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1. Introduction

In conformal welding (or sewing or glueing) one uses conformal mappings of the inside
and outside of the unit disk U = {|z] < 1} to represent homeomorphisms ¢ of the unit
circle T = {ei ' 0 <t < 2r}. These homeomorphisms need not be differentiable, let
alone analytic. The theory has important applications including Teichmiiller space (i.e.,
the space of all Riemann surfaces), first imagined by Riemann in the nineteenth century.
Its importance carries forward into physics as String Theory (i.e., the grand unified theory)
which is based on Teichmiiller space, see Witten’s 1986 address to the ICM [34].

The following provides a simple example of the conformal welding. We assume
¢: T — T is analytic on some neighbourhood of T. Construct the abstract sphere 2 by
joining the unit disk U to its exterior L = {|z| > 1} U {oo} along the circle T by the
correspondence

z— 1/¢(1/2).

However the abstract Riemann surface §2 is conformally equivalent to the ordinary
Riemann sphere. Translating: this means there are conformal maps f:U — A and
g:L — B sothat

fop=g. zeT,

where A and B are disjoint domains with common boundary y which is an analytic
curve. (In particular, f, g are conformal on T.) This observation is an immediate
consequence of Koebe’s (1905) Uniformisation Theorem. It is one of a host of basic ideas
of conformal pasting developed early in the century which go back to Schwarz’s conformal
representation of polygonal domains, see Carathéodory [7] or Kiihnau [19]. Koebe [18]
even gave conformal welding for multiple domains. As an application Courant (in the late
30s) used a variational method based on conformal welding in his solution of the Plateau—
Douglas problem of minimal surfaces, see his 1950 book [8] for an account (without
attribution). In the late 40s the welding theorem was proved by Schaeffer and Spencer [29]
by a variational technique (another variational problem which yields f, g was given by
Grunsky [11]), in both cases ¢ is analytic. Some early results may also be found in the 1952
book of Goluzin [10]. Actually in the early 30s Lavrentieff [20] went beyond analytic ¢
and introduced quasiconformal mapping (in the same paper) although it was not until 1946
that Volkovskykii [33] used quasiconformal mapping to obtain conformal welding. (One
notes that conformal welding seems analogous to the classical Riemann-Hilbert problem
but is different, and solved by different means. However the Hilbert-Haseman problem
with its Carleman shifts generalizes both (classical) problems, see [21].)

Consider an arbitrary Jordan curve y with complementary domains A, B and
corresponding conformal mappings f:U — A and g:L — B. Now from Carathéodory
(1912) the mappings extend to homeomorphisms of T so that

¢=f"og
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is a homeomorphism of T. Thus it is natural to conjecture that any homeomorphism
¢: T — T can be so represented. In fact this is not true, indeed there are counterexamples
for which ¢ is analytic except at one point (e.g., [¢(€!) — 1| =3 (t = 0+), 12 (t —> 0-)).
There are several ways to understand this. One way is to realize that the relationship
between f and g implies estimates on the harmonic measures of adjacent subarcs of y
and consequently bounds on what ¢ can do to adjacent subarcs of T, see [23].

The connection with quasiconformal mappings has been a central theme of conformal
welding. A homeomorphism @ : C — C is quasiconformal, see [22], if it has generalized
L? derivatives which satisfy the Beltrami equation

AP = uod

for some measurable u satisfying ||itllec < k < 1. Geometrically this means that @ maps
small disks to small ellipses of bounded eccentricity.

It is easier to understand the main result of conformal welding if we transform T to the
line R U {oo} so that U is now the upper half plane and L the lower half plane. A famous
result of Beurling and Ahlfors [2] characterizes ¢ : R — R which extend to quasiconformal
mappings @ by the property that ¢ is quasisymmetric, 1.e., there exists a constant ¢ such
that for any real x and A

C_|<¢(x+h)—¢(X)<c
¢(x) —d(x —h)

This condition just means that the family of rescalings and translations of ¢ is
equicontinuous, so for example any bilipschitz ¢ is quasisymmetric, but so is ¢ (x) = x'/3
(as are more exotic singular examples). The fundamental theorem of conformal welding
is that conformal welding is possible for arbitrary quasisymmetric functions. This was
proved by Pfluger [27] in 1960. Lehto and Virtanen [22] shortly afterwards gave a different
proof.

These are statements of the classical results of the field. In the rest of the article
we shall discuss the general problem of the existence and uniqueness of conformal
welding. Next we mention applications to Teichmiiller space where there is Bers’ theorem
of Simultaneous Uniformisation, one of the major achievements of twentieth century
mathematics. Finally we consider the problem of how the regularity ¢ of determines the
regularity of f, g.

