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Chapter 1

Preliminaries

Here is a short list of the results that we are going to use a lot. You should be
familiar with most of them, if you don’t know any of them then you can find them
in virtually any book with ”Complex Analysis” in the title. Standard choices are
[1, 16]

• Uniform limit is analytic functions is analytic

• Liouville theorem: the only bounded entire (i.e analytic in the entire complex
plane) functions are constants

• Maximum modulus principle: the maximum modulus of a non-constant an-
alytic function is achieved on the boundary of the domain

• Argument principle

• Rouche theorem

In this course we are mostly interested in one-to-one analytic functions. Since
we think of them as about mappings from one domain to another we call them
maps. You probably should know from course of complex analysis that an analytic
function f is locally one-to-one if and only if its derivative never vanishes. Such
maps are called conformal. Slightly abusing notations we will use this term for
globally bijective maps. It is easy to see that the condition that f ′ never vanishes
does not imply global injectivity. Indeed f(z) = z2 is analytic in the complement
of the unit disc and its derivative does not vanishe there, but it is two-to-one map.

There are two other terms for analytic one-to-one maps: univalent and schlicht.
We will use them interchangeably.
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Chapter 2

Riemann Uniformisation
Theorem

In this chapter we are going to discuss a class of uniformizing results. We are
mostly interested in the following question: given a domain in the complex plane,
can we find a conformal map from this domain onto some simple domain. The first
result in this direction is the famous Riemann Uniformization or Riemann Map-
ping theorem which states that any simply connected domain can be conformally
mapped onto the complex sphere Ĉ, the complex plane C, or the unit disc D.

We will present the classical Koebe’s proof of the uniformization theorem in
the simply connected case and will give a complete proof for doubly connected
domains. We will briefly mention some other approaches to the construction of the
uniformizing maps and proofs for the domains of higher connectivity,

2.1 Möbius transformations and Schwarz lemma

As usual, there are two related questions of uniqueness and existence. In this sec-
tion we are going to discuss the uniqueness assuming the existence of the unifor-
mazing maps.

Let Ω be a domain in the complex sphere and let us assume that there are
two conformal maps f and g from Ω onto some uniformizing domain Ω′. Then
the map µ = g ◦ f−1 is a conformal automorphism of Ω′. Conversely, if µ is an
automorphism of Ω′, then µ◦f is also a conformal map from Ω onto Ω′. This means
that the non-uniqueness of f is given my the group of conformal automorphisms
of Ω′.

In this section we are going to describe all conformal automorphisms of Ĉ, C,
H, and D. It is a well known fact that there are Möbius transformations preserving
these domains. Any Möbius transformation is a conformal automorphism of Ĉ.
For the other domains they are described by the following proposition
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Proposition 2.1.1. The only Möbius transformations that map D, C or H to them-
selves are of the form

eiθ
z − a
1− āz

, a ∈ D, θ ∈ R

az + b, a, b ∈ C
az + b

cz + d
, a, b, c, d ∈ R, ad− bc > 0.

Exercise 1. Prove Proposition 2.1.1.

It turns out that these Möbius transformations are the only conformal automor-
phisms. To prove this we will need a classical result, known as Schwarz lemma.

Theorem 2.1.2 (Schwarz Lemma). Let f be an analytic function in the unit disc
D normalised to have f(0) = 0 and |f(z)| ≤ 1, then |f(z)| ≤ |z| for all z ∈ D
and |f ′(0)| ≤ 1. Moreover, if |f(z)| = |z| for some z 6= 0 or |f ′(0)| = 1, then
f(z) = eiθz for some θ ∈ R.

Proof. Let us define g(z) = f(z)/z for z 6= 0. It is easy to see that z = 0 is a
removable singularity, if we define g(0) = f ′(0), then g is analytic in D. Next, let
us fix some 0 < r < 1. On the circle |z| = r we have |g(z)| < 1/r and hence,
by the maximum modulus principle, the same is true for |z| < r. Passing to the
limit as r → 1 we show that |g| ≤ 1 in D which is equivalent to |f(z)| ≤ |z| and
|f ′(0)| ≤ 1.

Now assume that there is a point inside D where |g(z)| = 1. By the maximum
modulus principle, g(z) = eiθ for some real θ. This proves the second part of the
theorem.

Note that the normalisation that we use is not restrictive: by rescaling and
adding a constant, any bounded function in D could be reduced to this form.

Proposition 2.1.3. All conformal automorphisms of Ĉ, C, H, and D are Möbius
transformations.

Proof. We are going to prove the unit disc case, the other cases are left as exercises.
Let f : D → D be a conformal automorphism. We define the Möbius trans-

formation µ = (z − w)/(1 − w̄z) where w = f(0). Obviously g = µ(f) is an
analytic map in D with g(0) = 0 and |g(z)| ≤ 1. By Schwarz lemma we have
|g(z)| ≤ |z|. On the other hand we can also apply Schwarz lemma to the inverse
map g−1 and obtain |g−1(z)| ≤ |z|. This means that |g(z)| = |z| and hence
g(z) = eiθz for some θ. This proves that f is inverse of the Möbius transformation
e−iθµ(z), hence it is also a Möbius transformation of the same form.

Exercise 2. Complete the proof of the Proposition 2.1.3.
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2.2 Normal Families

In this section we discuss some results about convergence of conformal maps that
we will need for the proof of Riemann Mapping Theorem.

Definition 2.2.1. Let F be a family of analytic functions on Ω. We say that F is a
normal family if for every sequence fn of functions from F there is a subsequence
which converges uniformly on all compact subsets of Ω.

The term “normal family” is somewhat old fashioned, in more modern terms
it should be called “precompact”. The standard way to prove precompactness is to
use Arzela-Ascoli theorem, and this is exactly what we will do. Before stating the
theorems we need two more definitions.

Definition 2.2.2. We say that a family of functions F defined on Ω is equicontin-
uous on A ⊂ Ω if for every ε > 0 there is δ > 0 such that |f(x) − f(y)| < δ for
every f ∈ F and all x, y ∈ A such that |x− y| < ε.

Definition 2.2.3. We say that a family of functions F defined on Ω is uniformly
bounded on A ⊂ Ω if there is M such that |f(x)| < M for all x ∈ A and every
f ∈ F .

Now we can state the Arzela-Ascoli theorem which we present here without
a proof. Interested readers could find it in many books including [16, Theorem
11.28]

Theorem 2.2.4 (Arzela-Ascoli). Let F be a family of pointwise bounded equicon-
tinuous functions from a separable metric spaceX to C. Then every sequence fn of
functions from F contains a subsequence that converges uniformly on all compact
subsets of X .

Now we are ready to state and prove Montel’s theorem which gives a simple
sufficient condition for normality of a family of analytic functions.

Theorem 2.2.5 (Montel). Let F be a family of analytic functions on a domain
Ω that is uniformly bounded on every compact subset of Ω. Then F is a normal
family.

Proof. First we construct a family of compacts that exhaust Ω. We defineKn to be
{z ∈ Ω such that |z| ≤ n and dist(z,C\Ω) ≤ 1/n}. (We assume that allKn 6= ∅,
otherwise we change indexes so that K1 is the first non-empty set.) It is easy to see
that for every compact K ⊂ Ω there is n such that K ⊂ Kn. This also implies that
∪Kn = Ω. Moreover, Kn are increasing and separated, namely Kn ⊂ Kn+1 and
there are δn > 0 such that for all z ∈ Kn we have B(z, δn) ⊂ Kn+1.

Let z and w be two points from Kn with |z−w| < δn/2 and f be any function
from F . We can use Cauchy formula to write

f(z)− f(w) =
1

2πi

∫
γ

(
1

ζ − z
− 1

ζ − w

)
f(ζ)dζ,
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where γ is a circle of radius δn centred at z. Note that γ ⊂ Kn+1 and since
F is uniformly bounded, there is a constant Mn+1 independent of f such that
|f(ζ)| ≤Mn+1. This allows us to estimate

|f(z)− f(w)| ≤ 2Mn+1

δn
|z − w|

which implies that F is equicontinuous on Kn and hence on every compact subset
of Ω.

By Arzela-Ascoli theorem 2.2.4 from each sequence of functions fn fromF we
can choose a subsequence converging uniformly on Kn. Let fn,1 be a subsequence
converging on K1, by the same argument is has a subsequence converging on K2,
we denote it by fn,2. Continuing like that we construct a family of sequences
fn,k. By the standard diagonal argument, the sequence fn,n converges uniformly
on every Kn and hence on every compact subset of Ω.

It is important to mention that Montel’s theorem tells us very little about the
limit of the subsequence. From uniform convergence we know that the limit is also
analytic in Ω, but we don’t know whether it belongs to F or not. We are mostly
interested in the case when all functions from F are univalent, in this case we have
the following dichotomy:

Theorem 2.2.6 (Hurwitz). Let fn be a sequence of univalent functions in some
domain Ω that converge to f uniformly on every compact subset of Ω. Then f is a
univalent or a constant function

Remark 2.2.7. This is a typical example of a dichotomy in complex analysis where
we can say that our object is as good as possible or as bad as possible, but not
something in between. Another example is classification of isolated singularities.

Proof. Let us assume that the limiting function f is not univalent, i.e. there are
distinct points z1 and z2 in Ω such that f(z1) = f(z2). The sequence of functions
gn(z) = fn(z) − fn(z2) converges to g(z) = f(z) − f(z2). If us assume that
f is not a constant function, then the roots of g are isolated and there is a small
circle γ around z1 such that γ ⊂ Ω, g does not vanish on γ and z2 is not inside γ.
Since g does not vanish on γ, there is c > 0 such that |g| > c on γ. By uniform
convergence |g − gn| < c on γ for sufficiently large n. By Rouche’s theorem the
numbers of the roots of g and gn inside of γ are the same for sufficiently large n.
On the other hand functions gn are univalent and g(z2) = 0, hence there are no
roots inside γ, but g(z1) = 0. This proves that if f is not univalent, hence our
assumption that it is non constant must be false.

2.3 Koebe’s proof of Riemann Mapping theorem

Now we are ready to prove the Riemann Uniformisation or Riemann Mapping
theorem. It was originally stated by Riemann, but his proof contained a gap. Here
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we present a proof based on the ideas of Koebe.

Theorem 2.3.1. Let Ω be a simply-connected domain in the complex sphere Ĉ.
Then Ω is conformally equivalent to one of three domains: Ĉ, C or D. To be more
precise if Ĉ\Ω contains at least two points, then Ω is equivalent to D, if it contains
one point, then it is equivalent to C and if it is empty, then Ω = Ĉ.

Moreover, if Ω is equivalent to D and z0 is any point in Ω, then there is a unique
conformal map f : Ω→ D such that f(z0) = 0 and f ′(z0) > 0.

Three uniformising domains Ĉ, C, and D are not conformally equivalent.

Proof. We start from the last part of the theorem. It is easy to see that Ĉ can not
be equivalent to C or D since they are not even homeomorphic. To show that C
and D are not equivalent we assume the contrary, that there is a univalent map from
C onto D. This function is a bounded entire function, by Liouville’s theorem this
function must be constant which contradicts our assumption that it is univalent.

There is nothing to prove when Ω = Ĉ. When Ω = Ĉ \ {w0} we can apply
Möbius transformation µ = 1/(z − w0) which maps Ω onto C.

The only interesting case is when the complement of Ω contains at least two
points. To analyse this case we consider the family F of univalent maps f on Ω
such that |f(z)| ≤ 1 and f(z0) = 0, f ′(z0) > 0 for some fixed z0 ∈ Ω .

We will have to make the following steps to complete the proof:

1. Show that the family F is non empty.

2. Show that the family F is normal.

3. Consider a continuous functional on F : f 7→ f ′(0). Let fn be a sequence
of functions maximizing the functional. By the previous step there is a se-
quence converging to a maximizer. Show that the maximizer is in F .

4. Show that the maximizer is onto D.

Step 1. We know that there are two points outside of Ω, by applying a Möbius
transformation we can assume that one of these points is infinity. So, our domain
is a proper simply connected sub-domain of C. By assumption there is w ∈ C \Ω.
Since Ω is simply connected, there is a continuum connecting w to infinity that lies
outside of Ω. Using this continuum as a branch-cut we can define a single-valued
branch of φ(z) = (z − w)1/2. Notice that this function is univalent. Indeed, if
φ(z1) = φ(z2), then z1 − w = z2 − w and z1 = z2. By the same argument it does
not take the opposite values i.e. we can not have φ(z1) = −φ(z2). Since φ maps
a small neighbourhood of z0 onto an open neighbourhood of w0 = φ(z0), there is
r > 0 such that B(w0, r) ⊂ φ(Ω) and B(−w0, r) ∩ φ(Ω) = ∅. Composing φ with
r/(z + w0) we find a map from F .

