C2 surface-with-
boundary ; suppose that E c 3R3 - U is a C2 surface-with-boundary satisfying
aE = E r1 a U = aF and E W F = 00 for some open GcR3_U. Then

The proof of (3.1) consists of an application of the divergence theorem
on G. We note first that since U’ is convex, then the outward unit normal v

of a U extends, y by defining it to be constant on rays normal to a U, to a
Ci(R3 -- U) function v* with Iv* = 1 and div v* &#x3E; 0. Applying the diverg-
ence theorem on G we then deduce that

where q denotes the outward unit normal of G at points of E. Since v = v*

on F and 17 - v*  I on E, with equality if and only if 77 = v*, the required
result (3.1) then easily follows.

We now proceed with the proof of the theorem. Let E be any com-

ponent of X - U such that E r) aM = 0 (3). Since E is connected and

E - E is a union of smooth Jordan curves contained in a U, a straight-
forward modification of a standard topological result enables us to assert
that there is a unique bounded component UE of R3 - (U U E). Let F

be defined by

Then E, F are C2 surfaces-with-boundary (although of course F is not

necessarily connected) with aE = aF. Furthermore, given any compo-
nent .E’ of M U with E’ c UE, it is clear that 8M n E’= 0 (by condi-
tion (ii) of the theorem) and UE, c UE . From this last inclusion it follows

(3) Notice of course that (E - E) n aM= 0, by (iii).
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that we can select a component E of M - U such that 8M n ..E = 0 and

Henceforth it is assumed that E has been so selected, and F is defi-

ned by (3.2).
Now let X be a C2 diffeomorphism of Dl onto lVl, and consider the set

x-1(.E) ; this is a compact connected subset H of Dl bounded by a finite
collection y1, ... , yk of pairwise disjoint C2 Jordan curves. Suppose without
loss of generality that yi is the outermost of these curves. That is, suppose
Y2, ... , yk are all contained in int yi. Notice that, by the connectedness
of H, we can then write

yve now define F* c .F’ to be the component of I’ which contains the Jordan
curve X(y,), and we define I = u int yi, where the union is over those j
such that X(yj) c 8F - 8F*. Also, define E* = x(I). Then E u E* is dif-

feomorphic to the connected subset H u I of Diy and 8(E W E*) = 8F*.
Hence by Lemma 1 we can construct a diffeomorphism fl of E U E* onto F*
such that g coincides with the identity on 8(E W E*) ( = 8F*). We now
define a Lipschitz mapping x : D, ---&#x3E;- R3 by

and we consider the following two cases:

Case 1. 8M m (F* - 8F*) = 0. In this case (by (3.3)) it is clear that X
is 1-1 on D1, and we define

Case II. 8M r1 (F* - 8F*) # 0. In this case we know by (3.3) and
the hypotheses (ii) and (iii) of the theorem that 8M c F* - 8F*, and hence
yl ( a11 ) = aD, k-),y, where y is a C2 Jordan curve in D, - aD,. In this

case we define if = x(int y) and we note that

In either of the above two cases we thus obtain .M which is homeo-

morphic to D1 (via a bilipschitz homeomorphism). Also, writing Ê* == E*
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in Case I and Ê* = E* u j(D, - int y) in Case II, we have

To check this we first note that, by (3.1 ),

Next we note that, by definition of .M,

By adding (3.5) and (3.6) we then have (3.4) as required.
The next step in the argument involves a smoothing and slight perturba-

tion of if near F* r1 M, holding the sets aM n a U, X- - U and X^ n Uo
fixed, and taking points of (F* n 1’ll ) - 3M into U - Uo. In this way w e

can obtain an .Mi e Jl with M1 intersecting 8U transversally, with

and with

for any preassigned 6 &#x3E; 0. Then, if 6 is taken small enough, (3.8) together
with (3.4) implies

By (3.7) this of course gives

Next we note that Mi -- U has fewer components than X - U (by con-

struction). Thus, by induction on the number of components of M - U,
we obtain a sequence Mo = M, M1, M2, ..., Mk = M, where 8M; = 3M
where M ~ U has no components .E such that n 31f = 0 (notice this
gives conclusion (vii)), and where, for j = 1, ..., k, M, intersects aU trans-
versally, 8M; = 8M, Xj - U c Xi-, - U, If, n Uo c M;_i n Uo, and
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Summing over j in this last inequality, we then obtain (vi). The remaining
conclusions are now evident.

It thus remains to prove the last part of the theorem subject to the
additional hypothesis (viii). Let N1, ..., Nk be as in (vii) and suppose that (ix)
fails; then we must have inf {Je2(Pj): Pj E, 8P; = 8N;)&#x3E; = k2(N;) - «;,

k 

j = I , ..., k, where I al &#x3E; 0. Then choose PI, ..., Pk E M with aPj == aN;
and j=l

By applying the first part of the theorem with Pj in place of M, we see by
conclusion (vii) that we may take Pj such that Pj,"" aP; c U. By Corol-
lary 1, we can also choose the Pi to be pairwise disjoint. We can then define

k k

JlI* == (M ’"" U Nj) U ( U Pj). Clearly M* is homeomorphic to Dl and
3=1 j = 1

8M* = 8M = aM. Also by (3.10 ) and (3.11 ) we have

That is

in view of the fact that if* may be smoothed to give M’ E 4t, having the
same boundary as M* and area arbitrarily close to M*, this last inequality
contradicts the assumption (viii).
(3.12) REMARK. By applying the above theorem with A in place of U and
with .Mk (as in § 1) in place of if (4), and noting again that spt II VII 11 c A u 7
it is not difficult to see that we can replace the sequence {M k} by a sequence
f-ft,l c A such that a-ft, = -r, Mk C A u r, lim Je2(Mk) == lim Je2(Mk)k&#x3E;oo k--

inf {Je2(M): M EM, aM = TI) and (lim v(Mk)) L (R3 -- F) X G(3, 2) =(k--

== V L (R- - F) x G(3, 2). That is, we may acssume that the sequence {Mk}
of §l is such that M k c A u r, k = 1, 2, ... , without changing the varifold
limit V in R3 - 1. W e will therefore henceforth make this assumption.

(4) If Mk does not intersect aA transversally, it is necessary to apply Theorem I
to a slightly perturbed version of Mk. That a transversally intersection surface
can be obtained by arbitrarily slight perturbations of Mk holding r fixed follows
from Sard’s Theorem together with the fact that if 1" c m,. - T is a C2 Jordan curve,
then t’, F’ are not linked. (This last fact is a consequence or the orientability of Mk,
and does not depend on the fact that Mk has genus zero).
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4. - Filigree lemma.

Here the word «filigree» means (very roughly) « a collection of thread-
like protrusions from a surface ». For example, if If is a surface in R3 with
(M - If) n U(xo, (2) = 0 and JC2 (M n U(xo, (2)) = 8e2, where 8 is small,
then .M n U(xo, Q/2) would be classed as filigree.

The following lemma will enable us to «prune off » such sets under ap-
propriate circumstances.

LEMMA 3 (Filigree Lemma). Suppose {Y,Itcro,,3 is an increasing family of
convex sets with Yt = fx E R3 : f (x) « tl, t &#x3E; 0, where f is a non-negative func-
tion on R3 which is C2 on R3 _ Yo, Df =F 0 on Yl"" Yo and

for some constant c1 &#x3E; 0. Suppose also that there is a constant c2  oo such

that, whenever .h1 is a C2 Jordan curve which is nullhomotopic in a Yt, then
there is a region .E c a Yt with aE = rl and

Finally, suppose M E fl and 8 &#x3E; 0 are such that alVl is contained in the

union o f the unbounded components of R3 _ (Yt U (M _ aM)) for all

t E (0, 1), and

Then

PROOF. By Sard’s Theorem, we know .lll itersects Y, transversally for
almost all t E (0, 1). Then for almost all t E (0, 1) we can apply Theorem 1,
with Y, in place of U, to give Ml such that Je2(M) Je2(M), M r1 a Yt c

(5 ) There exists such a constant c. in the cases when all the a Yt are spheres,
or planes, or cylinders with circular cross-section; these are the only cases consi-

dered subsequently.