2. Existence

We begin with the proof that any quasisymmetric mapping ¢ : R — R has conformal
welding, by conformal mappings f, g which extend to quasiconformal mappings of the
plane. As mentioned before, the central ingredient is the Ahlfors and Beurling extension
of ¢ to a quasiconformal mapping @ of the whole plane with complex dilatation p. The
other ingredient is the solution of the Beltrami equation by quasiconformal mappings
for any measurable p. (In the final form due to Bojarski, see [24], using the Calderon—
Zygmund L” estimates on the Beurling transform, but earlier authors had less general
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cases including Gauss who did the real analytic case.) In any case one now solves the
Beltrami equation

nog, ze€l,

dg = 0, zelL.

The quasiconformal solution g is therefore analytic on L while f =g o @ ! is analytic
on U. In particular,as ® =¢ on R

g=fo¢, ze€R.

Also one can now characterize the Jordan boundary y as a *“quasicircle”: a Jordan curve
through oo satisfying the Ahlfors “3-point” condition that there is a constant ¢ with

lz1 — z2| + 22 — 23]

|21 — 23] h
for any ordered points z|, z2, z3 on y, see [24].
One might try to give general necessary and sufficient conditions for ¢ to admit
conformal welding. There are conditions (weaker than quasisymmetry) due to Lehto [23],
see also [32], which are known to be sufficient:

C_I(h)< ¢(x +h)—P(x) <c(h).

¢(x) —dp(x —h)

where c(h) = O(log(1/h)) as h — 0. On the other hand, there are counterexamples with
c(t) = O(h?). The sharp result is not known.

At the core of existence is obtaining conditions when ¢ is analytic except at one point .
The problem is that the topological plane 2 — {¢} we first constructed may be hyperbolic
rather than parabolic. In this case A and B are still disjoint domains but their common
boundary 1s an open Jordan arc clustering at a nontrivial continuum. The theory of modulus
provides the simplest test for when an isolated point of a Riemann surface is removable.
An annullus {r < |z| < 1} has capacity m = 1/log(1/r) which is equal to the infimum of
the Dirichlet integrals

// IVul?dxdy
r<|zl<lI

where u =0 on [z} =1 and u = | on |z| = r. In particular, if the capacity is zero then
r = 0. Thus £2 — {¢} is parabolic if and only if the modulus of annulli surrounding ¢ on the
abstract sphere can be made small. So for every € > 0 we consider continuous functions ¥
on R with compact support so that ¥ (£) = 1. Then consider the harmonic function # on U
with boundary value ¥ on R and the harmonic function v on L with boundary value i (¢)
on R. The condition we obtain is that the Dirichlet integrals satisfy

(D) [/ |Vu|2dxdy+// IVul?dxdy <e.
U L
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These conditions are not as impossible as one might think. Now for any Dirichlet
integrals on some domain D and quasiconformal mapping ¢ of D:

// IV(u(¢))|2dxdy<K// V2 dxdy.
®(D) D

One immediately sees that quasisymmetric mappings satisfy condition (D). On the other
hand quasisymmetry is too strong as we only need certain Dirichlet integrals to be bounded,
in fact any test functions will give a corresponding test for parabolic. The D test shows that
we have conformal welding in this case. This approach, doing it as a type problem is seen
in Volkovyskii [33], Oikawa [26] (although Courant is already clear about the problem).

Of course one wishes to generalize the above results away from the special case that ¢ be
analytic except at one point. Now we switch back to the unit circle T. The general condition
will be a uniform version of condition D namely: for every € > 0 there exits a § > 0 that
for every annullus {r < [z — {| < 1}, ¢ € T of small capacity m < § the corresponding
Dirichlet integrals, i.e., the capacity of the abstract annullus has capacity m’ < €. To
obtain conformal welding in this case one simply approximates ¢ by the piecewise-
linear homeomorphism ¢,, ensuring that the D condition holds uniformly for the ¢,. The
corresponding conformal weldings f,, g, are normalized so that the capacity condition
ensures that small rings map to small rings, uniformly. Thus we have an equicontinuous
family f,, g, on the unit circle from which we extract a subsequence which converges to
a pair f, g which is a welding for ¢. It would seem that our uniform D condition is also
necessary. However in the next section we show that this is not true. This is because of the
various types of nonuniqueness associated with conformal welding.