Note that for domains with non-empty interior of the complement we only
need the last step. The trick with the square root is needed only for domains that
are dense in C.
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Step 2. Since all functions inF are bounded by 1, normality follows immediately
from the Montel’s Theorem 2.2.5.

Step 3. It is a standard corollary of Cauchy formula that if analytic functions fn
converge uniformly to f , then f ′n(z) → f ′(z) for every z. This proves that the
functional f 7→ f ′(z0) is continuous with respect to the uniform convergence on
compact sets.

Let M be the supremum of f ′(z0) over all functions from F . There is a se-
quence fn such that f ′n(z0) → M (note that we do not assume that M is finite).
By normality of F there is a subsequence which converges on all compact subsets
of Ω. Abusing notations we denote this subsequence by fn and its limit by f . Uni-
form convergence implies that f is analytic in Ω and f ′(z0) = M . In particular M
is finite.

By Hurwitz Theorem 2.2.6 the limit f is either univalent or constant. Since
M > 0, f can not be constant.

Step 4. The main idea of this step is rather simple. In some sense the derivative
at z0 pushes the images of other points away from f(z0). If there is a point w in
D \ f(Ω), then we can construct a function that will push w to the boundary of D.
Explicit computation will show that composition of f with this function has larger
derivative.

First we compose f with a Möbius transformation µ(z) = (z − w)/(1− w̄z).
This will map w to the origin. Now, by the same argument as in the first step we
can define a single-valued branch of

F (z) = (µ(f(z)))1/2 =

√
f(z)− w
1− w̄f(z)

.

Finally we have to compose with another Möbius transformation that will send
F (z0) back to the origin. This is done by

G(z) =
|F ′(z0)|
F ′(z0)|

F (z)− F (z0)

1− F (z)F (z0)
.

The first factor is needed to ensure that the derivative at z0 is positive (in other
words its argument is zero).

Explicit computation shows that

G′(z0) =
|F ′(z0)|

1− |F (z0)|2
=

1 + |w|
2
√
|w|

f ′(z0) > f ′(z0).

Since G is a composition of univalent maps and |G| < 1 this contradicts the as-
sumption that f maximizes the derivative at z0.

To complete the proof of the theorem we have to show that the map f is unique.
Let us assume that there is another function g which maps Ω onto D and has the
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right normalisation. The map f ◦g−1 is a conformal automorphism of the unit disc.
By Proposition 2.1.1 it has the form

eiθ
z − a
1− āz

.

Since 0 is mapped to itself and the derivative at 0 is 1 we must have eiθ = 1 and
a = 0. This means that g−1 = f−1 and f = g.

We can see from the proof that the univalent map onto the disc maximizes
derivative at the point which is mapped to the origin. There is an alternative ex-
tremal formulation. Let us assume that Ω is a simply connected domain such that
Ĉ\Ω contains at least two points. By composing with an appropriate Möbius trans-
formation we can assume that 0 ∈ Ω. We denote by F the family of all univalent
maps on Ω with f(z0) = 0 and f ′(z0) = 1. The functional f 7→ sup |f(z)| is min-
imized by the unique univalent map onto the disc of radius R = minf supz |f(z)|.
This radius is called conformal radius of the domain Ω at z0.

There is one more statement claiming that the derivative at the fixed point is
related to the size of the domain. This result is known as Lindelöf’s principle. Let
f1 and f2 be two univalent functions mapping D onto Ω1 and Ω2 respectively. We
also assume that fi(0) = 0 and that Ω1 ⊂ Ω2. Then |f ′1(0)| ≤ |f ′2(0)|with equality
holding if and only if f2(z) = f1(eiθz) for some real θ.

Minimization of the maximum modulus and Lindelöf’s principle follow imme-
diately from the proof of the Riemann Mapping theorem. Lindelöf’s principle also
implies that the conformal radius increases when the domain increases.

Exercise 3. Unifomise the following domains:

1. Domain bounded by two touching circles, see Figure 2.1a.

2. Infinite strip, 0 < =z < 1.

3. The unit disc with a slit D \ [x, 1] with −1 < x < 1, see Figure 2.1b.

4. The upper half-plane with a slit H \ [0, it] with t > 0, see Figure 2.1c.

(a) Two circles (b) A disc with a slit

(c) the upper half-plane with
a slit

Figure 2.1: Three domains where uniformizing maps could be found explicitly.
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2.4 Other normalizations

The Riemann Mapping theorem 2.3.1 tells us that all simply connected domains
whose complement contains at leas two points are conformally equivalent. In the
proof of this theorem we used the unit disc as the standard uniformizing domain.
Obviously, this choice is completely arbitrary. In this small section we are going
to discuss other uniformzing domains and normalizations.

First of all we know that the map from a simply connected domain Ω onto D
is not unique, it can be composed with any Möbius transformation preserving the
unit disc. The family of these transformations is described by three real parameters:
real and imaginary parts of the point which is mapped to the origin and angle of
rotation. This means that in general we should be able to fix uniquely any three
real parameters by the proper choice of Möbius transformation.

In the standard formulation of the Riemann’s theorem we normalize map by
requiring that a fixed point z0 is mapped to the origin and that the argument of
the derivative at this point is zero. This corresponds exactly to fixing three real
parameters, so it should not be a surprise that such a map is unique. We would
like to point out that the argument with the number of parameters is just a rule of
thumb, although a very good one, and each separate case requires a rigorous proof.

Other standard ways to choose normalization are: fix one interior and one
boundary point, fix three boundary points, fix two boundary points and and deriva-
tive at one of them. For some of these normalizations other domains are natural
uniformizing domains. Finally, we would like to mention that independently of
normalization, the upper half-plane is another standard choice for the uniformizing
domain.

One interior and one boundary point. Let Ω be a domain conformally equiv-
alent to D and let f be a conformal map from Ω onto D. We chose an interior
point z0 ∈ Ω and a boundary point ζ ∈ ∂Ω. We assume that f can be defined
continuously at ζ. Then there is a unique univalent function g : Ω→ D such that
g(z0) = 0 and g(ζ) = 1. There is a unique univalent function h : Ω → H with
h(z0) = i and h(ζ) = 0.

By Riemann theorem we can assume that f(z0) = 0 and we know that all
maps onto D differ by composition with a Möbius transformation. By Schwarz
lemma 2.1.2 the only Möbius automorphisms of D are rotations. This means that
f(z)/f(ζ) is the only map with desired properties.

The second part is straightforward. We know that there is a unique Möbius
transformation µ : D → H such that µ(0) = i and µ(1) = 0. The map h is equal
to µ ◦ g.

Exercise 4. Find this map µ.

Three boundary points. As before we assume that there is a map f : Ω → D
which can be continuously defined at boundary points ζi, i = 1, 2, 3. Let zi be
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three points on the boundary of D that have the same order as ζi1. We know that
there is a unique Möbius transformation µ mapping f(ζi) to zi. Notice that µ will
also map the unit disc into itself. Since zi and f(ζi) have the same order, map µ
will send the unit disc to itself. This means that µ ◦ f will send ζi to zi.

Sometimes the unit disc is not the most convenient domain for this type of
normalization. It is a bit more useful to map Ω onto the upper half-plane and to
send three given points to 0, 1 and∞.

Two boundary points and derivative. First of all we have to assume that func-
tion f : Ω → D is continuous at two boundary points ζ1 and ζ2. We assume that
the boundary of Ω is analytic near ζ1, this allows to extend f analytically into a
neighbourhood of ζ1 and to to make sense of the derivative at the boundary point.

It might seem that we want to fix too many parameters: two boundary points
give us two real parameters and a derivative is a complex number, hence it also
gives two parameters. But we can notice that near ζ1 the function f maps the
smooth boundary of Ω onto smooth boundary of the unit disc. This determines the
argument of the derivative and we are left with only one parameter: modulus of the
derivative.

The best unifomizing domain for this problem is the half-plane. As before, by
composing with a Möbius transformation we can construct a map g : Ω→ D with
g(ζ1) = 0 and g(ζ2) = ∞. It is easy to see that g(z)/|g′(ζ1)| maps ζ1 and ζ2 to 0
and∞ and has derivative 1 at ζ1. It is easy to check that we can choose any two
points and the value of the modulus of derivative, but this particular normalization
is probably the most useful one.

Exercise 5. Prove that this map f is unique.

2.5 Constructive proofs

In this section we briefly discuss some constructive proofs of the theorem. We will
present constructions, but will not give complete proofs. It is important to note, that
constructive proof give only approximate solutions to the uniformization problem.
On the other hand, there are very few domains where Riemann map can be written
explicitly in terms of simple functions.

Composition of elementary maps. We assume that Ω ⊂ D and that 0 ∈ Ω,
otherwise we can repeat the explicit construction from the first step of the Riemann
Mapping theorem’s proof. To construct the uniformization map we are going to use
the last step from the this proof.

We are going to construct a sequence of domains Ω1 = Ω,Ω2,Ω2, . . . and
conformal maps fn from Ωn onto Ωn+1. We will show that Ωn → D (in some

1We say that points on the boundary of Ω are in the counter clockwise order if their images under
the Riemann map are in this order



16 CHAPTER 2. RIEMANN UNIFORMISATION THEOREM

sense) and composition of fn will converge to a conformal map from Ω onto D.
Define rn = inf{|z|, z ∈ D \ Ωn} and let wn be some point in D \ Ωn with
|wn| = rn. As in the Step 4 we define

ψn =

√
z − wn
1− w̄nz

and

fn =
|ψ′(0)|
ψ′(0)|

ψ(z)− ψ(0)

1− ψ(z)ψ(0)
.

As before we have that fn(0) = 0 and f ′n(0) = (1 + rn)/2
√
n > 1. It is obvious

that Fn = fn ◦ fn−1 ◦ · · · ◦ f1 is a univalent map from Ω onto Ωn+1 ⊂ D with
Fn(0) = 0 and

F ′n(0) =
∏

f ′i(0) =
∏ 1 + ri

2
√
ri
.

From Schwarz lemma 2.1.2 we know that |F ′n(0)| is bounded by some constant
which depends on Ω and z0 only, but not on other Ωn. This implies that the product
must converge, and hence rn → 1 as n → ∞. This means that Ωn is squeezed
between rnD and D and hence converges to D (in Hausdorff topology). It is also
possible to show that the sequence of maps Fn converges uniformly on all compact
subsets of Ω and that the limiting function is a univalent map from Ω onto D.

This construction follows the same idea that the uniformizing map should max-
imize the derivative at the point which should be mapped to the origin, but instead
of abstract compactness argument we use explicit construction. Another advantage
of this approach is that all functions fn are elementary and easy to compute: they
are compositions of Möbius transformations and square root function. From pure
practical point of view it might be difficult to compute rn, but it is easy to see
that we don’t really need rn to be optimal, we just need it to be comparable to the
optimal.

Christoffel-Schwarz mapping The next method uses domain approximations.
The main idea is that any domain can be approximated by a polygonal domains
and for a polygonal domain there is a nice expression for a conformal map from the
unit disc onto these domains that is given by Christoffel-Schwarz formula. Detailed
discussion of Christoffel-Schwarz maps could be found in a boom by Driscoll and
Trefethen [9]. Here we just provide a brief description.

Theorem 2.5.1 (Christoffel-Schwarz). Let Ω be a polygonal domain with n ver-
tices where angles between adjacent edges are equal to παk. Then there is a con-
formal map from D onto Ω which has the form

F (w) = C

∫ w

0

n∏
k=1

(w − wk)−βkdw + C ′

where βk = 1 − αk, wk are some points on the unit circle, and C and C ′ are
complex-valued constants.
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There is an alternative version for a map from the upper half-plane. In this case
the mapping is given by

F (w) = C

∫ w

0

n−1∏
k=1

(w − xk)−βkdw + C ′

where xi are real numbers. Note that βn does not appear in this formula explicitly,
but it is not an independent parameter, from elementary geometry we know that
sum of all βi is equal to 2.

Using this theorem one can find explicit formulas for several simple domains
such as triangles and rectangles.

The main disadvantage of this formula is that it is not as explicit as it looks: in
practice it is very difficult to compute the points wk. Even when the points wk are
known, the map is given by an integral which has integrable singularities, which
make it not very amenable to straightforward computations. Banjai and Tefethen
[3] adopted other techniques to Christoffel-Schwarz algorithm and significantly
increased the speed of the computations.