30 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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cMnaY,, and k m Y,= O-ATI for some Nj G A satisfying
i=i

where

Let j E fl, ..., kl and let hl = 8N; . By hypothesis we have an E c a Yt
with aE = T, and with (4.1) holding. However, by (4.4) we have

hence

Summing over .j, we then have

Since ff n a Y, c x n a Y,, this gives

However JC2(M n Yt) :Je2(M n Yt) + E (by (4.2) with N = 1f1 together
with the fact that fl -- Y, c M - Yt). Hence (4.5) gives

We can now suppose JC2(X n Y1) &#x3E; 2E, otherwise the required conclu-

sion is trivial. Then let to = inf It: JC2(M n Yt) &#x3E; 2£} and define f(t) =:
= JC2(M n Yt) - 28, t E [to, 1]. By the co-area formula and the definition
of cl we see that (4.6) implies

Integrating this inequality (using the fact that f(t) is an increasing func-
tion of t), we obtain

However /(1) = JC2(M n Y1) - 28  Je2(M n Y1); hence we deduce 1- to 
 2 -B/JC2 (M nY,) - That is, t, &#x3E;I - 2,BIc, C, -%/ JC2(M nY,), and the re-
quired result is proved.
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5. - Interior regularity.

THEOREM 2. Suppose {Åk} is an increasing sequence of open sets such

that R3 -A, has no bounded components, {N,,l is a sequence in m with

aNk c aAk, N, - aN, c A,, and

where s, --&#x3E;- 0 as k -¿. oo. Suppose further that W = lim v(Nk) exists in V2(R3).k-- ’

Then W is a stationary integral varifold in U Ak, with the property that
0o k =1

if Xo E spt II W 11 n ( U Ak) and i f W has a varifold tangent C at Xo with
k=l

spt II C c H, where H is a plane, then there is a e &#x3E; 0 such that

where n is a positive integer and .M is an analytic oriented connected minimal
surface containing Xo.

Notice that (in view of (3.12) and the fact that spt 11 V c A U T) the
above theorem (in case Ak = A, Nk = .Mk ) implies that the varifold V
of § 1 is a stationary integral varifold in R3 _ -V, and V is regular in a neigh-
bourhood of any point of R3 -- T where there is a varifold tangent with

support contained in a plane. (By rectifiability there is such a tangent
plane at JIVII-almost all points of R3.)

00 00

PROOF OF THEOREM 2. WLUA,xG(3,2) is stationary in U Ak be-
k=1 k=1 00

cause 11 h# _W 11 (U) &#x3E; 11 _W 11 (U) whenever v’ is a bounded open subset of U A,
k=1

and h is a diffeomorphism of U leaving a neighbourhood of a U fixed.

We first want to show that there is a constant c &#x3E; 0 such that

00 00

whenever xl E spt 11 -W 11 n ( U Åk). (It follows from this that W L U Ak X
k=1 k=l

X G(3, 2) is rectifiable by virtue of [AW-1, 5.51.) Suppose X, c- spt 11 -W 11

and U(xl , e) c U Ak , and let C2 be a constant such that if I "1 is a Jordan
k=1

curve in the unit sphere S2 , and if El, E2 are the two components of S2 _ _p 1,
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then

By the filigree lemma (which can be applied with f (x) - lxlle, Cl = 1/py
Y, = U(xl, ot)),’ we know that if Je2(Nk r1 U(x,, 9))  (1/4c2) e2, then Je2(Nk rl
n U(x,, e/2))  28k. Hence if there is a subsequence {k’} c {k} with

Je2(N k’ n U(x1, e))  (1/4c2) Q2, then we would have (spt 11 -W 11) n U(xl, 0/2) _ 0,
thus contradicting the fact that x, c- spt 11 TV 11. Hence for all sufficiently
large k we have

from which we deduce

00

Thus we obtain (5.2) with c = 1/(4c,). In particular, W L U Ak X G(3, 2)
is rectifiable by [AW1, 5.5]. k=l

Now let xo, C, H be as in the statement of the theorem. For convenience
of notation we will suppose that x, = 0 and that (0, 0, 1) is normal to the

plane H. We write

and we let R, denote the transformation of R3 defined by u,t(x) = tx. By
definition of C, we know there is a sequence {rki --&#x3E; oo such that

By (5.4) it is then clear that for any Co E (0, 1) we can find r such that

We can of course also choose r such that

Henceforth we will suppose that r has been thus chosen.

Now by hypothesis
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for every N e 3l with aN = aR,,(N,). From (5.6) and the co-area formula
we know that for almost all 1 E (cro/2, 1)

Thus for any given ?7 &#x3E; 0 we can assert that, for sufficiently large k, there
is a (Jk E ((3/4) ao, 7o) such that

Hence, assuming 17 is taken small enough, we can deduce

for some Ok E ( 4 , 1). We can also arrange, by Sard’s theorem, that fL,(Nk)
intersects both D{h X ({2013 Uk} U {Uk}) and oDek X [- 1, 1] transversally.

We now apply Theorem 1 with fL,(N k) in place of N and with K(}1t:.Uk in
place of U (6). Then we find Pk, ... , Pkk, p:k+l, ..., P:k E tiK." where ..Rk, .Rk
are integers depending on k, such that

and such that (by virtue of Theorem 1)

i = 1, ... , .Rk , where and (by (5.7) and [AW1, 2.6(2) (d)]

Next we claim that Pk, i = .,Rk + 1, ..., .Rk can be discarded without
changing the varifold limit in (5.12) ; that is, we claim

(6) To be strictly precise, we first apply Theorem 1 with the « edges» aDQx x
x ({- a,} u {a,}) smoothed out; because of (5.10), no modifications are needed in

subsequent parts of the argument.
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To justify this w e notice that, by (5.11) and the isoperimetric inequality,
each of the curves aPk, I = R[ + I, ..., Rk encloses an area Ah c Dek X
X ({- Uk} U {Uk}) which is such that Je2(A1)  (4n)-11)2; hence by (5.11 )
Je2(Pk)  1)2 for all sufficiently large k. Thus, applying the filigree lemma
with f (x) = IX3/Ukl, , Yt = {x: X3/o’kl  t}, ci = 2J§ and c2 = (4n)-1, we de-
duce that, provided 1) is sufficiently small (1)  Oo/4 will suffice),

(5.13) now follows from this, (5.6) and (5.12).
Suppose now that i e (1, ..., R§) and T§§ = 8P) is nullhomotopic in

o]. Then letting At be that part of the cylinder ODek X R
interior to hk, we clearly have

By using (5.11) with N = At, we deduce

for sufficiently large k. Hence we can again use the filigree lemma,
this time with Yt = {x = (xl, x2, X3): V0153i + X2  tek}’ f(x) == og ,
Cl == (2;1, and a suitable c2. (By homogeneity we can take c2 to be such
that (4.1) holds for any null-homotopic 7"i in Yi.) We thus obtain

provided Co is sufficiently small. Hence by (5.13) we have

where t denotes the collection of those P’(i E {1, ..., R’l) which are such
that aPk is not null-homotopic in aDek X [- do , 10]’ For each i E T k we
clearly have

.Also, by letting At denote the component of (oD(} X [- 0"0’ 0"0]) ’"" pl which
contains the circle oD(}k x {O"o}, we define N = Ak U (D(}k X {O"o}). Clearly N
is homeomorphic to Dl (via a bilipschitz homeomorphism) and R2(N) 
nofl + 4nekO"O. However we can now use (5.11) (with N is place of P)
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to deduce

for all sufficiently large k.

Using (5.15) together with the fact that 1 v(P) f1 Kl,l) is bounded
i Eft’ k 

(e.g. by (5.14)), we then deduce that card J ,L is bounded independent of k.

