
ar
X

iv
:m

at
h/

03
03

35
4v

1 
 [

m
at

h.
PR

] 
 2

7 
M

ar
 2

00
3

1

Random planar curves and Schramm-Loewner evolutions

Lecture Notes from the 2002 Saint-Flour summer school
(final version)

Wendelin Werner
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Foreword and summary

The goal of these lectures is to review some of the mathematical results that
have been derived in the last years on conformal invariance, scaling limits
and properties of some two-dimensional random curves. The (distinguished)
audience of the Saint-Flour summer school consists mainly of probabilists
and I therefore assume knowledge in stochastic calculus (Itô’s formula etc.),
but no special background in basic complex analysis.

These lecture notes are neither a book nor a compilation of research pa-
pers. While preparing them, I realized that it was hopeless to present all the
recent results on this subject, or even to give the complete detailed proofs of
a selected portion of them. Maybe this will disappoint part of the audience
but the main goal of these lectures will be to try to transmit some ideas and
heuristics. As a reader/part of an audience, I often think that omitting de-
tails is dangerous, and that ideas are sometimes better understood when the
complete proofs are given, but in the present case, partly because the tech-
nicalities often use complex analysis tools that the audience might not be so
familiar with, partly also because of the limited number of lectures, I chose
to focus on some selected results and on the main ideas of their proofs, some-
times omitting technical details, and giving references for those interested in
full proofs or more results. In the final chapter, I will briefly review what I
omitted in these lectures, as well as work in progress or open questions.

Of course, I would like to thank my coauthors Greg Lawler and Oded
Schramm without which I would not have been lecturing on this subject in
Saint-Flour. Collaborating with them during these last years was a great
pleasure and privilege. Also, I would like to stress the fact that (almost) none
of the pictures in these notes are mine. Many thanks to their authors Vincent
Beffara, Tom Kennedy and Oded Schramm. I also take this opportunity to
thank Stas Smirnov, Rick Kenyon, as well as all my Orsay colleagues and
students who have directly or indirectly contributed to these lecture notes
through their work, comments and discussions.

Finally, I owe many thanks to all participants of the summer school, as
well as to all colleagues who have sent me their comments and remarks on
the first draft of these notes that was distributed during the summer school
and posted on the web at that time.
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It has been a pleasure and a very rewarding experience to lecture in the
studious, relaxed and enjoyable atmosphere of the 2002 St-Flour school. I
express my gratitude to all who have contributed to it, my co-lecturers Jim
Pitman and Boris Tsirelson, the Maison des Planchettes’ staff, and last but
not least, Jean Picard, whose outstanding organization has been both efficient
and discreet.

Here is a short description of these notes: In the first introductory chapter,
I will briefly describe two discrete models (loop-erased random walks and
critical percolation interfaces) that have now been proved to converge in
their scaling limit to SLE (Oded Schramm used these letters as shorthand
for “stochastic Loewner Evolution”, but I will stick to Schramm-Loewner
Evolution). Using these models, I will try to show why it is natural to define
this one-parameter family of random continuously growing processes based
on Loewner’s equation, and to introduce the difference between their chordal
and radial versions.

The second chapter is a review of the necessary background on determin-
istic aspects of Loewner’s equation in the upper half-plane, which is then
used in Chapter 3 to define chordal SLE. Some first properties of this process
are studied. In particular, some hitting probabilities are computed.

The fourth chapter is devoted to some special properties of SLE that
hold for some special values of the parameter κ: The locality property for
SLE6, and the restriction property for SLE8/3. These are not surprising
if one thinks of these processes as the respective scaling limits of critical
percolation interfaces and self-avoiding walks, but somewhat surprising if
one starts from the definition of SLE itself. These properties are then used
in Chapter 5, to make the link between the geometry of SLE8/3, that of the
outer boundary of a planar Brownian motion and that of the outer boundary
of SLE6.

In Chapter 6, we define radial SLE which are processes defined in a similar
way as chordal SLE except that they are growing towards an interior point
of the domain and not to a boundary point. We show in that chapter that
radial and chordal SLE are very closely related, especially in the case κ = 6.