Zipper algorithm Probably the best method for numerical computations is given
by zipper algorithm that was discovered by R. Kühnau and D. Marshall2. Given
points z1, . . . zn, the algorithm computes a conformal map onto a domain bounded
by a curve passing through these points. The conformal map is presented as a
composition of simple “slit” maps which are easy to compute. The algorithm is
fast and accurate, its complexity depends only on the number of data points, but
not on the shape of the domain. In 2007 Marshall and Rohde [14] showed the
convergence of the zipper algorithm for the Jordan domains. Finally, we refer
readers to the paper of Binder, Braverman, and Yampolsky [5] for a discussion of
the computational complexity of the Riemann uniformization problem.

Exercise 6. Find explicit formulas (that might involve special functions) for con-
formal maps between Ω and one of the standard uniformizing domains where Ω
is

1. Semi-infinite strip {z : −π/2 < <z < π/2, =z > 0}

2. Equilateral triangle

3. Rectangle

Exercise 7. Let R1 and R2 be two rectangles and let λi > 1 be the ratio of side
lengths of Ri. Assume that there is a conformal maps f : R1 → R2 which is
continuous up to the boundary and maps vertices to vertices. Show that λ1 = λ2

2Software is available from D. Marshall’s page www.math.washington.edu/

˜marshall/zipper.html

www.math.washington.edu/~marshall/zipper.html
www.math.washington.edu/~marshall/zipper.html
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2.6 Boundary correspondence

In the previous sections we discussed the existence of univalent maps from general
domains onto simple uniformizing domains. These maps are analytic inside the
corresponding domains, but a priori we have no information about their boundary
behaviour. In this section we will investigate this question and will obtain a simple
geometrical answer.

First we notice that by means of elementary maps that are obviously continuous
on the boundary we can map any domain onto a bounded domain. This means that
without loss of generality we can always assume that all domains in this section
are bounded.

Next we make a very simple observation which is purely topological and does
not use analyticity: boundaries are mapped onto each other. The precise meaning
is given by the following proposition:

Proposition 2.6.1. Let f be a univalent map from Ω onto Ω′ and let zn ∈ Ω be
a sequence which tends to the boundary of Ω, which means that all accumulation
points are on the boundary of Ω. Then f(zn) tends to the boundary of Ω′. Alter-
natively, f is a continuous function between one-point compactifications od Ω and
Ω′.

Proof. It is easy to see that the condition that zn tends to the boundary is equivalent
to the fact that for every compact K ⊂ Ω there is N such that zn is outside of K
for n > N . Let K ′ be a compact set in Ω′, by continuity K = f−1(K ′) is also a
compact set. Since zn will eventually leave K, f(zn) will leave K ′.

The previous proposition tells us that the boundary as a whole set is mapped to
the boundary, but it does not tell us anything about the continuity. The boundary
behavious of analytic functions is a rich and well developed subject but it is beyond
the scope of this course. Here we will use only some rather elementary consider-
ations which a surprisingly sufficient since we work with a rather small class of
univalent functions. We start by considering boundary behaviour near “regular”
boundary points.

Definition 2.6.2. An accessible boundary point ζ of a domain Ω is an equivalence
class of continuous curves γ : [0, 1]→ Ω̄ which join a given point ζ ∈ ∂Ω with an
arbitrary interior point. We assume that γ lies completely inside Ω except γ(1) =
ζ. Two curves are equivalent if for arbitrary neighbourhood U of ζ, parts of the
curves that are inside of Ω ∩ U could be joined by a continuous curve.

Notice that accessible points that correspond to different boundary points are
always different, but the same boundary point could carry several accessible points.
If accessible points are different, then for sufficiently small r0 there are disjoint
components of B(ζi, r0) ∩ Ω such that the tails of the curves defining accessi-
ble points lie in the corresponding components. We denote these components by
B(ζ, r0).
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If the boundary of Ω is nice, say, Jordan curve, then each boundary point cor-
responds to exactly one accessible point. In this case we identify them. It also
could be that one boundary point corresponds to more than one accessible points,
for examples see Figure 2.2. In the Figure 2.2a ζ is a point on a boundary such
that B(ζ, r) ∩ Ω has only one component for sufficiently small r. This point must
correspond to one accessible point. In the Figure 2.2b ζ is a point on a slit and
B(ζ, r) ∩ Ω has two components, each of them gives rise to an accessible point.
The last example in the Figure 2.2c is a bit more involved. Let ζ = 0 and for reach
dyadic direction θ = 2πk/2n we remove an interval [0, eiθ/2n]. For each irrational
(mod 2π) angle θ we can consider γθ(t) = (1 − t)eiθ. It is not very difficult to
see that each γθ defines an admissible point and that all these admissible points are
different.

(a) (b)
(c)

Figure 2.2: A single boundary point could correspond to one 2.2a, two 2.2b, or
even uncountably many 2.2c accessible points.

It could also be that there are no continuous curves γ approaching a boundary
point, in this case the boundary point is not accessible, see Figure 2.3.

(a) (b)

Figure 2.3: In both examples all points of the interval I are non-accessible.

Theorem 2.6.3. Let Ω be a simply connected bounded domain in the plane and
let f be a univalent map from Ω onto D. Then for every accessible point ζ the
map f can be continuously extended to ζ and |f(ζ)| = 1. Moreover, for distinct
accessible points their images are distinct.
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There are several ways to prove this theorem, one of the standard modern ways
is to consider the inverse function and use some powerful results about the exis-
tence of the radial limits for functions from the Hardy class H∞. Here we prefer
to give rather elementary geometrical proof. We start with two technical lemmas
due to Koebe and Lindelöf.

Lemma 2.6.4 (Koebe). Let zn and z′n be two sequences in the unit disc D con-
verging to two distinct points ζ and ζ ′ on the boundary of the unit disc. Let γn be
Jordan arcs connecting zn and z′n inside D but outside some fixed neighbourhood
of the origin. Finally, we assume that a function f is analytic and bounded in D
and that f converges uniformly to 0 on γn, that is the sequence εn = supγn |f |
converges to 0. Then f is identically equal to 0 in D.

Proof. Let us suppose that f is not identically zero. Without loss of generality we
assume that f(0) 6= 0, otherwise f has zero of order n at z = 0 and we can replace
f by f(z)/zn which satisfies all assumptions of the lemma.

For sufficiently large m there is a sector S of angle 2π/m such that the radii
towards ζ and ζ ′ lie outside of this sector and infinitely many of γn cross this sector.
We discard all other curves, as well as their endpoints. Abusing notations we call
the remaining curves γn. By rotating the unit disc, i.e by considering f(eiαz)
instead of f(z), we can assume that the positive real line is the bissectrice of S.

For each curve γn we can find its part γ′ which is also a simple curve that
crosses S, its end points lie on two different sides of S, and no other point lies on
the boundary of S. Finally, let γ′′n be the part of γ′n connecting one of the end points
to the first intersection with the real line and γ̄′′n be symmetric to γ′′n about the real
axis (see the Figure 2.4).

Figure 2.4: The dashed line is the original curve γ, solid line is its part γ′′ and γ̄′′.
The dotted line is made of rotations of γ′′ and γ̄′′
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By reflection principle the function f̄(z̄) is also analytic in D and it is bounded
by εn on γ̄′′n. This means that the function φ(z) = f(z)f̄(z̄) is analytic and bounded
on the union of γ′′n and γ̄′′n by Mεn, where M = supD |f |.

Let F be the product of rotations of φ by 2π/m, namely

F (z) = φ(z)φ(e2πi/mz) . . . φ(e2πi(m−1)/mz).

This function is analytic in D and bounded by εnM2m−1 on a closed curve formed
by the union of rotations of γ′′n and γ̄′′n. By maximum principle this implies that
|f(0)|2m = |F (0)| ≤ εnM

2m−1, since εn → 0 this implies that f(0) = 0, which
contradicts our initial assumption.

The second technical result that we take from [15] is the following theorem
which we present without proof. (The proof could be found in Section 11.21 of
[15].)

Theorem 2.6.5 (Lindelöf). Let Ω be a simply connected domain bounded by a
Jordan curve Γ and let f be a function analytic in Ω satisfying the following con-
ditions

1. f is bounded in Ω;

2. f is continuous everywhere on the boundary with the exception of a single
point ζ0;

3. let ζ1 be some other point on Γ, two points ζ0 and ζ1 separate Γ into two
Jordan curves: Γ1 and Γ2. The following limits along these two arcs exist

lim
Γ1

f(ζ) = a, lim
Γ2

f(ζ) = b.

Then a = b and f is continuous at ζ0.

Proof of Theorem 2.6.3. Let γ(t) be a curve defining the accessible point ζ, we
want to show that γ̃(t) = f(γ(t)) converges to a point on the unit circle. Let us
assume the contrary, then γ̃ contains a sequence of arcs with endpoint converging
to two distinct boundary points, see the Figure 2.5. Moreover, these arcs converge
to the boundary and hence stay away from the origin. The inverse function f−1

converges uniformly to ζ on these arcs. Applying the previous lemma to f−1 − ζ
we see that f−1 must be identically equal to ζ, which is obviously impossible.
This proves that as we move along γ̃ we must approach a definite point on the unit
circle. We define f(ζ) to be this point.

Next we have to show that this definition is consistent, that is independent of
our choice of γ. Let γ′(t) be another curve describing the same accessible point
ζ. As before we know that γ̃′ = f(γ′) approaches a single point on the unit
circle. We assume that γ̃ and γ̃′ approach two distinct points. By the definition
of accessible point, curves γ and γ′ can be connected by a Jordan arc within any
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Figure 2.5: Thick parts of the curve γ form arcs whose end-points converge to two
distinct points ω and ω′.

neighbourhood of ζ. As these neighbourhood contract to ζ, their images become
arcs whose endpoints converge to two distinct points on the unit circle, see the
Figure 2.6. On these arcs f−1 converges uniformly to ζ and, as before, this implies
that f−1 is constant.

Figure 2.6: Images of arcs connecting curves γ and γ′ form a sequence of arcs in
D whose end-points converge to two distinct points on the unit circle.

Let ζ and ζ ′ be two different accessible points, γ and γ′ be the corresponding
curves, and B(ζ, r0) and B(ζ ′, r0) be the disjoint components of B(ζ, r)∩Ω as in
the definition of accessible points. We know that f(z) approaches definite points
on the unit circle as z approaches ζ or ζ ′ along γ or γ′. We assume that they
approach the same point ω ∈ ∂D and will show that it leads to a contradiction.

Without loss of generality we can assume that the curves γ and γ′ defining
these these two accessible points start at the same point and that they have no other
common points. The images of these two curves form a Jordan curve that have the
only common point with ∂D and bound a sub-domain in D that we denote by D.

In this domain we can apply Lindelöf’s theorem 2.6.5 to g = f−1 and prove
that g is continuous at ω. This immediately implies that both accessible points
correspond to the same boundary point. Moreover for every ε > 0 there is δ such
that if w ∈ D such that |w − ω| < δ then |z − ζ| < ε where z = g(w).

Since we have two different accessible points, there is r0 such that the tails of
γ and γ′ are in the different connected component of Ω ∩ B(ζ, r) for r < r0. We
assume that ε < r0 and chose δ as in the previous paragraph. There is an arc of the
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circle |ζ − w| = δ which connects two points on the images of the arcs γ and γ′.
Let γ′′ be the image of this arc. It connects two points in the disjoint components
of Ω ∩ B(ζ, r0), hence there should be a point on γ′′ which is outside of B(ζ, r0)
which contradicts our assumption that γ′′ should be inside B(ζ, ε). This proves
that ζ and ζ ′ should be the same accessible points.

Figure 2.7: Pre-image of an arc connecting γ̃ and γ̃′ can not stay in a small neigh-
bourhood of ζ.

Since all points on a Jordan curve correspond to exactly one accessible point
one can easily prove

Theorem 2.6.6 (Caratheodory). Let Ω be a simply connected domain bounded by
a closed Jordan curve Γ and let f be a conformal map from Ω onto D. Then f
could be continuously extended to a bijection from Γ onto the unit circle.

Proof. Existence of the extension and that it is a bijection follows directly from
Theorem 2.6.3. The continuity follows from monotonicity of the argument. The
details are left to the reader.

It is not surprising that for analytic boundaries the result is even stronger (but
the proof is beyond the scope of this course).

Theorem 2.6.7. Let Ω be a domain bounded by an analytic Jordan curve, then
a conformal map f from Ω onto D can be extended to a function analytic on the
boundary.