Thus we can find a positive integer n and a subsequence {k’} c {k} such
that, after a suitable relabelling of Pk,

(i) ek’ -¿. eo E [I, 1] as k’ -¿. ° j

(ii) for i = 1, ..., n, V(fLC?;l(P’)) converges to a varifold Wi, where

(by (5.15), (5.16) and (5.6)), for each pe(0,l],

and

Now by (5.17), (5.18) and the fact that Kl-,.,,I,c U(O, 1) c KI,1 we have

and

Then by using the arbitraryness of 0"0’ together with (5.18), (5.19) and the
monotonicity of e-21IWI!(U(xo, e)) ([AWl, 5.1(3)]), we conclude that

0(li -W 11, x,,) = ,&#x3E;i for some positive integer n. Thus we have proved that
00

0(ii -W 11, x,,) is a positive integer whenever x E spt 11 TV 11 n U A, and W has
k=l -

a varifold tangent at zo supported in a plane. Since W L U Ak X G(3, 2)
&#x26;==!

is rectifiable, we know that such a varifold tangent exists for R2-almost all

X, E spt II W r) U Ak). Hence we finally deduce that W is a stationary
k=1
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00

integral varifold in U A,, thus completing the proof of the first part of
the theorem. k=l

We can now apply this first part of the theorem to the sequences {fJ.ek}(P,)}
(in place of INk)), and hence deduce that each yVi in (5.17)-(5.19) is a sta-

tionary integral varifold in KI,I. But then by (5.17) we can apply the
regularity theorem of W. Allard [AW1, § 8] ; for small enough ao we then
deduce that

where lVli is an analytic minimal surface which can be represented in the form

where ui is a solution of the minimal surface equation on D, satisfying
sup IDu I  1-. Further, since O(Il TV 11, x,,) = n, we easily see from (5.19) that
Dl 
Ui(O) = 0, i = 1, ..., n (1). On the other hand, from the construction of

the Wi, it is clear that for each i, j = 1, ..., n we have either ui(x) &#x3E; u, (x)
for all x E D, or Ui(X) uj(0153) for all x EDt. But Ui(O) = Uj(O) = 0, and hence,
since the difference of two solutions of the minimal surface equation satisfies
the strong maximum principle, we deduce ui = uj on D!. Thus by (5.19)
-W) L Ki,, X G(3, 2) = nv(Ml). This completes the proof of Theorem 1.

(5.20) REMARK. For later reference we wish to make a note concerning
another consequence of the above theorem and its proof. Suppose instead
of the sequence {v(N,)l of varifolds we were to consider the sequence

{T(N,)} of currents, where r(N) denotes the rectifiable current associated

(in the usual way) with an oriented surface N. With respect to the flat norm
topology ([FH: 4.1.12]) we get convergence of some subsequence {-r(Nk’)If

00

to a rectifiable current T, with aT L U Ak = 0- Now if zo is as in the state-
k=i

ment of the above theorem, then an examination of the proof shows clearly
that we must have

where .M is as in (5.1) and n’ is an integer such that )n’ )  n and n - n’ is
even. (n also as in (5.1).) In particular, if n = l then n’= ± 1.

(7) Of course for all sufficiently large r it follows from (5.17), (5.18) that the

integer n in (5.19) is precisely 0(ii w 11 1 XO) -
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6. - Interior regularity (continued).

THEOREM 3. Suppose {A,I, {Nk}, Ware as in Theorem 2, suppose Bi , ... , BR
are distinct open discs of radius e which intersect in a common diameter L

00

of a ball U(xo, e), where B(xo, e) c U Ak. Suppose also that spt 11 TV /I (I
R k=1

(I U(xo, e) cUB, and that spt [[ W [[ r1 (Bi - E) :A 0 - Then
;=1

for some positive integer n.

PROOF. For each i =I ..., R, let Bt, Bi be 2-discs with common
diameter L such that Bi U 87 = Bi. According to Theorem 2

where n,- , 11, are non-negative integers.
We now consider 3 cases:

Case 1.

Using the fact that W has first variation zero in U(xo, (2), the case

R

M (n;+ + ni ) = .1 is easily shown to be impossible, hence we need only con-
;=i R
sider the possibility £ (n;+ + n] ) = 2. However, using the facts that W

j;=1

is stationary in U(zo, o) and that spt ))W)) n (Bi - L) # 0, it is easy to

show in this case that we must have ni - ng = 1 (and n;+ = ni = 0,
j =F . Hence the required result, with n == ], is established in Case I.

Case II.

In this case we can find 3 half-discs HI, H2 , g3 with common diameter .L
3

such that W L U(xo, e) x G(3, 2) == .2 v(Hi); furthermore, using the fact
’L=1

that W has first variation zero in U(xo, e), one easily shows that g1, H2, H3,
are distinct. (In fact they must meet along L at angles of 120°. ) Now by
the remark (5.20) we know that (provided the Hi are appropriately oriented
and provided we use the notation of (5.20))
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However we then clearly have aT L U(x,, -o) 0 0, thus contradicting the
00

fact that aTL U Ak == 0.
k=1

Cas e III.

We will prove in this case that for each sufficiently small 0 E (0, o ),
there is a positive integer n such that

where, here and subsequently, , Ue = U(xo, e - (j). This clearly suffices to

establish the desired result. R

Choose a C2 convex open set G such that U Bj C G c U(xo, e), and
j=1

We can suppose Nk intersects aG transversally (otherwise modify Nk slightly
without upsetting the hypotheses concerning Nlí;), k = 1, 2, .... By The-
orem 1 (with G in place of U and Nk in place of M) we can then find the

pairwise disjoint jPk ..., P[k E.J(; ( Tk a positive integer) such that Pk ~ aPk c G,
8P) c aG,

where
j

and such that (by conclusions (iv) and (vi) of Theorem 1

together with [A.W1, 2.6(2) (d ) ] )

for any preasigned 0 &#x3E; 0. (Notice that spt 11 TV 11 n Us is a compact subset
2013 

R 
2013

of G because spt 11 TV n Uo c ( U Bi) r1 Ue, hence (6.5) does follow from

Theorem 1.) i=i

By (6.4) and the filigree lemma, there is an a &#x3E; 0 (independent of k,
but depending on 0) such that if X’(Pi k n Uo)  0153, then Je2(Pk n U2,)  28k,i;
hence we have by (6.5) and [AWl, 2.6(2) {d) ] that
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where J k is the set of j such that Je2(Pk n Uo) &#x3E; a. In view of the fact that

lim sup L Je2(Pfc n Ue )  o (by (6.5)) we then deduce that card (tJB) is
k-- 

j EJ x 

bounded independent of k. Thus we can select a subsequence {k’} c {k}
and assert that (after a suitable relabelling of the pt)

We can choose the subsequence {k’} such that each individual sequence
fv(P’k,)I, j == 1, ..., n, has a varifold limit W j ; thus

By (6.4) and Theorem 2 (with fp’k,l in place of fnkl) , we know that Wi is
a stationary integral varifold in G, and since spt 11 TVi 11 r) Us c spt 11 W 11 n

R

r1 U0 cU Bj, Theorem 2 also implies that
i=i

j = 1, ... , n, where m + m2j are non-negative integers.
Now by (6.4)

where S+, S- are the components of oG"~" aPk. In view of (6.3), this last

inequality gives

whereupon we must have

for sufficiently small 0 E (0, (2). But then the mit, , mij in (6.6) must satisfy
and hence we deduce by Cases I and II above that
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for any j E fl, ..., n} and k E 11, ..., R} with spt II Wj II n Bk n Uo =1= 0. Be-

cause spt 11 W 11 n (B, - E) ::A 0, we see that (for any 0 c (0, e) such that

spt 11 -W 11 n B., n Uo =A 0) there is a j, say jl, such that (6.7) holds with

j = j1 and k = 1. If on the other hand there is an i 0 1 such that spt II W 11 o
n (Bi - E) =A 0 then (for 0 E (0, e) sufficiently small) there is a j2 such

that (6.7) holds with j == j2 and k = i.
Thus we would have

This is clearly impossible in view of the fact that Pki , P)5 are disjoint ele-
ments of m for each k’. (For example w e can argue as follows : since

Pk, n Pk, = Q, we have disjoint open sets U)i, U)5 in U(xo, e) with

a Uk, = P)5 , r === 1, 2. But by (6.8) and (5.20) we see that the characteristic
functions of Uk, , y ui2, converge in the Ll sense to the characteristic functions
of hemispheres U 1, U 2 of U(xo , o ) with OUl (B U(xo, e) === Bl and a U 2 n

r1 U(xo, e) = Bi . Such convergence is clearly impossible in view of the

disjointness of Uk, and Uiz,.) Thus we deduce that Wj L U{)xG(3, 2) ==
== v(B1 r1 Ue) whenever Wj L Ue X G(3, 2) # 0, j = I , ..., n. The desired

conclusion (6.2) now follows from (6.5/.