In Chapter 7, we show how to compute critical exponents associated
to SLE that describe the asymptotic decay of certain probabilities (non-
disconnection, non-intersection). Using the relation between radial SLE6,
chordal SLE6 and planar Brownian motion, we then use these computations
in Chapter 8 to determine the values of the critical exponents that describe
the decay of disconnection or non-intersection probabilities for planar Brow-
nian motions, which is one of the main goals of these lectures. As already
mentioned, it will not be possible to describe all proofs in detail, but I hope
that all the main ideas and steps (that are spread over the first seven chapters
of these notes) are explained in sufficient detail so that the reader can get an
overview of the proof. For simplicity, I will mainly focus on derivation of the
disconnection exponent i.e. the proof of the fact that the probability that a
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complex Brownian curve Z[0, t] started from Z0 = 1 disconnects the origin
from infinity decays like t−1/8 when t→ ∞.

In Chapters 9 and 10, another important aspect of SLE is discussed: The
proofs that some curves arising in discrete models from statistical physics
converge to SLE in their scaling limit. The case of loop-erased random walks
and uniform spanning trees is treated in Chapter 9. Chapter 10 is devoted to
critical site percolation on the triangular lattice, including a brief discussion
of Stas Smirnov’s proof of conformal invariance and of its consequences.

A concluding chapter contains a list of other results, work in progress and
open questions.





1 Introduction

1.1 General motivation

One of the main aims of both statistical physics and probability theory is
to study macroscopic systems consisting of many (i.e. in the limit when this
number grows to infinity) small microscopic random inputs. One may classify
the results into two categories: In the limit, the behaviour of the macroscopic
system becomes deterministic (these are “law of large number” type of re-
sults, and large deviations can to some extent been used in this framework),
or random. The archetype for continuous random objects that appear as
scaling limit of finite systems is Brownian motion. Note that it is the scaling
limit of a large class of simple random walks, so that one might argue that
Brownian motion is more universal than the discrete model (simple random
walk) because there is no need to specify a lattice or a jump-distribution:
it only captures the phenomenological properties of the walks (mean zero,
stationary increments etc.).

In two dimensions, Brownian motion has an important property which
was first observed by Paul Lévy ([102], see e.g. [100, 117] for “modern” proofs
based on Itô’s formula) and that can be heuristically related to the fact that it
is the scaling limit of simple random walks on different lattices (which implies
for instance invariance under rotations and under scaling): It is invariant
under conformal transformations. Here is one way to state this property:
Take a simply connected open planar domain D that contains the origin and
is not equal to C. Consider planar Brownian motion (Bt, t ∈ [0, τ ]) started
from B0 = 0 up to its exit time τ = τD of the domain D. Suppose that Φ is a
conformal map (that is, a one-to-one smooth map that preserves angles) from
D onto some other domain D′ with Φ(0) = 0. Then, there exists a (random)
time changeA : [0, σ] → [0, τ ] so that (Φ(BA(s)), s ∈ [0, σ]) is planar Brownian
motion started from 0 and killed at its first exit time σ of D′. In other words,
if we forget about time-parametrization, the law of Φ(B) is again a Brownian
motion. As we shall see in these lectures, conformal invariance will turn out
to be instrumental in the understanding of curves arising in more complicated
setups.

Actually, there exist only few known examples of probabilistic continuous
models that are not directly related to Brownian motion. For instance, under
mild regularity conditions, continuous finite-dimensional Markov processes
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Fig. 1.1. Sample of a long simple random walk.
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Fig. 1.2. The image of the previous sample under an exponential mapping.
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are solutions of stochastic differential equations and therefore constructed
using Brownian motions. If one looks for other types of continuous processes,
one has therefore to give up the Markov property or the finite-dimensionality.
In many complex systems that we see around us and for which probability
theory seems a priori a well-suited tool (the shape of clouds, say), it is not
possible to explain the phenomena via Brownian motions, and there is still a
long way to go for probabilists to understand their macroscopic behaviour.

In the present lectures, we shall focus on random planar curves. In two
dimensions, (random) curves appear naturally as boundaries of domains, in-
terfaces between two phases, level lines of random surfaces etc. In all these
cases, at least on microscopic level, the definition of the curve (say, as an
interface) implies that it is a self-avoiding curve (or a simple closed loop).
On the macroscopic scale, the continuous curves that we will be considering
may have double-points (in the scaling limit, simple curves may converge to
curves with multiple points), but self-crossings are forbidden. Of course, if
(γt, t ∈ [0, T ]) is such a random curve, we see that in general, this condition
implies a strong correlation between γ[0, t] and γ[t, T ], so that the Markov
property is lost (if we look at these curves as living in the two-dimensional
space). As we shall see, there is a way to recover a Markov property for the
random curves, using a coding of the curve in an infinite-dimensional space
of conformal maps.