Surprisingly the inverse boundary correspondence holds:

Theorem 2.6.8. Let f be a continuous function in Ω̄ which is analytic in Ω, we
also assume that the boundary of Ω is a positively oriented Jordan curve Γ. If f
is a continuous orientation preserving bijection from Γ onto another Jordan curve
Γ′, then f is a univalent map from Ω onto the domain Ω′ bounded by Γ′.

Proof. Let w0 be some point in Ω′. Since f maps Γ onto Γ′, we have that f 6= w0

on Γ. By continuity, there is a neighbourhood U ⊂ Ω of Γ where f 6= w0 as well.
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For any closed curve γ ⊂ Ω we can consider the quantity

1

2π
∆γ arg(f(z)− w0)

the normalized increment of the argument along γ. It is easy to see that when
we continuously deform γ, this quantity changes continuously. Since this quantity
is integer-valued for any closed curve, it must be constant for all curves that are
continuous deformations of each other inside U .

By theorem’s assumptions

1

2π
∆Γ arg(f(z)− w0) =

1

2π
∆Γ′ arg(w − w0) = 1.

Let γ ⊂ Ω be a simple curve homotopic to Γ insideU . The argument above implies
that the same is true for γ. Let D be the domain bounded by γ. For this domain
we can apply argument principle and get that the equation f = w0 has exactly one
solution inside D. On the other hand Ω \ D ⊂ U and by construction f 6= w0

there. This proves that there is a unique point z0 ∈ Ω such that f(z0) = w0.
By the same argument f 6= w for every w in the interior of complement of Ω′.

Finally, no point of Ω is mapped onto a point of Γ′, otherwise its neighbourhood
would be mapped onto a neighbourhood of a point on the boundary of Ω′ and there
will be points outside, which contradicts the argument above.

Note that in the previous theorem can assume that Ω is a domain with Jordan
boundary in Ĉ. But the domain Ω′ should be bounded which can be seen from the
following simple example.

Let Ω = Ω′ be the upper half-plane, the boundary Γ = Γ′ = R. Function
f(z) = z3 is a continuous bijection from Γ onto Γ′, but it does not map Ω onto Ω′.

Considering simple examples of slit domains where the uniformizing maps are
known explicitly we can see that these maps are not continuous if one uses the
ordinary Euclidean topology. Maps obviously behave differently on different sides
of the slits. On the other hand, from the internal geometry point of view, two
points on the different sides of the slit are far away. The notion of an accessible
point formalizes this intuition and allows to treat two sides of a slit as two different
sets. This allows us to study boundary behaviour for all domains with relatively
simple boundary. To complete the study of boundary correspondence we have to
study what happens at non-accessible points. For this we will introduce the notion
of prime ends that was introduced by Caratheodory [6].

Definition 2.6.9. A cross-section or a cross-cut in a simply-connected domain Ω is
a Jordan arc γ : (0, 1) → Ω such that the limits γ(t) as t approaches 0 and 1 exist
and lie on the boundary of Ω. Curve γ separates Ω into two connected domains.
We assume that boundaries of both domains contain boundary points of Ω other
than the end-points of γ.

It is easy to see that the end-points of a cross-cut must be different accessible
points.
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Definition 2.6.10. A chain is a sequence of cross-cuts γn such that γ̄n ∩ γ̄=∅,
diameter of γn tends to zero, and any Jordan curve in Ω connecting a point on γn
with a given point z0 ∈ Ω must intersect all γm for m < n.

Figure 2.8: Curve near point ζ1 do not form a chain. A curve near point ζ3 is not a
cross-cut since it is not continuous at the end-points. Curves near ζ2 form a chain
that defines a prime end which corresponds to an accessible point.

Definition 2.6.11. We say that two chains γn and γ′n are equivalent if for every n
the arc γn separates almost all γ′m from γn−1 and γ′n separates almost all γm from
γ′n−1. A prime end is an equivalence class of chains.

There is an alternative way to define the equivalence of the chains. Let Dn be
the connected component of Ω\γn which does not contain γn−1. It contains all γm
with m > n. It is easy to see that Dn ⊂ Dn+1. Let Dn and D′n be two collections
of sub-domains corresponding to two chains. Then the chains are equivalent if and
only if each domain from one collection contain all but finitely many domains from
the other collection. Using this notion we can define a prime end by the condition
that diameters of f(Dn) tend to zero instead of the diameters of γn.

Definition 2.6.12. The support of a prime end is defined as ∩nDn where Dn are
the domains as above.

(a) (b)

Figure 2.9: In both examples the interval I is the support of a prime end.
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It is easy to see that the support is a subset of ∂Ω which is independent of the
choice of a chain. Another simple observation is that each accessible point can be
associated with a prime end. Indeed, let us consider an accessible point ζ which
is defined by a curve γ. We can define γn to be arcs of the circles |ζ − z| = 1/n
that intersect with γ. These arcs form a chain and the support of the corresponding
prime end is ζ. Clearly, for different accessible points these prime end are different.

Now we can formulate (without a proof) the most general result about the
boundary correspondence.

Theorem 2.6.13 (Caratheodory). Let Ω be a simply connected domain and let f
be a conformal map from f onto D, then f could be continuously extended to a
bijection between prime ends and points on the unit circle.

2.7 Multiply connected domains

2.7.1 Conformal annuli

In the previous section we have shown that all non-trivial simply connected do-
mains are conformally equivalent to the unit disc, hence they all are conformally
equivalent to each other. For multiply connected domains this is not true any more.
The simplest example is given by the following theorem

Theorem 2.7.1. Let A(r,R) = {z : r < |z| < R} be an annulus with internal
radius r and external radius R. There is a conformal map from A1 = A(r1, R2)
onto A2 = A(r2, R2) if and only if R1/r1 = R2/r2.

Proof. As usual, one direction is easy, if the ratios of the radii are the same then
f(z) = zR2/R1 maps A(r1, R2) onto A(r2, R2). This map is linear and hence
conformal. This also means that without loss of generality we can assume in the
sequel that ri = 1.

The main part of the theorem is the statement that the ratio of radii is a confor-
mal invariant. Let us assume that there is a map f from one annulus onto another.
We are going to show that this implies that the ratios of radii are equal.

First we want to show that f maps boundary circles onto boundary circles.
Note that this is much weaker than continuity up to the boundary, and this is why
we can show this without use of sophisticated techniques.

Let S = rT be a circle in A2 with radius 1 < r < R2. Its pre-image under f
is a compact set, hence it is bounded away from both boundary circles of A1. In
particular, K = f(A(1, 1 + ε)) does not intersect S for sufficiently small ε. Since
S separates A2 into two disjoint parts, this means that K is completely inside S or
completely outside S. Let us assume for a while that it is inside (). If we consider
a sequence {zn} inside A(1, 1 + ε) with |zn| → 1 then the sequence {f(zn)} does
not have points of accumulation inside A2, hence |f(zn)| must converge to 1. In
the same way we show that |f(zn)| → R2 for |zn| → R1. The purpose of the trick
with S excludes the possibility that f(zn) oscillates between two boundary circles.
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Figure 2.10: Circle S and its pre-image split each annulus into two doubly con-
nected domains. Shaded areas are A(1, 1 + ε) and its image. We assume that both
of them lie inside S and its pre-image.

In the case when K is outside S we get that |f(zn)| → 1 as |zn| → R1 and
|f(zn)| → R2 as |zn| → 1. In this case we change f(z) to R2/f(z) which also
conformally maps A1 onto A2 but have the same boundary behaviour as in the first
case.

Let us consider the function

u(z) = log |f(z)| = < log(f(z)).

This is a real part of an analytic function and hence it is harmonic in A1. The
previous discussion shows that u can be extended continuously to the closure of
A1 by defining u(z) = 0 on |z| = 1 and u(z) = log(R2). There is another
harmonic function in A1 which has the same boundary values:

log(R2)

log(R1)
log |z|.

By the maximum modulus principle, these two functions are the same.
The basic idea of the rest is very simple. The equality of the harmonic functions

gives |f | = |z|α where α = log(R2)/ log(R1). This suggests that f = czα for
some c with |c| = 1. On the other hand zα is one-to-one if and only if α = 1 or,
equivalently, R1 = R2. The rigorous justification of this argument is slightly more
involved.

Let us consider a harmonic function

h(z) = log |f | − α log |z|.

This function looks like the real part of log(f) − α log(z), but we don’t know
whether it could be defined as a single-valued function.

The argument above shows that h vanishes on the boundary, hence, by max-
imum principle, it vanishes everywhere in A1. Equivalently, log |f | = α log |z|
or log(ff̄) = α log(zz̄). Applying the Cauchy-Riemann differential operator
∂ = (∂x − i∂y)/2 to both functions we get

f ′

f
= α

1

z
.
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Take any simple curve γ which goes counter clockwise around the origin insideA1

and integrate this identity along γ. Dividing by 2πi we have

1

2πi

∮
γ

f ′(z)

f(z)
dz = α

By argument principle the left hand side is the index of f(γ) and hence α must
be an integer. Since Ri > 1, it must be a positive integer. This allows us to
define a single valued function z−α. Now consider function z−αf(z). Modulus
of this function is identically equal to 1 in A1. By standard corollary of Cauchy-
Riemann equations this implies that it must be a constant function. This proves
that f(z) = eiθzα for some real θ. On the other hand the only integer power which
is univalent in the annulus is z, hence α = 1 and R1 = R2.

This is a very important theorem and as such it has more than one proof. Here
we give one more proof and we will give another one after discussion of extremal
lengths. The second proof is based on the following proposition.

Proposition 2.7.2. Let A1 and A2 be two annuli as before. If there is a univalent
map f : A1 → A2, then R2/r2 ≥ R1/r1.

Proof. As before, we can assume without loss of generality that r1 = r2 = 1 and
that the inner circle is mapped to the inner circle, so that the outer circle is mapped
to the outer circle. Since function f is analytic in an annulus it can be written as
Laurent series

f(z) =
∑
n∈Z

anz
n

We denote by A(r) the area of a domain bounded by a Jordan curve f(reiθ) where
θ goes from 0 to 2π. By Green’s formula for the area we have

A(r) =
1

2i

∫
f̄(z)df(z) =

1

2i

∫
|z|=r

f̄(z)f ′(z)dz

=
1

2i

∫ 2π

0

(∑
ānr

ne−iθn
)(∑

nanr
n−1eiθ(n−1)

)
rieiθdθ

= π
∑
n∈Z

n|an|2r2n.

The last identity holds since
∫
eiθn = 0 unless n = 0.

Passing to the limit as r → 1 we have

π = π
∑

n|an|2.

Using this identity we can write

A(r)− πr2 = πr2
∑
n∈Z

n|an|2(r2n−2 − 1) ≥ 0

where the last inequality holds term-wise. Passing to the limit as r → R1 we obtain
that R2 ≥ R1.
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To complete the second proof of Theorem 2.7.1 we just use the Proposition for
f and f−1.

Exercise 8. Use reflection principle to give another proof of this theorem.

Theorem 2.7.1 tells us that not all doubly connected domains are conformally
equivalent, and it is easy to believe that the same is true for domains of higher
connectivity. This means that we can not use the same uniformizing domain for all
domains, instead, we should use sufficiently large family of standard domains. In
the doubly connected case the standard choice is the family of all annuli with outer
radius 1 (some people prefer annuli with inner radius 1). For higher connectivity
there is no unique family, but there are several preferred families. One of the
most frequent families is the family of circle domains: domains such that each
boundary component is either a circle or a single point. We will discuss other
standard families of domains at the end of this section.

Here we will present a rather elementary proof for the doubly connected do-
mains. The proof in the case of finitely connected domains is not extremely dif-
ficult, but goes beyond the scope of this course. For infinitely connected domains
there is Koebe conjecture stating that every domain can be mapped onto a circle
domains. The best result in this direction is due to He and Schramm who proved it
in [12] for countably connected domains using circular packing techniques.

We start with a general construction that works for all finitely connected do-
mains. It allows us to assume without loss of generality that all boundary compo-
nents are analytic Jordan curves.

First of all we can get rid of all single point components. Indeed, if there is a
map f from Ω \ {z}, then z0 is an isolated singularity and the function is bounded
in its neighbourhood, hence it is a removable singularity and f could be extended
to the entire domain Ω. On the other hand, if we have a map from domain without
a hole at z0 then we can just restrict it to the domain with a hole.

We use the doubly connected case to illustrate how this works. Let Ω be a
double connected domain and one of components of its complement is a single
point z0. Let us consider Ω′ = Ω ∪ {z}. By Riemann theorem there is a univalent
f : Ω′ → D with f(z0) = 0. It is obvious that f maps Ω onto the annulus
{z : 0 < |z| < 1}.