Thus we almost have necessary and sufficient conditions for conformal welding. In
other situations (see [12,13]) one requires a generalized form of conformal welding where
the boundary between A and B need no longer be a Jordan curve but nevertheless the
conformal maps f, g represent the homeomorphism ¢. One way to do this is to use
the angular limits f(e'’), g(e'’) (keeping with the unit disk again) which for conformal
mappings are not only defined almost everywhere but in fact everywhere except for a set of
zero (log) capacity, a result of Beurling (1940). In [12] one uses the Hausdorff dimension
dim and defines ¢ to be regular if

dim(E) >0 <% dim(¢(E)) >0, VECT.
Then it is shown that for regular ¢ there exist conformal mappings f, g so that
f(8(e")) =2g(e").

except for a set of ¢!’ of zero arc length. To prove this one takes approximate conformal
weldings and ensures convergence. Once again one obtains compactness of the family
of approximations but this time not in the space of continuous functions but instead in
the Banach space of boundary functions of Dirichlet functions. There are fairly simple ¢
which have no conformal welding in the classical sense but do in the generalized sense.
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3. Uniqueness

For many applications it is important that the conformal weldings f, g of ¢ be essentially
unique (up to a bilinear transformation). Clearly there is no uniqueness if conformal
welding fails in the classical sense, for example, if y clusters on some continuum K say.
For then any conformal mapping # on C — K gives another conformal welding ho f,hog
of ¢. However even if ¢ has classical conformal welding with a Jordan curve there need not
be uniqueness. The easiest case is when y has positive area, then one defines a nontrivial
quasiconformal mapping ¢ with dilatation supported on y so that @ = h is conformal
off y and once again we get another conformal welding, see [4,12].

To understand Jordan curves y for which there are nontrivial homeomorphisms of C
which are analytic off y we need concepts from the theory of null sets developed by
Ahlfors and Beurling [1]. A compact set E belongs to A/(D) if every function 4 analytic
and with finite Dirichlet integral on C — E has analytic extension to E. It is a main result of
this theory that this is equivalent to there being NO nontrivial conformal maps on C — E.
Another related result is that if E is NOT A/(D) there exists a conformal mapping 4 on
C — E so that C — h(C — E) has positive area. However such an h need not be continuous
(yes indeed point components of E can be stretched to continua and vice versa).

A parallel concept is for bounded conformal mappings. The requirement that all
conformal 2 on C — E preserve point components is denoted by A (BS) (BS meaning
bounded schlicht). For example a totally disconnected closed set E € R belongs to N (D)
if and only if it belongs to A'(13S). (In particular, no such k can be constructed for E C R.)
However there are more general sets E which are in A/ (BS) but not in A/(D). This means
that there are nontrivial functions 4 conformal on C — E which necessarily extend to
homeomorphisms of C. Then given such a set E it is easy to construct a Jordan curve
which contains E.

Consequently if a curve y contains a set E in A/(BS) but not in N (D) there exists a
nontrivial homeomorphism # which is analytic off y. There can be no unique conformal
mapping for ¢ = f~' o g. Here we constructed examples by the theory of null sets, another
approach is given by Bishop [4].

In other examples if y contains a totally disconnected compact set E which is not on
N (BS) even, then there exist A conformal on C — E so that at least one point component
1s stretched to a continuum. Thus ¢ cannot satisfy the uniform D criterion which ensures
that this does not happen, although we have conformal welding. But ¢ has classical
conformal welding by f, g and generalized conformal welding by h o f, h o g of ¢.
Therefore the uniform D cannot be a necessary condition of conformal welding. One might
ask if the converse is true, that is, if y is a Jordan curve and there exists a (nonlinear)
homeomorphism h which are conformal off y then does y contain a set E in N'(3S) but
not in N (D).

On the other hand if ¢ is quasisymmetric, even though the y need not be rectifiable, one
can prove their are no (nonbilinear) homeomorphisms which are conformal off y. Thus
we have the very important result that conformal welding is unique for quasisymmetric
functions.

These nonuniqueness results bespoke a certain kind of nonstability of the problem.
Conformal welding is obviously unstable in the uniform norm on ¢. However in the
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c-quasisymrmetric category, as K -quasiconformal mappings form a compact family, there
is stability with respect to the uniform norm, see Huber and Kiihnau [17] (in which they
even have an explicit formula for the conformal welding functions in the category of
diffeomorphisms).

