
Math. Proc. Camb. Phil. Soc. (1996), 119, 729 7 2 9

Printed in Great Britain

Beurling's projection theorem via one-dimensional Brownian motion

BY WENDELIN WERNERf

C.N.R.S. and University of Cambridge Statistical Laboratory, D.P.M.M.S.,
16 Mill Lane, Cambridge CB2 ISB

(Received 7 July 1994; revised 19 April 1995)

Abstract

We prove some elementary intuitive estimates on moving boundaries hitting times
by one-dimensional Brownian motion (in IR and on the circle). These results give an
alternative approach to Beurling's radial projection theorem on harmonic measure
in a disc.

1. Introduction

A leading idea in mathematics and physics has always been to see that the
configurations which maximize certain functionals are the most symmetric ones (e.g.
' the shortest path between two points is the straight line'). All the results this paper
will deal with, can be regarded as consequences of this general principle: We are
going to derive one-dimensional moving boundaries hitting times estimates, which,
very loosely speaking, state that, among a certain class of boundaries, a linear
Brownian motion is least likely to hit the most symmetric one. We shall then also
point out some consequences of these results concerning harmonic measure.

More precisely, if B = (Bt, t ^ 0) denotes a linear Brownian motion started from 0,
and if we fix an open set / in [0, oo[ (not necessarily bounded nor connected) and a
continuous function a: /->]0, oo[, we put

Ua
J(f)=P(\/teI, - o ( 0 < 5 , - / ( 0 < o(0)

for every function f:I->M. It is a natural question to ask, which function /
maximizes U". The following answer is not surprising:

PROPOSITION 1. For any function f': /->IR,

U1(f) *k E/?(0).

Similar results hold, e.g. for the symmetric stable processes. The analogous result
for Brownian motion on the unit circle C can be stated as follows:

PROPOSITION 2. If' M.I-+C is a continuous function in the unit circle, then

P(itel,exp(iBt) 4= M(t)) < P(V«e/,exp(iBt) 4= - 1 ) .

Let us now make the link with harmonic measure estimates: the deep connection
between complex analysis (harmonic measure, conformal invariance,...) and planar
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730 WENDELIN WERNER

Brownian motion has been a constant source of inspiration for both fields (see, e.g.
Davis [6] and among the most recent works, Burdzy[3], using McMillan's Theorem,
Burdzy-Lawler[4] using Beurling's Theorem, Oksendal[15], [16] giving stochastic
proofs of complex analysis results, Carne[5], Makarov[13] or Lyons [12]). It is worth
noticing that historically, the complex analysis results have often preceded their
probabilistic counterparts; a lot was already known about harmonic measure before
planar Brownian motion aroused interest (see, e.g. Nevanlinna's book [14]). Our
(modest) purpose is now to shed a new light on one of these ' old' results: if K is a
compact set in the unit disc A (in the complex plane), let I1K be its radial projection
on the negative axis:

UK = {-\z\;zeK}.

If for all zeA\K (respectively A\nK), w(z, A,if) (resp. w(z, A, UK)) denotes the
harmonic measure of K (resp. TlK) in A at z, then Beurling's Theorem can be stated
as follows:

THEOREM (Beurling, [2]). For allzeA,

w(z,A,K)^w(\z\,A,nK). (1)

In probabilistic terms, if Z = (Zt,t ^ 0) is a planar Brownian motion started from
2 e A under the probability measure Pz and if for all compact sets A, T(A) =
ini{t^0,ZteA} denotes the hitting time of A by Z, (1) can be reformulated as
follows:

PZ(T(K) < T(C)) > Plz](T(YlK) < T(C)), (2)

where C denotes the unit circle.
See Ahlfors[l] for a complex analysis approach making use of Green's formula,

or Oksendal [15] for a clever and short probabilistic proof, using reflection arguments.
This theorem has turned out to be a basic tool for estimating non-intersecting
exponents of planar Brownian motion and random walks and consequently also to
derive bounds of Hausdorff dimensions of random fractals such as the ' self-avoiding
planar Brownian motion' (see Burdzy-Lawler [4], Lawler [10], Duplantier et al. [7]).
For some applications of Beurling's Theorem in geometric function theory, see, e.g.
Ahlfors [1].