To show that we can assume that all boundary components are nice we again
use the Riemann uniformization theorem. Let Ω be an n-connected domain and let
E1, . . . , En+1 be the components of its complement. Using the argument above we
assume that all Ei are not singletons. Let us consider domain Ω∪E2∪· · ·∪En+1.
This is a simply connected domain whose complement is not a single points, hence
we can map it to the unit disc. Under this map Ω, E2, . . . , En+1 are mapped to
some subsets of D which, abusing the notations, we still call Ω, E2, . . . , En+1. By
new E1 we denote the complement of the unit disc. Notice that the boundary of
E1 is now the unit circle which is an analytic Jordan curve. Next we take the union
of all domains except E2, map it to the disc and rename all the sets. After that
the boundary of E2 is the unit circle and the boundary of E2 is a univalent image
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of the unit circle, hence it is an analytic Jordan curve. Continuing like that for all
components we can map the original domain onto a sub-domain of D such that one
boundary component is the unit circle and the others are analytic Jordan curves.

Figure 2.11: Dashed, dotted, and solid lines represent three boundary components
and their successive images.

Theorem 2.7.3. Let Ω be a doubly connected domain, then there is a univalent
map f from Ω onto some annulus with outer radius 1. This map is unique up to
rotation and inversion of the annulus.

Proof. We have already proved the uniqueness in the proof of Theorem 2.7.1. To
prove existence we first consider two special cases. If both components of the com-
plement are the single points, then we can choose f to be a Möbius transformation
sending these two points to 0 and∞. If only one of them is a single point, then we
can map Ω with this point to the unit disc and this point to the origin.

The only interesting case is when both components are non trivial. As we ex-
plained before, we can assume that Ω is a doubly connected domain such that one
component of its complement is the complement of the unit disc and the other one
is bounded by an analytic curve. By composing with one more Möbius transfor-
mation we can assume that the origin is inside the second component.

Let us apply the logarithmic function to Ω. Since 0 is not in Ω, the logarithm
is analytic but it is not single valued. Each time when we go around the inner
boundary component the value of log changes by 2πi. Logarithm maps Ω onto
a vertical strip S such that its right boundary is the imaginary axis and the left
boundary is a 2πi-periodic curve. By Riemann theorem there is a univalent map
from S onto a vertical strip S′ = {z : −1 < <(z) < 0}. Moreover we can assume
that ±i∞ and 0 are mapped to themselves. The point 2πi is mapped onto some
point w0 on the positive imaginary axis. Rescaling by 2π/|w0| we find a map φ
from S onto S′′ = {z : −h < <(z) < 0} where h = 2π/|w0|. This map preserves
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Figure 2.12: The Riemann mapping from a doubly connected domain onto an an-
nulus. Dashed lines are an arbitrary simple curve connecting 1 to the inner bound-
ary component and its images.

±i∞, 0 and 2πi. We claim that φ satisfies the following equation

φ(z + 2kπi) = φ(z) + 2kπi, (2.1)

moreover, the same is true for the inverse function. Obviously, it is sufficient to
prove this for k = 1, the general case follows immediately by induction. Notice
that z 7→ z+2πi is a conformal automorphism of S and S′′, hence both f(z)+2πi
and f(z + 2πi) map S onto S′′ in such a way that three boundary points ±i∞ and
0 are mapped to ±i∞ and 2πi. By uniqueness of the Riemann map which sends
three given boundary points to three given boundary points, these two maps are the
same. The proof for the inverse function is exactly the same.

Finally we compose all these functions

f(z) = eφ(log(z)).

This is an analytic function which maps Ω onto an annulus A(e−h, 1). The
problem is that both log and exp are not one-to-one, so we can not immediately
claim that f is univalent. Despite that, this function is univalent. This function
is injective since log maps z onto a 2πi-periodic sequence. By (2.1), φ maps
2πi-periodic sequences to 2πi-periodic sequences, and, finally, exp maps any 2πi-
periodic sequence to a single point. Similar argument for inverse functions gives
that f is surjective.

Theorem 2.3.1 tells us that all non-trivial simply connected domains are con-
formally equivalent to each other. Theorems 2.7.1 and 2.7.3 tell us for doubly-
connected domains there is a family of equivalence classes. Each doubly connected
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domain is conformally equivalent to the annulus and the ratio of its radii completely
determines the equivalence class. This is a first example of a conformal invariant:
quantity that does not change under conformal transformation. For various reasons
that we will discuss later, the standard conformal invariant of a doubly connected
domain Ω which describes the equivalence class is the conformal modulus which
is defined as

1

2π
log

R

r

where R and r are outer and inner radii of an annulus which is conformally equiv-
alent to Ω. By Theorems 2.7.1 and 2.7.3 we know that this quantity is well defined
and does not depend on particular choice of an annulus.

Exercise 9. Find an explicit map from a domain bounded by two non-concentric
circles onto an annulus

Koebe conjecture: every domain is conformally equivalent to a circle domain.
Schramm proved this for countable connectivity.

2.7.2 Uniformisation of multiply connected domains

Annuli are the natural “standard” doubly connected domains. For the domains
of higher connectivity there is no natural unique choice of uniformizing domains.
Instead there are several somewhat standard families of canonical domains. In
this section we will discuss canonical domains and formulate the corresponding
uniformization theorems.

Parallel Slit Domains. These are domains that are the complex sphere Ĉ without
a finite union of intervals that are parallel to each other.

Figure 2.13: A parallel slit domain.

Let Ω be a multiply connected domain, z0 be some point in Ω and θ be an
angle in [0, 2π), then there is a unique univalent map fz0,θ from Ω onto a parallel
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slit domain such that the slits form angle θ with the real line, z0 is mapped to
infinity and the Laurent series at z0 is of the form

fz0,θ(z) =
1

z − z0
+ a1(z − z0) + a2(z − z0)2 + . . . (2.2)

As in the proof of the Riemann Uniformisation theorem the uniformizing map
could be described as a function which maximizes a certain functional over a class
of admissible functions. For the mapping onto a parallel slit domain the class
of admissible functions is the class of all univalent functions in Ω which have
expansion as in (2.2) at z = z0. The function fz0,θ has the maximal value of

<
(
e−2iθa1

)
among all admissible functions.

Circular and Radial Slit Domains. These are two similar classes of slit domains
consisting of the complex sphere without some slits. In the first case we remove
several arcs that lie on concentric circles centred at the origin. In the second case
we remove intervals that lie on rays emanating from the origin

(a) (b)

Figure 2.14: Examples of a circular slit domain (a) and a radial slit domain (b).

In both cases we can normalise a map in such a way that two given points z1

and z2 from Ω are mapped to the origin and infinity. Let us consider a family of
functions f that are univalent in Ω, f(z1) = 0, and there is a simple pole of residue
1 at z2. The function that maximizes |f ′(z1)| maps the domain onto a circular slit
domain and the function that minimizes |f ′(z1)| maps the domain onto a radial slit
domain.
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Chapter 3

Elementary Theory of Univalent
Maps

In this chapter we will discuss some properties of univalent functions, we will be
especially interested in their boundary behaviour and connection between geomet-
rical properties of domains and analytical properties of univalent functions on or
onto these domains.

3.1 Classes S and Σ

We will be mostly interested in properties of functions from class S (from the Ger-
man word schlicht which is another standard term for univalent functions) consist-
ing of univalent functions in the unit disc normalized by the conditions f(0) = 0
and f ′(0) = 1. Alternatively they are given by Taylor series of the form

f(z) = z + a2z
2 + a3z

3 + . . .

that converge in the unit disc.
For any simply connected domain there is a univalent function from D onto

this domain. By rescaling and shifting the domain the function can be normalized
to be from the class S. So up to scaling and translations, functions from S describe
all simply connected domains except, of course, C and Ĉ.

Another standard class is the family of functions that are univalent in the com-
plement of the unit disc D− and have expansion

g(z) = z + b0 + b1z
−1 + b2z

−2 + . . .

We denote this class by Σ. Each g ∈ Σ maps D− onto the complement of a compact
set E. Sometimes it is more convenient to assume that 0 ∈ E. This subclass of Σ
is denoted by Σ′. Note that any function from Σ differ from some function from Σ′

by subtraction of an appropriate constant, so these two classes are extremely close
and share most of the properties.

35
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One of the reasons for introduction of Σ′ is that there is a simple bijection
between functions from S and Σ′. If f is an arbitrary function from the class S
then

g(z) =
1

f (1/z)

belongs to the class Σ′. Conversely for every g ∈ Σ′

f(z) =
1

g (1/z)
∈ S.

For functions given by Taylor series it is generally very difficult to check
whether they are in S or not. There are some sufficient conditions but they are
rather weak and cover only special cases.

One of a very important examples of a function from S is the Koebe function

K(z) = z + 2z2 + 3z3 + 4z4 + . . . .

It is difficult to see thatK ∈ S just by looking at the Taylor series. Fortunately, this
series could be written in a closed form as z/(1−z)2. There are two standard ways
to show that K is univalent. First one is to observe that it is a rational function of
degree 2 and hence it is 2-to-1 on the complex sphere. By explicit computations
one can show that the unit circle is mapped onto [−∞,−1/4] and for all points
outside of this ray only one pre-image is inside the unit disc.

Alternative and more intuitive way it to rewrite K as

1

4

(
1 + z

1− z

)2

− 1

4
.

We know that (1 + z)/(1 − z) is a Möbius map from the unit disc onto the right
half-plane {z : <z > 0}. Square function maps it conformally onto the plane with
cut along the negative real line, scaling and subtracting 1/4 maps it onto the plane
with cut from −∞ to −1/4. Since all maps here are univalent, their composition
is also univalent.

Exercise 10. Show that Kα ∈ S where

Kα(z) =
1

2α

[(
z + 1

1− z

)α
− 1

]
, α ∈ (0, 2].

Find Kα(D).

Exercise 11. Show that Joukowsky function J = z + 1/z belongs to Σ and find
J(D−). Show that the modifies Joukowsky function Jk(z) = z + k/z is also in Σ
for all −1 < k < 1. Find the image Jk(D−).

Exercise 12. Let f be a function from class S. Prove that the following functions
are also from S
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1. Let µ be a Möbius transformation preserving D, then we can define

fµ =
f ◦ µ− f ◦ µ(0)

(f ◦ µ)′(0)
.

Important particular case is fθ(z) = e−iθf(eiθz).

2. Reflection of f defined as f̄(z̄).

3. Koebe transform Kn(f)(z) = f1/n(zn) (you also have to show that Knf
could be defined as a single valued function for all positive integer n). The
same is true for functions from class Σ′.

3.2 Bieberbach-Koebe theory

The first example of a theorem relating analytical properties with geometrical is
Gronwall’s theorem which relates the area of the complementary domain E with
coefficients of a function from Σ.

Theorem 3.2.1 (Gronwall’s Area Theorem). Let g(z) = z+
∑
bnz
−n be a function

from class Σ which maps D− onto the complement of a compact set E. The area
of E is given by

m(E) = π

(
1−

∞∑
n=1

n|bn|2
)
.

The proof of this theorem uses essentially the same technique as the proof of
Proposition 2.7.2.

Proof. To compute the area of E we would like to use Green’s theorem for the
image of the unit circle. This does not work since the function is not defined on the
unit circle and it might be that it could not be even continuously extended to the
boundary. Instead we use one of the standard tricks. Take some r > 1 and denote
by γr the image of the circle |z| = r under f . Since f is a univalent map we have
that f is a simple closed analytic curve enclosing E ⊂ Er. By Green’s theorem in
its complex form the area of Er is

m(Er) =
1

2i

∫
γr

w̄dw =
1

2i

∫
|z|=r

ḡ(z)g′(z)dz

=
1

2i

∫ 2π

0

(
z̄ +

∑
b̄bz̄

n
)(

1−
∑

nbnz
−n−1

)
rieiθdθ

= π

(
r2 −

∞∑
n=1

n|bn|2r−2n

)
.

Passing to the limit as r → 1 we complete the proof the theorem.
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Corollary 3.2.2. Since the measure of E is non-negative we have

∞∑
n=1

n|bn|2 ≤ 1,

and in particular

|bn| ≤
1√
n
.

This inequality is sharp for n = 1 since J(z) = z + 1/z is univalent, but
not sharp for n ≥ 2. Indeed the direct computations show that the derivative of
g(z) = z + b0 + eiθ

√
nzn vanishes at some points in D− and hence g is not

univalent.
From these inequalities on the coefficients of functions from Σ one can estimate

the second coefficient of function from S. This theorem was initially proved by
Bieberbach in 1916 [4].