1.2 Loop-erased random walks

In order to guide the intuition about the family of random curves that we will
be considering, it is helpful to have some discrete models in mind, for which
one expects or can prove that they converge to this continuous object. We
therefore start these lectures with the description of one measure on discrete
random curves that turns out to converge in the scaling limit. This is actually
the model that Oded Schramm considered when he invented these random
curves that he called SLE (for Stochastic Loewner Evolution, but we will
replace this by Schramm-Loewner Evolution in these lectures).

For any x = (x0, . . . , xm), we define the loop-erasure L(x) of x inductively
as follows: L0 = x0, and for all j ≥ 0, we define inductively nj = max{n ≤
m : xn = Lj} and

Lj+1 = X1+nj

until j = σ where Lσ := xm. In other words, we have erased the loops of x
in chronological order. The number of steps σ of L is not fixed.

Suppose that (Xn, n ≥ 0) is a recurrent Markov chain on a discrete
state-space S started from X0 = x. Suppose that A ⊂ S is non-empty,
and let τA denote the hitting time of A by X . Let p(x, y) denote the tran-
sition probabilities for the Markov chain X . We define the loop-erasure
L = L(X [0, τA]) = LA of X up to its hitting time of A. We call σ the



10

number of steps of LA. For y ∈ A such that with positive probability
LA(σ) = X(τA) = y, we call L(x, y;A) the law of LA conditioned on the
event {LA(σ) = y}. In other words, it is the law of the loop-erasure of the
Markov chain X conditioned to hit A at y.

Lemma 1.1 (Markovian property of LERW). Consider y0, . . . , yj ∈ S
so that with positive probability for L(x, y0;A),

{Lσ = y0, Lσ−1 = y1, . . . , Lσ−j = yj}.

The conditional law of L[0, σ−j] given this event is L(x, yj ;A∪{y1, . . . , yj}).

Proof. For each A and x ∈ A, we denote by G(x,A) the expected number
of visits by the Markov chain X before τA if X0 = x. Then, it is a simple
exercise to check that for all n ≥ 1, w = (w0, . . . , wn) with w0 = x, wn ∈ A
and w1, . . . , wn−1 ∈ S \A,

P[LA = w] =
∑

x : L(x)=w

P[X [0, τA] = x]

= G(w0, A)p(w0, w1)G(w1, A ∪ {w0})p(w1, w2) · · ·
×G(wn−1, A ∪ {w0, w1, . . . , wn−2})p(wn−1, wn).

It is therefore natural to define the function

F (w0, . . . , wn−1;A) =
n−1
∏

j=0

G(wj , A ∪ {w0, . . . , wj−1}).

Again, it is a simple exercise on Markov chains to check that for all A′, y and
y′,

G(y,A′)G(y′, A′ ∪ {y}) = G(y′, A′)G(y,A′ ∪ {y′}).
It follows immediately that F is in fact a symmetric function of its arguments.
Hence,

P[LA
0 = w0, . . . , L

A
σ = wn|Lσ = wn, Lσ−1 = wn−1]

=
p(wn−1, wn)G(wn−1, A)

P[Lσ = wn, Lσ−1 = wn−1]

×
n−2
∏

j=0

p(wj , wj+1)G(wj , (A ∪ {wn−1}) ∪ {w0, . . . , wj−1}).

This readily implies the Lemma when j = 1. Iterating this j times shows the
Lemma. ⊓⊔

This Lemma shows that it is in fact fairly natural to index the loop-erased
path backwards (define γj = LA

σ−j , so that γ starts on A and goes back to
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γσ = x). Then, the time-reversal of loop-erased (conditioned and stopped)
Markov chains have themselves a Markovian-type property.

Let us now come back to our two-dimensional setting: Suppose that X is
a simple random walk on the grid δZ2 (we will then let the mesh δ of the
lattice go to 0) that is started from 0. Let D denote some simply connected
domain D with 0 ∈ D and D 6= C, and let Dδ = δZ2∩D, A = Aδ = δZ2 \D.
We are interested in the behaviour when δ → 0 of the law of γδ which
is defined as before as the time-reversed loop-erasure of X [0, τA]. We now
think on a heuristic level: First, note that the law of XτA

converges to the
harmonic measure on ∂D from 0, so that it is possible to study the behaviour
of γδ conditional on the value of {γδ = yδ

0} where yδ
0 → y ∈ ∂D as δ → 0.