Let us briefly explain how Proposition 2 implies Beurling's Theorem and shows
that (2) holds in fact independently of the radial behaviour of Z (i.e. independently
of the process (\Zt\,t^ 0)). The radial projection in Beurling's Theorem suggests
heavily that the skew-product representation of planar Brownian motion plays an
important role: if Zo = ze]0, l[,

where R and 6 are independent linear Brownian motions respectively started from
Bo = log z and 80 = 0, and where A (t) = / R~2 ds (this well-known representation (see,
e.g. Ito-McKean [9], p. 265) is a straightforward consequence of the conformal
invariance of Z and the analyticity of the exponential mapping). If T =
inf {u 5= 0,Ru = 0} (so that T(C) = A(T)) and if / = {ue [0, T], 3zeK, \z\ = exp (Ru)}, it
is easy to notice that

{T(K) > T(C)} =
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Beurling's Theorem 731

Therefore, for 'nice' compact sets K (for instance if K is a countable union of
connected-by-paths sets), we will see that Proposition 2 shows that independently of
R = (Rn,u^0),

P(T(K) > T(C)\R) s? P(T(UK) > T(C) \R),
which implies (2).

Our paper is constructed as follows: in the next section, we prove Proposition 1;
in Section 3, we derive Proposition 2 and the last section is devoted to Beurling's
Theorem.

2. The linear problem

This section is essentially devoted to the proof of Proposition 1. We are going to
derive this proposition as a consequence of its following discrete analog:

PROPOSITION 3. For any fixed iVeN\{0} and 0<t1<...<tN, for all
(av ..., aN) e (]0, oo[)* and (fv... ,fN) e UN,

We will prove Proposition 3 by induction. Let us first state a useful lemma, for
which we need to introduce some further notation. For any measure p in K, we will
say that p is a 1-measure if its total mass |/>|e]0,1]. We define a linear Brownian
motion B starting with initial distribution p/\p\ under the probability measure P*,
and we will use the usual notation Pp = \p\P* and Px = Pg .

LEMMA 1. Let ji and v be two 1-measures on [ — a, a] such that, for all xe [ — a, a] and
/?>0,

v(]a-x,x + P[)^p(]-j3,/][), (3)

then for all x0 6 R, y > 0, t > 0,

Pp(x0-y <Bt < xo + y)^P/l(-y<Bt < y).

Proof. We fix xoe U, fi > 0, t> 0 and put

F(x)
[y

= pt(x,v)dv,
J-y

where pt(x,v) = (2nt) 1exj)((v — x)2/2t) is the usual Gaussian transition density; in
other words,

F(x) = Px(Bte]-y,y[).

Note that F is even and decreasing on [0, oo[. We now define for all e > 0 and for all
n > 0, xe

n = inf {x > 0,F(x) > ne}, so that

n>0

approximates F uniformly: for all xeR, \F(x) — Fe(x)\ < e. The definition of F implies
that

P,(x0 ~ 7 < Bt < x0 + y) = F{x-x0) v{dx);
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732 WENDELIN WERNER

but for all e > 0, (3) yields

Fe(x-x0)v(dx)= 2 e ^_^nXcJx-xn)v{dx)
J—a n>0 J—a

nt {a, xe
n)

fi{dx)

= r
J —

and the lemma follows.

Proof of Proposition 3. I t is a straightforward induction, using Lemma 1. We fix
JV>0, (/1,...,/Ar)e[RAr, (a1,...,aN)e]0,oo[N, 0 < ^ < ... <tN. For n^N, we define
the 1-measures vn and /in by

and pn{U) = P{BtneU,Vi ^

for all Borel sets U. For 1 ̂  n < N, one has

for all Borel sets U.
If for all # £ [ — ara, an] and all /? > 0,

*„(]*-/?,* + /?[) </*„(]-/?,/?[), (4)

then Lemma 1 shows that, for all xe[ — an+1,an+1], for all /? > 0,

By induction (the case n = 1 is very easy), (4) holds for n = N, and consequently
kivl ^ l/%l> which completes the proof of Proposition 3.

Proof of Proposition 1. If (s^i ^ 1) is a dense sequence in I, Proposition 1 is a
straightforward consequence of Proposition 3 and of the following two facts:

U?(f) <PQtie{l,...,n},f(8f)-a(8i) <B,(<f(st)

for any n > 0 and (as a and B are continuous on /, and as / is an open set)

{1,...,»}, -a(Si)<BSt<a(Si)).