COROLLARY 2. Let V be as in § 1. Then at each point xo E spt II VII  T
there is a varifold tangent C of V having the f orm C == nv(H), where H is a
plane in R3 and n is a positive integer.

PROOF. For convenience of notation we suppose xo == 0. Let {tk} -7 00
be a sequence such that C == lim fI.t # V. Clearly we can find a sequence
{Nk} c M such that

and

where 8’ k --&#x3E;- 0 as k --&#x3E; 00.

If spt 11 CII is contained in a plane, Theorem 2 applies and the required
result is immediately obtained. If spt 11 C 11 is not contained in a plane, then
it follows (see [AWI, 6.5], [AA]) that we can find Xl =F- 0 and O &#x3E; 0 such that
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where R&#x3E;2 and .H1, ... , HR are distinct closed half-discs having common
diameter L, Z also being a diameter of B(zi, 9). But then we can apply
Theorem 3 with C in place of W, whereupon we deduce

for some disc B, where n is a positive integer. This complets the proof.
By combining Theorems 2 and 3 the following interior regularity the-

orem is now evident. 

THEOREM 4 (Interior regularity of V). Let the varifold V be as in § 1.
At each point xo E spt II V 11 ~ F there is a positive integer nxo’ a (2xo &#x3E; 0, and
an analytic minimal surface lMTxa such that

7. - Boundary regularity.

In this section xo denotes a fixed point of the boundary curve T c aA.
Since T is C2 and A is uniformly convex, we know there are planes

where v +, v- e S2 satisfy Iv+ .v-/  1, such that n£ n T = n§ r1 T = (zo) and

We assume that the minimizing sequence {M/J of § 1 has been chosen
so that M, - -V c A, k - 11 2, .... (By Remark (3.12) this can always be
arranged without any change in V L (R3 - r) X G(3, 2).)

We let V’== V L (R- - F) x G(3, 2), and we claim that

In fact some subsequence of -r(Mk) (notation as in (5.20)) converges with
respect to the flat norm to an integral current T such that aT = T(JT)y
where T(.f) denotes the one-dimensional current associated with a suitably
oriented version of 1-’. Thus FcsptT. On the other hand (by (5.20))
spt T(= spt T L (R3 - F)) c spt 11 V’11, and hence we deduce (7.2) as required.

Now define L = n’ n 7t; , and henceforth (for convenience of notation
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only) assume zo = 0 E F. Letting C+ = lim fLr # V’ (rk -+ co as k ----&#x3E;- oo) be+ k-- ,

any varifold tangent of V’ at 0 ([AWI, 3.4(1)]) we then deduce that the
line .L defined above is contained in spt 11 C+ 11 (by applying [AW2, 3.4(1)]
to each fLrk# V’). Furthermore (by applying [AW2, 3 .4 (2 ) ] to each tL,,V)
we deduce

(7.4) r-2 11 C+ 11 (U(x,,, r)) is non-decreasing in r for x, E L .

By using (7.4) with xl = 0, together with the definition C+, we then see that

Also, by definition of C+, we can use the sequence {M,l to construct a
sequence {N k} c J% with the following properties:

Thus by Theorem 2 we deduce that C+ is a stationary integral varifold in
R3_L , and

Next, define C = C+ -E- qj C+, where 99 is the reflection of R3 through
the line L. By (7.3) and the reflection principle [AW2, 3 .2 ], C is a stationary
integral varifold in R3. Then by (7.5) and [AWl, 5.1(2)] it is clear that

V-,# C - C, Vr &#x3E; 0, hence

By Theorem 3 together with the classification of 1-dimensional stationary
varifold tangents, given in [AA], we then know that (since C+ is integral and
-Z c spt 110+11 II c W)

where HI, ..., IIR are half-planes with common boundary Land
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Our aim now is to show that .R = 1. We let

and suppose (for notational convenience) that Wc ix E R3: x3 &#x3E; 0}.
By Sard’s theorem we can find e, E ( 4 1) such that Nk intersects a U+(0, ek)

transversally. (Since a U+(Ol ok) is not smooth at the edge E = {x = (xl,
x2, x3) : X3 = 01 IXI == Qkl this last statement has to be appropriately inter-
preted ; at points in _E we require the tangent plane of Nk to differ from

both the tangent plane of oU(O, Qk) and the plane X3 = 0.) Then Nk r1
‘nk

r1 a U+(o, ek) U F,, where 1, are pairwise disjoint Jordan curves
i=l

such that Vkl is a union of L r1 U(0, Qk) and a C2 Jordan arc yk c a U( o, I Qk) n
n W, and where ’12 -’nk are C2 Jordan curves contained in a U(01 ek) n W.
Let s &#x3E; 0 be given. Because of (7.8), (7.11), it is not difficult to show (e.g.
by using the co-area formula) that we can also arrange for (2k to be such that

provided k is sufficiently large (depending on 8). From this it clearly fol-
lows that (for k sufficiently large) each of the curves hk, j = 2 , ... , nk,
encloses an area A! k C a U(01 Ok) with

where c is an absolute constant.

Now recall that Theorem 1 was stated for the case w hen U was a C2

convex open set. The theorem is easily seen to be valid (with only minor
modifications in the proof) in case U is the intersection of two C2 convex
open sets (like U+(0, O) for example), although in this case we can only
require the Nj of (vii) to be elements of Jt (rather than JL) and (ix) holds
for all jPeJC with 8P = oNj. (Here ae is as in §1.) Using such a modi-
fied version of Theorem 1, with !7+(0y Ok ) in place of U, we deduce that there

_ _ 

mk

is an Ñk E utL with aNk = aNk, Ñk n U+(0, (!k) = U P%, Pk Ej(., 8P) = rk,
P§§, ... , P§/ e fl, 8P) c 8 U(0, o) m W 3=1

(using conclusions (iv) and (vi) of Theorem 1 together with [AW1, 2.6(2) (d)]),
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and where

mk

j == ly ..., mk . HereEk, j are constants such that Eki  1 Ik (which Theorem 1
guarantees by virtue of (7.7)). i=i

By (7.13) and (7.16) we then have Je2(Pf)  (c + 1 8, j = 2,..., mk, for
all sufficiently large k. Hence by the filigree lemma (for 8 small enough)
we can discard pk, ... , P nk without changing the limit in (7.18). That is,

Also, by (7.16) and Theorem 2 we have a subsequence Ik’l c fkl with

where Y is a stationary integral varifold in U+( o, o ) with spt 11 Yll c W.
Clearly by (7.15)’ and (7.17)

We next let S+, S- be the two components of (a U(o, Ok) n W) "" F)
and let D+, D- be the half discs having common diameter .L n U(O, Qk)
such that ô(U(O, Qk) n W) = S+ u S- U D+ u D-, and suppose the labelling
is such that (D+ n S+) - E =A 0. Then E+ = D+ U S+ and L’- == D- U S-
are both bilipschitz homeomorphs of Dl, and aE+ = aE- - Tk’. Furthermore

min fjel(E+), Je2(E-)} == Je2(D+) + min {Je2(S+), Je2(S-)}

for some a &#x3E; 0. (2x = !Je2(OU(0, (!k)) - Je2(OU(0, Ok) n W)). Hence by
(7.16) and (7.17) we conclude

Also, writing Y’= Y L U+(O, e) x G(3, 2), we then deduce from (7.19) and
the monotonicity of r -211 Y’ll )) ( U(0 , r)) ([A W2, 3.2 ; AWl, 5.1 (3) ]) that
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Thus we can deduce that the integer .R in (7.11) satisfies R2. On the other
hand we know that by (5.20) there is a rectifiable current T with

where each v, = + 1, i = 1, ... , .R. (Here we take account of the fact

that the half-spaces H.,, ..., H,, are not necessarily distinct.) In (7.21)
r(L m U(O, e)) denotes the one-dimensional current associated with a suit-
ably oriented version of L r) U(O, e), and the .Hi are also assumed to have
been given some definite orientation. Now (7.21) clearly implies that .R

is odd, hence we deduce finally that R = 1. That is we have

and by the regularity theorem of Allard [AW2, § 4] we then deduce the fol-
lowing result concerning V’ in a neighbourhood of zo E 1-’.