4. Fuchsian groups

By the Uniformisation Theorem any (hyperbolic) Riemann surface R is conformally
equivalent to the unit disk U modulo a discontinuous group G of bilinear mappings
B:U — U. Therefore any homeomorphism & of R onto another Riemann surface R’ is
equivalent to a homeomorphism 6 : U — U so that 6 0 G 0 ! is a Fuchsian group G’
uniformizing R’. If G and G’ are of the first kind (i.e., the Limit set of orbits of 0 is dense
in T') then 6 extends to a homeomorphism ¢ : T — T which is equivariant with respect
to G,i.e,poBogd ! =p G forall B € G.Inthe case of a finitely generated group of
the first kind (e.g., any compact Riemann surface) the map ¢ is quasisymmetric. We now
apply conformal welding and obtain conformal mappings f, g onto domains A, B bounded
by a quasicircle y. Uniqueness means that both f, g are equivariant. Consequently
G=foGo f~! is a discontinuous group acting on A (which has limit set y). This is
conformally equivalent to G, i.e., A/G is another uniformization of R. On the other hand
G =g o G’ o g~ is a discontinuous group acting on B which is conformally equivalent
to G’ acting on L. Therefore the two Fuchsian groups G, G’ have been simultaneously
uniformized by G acting on A, B. This is Bers’ theorem on simultaneous uniformization.
The group G is said to be quasi-Fuchsian and it has limit set f(T) which is a quasicircle.

In general any G equivariant homeomorphism ¢: T — T can be extended to a
quasiconformal mapping ¢. Here the problem is that @ should also be equivariant, a
property not given by the original Ahlfors Beurling extension but obtained by Tukia and
later by Earle and Hubbard, see [25]. Thus the space of Riemann surfaces (quasiconformal
images of a fixed surface R) is realized as the space of G equivariant quasisymmetrics ¢.
To each of these conformal welding assigns an equivariant conformal mapping f on U.
This is used to construct the Universal Teichmiiller Space 7, i.e., those f arising from
conformal welding of a quasisymmetric ¢. These are results of Ahlfors. (The same results
hold if one restricts oneself to a fixed Fuchsian group G.) Any further discussion is properly
the subject of Teichmiiller space, the whole point is to show that conformal welding lies at
the basis for its construction. A fine exposition of this theory is Lehto’s 1986 book [25].

Until now we restricted our attention to quasisymmetric ¢. However for infinitely
generated groups the ¢ need not be quasisymmetric, indeed nonhomeomorphisms are
possible (say if a group of the first kind is transformed to a group of the second).
Nevertheless it is possible to obtain a theory of simultaneous uniformization for arbitrary
topological transformations of Riemann surfaces, see {13], a theory that depends on
generalized conformal welding. The latter depends on special properties of the ¢ associated
with a group. A general theory of conformal welding for monotone ¢ which may be
nonhomeomorphic has yet to be written down.

In the opposite direction other Teichmiiller Spaces based on conformal welding
have been considered. There is the model due to Gardiner and Sullivan [9] based
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on “asymptotically conformal” quasimappings (introduced by Strebel [31], see also
Pommerenke [28]) in which the dilatation is continuous. This has been of interest in
Dynamics. An even smoother class was considered by Semmes [30] who used “chord arc”
curves, 1.e., uniformly rectifiable at all scales.

5. Regularity

It is a result going back to Privalov (1919) that for any rectifiable closed Jordan curve y
the harmonic measure taken from the A-side of y is absolutely continuous with respect
to the harmonic measure taken from the B-side, i.e., ¢ is absolutely continuous. By
Cauchy’s representation theorem for rectifiable y it is easy to see that there are no
(nonbilinear) homeomorphisms which are conformal off y, so we have uniqueness (up to
bilinear mappings). However nothing like the converse is true. In particular, an absolutely
continuous ¢ need not have conformal welding. Indeed there are no good necessary and
sufficient conditions on ¢ for y to be rectifiable. For sufficient conditions on the complex
dilatation i for @(R) for y to be rectifiable see Carleson [5] and also [14] (where a
meromorphic function with a rectifiable Julia set is constructed). The requirement that
¢ is absolutely continuous does not suffice, even if ¢ is already quasisymmetric, see
Huber [15,16]. Semmes [30] and Bishop [3] showed that even A, conditions do not suffice.
In general there is a loss of regularity between ¢ and the f, g. So if ¢ has continuous
k-derivatives (and nonzero first derivative), then f, g have k — 1 derivatives, which are o
Holder continuous for ¢ < 1.

It is interesting that the examples of ¢ arising in Teichmiiller Theory are often highly
irregular. In the case of a finitely generated group of the first kind Tukia proved that the
map ¢ has the important property of being either bilinear or totally singular (i.e., zero
derivative a.e.) but nevertheless quasisymmetric, see [25]. Furthermore Bowen proved that
the limit set y of a quasi-Fuchsian group is either a circle/line or a Jordan curve with fractal
dimension Dim(y) > 1. The analogous result was proved for the Julia set of a rational
function, as conformal welding can be used in Complex Dynamics, see [14]. These results
are a large part of the interest in fractals at the end of the century. All of this means that the
natural applications of conformal welding are for ¢ which are not absolutely continuous
even and thus very far removed from the initial observations of which started the subject
early in the century.
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