This proof can be generalized without any single problem, if we replace B by a stable
symmetric process (the only important feature we used was the fact that pt(0, .) is
an even function which decreases on [0, oo[).

Let us notice that the asymptotic behaviour of U"oiT](/) as T-> oo has aroused
some interest (see Lai-Wijsman [10] and the references therein). We recall that the
explicit value of Uf0 T ] ( / ) is known if both a and/are constant (see Port—Stone [17],
para. 2*8).

We now briefly point out that it is possible to derive directly Beurling's Theorem
in the special case, where K is a continuous path joining the circles of radius r < \
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Beurling's Theorem 733
with centre at 0 to C (which is the version used to estimate non-intersection
exponents) from Proposition 1. The outline of the proof would be as follows. Using
the conformal one-to-one map y-+{r — y)/(\—ry) mapping A in itself and changing r
(respectively 0) into 0 (resp. r), we can show that it is possible to restrict ourselves
to the case r = 0.

For any T > 0, for every fixed function (ru, u^T) such that r0 = log2, rT = 0 and
ru < 0 for all u < T, there exists an open set / c [0, T] of Lebesgue measure T and a
continuous function/: /-> R, such that

- w < 6U <f(u) + n}.

This part is not straightforward since r is not necessarily increasing.
Now, as briefly explained in the introduction, the skew-product representation

and Proposition 1 imply the result.
We do not develop this proof any further, since we are going to derive Beurling's

Theorem in a more general pattern later.

3. The problem on the circle

In this section, we are going to prove Proposition 2. Even if the estimates are more
involved, this proof has many similarities with that of Proposition 1: We will derive
counterparts of Lemma 1 in Paragraphs 3-1 and 3-2, and we will then use them in
Paragraph 3-3 to deduce Proposition 2.

3.1. Decreasing rearrangements of functions

We first recall a useful result of F. Riesz[18] (see also Hardy et al. [8]) on
decreasing rearrangements of functions. Let/be a non-negative measurable function
in 05. The symmetrically decreasing rearrangement/* of/ is the only even non-
negative function denned on 05 such that/* is non-increasing and right-continuous
on (0, co), and such that for all y > 0, the sets {x,f(x) > y) and {x,f*(x) ^ y) have the
same Lebesgue measure (see, e.g. in Riesz [18]). Loosely speaking/* is the smallest
symmetrically decreasing function such that, for all open set A in 05 with Lebesgue
measure 2a, one has / f(x)dx^j "f*(x)dx. Inequality (3) in Riesz [18] says the
following (see also theorem 379 in Hardy et al. [8]):

LEMMA 2. For all positive measurable functions f, g and h on 05,

f(x)g(y)h(y-x)dxdy ^\ f*(x)g*(y)h*(y-x)dxdy.

Here is an immediate consequence of this result we shall use. Let A c U be an open
set of Lebesgue measure 2a and, for all xeU5, put G(x) = Px(BTeA) and
F(x) = PX(\BT\ < a).

COROLLARY 1. Suppose f and g are two measurable bounded functions on [ — 1/2,1/2],
such that f is even, and such that for all we[0,1/2],

g*(u) </(«), (5)
n/2 n/2

then g(x)G(x)dx^ f(x)F(x)dx. (6)
J-l/2 J —1/2
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734 W E N B E L I N W E R N E R

Proof. One just needs to apply Lemma 2:

g(x)G(x)dx =
J-1/2 J R 2

J[

-1/2

f
g*(x)pT(y-x)dxdy. (7)

I [-1/2, l/2]X[-o,o]

As F(x) = S_apT(x,y)dy is a symmetrically decreasing function, (5) and (7) easily
imply (6).

3.2. Periodic rearrangements

We will also need an extension of the previous results. Let A and B be open sets
in [ — 1/2,1/2], of respective Lebesgue measure 2a and 26. We put Ao = ( — a,a),
Bo = (-b,b), A = A +Z, B = B + Z, Ao = Ao + Z a,ndB0=B0 + Z. Then:

LEMMA 3. For all l-periodic even bounded positive function g which decreases on
[0,1/2], one has

r r
) dx dy.g(y-x)dxdy^ g(y-x

J AXB J AoxB0

Outline of the proof. We note that we can in fact restrict ourselves to the case where
both A and B are finite unions of disjoint intervals. Moreover, as in the proof of
Lemma 1, it suffices to derive the Lemma for g(x) = l{xec}> where C = ( —c, c) + Z
with ce (0,1/2). We put

hy-
J-c

Hx)=\ lto-***>dy f o r

J
h is continuous, piecewise linear, h( —1/2) = A(l/2) and its growth rate is — 1, 0 or 1.
Moreover / ' * h(x)dx = 4c6 and sup[_1/2 1/2] h ^ 2c. Elementary considerations show
that it implies

J-
(8)

We are now ready to complete the proof of the lemma. The periodicity of A, B and
C, Lemma 2, (8) and finally the periodicity of Ao, Bo, Co show that

r c r
I I — ft "Y fit/ — I I — ///)« rjii —— | J} (iy\ ft f
I (y XG C\ ****' **// ~™ I iij X £ B\ ***^ *•*H ~~ I tvy*As J UvtAj

JAXB JAXC JA

^ I h*(x)dx
J —a

ra re r

^ ^{y-xeS)dxdy ~ ^-{y-i
J-aJ-c J AnXBn

Again, we formulate a consequence of this lemma that we will use later. We define
for all x and y in IR,

PT(X>V) = 2
pel
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Beurling's Theorem 735
which corresponds to the transition density of Brownian motion on the circle.
pT(0, .) is even, 1-periodic.

If B = (Bt, t ^ 0) is a linear Brownian motion started from 0, if 0 < x < x' < 1/2,
we put

a = inf{« ^ 0,Bt = (x + x')/2 orBt =

The strong Markov property and a reflexion argument at time a show immediately
that pT(0, x) > pT(0, x'). Hence j5T(0, .) is decreasing on [0,1/2].

Let now A cz [—1/2,1/2] be an open set of Lebesgue measure 2a, and put

(x) = pT(x,
J A

G(x) = pT(x, y) dy

and F(x) = pT(x,y)dy.
J -a

Lemma 3 (with g(.) = pT(0, .)) implies immediately the following analogue of
Corollary 1.

COROLLARY 2. Let f and g be two bounded positive measureable functions on
[-1/2,1/2] such that f is even and for all ue[0, l/2],g*(u) </(«). Then

g(x)G(x)dx^ f{x)F(x)dx. (9)
J-l/2 J-111

3.3. Proof of Proposition 2

Before writing down consequences of these estimates, let us again introduce some
notation. For any measure v on [—1/2,1/2], and any aeIR, the a-shifted measure
YlKv) is the measure on [-1/2,1/2] such that for all Borel sets U in [ -1/2 ,1/2] ,

n%v)(U) = v({xe[-l/2,l/2],3peZ,

For any t > 0, we put

for all Borel sets U <z [ -1/2 ,1/2] .
For any continuous function h: [0, t] -> U with h(0) = 0,

n%it(v)(U) = P,{JBt-h(t)eU,V8 ^t,Bt-h(8)e]

for all Borel sets U <z [-1/2,1/2] .
We will say that (v,(i) satisfies (P) if v and /i are two 1-measures on [—1/2,1/2]

with measurable bounded density functions / and g, if / is even and decreasing
on [0,1/2], and if v(I) ^ /*(] — a,a[) for all open sets / c: [ — 1/2,1/2] of Lebesgue
measure 2a.

We can now state

LEMMA 4. For all (v,/i) satisfying (P),
(i) for all cteU,<t>l(v,/i) = (Tll(v),fi) satisfy (P),

(ii) for all t > 0,Ot>,/*) = ( n ( » , U2
t(fi)) satisfy (P),

(iii) for all t > 0 and all continuous functions h: [0, t] -> IR with h(0) = 0,
<Dj>t(i>,AO = (HIt(u), niit(fi)) satisfy (P).
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736 WENDELIN WERNEB

Proof, (i) is a trivial consequence of the definition of (P); (ii) is a straightforward
consequence of Corollary 2; (iii) follows from Corollary 1 exactly as Proposition 1
does from Lemma 1.

Proof of Proposition 2. We are first going to restrict ourselves to the case where /
is a finite union of disjoint bounded and bounded-away-from-O intervals. We fix
0 < m < M such that for all tel,m <t <M. We define the following 1-measures on
[-1/2,1/2]: for all Borel sets U c [-1/2,1/2],

pm(U) = P0(3peZ,Bm-peU),

PM(U) =P0{VteI,\Bt\ < a(t)and3peZ,BM-PeU),

vM{U) =P0(VteI,\Bt-f(t)\ <a(t)nnd3pel,BM-peU).