THEOREM 5 (Boundary regularity of V). Suppose V is as in § 1, Xo E r
and V’= V L (R3 _ P) x G(3, 2). Then there is a p&#x3E;0 and a C2 surfaces-
with-boundary M such that oM n U(xo , o) = r n U(xo, e) and V’L U(x,,,,O) X
x G(3,2) = v(M n U(xo, e)).

REMARK. The regularity theorem of [AW2, § 4] guarantees M is 01,y
for each y E (0, 1) ; the fact that ltl is C2 then follows from the fact that T
is C3 together with the fact that M can be locally represented as the graph
of a solution of the minimal surface equation. (The Schauder theory for
elliptic equations with Holder continuous coefficients is thus applicable.)

8. - Main result.

From Theorems 4 and 5 (together with the fact that there exist no com-
pact minimal surfaces without boundary) we now immediately deduce

that Y’ = v(M), where M is a compact connected C2 surface-with-boundary
such that 8M = f. It thus only remains to show M E fl.

In order to do this we first show that there is a C2 map X of D1 into M
such that XIAD., is a diffeomorphism of aDl onto t. Notice that the existence
of such a map X immediately implies orientability of if (because, for ex-
ample, we can use the map X to demonstrate that the 2-dimensional singular
integral homology group H,(X, 8M) is non-zero). It then follows from

standard classification theory for 2-dimensional surfaces that either M e 3l
or else M is a disc with h &#x3E; 1 handles [AS 41G, 46]. However the latter

31 - Ann. Scuola Norm. Sup. Pisa 01. Sci.
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case cannot occur because the existence of the map y clearly implies that
the homeomorphism 0: [0, 1] - T defined by 0(t) = x(e2t), is null-homotopic
in M. (A homotopy is given by F(s, t) = y(se4’), (s, t) E [0, 1] X [0, 1].)
However, if if has h &#x3E; 1, then one can express the homotopy group of 0
explicitly in terms of generators of the free group n(M) ([AS, 43B]); cer-
tainly one can conclude in this case that 0 is not null-homotopic.

Thus to prove if E m it merely remains to prove the existence of a map y
as described above. To do this, first note that there is a 6 &#x3E; 0 such that

there is a C2 retract p of S. = {x E R3: dist (x, if)  61 onto M. We can
00

write R3 == U Xj, where Xl, K2, ... are closed cubes of edge length 6/4,
3=1

with pairwise disjoint interiors and with faces contained in the planes
xi = kb/4, i = 1, 2, 3, k = 0, 7 ± 2, .... Suppose the labelling is such

that for some R

and

Now let e(Ki) denote the union of the edges of .Ki (thus e(Ki) is a union
R 

B
of 12 closed line segments, each of length 6/4). Since R2 (M, n ( U Ki) -J&#x3E;- 0

i=l

as k - oo (by (8.2)), it follows that, for k sufficiently large, we can slightly
R

perturb M, to give N E JK, with N - aN c A, aN = F, N r1 ( U e(-Ki)) = 0,
R i=1

and such that N meets U (8K, - e(I£)) transversally.
i=1

Having thus chosen N, apply Theorem 1 with N in place of lVl and

interior (A n gR) in place of U (8). Then we obtain N E m with 81iT == F,
V R

Ñ "’" oÑ c A, Ñ r1 .KR = U Pr, where Pr e A, and with n u 8K,) c
R 2=1 2=1

c N n U 8K,) . It is then clear, since aPr c (aKR - e(K,)) n N, that we can2=1 R

modify S to give N* E M with 8N* = F, N* - aN* c A, N* n ( U e(Ki)) = 0?
i=l

R 
/ 
R R 

N* intersecting U 8K, transversally, N* n ( U 8K,) c N n ( U a-Ki), and
i=1 i=1 i=l

(8) To be strictly precise, we should here replace A n KR by a C2 convex set U
with U c A n .KR and U r-) N = KB n N. The subsequent conclusions are then still

valid.



479

N* n aKR = 0. Thus, by induction on .R, we can obtain N e m with
R . R .

aN = T, N - aN c A, and N n ( U aK.) = ø (and hence N m ( d K,) = 0).;= i « = i

Thus by (8.1) we deduce that N c Sa . We now let zi be a C2 diffeomorphism
of Dl onto N and let p be the retract of Ss onto M described above. We
finally define x = ,u o xl ; this gives the desired mapping z.

Thus we have finally proved the following.

THEOREM 6. I f A, h are as in § 1, then there is an lf E tÂL such that
8M = rand R2(M) = inf {Je2(N): N e m, aN = T).

9. - The k-contour case, k &#x3E; 2.

In this section we wish to point out that the techniques of the previous
sections imply analogous results for the case when r is a disjoint union
Fl U F2 U ... U rk of k&#x3E;2 smooth Jordan curves contained in aA. For

simplicity we will here only explicitly consider the case k = 2. We let
T = I"1 U F2, where Ti , r2 are disjoint C3 Jordan curves in aA, v1t2 denotes
the set of surfaces M c R3 which are C2 diffeomorphs of the annulus

(z: § )z)  1), and we let

THEOREM. 7. Suppose a  IXI + a2.

Then there is an M E u1t2 with aM = T and JC2 (M) - a.

The general approach to the proof is as for the single contour case.
We take a sequence fM,l c u1t2 with aM, - T, JC2(X,) -&#x3E; a, and such that
V = lim v(Mk) E V2(R3) exists. We need to show that there is a compact C2k--

surface-with-boundary M E A2 with 8M = rand v(M) = V L (R3 .1’) X
X G(3, 2). (The fact that JC2(X) = a then of course easily follows from the
construction of V.) In order to show the existence of such an M we need

the following variant of Theorem 1.

THEOREM 1’. Suppose the hypotheses are as in Theorem 1, except that

MCA2-
Then either

(a) there exist M1, .M2 E m with aM = alVl1 U aM2 and k2(Mi) +
+ X2(M2) ,X2(X), , 02
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(b) there is an lfl E m2 such that the conclusions (iv), (v), (vi) of The-
orem 1 hold, and in place of conclusion (vii) we have:

(vii)’ .M I"J U has no components E with aJI r1 E = 0; in case am c a U
we deduce lit c U as in (vii).

If in addition neither of the two components rl, .T’2 of am is contained en-
tirely in a U, and if there is a single component F of X - U containing
am - a U, then conclusion (vii) of Theorem 1 holds as before; if hypothesis (viii)
holds for every P E uK,2 with aP = am, then concZusion (ix) of Theorem 1

also holds.

PROOF. Let X denote a diffeomorphism of G onto m1, where G = 52 -
I"J (D(1) U D(2)), with D(l), D(2) C S2 disjoint diffeomorphs of D1, and let

= X(oD(i»), i = 1, 2.

Now let UE, E, F be constructed as in the proof of Theorem 1 (with
am r1 E = 0 and UE n M = 0). For i = 1, 2 let 6i c G be the component
of X-l(aE) such that some component _K of G - X-I(E) contains both ði
and oD(i). Let F7 denote the component of F which contains (bi),
let Ii denote the union of those components W of G - x-1(E) such that
X(a’W - aG) r1 BFQ = 0, and let E7 == X(Ii), i == ],2. (cf. the definition

of F*, 1, E* in the proof of Theorem 1.)
We now consider two cases:

Case I. r2 ¢ Ei or 1-’1 ¢ E2 .
Case 11. F2c-R* and F, c E2 .