Theorem 3.2.3 (Bieberbach). Let f(z) = z +
∑∞

n=2 anz
n be a function from S,

then |a2| < 2. Moreover, |a2| = 2 if and only if f is a rotation of the Koebe
function.

Proof. As we discussed before, the function 1/f(1/z) is from class Σ′. Applying
the Koebe transform (see Exercise 3) with n = 2 we see that

g(z) =
1√

f(1/z2)

is also from Σ′. From the Taylor series for f we compute√
f(z2) =

√
z2 + a2z4 + . . . = z

√
1 + a2z2 + . . .

and
g(z) =

z√
1 + a2z−2 + . . .

= z +
a2

2
z−1 + . . .

Applying the Corollary to the Gronwall’s Area theorem 3.2.2 we get |a2|/2 ≤ 1
with equality holding if and only if

g(z) = z − eiθz−1

for some real θ. Rewriting f in terms of g we get

g(z) = e−iθ
(

eiθz

(eiθz − 1)2

)
= e−iθK(eiθz).

In the same paper [4] Bieberbach used this result as a basis for the follow-
ing famous conjecture that was probably the main open problem in the geometric
function theory for may decades.
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Conjecture 3.2.4 (Bieberbach). Let f(z) = z +
∑∞

n=2 anz
n be a function from

S, then |an| < n. Moreover, |an| = n for some n if and only if f is a rotation of
the Koebe function.

This conjecture motivated a lot of progress in complex analysis until it was
finally proved in 1985 by de Branges [8]. Surprisingly the similar question about
the coefficients of functions from the class Σ is still open. In fact, even the decay
rate (i.e. the best constant γ such that |bn| is asymptotically bounded by nγ−1) is
not known. To be more precise we define

γg = lim sup
n→∞

log |bn|
log n

+ 1

and
γ = γΣ = sup

g∈Σ
γg.

In the similar way for functions in class S we define

γf = lim sup
n→∞

log |an|
log n

+ 1

and
γS = sup

f∈S
γf ,

γSb
= sup

f∈Sb

γf ,

where Sb is a family of bounded functions from S. The equality γS = 2 follows
immediately from the Bieberbach conjecture, but in fact it can be derived from
much simpler estimate |an| ≤ en which was proved by Littlewood in 1925 [13].
Carleson and Jones proved in 1992 [7] that γSb

= γΣ and conjectured that it is
equal to 1/4 (trivial bounds are 0 ≤ γ ≤ 1/2). This conjecture is still wide open.

Bieberbach theorem implies a very important corollary about the geometrical
properties of functions from S. By analyticity, we know that Ω = f(D) contains
an open neighbourhood of the origin. The lower bound on the distance from the
origin to the boundary of Ω is given by

Theorem 3.2.5 (Koebe 1/4 Theorem). Let f be a function from S, then 1/4D ⊂ Ω,
where Ω = f(D). Moreover, if there is w 6∈ Ω with |w| = 1/4, then f is a rotation
of the Koebe function.

Proof. Let us take any point w which is not in Ω. The function

φ(z) =
wf(z)

w − f(z)

is obviously analytic in D. To check that it is univalent, we assume that φ(z1) =
φ(z2). Since w 6= 0, this implies that f(z1) = f(z2) and z1 = z2. Finally

φ(z) =
wf(z)

w − f(z)
=

wz + wa2z
2 + . . .

w − z − a2z2 − . . .
= z +

(
a2 +

1

w

)
z2 + . . . ,
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which implies that φ ∈ S and, by the Bieberbach theorem, |a2 + 1/w| ≤ 2. Since
we also have |a2| ≤ 2 we have |1/w| ≤ 4 or, equivalently, |w| ≥ 1/4. This proves
that all points with |w| < 1/4 must lie in Ω.

To prove the last part we notice that |w| = 1/4 implies that |a2| = 2 and the
Bieberbach theorem 3.2.3 implies that f must be a rotation of the Koebe function.

On the other hand, if D ⊂ Ω, then the Schwarz lemma 2.1.2 applied to f−1|D
implies that f(z) = z. The same argument implies that Ω can not contain a disc
centred at the origin of radius larger than 1. Together with the Koebe 1/4 theorem
this proves

Corollary 3.2.6. Let f : D→ Ω be a function from s, then dist(0∂Ω) ∈ [1/4, 1].

This could be easily generalized to arbitrary univalent maps:

Theorem 3.2.7 (Koebe Distortion Theorem). Let f : Ω → Ω′ be a univalent map
and let z be some point in Ω. Then

1

4
dist(f(z), ∂Ω′) ≤ |f ′(z)|dist(z, ∂Ω) ≤ 4dist(f(z), ∂Ω′)

Exercise 13. Prove the Koebe Distortion Theorem.

Exercise 14. Let f be a bounded univalent function in D, prove that (1−|z|)|f ′(z)|
tends to 0 as |z| → 1. Give an example showing that boundedness is an essential
condition.

We know that locally the distances are distorted by |f ′|. The Koebe theorem
tells us that the same holds globally up to a constant which is between 1/4 and 4.

We would like to conclude this section with the sharp bounds on the distortion
(i.e. on |f ′|) and on the growth (i.e on |f |) near the boundary. Both results will
follow from the following inequality which is due to Bieberbach [4] which in its
turn follows from the coefficient estimate.

Theorem 3.2.8 (Bieberbach inequality). Let f be a function from S, z be any point
with r = |z| < 1, then ∣∣∣∣zf ′′(z)f ′(z)

− 2r2

1− r2

∣∣∣∣ ≤ 4r

1− r2
. (3.1)

Moreover, this inequality is sharp.

Proof. For w0 ∈ D we can define the function

φ(z) =
f
(
z+w0
1+w̄0z

)
− f(w0)

(1− |w0|2)f ′(w0)
.
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This function is a composition of a Möbius automorphism of D, f , and a linear
transformation, hence it is univalent in D. Moreover, it is easy to see that φ(0) =
0. Computing the first two derivatives at the origin is a bit more involved, but
absolutely straightforward chain rule computation which is left to the reader. Here
we just present the result of the computation

φ(z) = z +

(
1

2
(1− |w0|2)

f ′′(w0)

f ′(w0)
− w̄0

)
z2 + . . .

This proves that φ ∈ S and by the Bieberbach theorem 3.2.3 the second coefficient
is bounded by 2. ∣∣∣∣12(1− |w0|2)

f ′′(w0)

f ′(w0)
− w̄0

∣∣∣∣ ≤ 2.

Changing w0 to z and multiplying by 2z/(1− |z|2) we obtain (3.1).
Direct computations for the Koebe function K(z) and z = r show that the

inequality is sharp. By rotating the Koebe function we can see that it is sharp for
all radial directions.

In the inequality (3.1) we can change the modulus to the real or imaginary part
and obtain

−4r + 2r2

1− r2
≤ <

(
zf ′′(z)

f ′(z)

)
≤ 4r + 2r2

1− r2
(3.2)

and
−4r

1− r2
≤ =

(
zf ′′(z)

f ′(z)

)
≤ 4r

1− r2
.

On the other hand zf ′′/f ′ = r∂r log f ′ and the inequalities above could be rewrit-
ten as

−4 + 2r

1− r2
≤ ∂r log |f ′(z)| ≤ 4 + 2r

1− r2

and
−4

1− r2
≤ ∂r arg f ′(z) ≤ 4

1− r2
.

Integrating these inequalities the along straight interval from 0 to z we prove two
theorems below.

Theorem 3.2.9 (Distortion Theorem). For a function f ∈ S and r = |z| we have

1− r
(1 + r)3

≤ |f ′(z)| ≤ 1 + r

(1− r)3
.

Moreover, this inequality is sharp and if the equality occurs for some z 6= 0, then
f must be a rotation of the Koebe function.
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Proof. We already proved the main part of the theorem. To prove the last part we
notice that for the equality to hold for some z = reiθ, there must be equality in
(3.2) for all z = teiθ, t ∈ [0, r]. Dividing by t and passing to the limit t → 0 we
have

<
(
eiθ
f ′′(0)

f ′(0)

)
= ±4,

which in its turn implies that the second coefficient of f has modulus 4 which
happens only for the rotations of the Koebe function. This argument, or the direct
computation of the derivative of the Koebe function shows that the inequality is
indeed sharp.

Exercise 15. Let f be a univalent function in D. Show that for all z ∈ D

1

4
(1− r2)|f ′(z)| ≤ dist(f(z), ∂f(D)) ≤ (1− r2)|f ′(z)|

where r = |z|.

Theorem 3.2.10 (Rotation Theorem). For a function f ∈ S and r = |z| we have

| arg f ′(z)| ≤ 1 + r

1− r
.

The estimate in the Rotation Theorem is not sharp, but the proof of the sharp
estimate is beyond the scope of this course.

Finally we prove the universal estimates on the growth of the functions from S

Theorem 3.2.11 (Growth Theorem). For a function f ∈ S and r = |z| we have

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
.

Moreover, if the equality occurs for some z 6= 0, then f is a rotation of the Koebe
function.

Proof. The upper bound is a simple corollary of the Distortion Theorem 3.2.9.
Indeed, for z = reiθ we have

f(z) =

∫ r

0
f ′(seiθ)eiθds.

By triangle inequality and Distortion Theorem

|f(z)| ≤
∫ r

0

1 + s

(1− s)3
ds =

r

(1− r)2
.

To get the lower bound we fix r and observe that it is enough to prove the
inequality for z such that |f(z)| is minimal. Let us consider the curve in Ω = f(D)
which is the image of the circle or radius r. This curve is a compact set which
does not contain 0. Let w0 be the point on this curve which minimizes the distance
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Figure 3.1

to the origin. The interval from 0 to w0 lies completely inside Ω. We denote its
pre-image by γ, which is obviously a simple curve connecting the origin with some
point z0 of modulus r and stays inside the closed disc or radius r (see the Figure
3.1). By construction, |f(z0)| = min|z|=r |f(z)|. As before, f(z0) =

∫
γ f
′(z)dz,

but in this case our construction implies that the argument of f ′(z)dz is constant
along γ so we have

|f(z0)| =
∫
γ
|f ′(z)||dz| ≥

∫ r

0

1− r
(1 + r)3

dr =
r

(1 + r)2
.

Since both inequalities are obtained by integration of the inequalities from the
Distortion Theorem, the equality in any of them implies equality in the Distortion
Theorem, which, in its tern, implies that the function is a rotation of the Koebe
function.
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Chapter 4

Conformal Invariants

In this chapter we will discuss various quantities that do not change under confor-
mal transformations. First important example that we have already encountered is
the conformal modulus of a doubly connected domain. Another similar example is
the modulus of the conformal rectangle: any simply connected domain with four
marked points on the boundary could be conformally mapped onto a rectangle.
The side ratio of this rectangle is a conformal invariant. Later on we will see that
these two invariants are closely related. Other important examples are the harmonic
measure, the Green’s function and other solutions of boundary problems.

4.1 Green’s function and harmonic measure

One of the main applications of conformal mappings is the solution of the boundary
problems for Laplacian. This is based on a very simple observation that harmonic
functions are invariant under conformal transformations. Indeed, if u is a harmonic
function in Ω′ and f : Ω → Ω′ is a conformal map, then the function h(z) =
u(f(z)) is harmonic in Ω. This follows from the chain rule and Cauchy-Riemann
equations. If the function f is continuous bijection of the boundaries and u is
continuous up to the boundary, then h is also continuous up to the boundary and
its boundary values are given by that of u. This means that if we want to solve a
Dirichlet boundary problem on Ω′ then we can solve it in a simpler domain Ω and
transfer the result to Ω′ by a conformal map from Ω to Ω′. The best choice for the
simple domain is D or H where explicit formulas for the Poisson kernel are known
and solutions to the Dirichlet problems are given by simple integral formulas.

The Green’s function plays a fundamental role in the the theory of harmonic
functions and in the study of the Dirichlet boundary problems. We define the
Green’s function GΩ(z1, z2) in a domain Ω as the only function which is harmonic
as a function of z1 everywhere in Ω\{z2}, near z1 = z2 it behaves as− log |z1−z2|,
and equals to 0 on the boundary of Ω. Conformal invariance of harmonic functions
and a simple computation show that if Ω and Ω′ are two domains and f is a con-
formal map from one domain onto another, then GΩ(z1, z2) = GΩ′(f(z1), f(z2)).