It is straightforward to notice that

where q > 0 and for all ie{l,...,q}, T4 = O* or O| or <t>gt for some suitable ot,t,g.
Therefore, Lemma 4 implies that (vM,/iM) satisfies (P) and in particular \vM\ ^ \fiM\>
Proposition 2 follows.

We now derive Proposition 2 for general time-sets / : let us first assume that / is
a bounded and bounded-away-from-O open set. In that case, / = Un>1/n, where
(In)n^! is a sequence of open bounded and bounded-away-from-0 disjoint intervals
(the connected components of/). Proposition 2 holds for U1 < n^p/n and it is easy to
see that

P(VteI,ex-p(iBt)j=-l) = limP(V«e U /B,exp(i5t) #= -1)

so that Proposition 2 also holds for /. The case where / is not bounded and (or) not-
bounded-away-from-0 follows immediately, considering the approximations
Ir\~\\/n,n[, and letting n->oo.

4. Beurling's Theorem

We are now going to derive Beurling's Theorem, when if is a countable union of
closed and connected-by-paths sets. In other words K = Un>1Kn and for all n ^ 1,
for all (x, y) eK\, there exists a continuous path joining x to y in Kn. Let us mention
that trying to derive the full version of Beurling's Theorem (that is, for any compact
set K, including fractal-type sets...) this way would lead to technical trouble: one
would need a generalization of Proposition 2, where the continuity hypothesis on M
is removed, and for which our proof via discrete approximation fails.

The notation in this section are the same as in the introduction and we first
assume that (Zt,t ^ 0) starts from 20 = ze]0, l[. We now reduce this problem.

Fatou's Lemma implies that

P{T{K) < T(C)) = lim P(T( \J Kn) < T(C))

and the similar result for the radial projections; hence, we can restrict ourselves to
the case where K = (J1^niNKn.

For all ne{l, ...,N}, as Kn is compact, one can find (xn,yn)eK^, such that, for
all xeKn, \xn\ ̂  \x\ ^ \yn\. As Kn is connected by paths, there exists a continuous
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Beurling's Theorem 737

path Ln: [0,1]^-Kn, such that L(0) = xn,L(l) = yn. Obviously, 11^ = 11^ and
{T(Ln) < T(C)} cz {T{Kn) < T(C)}, so that we can restrict ourselves "to the" case
where K = \J^n^NLn.

For all ne{l,... ,N}, and p > 1, we define the ^-polygonal approximation of Ln as
follows:

for all we[0,1] and ie{0, ...,p-l}.
As Ln is uniformly continuous,

limf sup sup \L*(s)-La{s)\) = 0.
j>^oo\ne{l .tf}se[0,l] /

Therefore, for all e > 0,

P(inf{\x-Zt\,xeK,te[O,T(C)]} < e) ̂  lira sup P(T(KP) < T(C)),
p-*-CO

where Kv = U1<nSiVL^. As K is compact,

MmP(in{{\x-Zt\,xeK,te[O,T(C)]} < e) = P(T(K) < T(C));
£-+0

hence, P(T(K) < T(G)) ^ limsupP^Z*') < T(C)).
p-*oo

On the other hand, it is straightforward to show that

P(T(UK) < T(C)) = limP(T(IV) < T(C)).
V-*oo

Hence, we can restrict ourselves to the case where K = Kv. In other words,
K = Ul^MVx'i,y'i\.

W e can aga in r e s t r i c t ourse lves t o t h e case w h e r e for all ie{l,...,M— 1},

in just reducing K without reducing FIK.
We are now ready for the proof itself. We first assume that z =t= 0. We put

J= U }\x'l\y'i\l

For all e > 0, we define the time-set Ie corresponding to the excursions of the process
exp(i?) in J, which are longer than e:

Ie = {s ̂  T,3Ae]0,T-e[,A < s < A + e,Vwe]A,A + e[,exp(i?Je J).

Ie is a finite union of disjoint intervals. Proposition 2 shows readily that

But (recall that / = {u > 0, -

and

so that Beurling's Theorem follows.
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738 WENDELIN WERNER

If z = 0, (2) and (1) follow immediately, using for instance the continuity of the
harmonic measure. For 2^[0,1], one just has to use a rotation argument.
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