In Case I we only explicitly consider the alternative F2 ct E; the pro-
cedure in case of the other alternative is almost identical.

We define a Lipschitz mapping i by setting X(x) = x (x ) f or x E G -

X-1 (-R U E1 ) and i (x) = (,u, o;() (x) for x E y-1 (-R u -R*), where 1"1 denotes

a diffeomorphism of E V E1 onto F* with ,u1 = identity on 8F§J . (Notice
that such a #1 exists by Lemma 1, because .h2 ¢ Ei . )

If (Fl u r2) r1 F* - aF* = 0, then 2 is 1-1 on the whole of G and we can
define a Lipschitz surface M = i(O). Then by (3.1) X2(j) + Je2(E;) 
 X2(M) and, by making a slight perturbation of 1V1 in a neighbourhood
of Ft (cf. the procedure of Theorem 1), we obtain Qi#i satisfying

If (F, U T,) r) F* - aF* =A 0 (cf. Case II of Theorem 1), then we have a
curve yi c G with x(yi) = hi for either i == 1 or 2 (or both). Suppose for
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example that such a curve y1 exists. We consider the possibilities:

(i) y, is not null-homotopic in G;

(ii) yl is null-homotopic in G.

In case (i) holds, we define x = jIG’, where G’ denotes the component
of G - y:, with closure containing oD(2). In case (ii) holds, we first let be
a diffeomorphism of D(l) onto int yl (c G) with alaD(l) = (jj)yi)-io(jj)8D1»,
and we define G’ and x by G’ == (G - inty,) U D(l), x = x on G t1 G’,
x = xo,u on D(l). Then (regardless of whether (i) or (ii) holds), if there is

no curve Y2 c G’ with i(y,) = r2, we can slightly perturb x to give a smooth
embedding x* : G’ - R3 such that Ml = x* (G’ ) satisfies (9.1). If on the other

hand there is a curve y2 c G’ with X(Y2) = r2, then a repetition of the

above argument, starting with x, G’, Y2 in place of x, G, y,, respectively,
again yields .Ml as in (9.1). Thus Case I always leads to a surface 1VI1
as in (9.1).

We now turn to Case LI. In this case, since oD(i) if- 7,, we must have

Defining .lVl = (M - (E u -R!)) u F", we then see by (9.2) and (3.1) that

and, with the aid of Lemma 1, we also see that M^ = Yi(D,,), where
Yi : D, --&#x3E;- R3 and Yi lint yi is a bilipschitz homeomorphism for some Jordan
curve y2 c D1 with Yi(yi) = Tz. It follows that we can find M1, M2EtÂt&#x3E;
such that alternative (a) of Theorem 1’ holds. Thus Case II implies that
alternative (a) holds.

We can now complete the proof that there is .1V1 as in (vii)’ by using
induction on the number of components .E of M - U such that aM r1 .E = 0.

(cf. the proof of (vii) in Theorem 1; the only essential difference here is that
at the inductive step of the argument the occurrence of Case II will always
yield alternative (a) and the argument can therefore be immediately ter-

minated.)
To prove the second part of Theorem 1’, we simply note that (vii)’ im-

plies (vii) in case neither component of 8M is contained entirely in a U

and there is a single component .F’ of M - U containing 8M - a U. (The
remaining part is then also proved in an almost identical fashion to the

corresponding part of Theorem 1.)
To prove (vii)’ implies (vii) under the above hypotheses, first note that

we can take N in condition (iii) of Theorem 1 to be such that N E A, and
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(N- M) m U = 0. It then easily follows that there is a Ñ E JL2 with
M c liT - 8N and (N - lft ) n U = 0. Furthermore (by conclusion (iv))
F C M; F is thus a component of JI - U containing all of altl r·.. 3[7. It

then follows that N - U has a component containing all of 8N, and hence
(by (vii)’) N - U is connected. Thus if we let z be a C2 diffeomorphism of

w

(z : §  )z)  i) onto 1V, so that x-1(ZV n a U) (= z-i(M m 8 U)) = U y, ,
i=1

where Yl, ..., ym are pairwise disjoint C2 Jordan curves in {x: !  Ixl  1},
then we must have int yl, ..., int Ym pairwise disjoint and contained in

{x: !  Ixl  1}. (Otherwise we contradict connectedness of N - U.) It is
m 

then clear that Ñ n’V (== M n U) is a union U x(int y;) of elements of m
as required. ;=1

In conjunction with the above modification of Theorem 1, we point out
the following property of the minimizing sequence {Mk}.

LEMMA 4. Suppose a  0153l + 01532 as in Theorem 7, and suppose {Mk} C JL2
satisfies aMk == F, k == ], 2, ..., and lim Je2(Mk) = oc.

Then we have the following conclusion : there is a constant (! &#x3E; 0 such that

if U is any C2 open convex subset of A with diameter U  e, if lVlk intersects 0 U
transversally for k == 1, 2, ..., and if Ti - 8U, r2 ~ a U are both non-empty
and connected, then for all sufficiently large k both Ti - a U and F2 ~ 0 U are
contained in the same component of lJlk ~ U.

PROOF. Suppose no such o exists. Then for each s &#x3E; 0 we can find a

convex set U c A with diameter U c E, with the sets Ti - 8U, F2 "" aU
non-empty, connected, and contained in different components of Mk ~ U
for all k in some subsequence {k’} c {k}, and with Mk intersecting a U trans-
versally. We can suppose Ti m 8 U = 0 and r2 r1 0 U = 0; otherwise this
can be achieved, without upsetting the above hypotheses, by replacing U
by a slightly smaller set. We then let Xk, be a C2 diffeomorphism of

{x E R2: ! Ixll} onto Mk" such that Xk,(aDl) == Fl and Xk,(aDl) == F2.
Since Fl, r2 are in different components of Mk, "" U, we can find a Jordan
curve yc{xER2:! Ixll} such that D c int y and Xk,(y)caU. Now
let Pk, be one of the two components of a U ~ Xk,(y) and let Yk, be a bilip-
schitz immersion of Dl into R3 such that Yk, (D1 ) = Pk, U Xk, (D1  int y) .
Then by Lemma 2 it follows that there is an .Mk, e m such that

(i) 8M§, = F1, Je2(Mk’)  Je2(Pk’) + Je2(Xk,(D1inty)) + 82.
Similary we can find 1Vl k, e fl with
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Now hence adding (i) and (ii), we see that

Since X’(P,,)  4 n82 and jC2(Ml") ___). a, we then deduce, because 8 &#x3E; 0 is

arbitrary, , that al + Lx, a, contrary to the hypothesis of the lemma. This

completes the proof of Lemma 4.
Because of Theorem 1’ and Lemma 4 it should now be clear that the

techniques of § 5-8 can be modified in a very straightforward manner to
yield a proof of Theorem 7.

10. - Minimizing surfaces of higher genus.

In this section we wish to show that there is an analogue of Theorem 6
for surfaces of higher genus. The discussion of Appendix B illustrates the
wide range of applicability of the results obtained here.

We let A, .h, m be as in §§ 1-8, and we also introduce the following
further notation:

A (g, r) (g &#x3E; 0 an integer) denotes the collection of connected oriented C2
surfaces-with-boundary .M with 8M = F, and genus if = g;

ag = inf {je 2 (M) MEtÂL(g, r)}(== inf {JC2(M): M C A(h, T) for some hg});

{Mk} will denote a sequence in Jt,(g, r) such that

and such that there is a varifold Vg with

Of course by the convex hull property of Appendix A we have

(cf. (1.1)).
The main result we want to prove is the following.

THEOREM 8. Suppose ag C OCg_l.
Then there is an M E A(g, T) with JC2(M) = ag .