45
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This could be interpreted as conformal invariance of the Green’s function.
Alternatively, we can consider a simply connected domains Ω with two distinct

marked points z1 and z2. From the Riemann uniformisation theorem we know
that there is a conformal map f : Ω → D such that f(z1) = 0 and f(z2) ∈
(0, 1). Moreover, we know that such map f is unique, which means that f(z2)
is uniquely determined by (Ω, z1, z2). In other words, this system has a unique
conformal parameter f(z2) which completely determines the conformal type of
the configuration. This means that two configurations are conformally invariant if
and only if this parameter is the same for both configurations. On the other hand

f(z2) = exp(log |f(z2)|) = exp(−GD(0, f(z2))) = exp(−GΩ(z1, z2)).

This means that the Green’s function is a conformal invariant which completely
determines the conformal type of a configuration (Ω, z1, z2).

4.2 Harmonic measure

The harmonic measure is one of the fundamental objects in the geometric function
theory and plays an important role in many applications. Extensive discussion of
the harmonic measure could be found in the book by Garnett and Marshall [10].
There are several ways to define the harmonic measure. Here we will present some
of them, but we will not prove that they all are equivalent.

Probably the simplest way to define is via conformal invariance

Definition 4.2.1. For the unit disc we define the harmonic measure ωD(0, A) on
the boundary of D as the normalized Lebesgue measure m(A)/2π. For any simply
connected domain Ω and z ∈ Ω we define ωΩ(z0, A) = ωD(0, f(A)), where f is
a conformal map from Ω onto D with f(z0) = 0. We understand f(A) in terms of
prime ends.

Conformal invariance is built into this definition.
Another definition uses the Dirichlet boundary problem

Definition 4.2.2. Let Ω be a simply connected domain andA be a set on it’s bound-
ary, the harmonic measure ωΩ(z,A) is defined as u(z) where u is the solution of
the Dirichlet boundary problem with the boundary value u = 1 on A and u = 0 on
the rest of the boundary.

It is not difficult to check that these two definitions are equivalent. The main
difference it that in the first definition we mainly think of ω(z,A) as a measure
which depends on a parameter z. In the second definition we think that it is a
harmonic function of z which depends on a parameter A.

Readers familiar with the Brownian motion might find the following definition
more illustrative .
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Definition 4.2.3. Let Ω be a domain, A be a set on its boundary and Bt be the
standard two-dimensional Brownian motion started from z. The harmonic measure
of A at z could be defined as ωΩ(z,A) = P(Bτ ∈ A), where τ = inf{t > 0 :
Bt 6∈ Ω} is the first exit time.

One of the main simple properties of harmonic measure is that it is monotone
with respect to both Ω and A. The precise statement is given by the following
theorem.

Theorem 4.2.4. Let Ω be a sub-domain of Ω′. Let us assume that A ⊂ (∂Ω∩∂Ω′)
and that z ∈ Ω, then ωΩ(z,A) ≤ ωΩ′(z,A). If A ⊂ A′ ⊂ ∂Ω, then ωΩ(z,A) ≤
ωΩ(z,A′).

Proof. Both parts of the theorem follow from the maximum principle for harmonic
functions. Obviously, h(z) = ωΩ′(z,A) is a harmonic function in Ω, moreover,
it dominates ωΩ(z,A) on the boundary of Ω. Indeed, the boundary of Ω is made
of three parts: A, (∂Ω ∩ ∂Ω′) \ A, and ∂Ω ∩ Ω′. On the first two, both harmonic
measures are equal to 1 and 0 correspondingly. On the last part, the harmonic
measure in Ω is equal to 0 and harmonic measure in Ω′ is non-negative.

The second inequality is proved in the similar way. Indeed, considering the
boundary values we see that ωΩ(z,A) + ωΩ(z,A′ \ A) = ωΩ(z,A′). As before,
ωΩ(z,A′ \A) ≥ 0 and the desired inequality follows immediately.

We can also notice that both inequalities are strict unless Ω = Ω′ or harmonic
measure of A′ \A is identically equal to 0.

4.3 Extremal length

Extremal length is a conformal invariant which has a simple geometric interpre-
tation, this makes it a very powerful tool if one have to estimate some analytical
properties like harmonic measure in terms of the geometry of the domain. Here we
discuss the main results and applications of the extremal length. More information
could be found in [2, 11, 10].

The introduction of extremal lengths is frequently attributed to Ahlfors, in fact,
in its modern form, it was introduced by Beurling in early 40’s and later developed
by Beurling and Ahlfors. Some of the underlying ideas could be traced back to the
work of Grötzsch.

4.3.1 Definitions and basic properties

Let Ω be a domain in C. In this sections we are interested in various collections of
curves γ in Ω. Abusing notations, by curve we call a finite (or countable) union of
rectifiable arcs in Ω. A metric in Ω is a non-negative Borel measurable function ρ
such that the area of Ω which is defined as

A(Ω, ρ) =

∫
Ω
ρ2(z)dm(z)
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satisfies 0 < A(Ω, ρ) <∞.
Given a metric ρ we can define the length of any rectifiable curve γ as

L(γ, ρ) =

∫
γ
ρ(s)|dz| =

∫
γ
ρ(s)ds,

where ds is the usual arc-length. For a family of curves Γ we define the minimal
length by

L(Γ, ρ) = inf
γ∈Γ

L(γ, ρ).

Definition 4.3.1. The extremal length of a curve family Γ in a domain Ω is defined
as

λΩ(Γ) = sup
ρ

L2(Γ, ρ)

A(Ω, ρ)
,

where supremum is over all possible metrics. The extremal metric is a metric for
which the supremum is achieved.

The expression in the definition of the extremal length is obviously homoge-
neous with respect to ρ, this means that we can normalize ρ by fixing L(Γ, ρ) or
A(Ω, ρ) or any linear relation between them. Indeed, by rescaling ρ one can see
that

λΩ(Γ) = sup
ρ
L2(Γ, ρ),

where supremum is over all metrics with A(Ω, ρ) = 1. Alternatively

1

λΩ(Γ)
= inf

ρ
A(Ω, ρ),

where infimum is over all metrics with L(Γ, ρ) = 1. The quantity mΩ(Γ) =
λΩ(Γ)−1 is called the modulus of Γ. Finally

λΩ(Γ) = sup
ρ
L(Γ, ρ) = sup

ρ
A(Ω, ρ),

where supremum is over metrics with L(Γ, ρ) = A(Ω, ρ).
The main property is that the extremal length is conformally invariant

Theorem 4.3.2. Let f : Ω → Ω′ be a conformal map and let Γ′ and Γ′ be two
families of curves in Ω and Ω′ such that Γ′ = f(Γ). Then λΩ(Γ) = λΩ′(Γ′).

Proof. Let ρ′ be a metric in Ω′, then ρ(z) = |f ′(z)|ρ′(f(z)) is a metric in Ω and
by change of variable formula A(Ω, ρ) = A(Ω′, ρ′). By the same argument, if
γ′ = f(γ), then L(γ, ρ) = L(γ′, ρ′). This proves that for every metric ρ′ there is a
metric ρ such that

L2(Γ, ρ)

A(Ω, ρ)
=
L2(Γ′, ρ′)

A(Ω′, ρ′)
.

This implies that λΩ(Γ) ≥ λΩ′(Γ′). Applying the same argument to f−1 we com-
plete the proof of the theorem.
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It is also important to notice that the extremal length depend on Γ but not on
Ω. Namely, if we have two domains Ω ⊂ Ω′ and Γ is a family of curves in Ω, then
λΩ(Γ) = λΩ′(Γ). This will allow us to write λ(Γ) instead of λΩ(Γ). The proof of
this independence is quite simple. Let ρ be some metric in Ω, we can extend it to
ρ′ in Ω′ by setting ρ′ = 0 outside of Ω. Obviously areas and lengths for these two
measures are the same and we have λΩ(Γ) ≤ λΩ′(Γ). For any ρ′ in Ω′ we define
ρ to be its restriction to Ω. Clearly L(Γ, ρ) = L(Γ, ρ′) and A(Ω, ρ) ≤ A(Ω′, ρ′),
this implies the opposite inequality

λΩ′(Γ) = sup
ρ′

L2(Γ, ρ′)

A(Ω′, ρ′)
≤ sup

ρ′

L2(Γ, ρ)

A(Ω, ρ)
≤ λΩ(Γ).

4.3.2 Extremal metric

In general, we don’t know which families Γ admit an extremal metric, but it is not
difficult to show that if it does exist, then it is essentially unique.

Theorem 4.3.3. Let Γ be a family of curves in Ω and let ρ1 and ρ2 be two extremal
metrics normalized by A(Ω, ρi) = 1, then ρ1 = ρ2 almost everywhere.

Proof. For these two metrics we have that λ(Γ) = L2(Γ, ρi). Let us consider a
metric ρ = (ρ1 + ρ2)/2, then

L(Γ, ρ) = inf
γ

∫
γ

ρ1(z) + ρ2(z)

2
|dz| ≥ L(Γ, ρ1) + L(Γ, ρ2)

2
= λ1/2(Γ). (4.1)

By the Cauchy-Schwarz inequality

A(Ω, ρ) =

∫
Ω

(ρ1 + ρ2)2

4
≤ A(Ω, ρ1)

4
+
A(Ω, ρ1)

4
+

∫
ρ1ρ2

2

≤ 1

2
+

1

2

(∫
ρ2

1

)1/2(∫
ρ2

2

)1/2

= 1.

(4.2)

Together this implies that

L2(Γ, ρ)

A(Ω, ρ)
≥ λ(Γ).

By the definition of the extremal length, this must be an equality and ρ must be an
extremal metric and we must have an equality in (4.2). We know that the equality
in the Cauchy-Schwarz inequality occurs if and only if ρ1 and ρ2 are proportional
to each other almost everywhere. NormalizationA(Ω, ρ1) = A(Ω, ρ2) implies that
they must be equal almost everywhere.

As we will see in the next section, computation of the extremal length quite
often involves making a good guess for the extremal metric. This could be done
in surprisingly many cases, but not always. Sometimes this question could be
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reversed and we ask: given a metric ρ, is there a family of curves for which ρ
is extremal. Beurling in an unpublished work gave a very simple criterion which
could also be used to prove that your candidate for the extremal metric is indeed
extremal.

Theorem 4.3.4. A metric ρ0 is extremal for a curve family Γ in Ω if there is a
sub-family Γ0 such that∫

γ
ρ0(s)ds = L(Γ, ρ0), for all γ ∈ Γ0

and for all real-valued measurable h in Ω we have that
∫

Ω hρ0 ≥ 0 if
∫
γ hds ≥ 0

for all γ ∈ Γ0.

You can think that Γ0 is a collection of the shortest curves in Γ and they should
cover the entire support of ρ0.

Proof. Let ρ be some other metric normalized by L(Γ, ρ) = L(Γ, ρ0). Since all
curves from Γ0 have minimal length with respect to ρ0 we have that L(γ0, ρ) ≥
L(γ0, ρ0) for any γ0 ∈ Γ0. This implies that for h = ρ− ρ0∫

γ0

h(s)ds ≥ 0, for all γ0 ∈ Γ0.

By assumptions this implies that∫
Ω

(ρ(z)− ρ0(z))ρ0(z)dxdy =

∫
Ω
h(z)ρ0(z)dxdy ≥ 0.

This inequality together with the Cauchy-Schwarz inequality gives∫
Ω
ρ2

0 ≤
∫

Ω
ρρ0 ≤

(∫
Ω
ρ2

)1/2(∫
Ω
ρ2

0

)1/2

and
A(Ω, ρ0) =

∫
Ω
ρ2

0 ≤
∫

Ω
ρ2 = A(Ω, ρ).

The last inequality together with normalization of ρ proves that ρ0 is extremal.

4.3.3 Composition rules

Proposition 4.3.5 (The comparison rule). Extremal length is monotone. Namely,
let Γ and Γ′ be two family of curves such that each curve γ ∈ Γ contains a curve
γ′ ∈ Γ′, then λ(Γ) ≥ λ(Γ′). In other words, a smaller family of longer curves
have larger extremal length (see the Figure 4.1).

The proof of this statement is really trivial: just by the definition L(Γ, ρ) ≥
L(Γ′, ρ) and the admissible metrics are the same.
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Figure 4.1: Γ and Γ′ are the families of curves connecting E with F and E′ with
F ′ within Ω and Ω′ correspondingly. Each curve from Γ contains a dotted piece
which belongs to Γ′. The curve γ′2 is not a part of any curve from Γ.

Proposition 4.3.6 (The serial rule). Let Ω1 and Ω2 be two disjoint domains and Γi
be two families of curves in these domains. Let Ω be a third domain such that Ωi ⊂
Ω and Γ be a family of curves in Ω such that each γ ∈ Γ contains a curve from
each Γi (see the Figure 4.2 for a typical example). Then λ(Γ) ≥ λ(Γ1) + λ(Γ2).