We will show that, like the main result of 9 9, this theorem can be

proved by rather straightforward modifications of the techniques of 99 5-8.
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The key point is to prove interior and boundary regularity of V, in the
sense (cf. Theorems 2, 3) that there is a smooth surface-with-boundary .M
satisfying 8M = t and

it then remains to prove genus If= g (cf. § 8).
We first need the following generalization of Theorem 1.

THEOREM 9. Suppose the hypotheses are as in Theorem 1, except that
M E A(g, -P) rather than M E A.

Then there is an integer 0  h  g and M E A (h, F) such that the conclusions
(iv), (v), (vi) of Theorem 1 hold and such that R3 (M u U) is connected.

(Consequently M c U in case T c a U. )

PROOF. Let E, UE, I’ (satisfying (3.2), (3.3)) be as in the proof of

Theorem 1 and consider the cases F c F - aF, r iF""’ of.

Case I. h ¢ F - 8F. In this case we let M* be the compact (not
necessarily connected) oriented Lipschitz surface with boundary F defined
by M* = (M - E) U F, and we let M(l) be the component of M* containing r’.
We want to show genus M(l) genus If.

To show this we are going to use the Euler characteristic x( Y) of a compact
(not necessarily connected) oriented surface Y; x( Y) has the properties
that it is an integer, and if Y is connected then

Here R = 0 if a Y = 0 and R is the number of components of a Y other-

wise ; g denotes the genus (number of handles) of Y and is zero if and only
if Y is homeomorphic to a compact surface-with-boundary in 82. Thus,
in case Y is connected we always have

with equality if and only if Y is homeomorphic to S2. The Euler charac-

teristic has the additional property that if Z c Y with Z also a compact
surface with boundary, then

Now let k be the number of components of F and let X(2)1 ..., 7 M(l) be
the components of M* - M(1). Using the fact that I k together with (10. 5),
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(10.6) and (10.7), we have

where gE denotes, the genus of E. Thus we have Z(M(’)) &#x3E;.Z(-M), and hence
genus M(’)genus 3f as required. Of course by (3.1) and the construction
of M(l) we have

Case II. FcF-aF. Let -V’cX-F be a C2 Jordan curve homo-

topic to h in M, and let N c M be the compact surface with boundary T’.
Since M r1 UE = 0, we can arrange to choose T’ sufficiently close to T to
ensure that 1-’’c U. We now write N* = (N - E) u F and let N(l) be the
component of N* containing T’. Exactly as in Case I we show that genus
N(l)  genus N (= genus if). If r if- N(l), we write M(1) = N(l) u (M - N)
and we note that genus M(l)  genus M and (10.8) again holds. If T c N(l)

we first want to argue that N(l) - T is not connected. Indeed U - M con-

sists of open components, each lying on one side of the oriented surface M.
Let W be any component of U - M with T c W. If N(l) - F is connected

we could, after letting .F* be the component of F which contains 7 con-
struct a curve in Ni&#x3E; - F joining any two given points on F* - 7. Since N(l)
is oriented we could then construct a curve in (U u F*) - X joining any
two given points on F* - 7 Thus it would follow that F* c W, and this
in turn clearly implies that there are points of M - r (close to r) which
lie in the interior of W, thus contradicting the fact that W lies on one side
of M. Thus -N(l) - r is not connected. We now let M(l) be the closure of
the component of N(l) - r which does not contain T’. We then note (by
using (10.5), (10.6), (10.7), together with the established fact that genus
N(’)genus M) that genus M(’)genus if and that (10.8) again holds.

Thus in either Cage I or Case II we obtain a Lipschitz surface 31(l) with
genus M(’)genus .M and with (10.8) holding. By making an arbitrarily
slight perturbation of M(l) in a neighborhood of F (and leaving the rest
of M(l) fixed) we obtain a smooth surface M(l) with (Mcl U) u (2(1) n Ue) c if
and with X2((X _ fl(l)) n Uo) + Je2(M(1»)  Je2(M). (Cf. the relevant part
of the proof of Theorem 1.) By induction on the number of components
of M,-.; U (as in Theorem 1), we thus obtain the desired surface M.



486

We next define A(12)(g, r) (for o &#x3E; 0) to be the collection of surfaces

M c- 4(, (g, F) with the following property:
If U is an open C2 convex set with diameter  2, if 8M c R3 - U, and if

M and 8 U intersect transversally (in the sense of Theorem 1 (iii)), then for
each component A of M n a U there is an N E M with N c M and aN = A.

We have the following lemma.

LEMMA 5. Suppose g &#x3E; I and M c M(g, F) is such that Je2(M)  Lt g_l.

Then M E A(12)(g, 11 for any (!  t(ocg-l -JC2(M))/(8,7 + 3)11.
Before proving this, we note that the following corollary can be ob-

tained with the aid of Theorem 9 and Corollary 1.

COROLLARY 3. If the hypotheses are as in Theorem 9, with JC2(M)  oeg_,
and diameter U  (flf(8n + 3)}l for some &#x3E; 0, then the surface M of The-
orem 9 is such that

i,t,here Nl, ..., N, are pairwise disjoint elements of A.
If it is in addition hypothesized that JC2(X) ,X2(p) + 0 for each

k

P c A (g, F), then there are positive 011 - - -, Ok 80 that I Oi  0 and
j=1

PROOF OF LEMMA 5. Let U have diameter  (2, where for the moment

O &#x3E; 0 is arbitrary, and suppose that 3f intersects 8U transversally. We
can also suppose 8M n U = 0, otherwise initially replace U by a slightly
smaller set.

Let T, be a component of lVl r1 0 U which is not null-homotopic in if
such that one of the two components (let us call it P) of 8 U - hl satisfies
either lVl n P = 0 or each component of M n P is null-homotopic in M.
(Of course such a component jTi of M n a U exists unless every component
of .M r’1 8U is null-homotopic in M.) Then (even if M n P is empty) we

R

can find pairwise disjoint diffeomorphs 1121, ..., M, of Di, with U if,cif
R i=i

and u (Mi 1"-1 ami)) nP=MnP. By Lemma 2 we then have pair-
i=l 

_ _

wise disjoint .M1, ... , MR, P e fl with 3M, = aMi, 8P = aP
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and

(Notice that this last conclusion follows from the first two assertions in (2.6)’
, R) 

B R
of Lemma 2.) Then, defining X - (M - ( U X i) ) u ( U fli), we see

i=i i=l
that M is homeomorphic (via a bilipschitz homeomorphism) to .M’, and also
-knp=o, fin (au-p)=mn(au-P).

Since U is convex with diameter  e, we have JC2(p)  47r,02, and hence
by (10.9) we deduce

We now construct a surface N as follows (the construction depends on con-
sideration of two cases):

Case I. If M "’-I jTi is not connected, we let Q be the component of
.M "’-I rl which does not contain T, and we define N = (2 - Q) U P.

Case II. If M - Ti is connected, we let S == fx EM: dist (x, Ti)  
where 8 is chosen small enough to ensure that is diffeomorphic via a dif-

feomorphism X, to the annulus ix: -1  Ix I 11. or 8 sufficiently small,
we can construct E1, .E2 E mA (each being constructed by a slight perturba-
tion of P) such that

We then define N = (Iff - S) U .El U E2.
(That is, N is constructed in this case by cutting out the annulus S and

replacing it by two discs.)
By (10.11), (10.12) we now have (in either Case I or Case II)

We now claim that (again in either Case I or Case II)
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Of course once (10.14) is established we immediately conclude

from (10.13) because otherwise (10.13) would imply JC2(N)  ocg_, .

However (10.14) is an immediate consequence of (10.5)-(10.7) and hence
the proof is complete.

Using Theorem 9 and Corollary 3, we can now very directly modify
the method of §§ 5-7 in order to prove that there is a C2 surface if with

boundary .r as in (10.4). (Also, analogously to Remark 3.12, we note that
Theorem 9 and (10.3) can be used to construct a minimizing sequence
fflkl c ’K (9, F) with flk - T c A and lim V (ilk) L (R3 _ .h) X G(3, 2) _k--

lim v(.Mk) L (R3 _ r) X G(3, 2) (== V, L (R3 _ F) X G(3, 2)); that is, wek-- ’

may suppose without loss of generality that the minimizing sequence fmk)f
is such that Mk - -V c A.)

It thus remains only to show that M is orientable and genus M = g.
By virtue of Theorem 9 and Corollary 3, for each 6 &#x3E; 0 we can use the

argument of § 8 in order to construct a surface N,5 E t (g, h) with N6 - JTc -A
and such that there is a smooth mapping q6: N-5 --&#x3E; if with q6)T a diffeo-
morphism of 1-’, and with dist (x, q6(z))  6 for each x E Na. As in § 8 this
immediately implies the orientability of M. Letting K,, X2 denote the closures
of the two components of A - M, we note that the exactness of the Mayer-
Vietoris sequence for the couple K,, X2 (together with the facts that

H1 (A ) = 0, H2(A ) = 0) implies that there is an isomorphism

Likewise

where KI 19 g2 are the closures of the two components of A - N, labelled
so that dist (x, K/)  6 for each x E Ki, i = 1, 2. By smoothness of if there
exists a compact Ci c interior .Ki and a retract ri : Ki -&#x3E; Ci which induces
an isomorphism H,,(Ki) -- Hi(C). Taking 6 small enough to ensure K/ D Ci
it then follows that the inclusion map Ci c ga induces a monomorphism
of H1(Oi) into H, (K,’). Thus we conclude that rank H1(Ki)  rank H1(Kf),
and hence that rank J?i(M) rank Hl (Ns ) by (10.15) and (10.16). This of

course gives genus M  genus 20. Since JC2(M) = Ixg  cxg-1 , we then have
genus .lVl = g as required, and hence Theorem 8 is completely proved.
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Appendix A. The convex hull property.

THEOREM. Suppose r is any compact subset of Rn, suppose V E Vk(Rn)
(k  n) is stationary in Rn""r, and suppose II VII (Rn)  00. Then spt II Y 
is contained in the convex hull of T.

PROOF. It suffices to prove spt 11 V 11 c j7+ for any half-space H+ such
that T c j7+ . For convenience of notation we will prove this only for the
case when H+ _ x = (xl , ..., Xn): x,,  01 and r c f x = (zi , ..., zn) = x,,  01 -
(The general case of course follows by considering 0, V, where 0 is a suit-

able isometry of R".)
Since V is stationary in R3 _ r We can write (in the notation of [AWl])

whenever g is smooth and spt g is a compact subset of Rn - H+ . Since

II IT 11 (R-)  00, one can then easily verify that (A.1 ) holds whenever g is

smooth and spt g c Rn - H+ (even if spt g is not compact.)
Then we may choose g(x) of the form (0, ..., 0, y(xn)) in (A.1 ), where y

is any C1 (R) function with spt y contained in the positive real numbers.
This choice of g immediately yields

where (sij) denotes the matrix of the orthogonal projection of Rn onto S,
so that snn&#x3E;O. In view of the arbitraryness of y (for any s &#x3E; 0 we can

, choose y so that y(t) &#x3E;, 0 for all t E R and y’(t) &#x3E; 0 for t &#x3E; s), this of course
implies that V [ (R" - j7+) X IS E G(n, k) : snn 0 01] - 0. However, since (sij)

n

is the matrix of an orthogonal projection (so that I (snj)2 = snnl , snn == 0
i=i

implies snj = sin = 0, j = 1, ..., n. Then choosing g(x) = y(xn)x in (A.1),
and noting that S - Dx -= k for every S E G(n, k), we obtain

Again using the arbitraryness of y, this gives spt 11 V c {x: Xn  01 as required.
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Appendix B. Comparisons with surfaces of higher topological type.

Our reason for including the discussion of § 10 above is that the discs
obtained (in § 8) bounding simple closed curves h on the boundaries of

uniformly convex sets A frequently have area which is larger than that of
manifolds of higher topological type such as arise as two dimensional mass
minimizing integral currents having T as boundary. For example, for suitable
lCmCnCpC oo let

and Tc aA be the simple closed curve

with smoothing near the four corners

and with the orientation illustrated in Figure 1. For proper choices of m, n, p
it is intuitively clear and readily checkable with the use [FHI, 5.4.3., 5.4.5.,
5.4.15.] and [AW2] that the support of any two-dimensional mass minimizing
integral current T having 1-’ as boundary must be an embedded minimal
submanifold of R3 having T as boundary and having genus at least 1. In

particular, when n is large one checks by area comparison that

and, also, since for large values of p, r is close in the flat metric topology
to aA r) aK, it follows that T very nearly must lie within IT and hence for
most 1  r  m,

More generally the references cited above imply that if T, T1, T2 , T3 , ... E

E I2(.R3) are mass minimizing, if limi Ti = T in the flat topology, if .L is a

compact subset of R3, and if

limi Hausdorff distance (spt aTi, L) = 0 , y
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Figure 1

then

limi Hausdorff distance (spt Ti, spt T U L) = 0 . 

For such r as above one notes that the homotopy group

is the free group Z * Z on two generators and that the homotopy class of r
is the commutator of two such generators, which commutator is of course
not equal to the identity. In particular then, spt T cannot topologically
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be a disc. The support of T presumably resembles the surface indicated
in Figure 1.

For each g = 1, 2, 3, ... our construction readily generalizes to produce
smooth simple closed curves r on the boundary of any uniformly convex
subset of R3 such that the genus of the support of any mass minimizing
integral current T having such T as boundary is at least g. Such a curve h

Figure 2

on S2 corresponding to g = 3 is illustrated in Figure 2. If one whishes,
such curves 7, corresponding to any g, can be required to have arbitrarily
short prescribed length; the curve if Figure 2 for example can be slid on S2
to a small neighbourhood of any point.

Curves like that illustrated in Figure 2 have increasingly large curvature
as g increases. Indeed, it follows from [AW1] [AW2] [FH1, 4.2.17, 5.4.5,
5.4.15] that if r is any collection of twice continuously differentiable oriented

simple closed curves 7" lying in, say, S2 which is compact in the 02 topology,
then there is a finite number go = go(T’) such that whenever T is a mass
minimizing integral current with aT E r then the genus of spt T does not
exceed go.

On the other hand William P. Thurston has pointed out that for each
8 &#x3E; 0 and go  oo there is a C°° simple closed oriented curve T lying on S2
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such that the length of h does not exceed e, the total absolute curvature of r
does not exceed 4n -+- E, and the genus of the support of any mass minimizing
integral current having T as boundary is not less than go. Such a curve T

Figure 3a

can be obtained as follows for go = 3. We consider one dimensional integral
cycles shaped like r1 in Figure 3a and note that in case rl lies in a plane
and Tl is the unique mass minimizing integral current with aT = F,,, then
spt Tl does not intersect the open region A U B u C. It readily follows that
if an integral cycle like r1 lies on a sphere of sufficiently large radius, then
any mass minimizing integral current Tl having F, as boundary largely
will not cover the region A u B U C. We now fix such rl on such a sphere
of large radius and observe that the points on 27 at positions a, b, c as in-
dicated in Figure 3a lie somewhat outside the convex hull of Fl8 If r1 is
now modified to become the 000 simple closed curve r2 lying on m of Figure 3b
by adding extremely thin bridges as indicated (so that r2 is very close in
the flat topology to Fl) one checks, by arguments similar to those above,
that, whenever T2 is a mass minimizing integral current having r2 as

32 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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Figure 3b

boundary, the region A U B U C still will largely be uncovered and there
will exist straight lines La , Lb7 Lc as indicated entirely missing spt T2 while
passing just beneath the three bridges and above the main part of spt T2.
One checks, y for example by computing the rank of the intersection matrix
of appropriately chosen elements of the homology group H,,(spt T2; Z2)
as in [AT], that the genus of spt T2 is at least 3. It is clear from the illus-

tration that such r2 can be constructed with total curvature as close to 4n
as desired, and, since the radius of Z is large, the curve T on our standard
two dimensional sphere S2 (which is our desired curve) corresponding to r2
on Z will be short.
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