Figure 4.2: Γ is the family of curves connectingE and F in Ω1, Γ2 connects F and
F in Ω2, and Γ connects E and G in Ω = Ω1 ∪ Ω2. Each curve from Γ contains a
dotted piece from Γ1 and dashed piece from Γ2.

Proof. If any of λ(Γi) is trivial i.e equal to 0 or ∞, then the statement follows
immediately from comparison rule 4.3.5. From now on assume that both lengths
are non-trivial. Let ρi be two metrics normalized by A(Ωi, ρi) = L(Γi, ρi) and
define ρ to be ρi in Ωi and 0 everywhere else. For this metric in Ω we have

L(Γ, ρ) ≥ L(Γ1, ρ1) + L(Γ2, ρ2)

and
A(Ω, ρ) = A(Ω1, ρ1) +A(Ω2, ρ2) = L(Γ1, ρ1) + L(Γ2, ρ2).

Combining these two we have λ(Γ) ≥ λ(Γ1) + λ(Γ2).

Proposition 4.3.7 (The parallel rule). Let Ω1 and Ω2 be two disjoint domains and
Γi be two families of curves in these domains. Let Γ be a third family of curves
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such that every curve γi ∈ Γi contains a curve γ ∈ Γ (see the Figure 4.3 for a
typical example). Then

1

λ(Γ)
≥ 1

λ(Γ1)
+

1

λ(Γ2)
.

Equivalently
m(Γ) ≥ m(Γ1) +m(Γ2),

where m is the conformal modulus.

Figure 4.3: Γi are the families of curves connecting Ei and Fi inside Ωi, Γ is the
family of curves connecting E = E1 ∪E2 and F = F1 ∪ F2 inside Ω which is the
interior of the closure of Ω1 ∪ Ω2. Each curve from Γi contains a curve from Γ.
In fact, they belong to Γ, but there are curves like γ ∈ Γ that are not related to the
curves from Γi.

Proof. Let Ω be some domain containing Γ. Consider a metric ρ in Ω normalized
by L(Γ, ρ) = 1. Our assumptions immediately imply that L(Γi, ρ) ≥ L(Γ, ρ) = 1
and

A(Ω, ρ) ≥ A(Ω1, ρ) +A(Ω2, ρ) ≥ 1

λ(Γ1)
+

1

λ(Γ2)

where the last inequality follows from 1/A(Ωi, ρ) ≤ L2(Γi, ρ)/A(Ωi, ρ) ≤ λ(Γ).
On the other hand inf A(Ω, ρ) = 1/λ(Γ) where the infimum is over all metrics
normalized by L(Γ, ρ) = 1.

Proposition 4.3.8 (The symmetry rule). Let Ω be a domain symmetric with respect
to the real line and Γ a symmetric family of curves which means that for every curve
γ ∈ Γ its symmetric image γ̄ is also from Γ. Then

λ(Γ) = sup
ρ

L2(Γ, ρ)

A(Ω, ρ)
,

where supremum is over all symmetric metrics ρ such that ρ(z) = ρ(z̄).
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Proof. The proof is almost trivial. Let ρ1 be some metric and let ρ2(z) = ρ1(z̄) be
its symmetric image. ObviouslyL(Γ, ρ1) = L(Γ, ρ2) andA(Ω, ρ1) = A(Ω, rho2).
By the same argument as in the proof of Theorem 4.3.3 we have

L2(Γ, ρ)

A(Ω, ρ)
≥ L2(Γ, ρ1)

A(Ω, ρ1)
=
L2(Γ, ρ2)

A(Ω, ρ2)
,

where ρ = (ρ1 + ρ2)/2. This proves that the supremum over symmetric metrics is
equal to the supremum over all admissible metrics.

Exercise 16. State and prove a version of the symmetry rule for the symmetry with
respect to the unit circle.

4.3.4 Examples

There are several configurations that are defined by a single conformally invariant
parameter: a simply connected domain with four marked points on the boundary
(conformal rectangle), a simply connected domain with a marked point inside and
two marked points on the boundary, a simply connected domain with two marked
interior points, and a doubly connected domain. In these cases we already know
conformal invariants that defined the conformal type of configurations. In the first
case this is modulus of a rectangle, in the second case this is harmonic measure of
an arc between two boundary points evaluated at the interior point, in the third case
this is Green’s function, and and in the last case this is the conformal modulus of
the domain. Here we will discuss how these invariants are related to the extremal
length.

One of the most important examples of the extremal length is the extremal
distance. Let E and F be two subsets of Ω̄, then the extremal distance between
them inside Ω is

dΩ(E,F ) = λ(Γ),

where Γ is the family of all rectifiable curves in Ω that connect E and F . The
conjugated extremal distance is

d∗Ω(E,F ) = λ(Γ∗),

where Γ∗ is the family of all (not necessary connected) curves separating E and
F inside Ω. Proposition 4.3.5 immediately implies that dΩ(E,F ) decreases when
any of Ω, E, or F increases. The Figures 4.2 and 4.3 give examples how the serial
rule 4.3.6 and the parallel rule 4.3.7 could be applied to the extremal distances.

Conformal rectangle. Let Ω be a simply connected domain with four marked
(accessible) points on the boundary. They divide boundary into four connected
pieces (again in terms of accessible points or prime ends). Let us chose two of
them that do not share a common chosen point and call them E and F . We know
that there is a map from Ω onto a rectangle such that four marked points are mapped
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to the vertices. Let us assume that the images of E and F lie on the sides given by
x = 0 and x = a and two other sides are y = 0 and y = b. The extremal distance
dΩ(E,F ) = a/b which is the conformal invariant that we have seen before.

By conformal invariance of the extremal length, dΩ(E,F ) is the same as the
extremal distance between vertical sides of the rectangle R = {(x, y) : 0 < x <
a, 0 < y < b}. For ρ = 1 we have that A(R, ρ) = ab and L(Γ, ρ) = a, where Γ
is the family of all curves connecting two vertical sides. This immediately gives us
that λR(Γ) ≥ a2/ab = a/b.

We claim that this metric is extremal and λR(Γ) = a/b. Let Γ0 be the family
of all horizontal lines connecting two vertical sides. Clearly, these curves have the
same length and it is equal to L(Γ, ρ). If for some function h we have that∫

h(x, y)dx ≥ 0, ∀y,

then integrating with respect to y we get∫
R
hdxdy ≥ 0.

By the Theorem 4.3.4 this implies that ρ = 1 is indeed an extremal metric.
By symmetry we can see that the extremal distance between two other parts of

the boundary is given by b/a and is equal to d∗Ω(E,F ). We can see that

d∗Ω(E,F )dΩ(E,F ) = 1.

Exercise 17. Use the symmetry rule (Proposition 4.3.8) to prove the following
statement.

Let Ω1 be a domain in the upper half plane and let E1 and F1 be two sets on
∂Ω. Let Ω2, E2, and F2 be their symmetric images with respect to R. We define
Ω = Ω1 ∪ Ω2 (to be completely rigorous we also have to add the real part of the
boundary), E = E1 ∪ E2, and F = F1 ∪ F2. Then

dΩ(E,F ) =
1

2
dΩ1(E1, F1) =

1

2
dΩ2(E2, F2).

Conformal annulus. Let Ω be a doubly connected domain and E and F be two
boundary components, then the extremal distance dΩ(E,F ) is equal to the con-
formal modulus of Ω. This gives a geometrical interpretation of the conformal
modulus.

By conformal invariance of extremal distance and conformal modulus, it is
sufficient to prove the identity for an annulus A(r,R). We will treat the general
case 0 < r < R <∞ and leave the cases r = 0 and R =∞ to the reader.

As in the case of rectangles, it is easy to guess the extremal metric. Taking
ρ0 = 1/|z| and considering curves along the radial directions we have L(Γ, ρ0) =
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Figure 4.4: Application of symmetry rule

∫ R
r (1/t)dt = log(R/r) and A(ρ0) =

∫ R
r

∫ 2π
0 1/tdtdθ = 2π log(R/r), hence

λ(Γ) ≥ L(Γ, ρ0)

A(ρ0)
=

log2(R/r)

2π log(R/r)
=

1

2π
log(R/r).

To show that this metric is extremal we again use the Theorem 4.3.4 with Γ0

being the family of straight radial intervals connecting two boundary components.
Since extremal distance is conformally invariant this gives yet another proof of

the Theorem 2.7.1.
The same extremal metric and essentially the same argument gives that

λ(Γ∗) =
2π

log(R/r)
,

where Γ∗ is the conjugated family of the curves that separate two boundary com-
ponents.

An interior point and a boundary arc. Let Ω be a simply connected domain,
z0 be a point inside and A be a boundary arc. We can consider two families of
curves Γ and Γ∗. The first family consists of curves that begin and end on A and
go around z0, the second family consist of all curves that separate A from z0 (see
the Figure 4.5). Both λ(Γ) and λ(Γ∗) are conformal invariants of the configuration
(Ω, z0, A). On the other hand, we know that conformal type of such configuration
is uniquely determined by harmonic measure ωΩ(z0, A). This proves that λ(Γ)
and λ(Γ∗) could be written as functions of harmonic measure. Finding the explicit
relation is not easy.

Two interior points. Finally, for the case of two interior points we can con-
sider two families Γ and Γ∗ of loops surrounding two points and curves connecting
boundary points and separating points from each other (see the Figure 4.6).

By conformal invariance it is sufficient to consider the case when Ω = D, one
of the marked points is 0 and the other one is x ∈ (0, 1). Since our configuration
is symmetric with respect to z 7→ z̄ we can apply the symmetry rule 4.3.8 and
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(a) (b)

Figure 4.5: Families Γ (a) and Γ∗ (b).

(a) (b)

Figure 4.6: Families Γ (a) and Γ∗ (b).

consider only symmetric metrics. Using symmetry one can show that it is enough
to consider symmetric curves.

Exercise 18. Complete the argument above and show that λ−1(Γ) = λ(Γ∗) =
dΩ′(s,T), where Ω is a doubly connected domain D \ [0, x].

This doubly connected domain is conformally equivalent to D− \ [1/x,+∞]
which is known as Grötzsch annulus and its modulus could be computed in terms
of elliptic functions.

4.3.5 Geometric application

In this section we will show two examples how one can use extremal length to
obtain purely geometrical inequalities.

Conformal rectangles. Let Ω be a conformal rectangle and denote the four bound-
ary arcs by E,E′, F, F ′, then

d(E,F )d(E′, F ′) ≤ A(Ω)

where d is the Euclidean distance between sets and A is the area of Ω.
The proof of this inequality is almost trivial. Let Γ be the family of curves

connecting E and F and Γ′ be the family of curves connecting E′ and F ′. Let
us consider ρ = 1 in Ω, i.e. the usual Euclidean metric in Ω. For this metric
L(Γ, ρ) ≥ d(E,F ) and L(Γ′, ρ) ≥ d(E′, F ′), hence λ(Γ) ≥ L2(Γ, ρ)/A(Ω) ≥
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d2(E,F )/A(Ω) and the similar inequality holds for λ(Γ′). For conformal rectan-
gles we have that λ(Γ)λ(Γ′) = 1 which together with the previous inequalities
imply 1 ≥ d2(E,F )d2(E′, F ′) ≤ A2(Ω).

Conformal triangles. Let Ω be a conformal triangle, i.e. a simply connected
domain with three marked points, then there is a curve γ in Ω such that γ touches
all three sides of Ω and

length(γ) ≤ 4
√

3
√
A(Ω).

Moreover, the constant 4
√

3 is sharp.
Let Γ be the family of all curves that touch all three sides of Ω. We would

like to compute the extremal length of this family. The situation with conformal
triangles is a bit different from all previous examples that we have considered so
far: all conformal triangles are conformally equivalent. This means that λ(Γ) is
just an absolute constant.

By conformal invariance, we can can assume that Ω is an equilateral triangle
with vertices 0, 1 and 1/2 + i

√
3/2.

Exercise 19. Use Theorem 4.3.4 to show that ρ = 1 in the triangle and 0 outside
is the extremal metric for Γ. From this deduce that λ(Γ) =

√
3.

Now let Ω be an arbitrary conformal triangle and consider ρ = 1 in Ω, then

√
3 = λ(Γ) ≥ min(length2(γ))

A(Ω)
.

This is equivalent to the desired inequality. To see that the constant is sharp we
consider the equilateral triangle as above and γ is a triangles altitude.
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