Second, one might argue that on the one hand, simple random walk converges
to planar Brownian motion which is conformally invariant, and that on the
other hand the chronological loop-erasing procedure is purely geometrical to
conclude that when δ → 0, the law of γδ should converge to a conformal
invariant curve that should be the loop-erasure of planar Brownian motion.

Fig. 1.3. A sample of the loop-erased random walk.

Unfortunately (or fortunately!), the geometry of planar Brownian curves
is very complicated: It has points of any (even infinite) multiplicity (see e.g.
[100]), loops at any scale, so that there is no “first” loop to erase, and de-
cisions about what small microscopic loops to erase first may propagate to
the decisions about what macroscopic loops one should erase. In other words,
there is no simple (even random) algorithm to loop-erase a Brownian path
in chronological order. Yet, the previous heuristic strongly suggests the law
of γδ should converge, and that the limiting law is invariant under conformal
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transformations: The scaling limit of LERW in D should be (modulo time-
change) identical to the conformal image of the scaling limit of LERW in D′.
Furthermore, Lemma 1.1 should still be valid in the scaling limit. We now
show that the combinations of these two properties in fact greatly reduce the
family of possible scaling limits for LERW.

1.3 Iterations of conformal maps and SLE

We are therefore looking for the law of a random continuous curve (γt, t ≥ 0)
with no self-crossings in the unit disc U, with γ0 = 1, limt→∞ γt = 0 that
could be the scaling limit of (time-reversed) loop-erased random walk on
a grid approximation of U (conditioned to exit U near 1). Define for each
t ≥ 0, the conformal map ft from U \ γ[0, t] onto U which is normalized by
ft(0) = 0 and ft(γt) = 1 (actually, if γ would have double-points, the domain
of definition would be the connected component of U\γ[0, t] that contains the
origin, but let us a priori assume for convenience that γ is a simple curve).

It is easy to check that t 7→ |f ′
t(0)| is an increasing continuous function

that goes to ∞ as t → ∞ (see for instance [2]). Hence, it is possible to
reparametrize γ in such a way that

|f ′
t(0)| = et. (1.1)

This is the natural parametrization in our context. Indeed, let us now study
the conditional law of γ[t,∞) given γ[0, t]. Lemma 1.1 suggests that this law
is the scaling limit of (time-reversed) LERW in the slit domain U \ γ[0, t]
conditioned to exit at γt, and conformal invariance then says that this is the
same (modulo time-reparametrization) as the image under z 7→ f−1

t (z) of
an independent copy γ̃ of γ. Note that if one composes conformal maps that
preserve the origin, then the derivative at the origin multiply: This shows that
in fact, no time-change is necessary if we parametrize γ (and γ̃) by (1.1), in
order for the conditional law of (γt+s, s ≥ 0) given γ[0, t] to be identical to
that of (f−1

t (γ̃s), s ≥ 0). In other words, for all fixed t ≥ 0,

(ft+s, s ≥ 0) = (f̃s ◦ ft, s ≥ 0) in law

where (f̃s, s ≥ 0) is an independent copy of (fs, s ≥ 0). In particular, f2t =
f̃t ◦ ft in law. Repeating this procedure, we see that for all t ≥ 0 and all
integer n ≥ 1, fnt is the iteration of n independent copies of ft, and that ft

itself can be viewed as the iteration of n independent copies of ft/n. In other
words, (ft, t ≥ 0) is an “infinitely divisible” process of conformal maps, and
ft is obtained by iterating infinitely many independent conformal maps that
are infinitesimally close to the identity.

Back in the 1920’s, Loewner observed that if γ[0,∞) is a simple contin-
uous curve starting from 1 in the unit disc, then it is naturally encoded via
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a continuous function ζt taking its values on the unit circle. Let us now de-
scribe briefly how it goes. Suppose, as in the previous section, that γ(0) = 1,
limt→∞ γt = 0 and that γ is parametrized in such a way that the modulus
of the derivative at 0 of the conformal map ft from Ut := U \ γ[0, t] into U

that preserves the origin is et. Define ζt = (f ′
t(0)/|f ′

t(0)|)−1. In other words,
if gt denotes the conformal map from Ut onto U such that gt(0) = 0 and
g′t(0) = et ∈ (0,∞), then

ζt = gt(γt)

and gt(z) = ζtft(z). One can note (see e.g. [2, 49]) that for all z /∈ γ[0, t],

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z) − ζt

. (1.2)

Hence, it is possible to recover γ from ζ as follows: For all z ∈ U, define gt(z)
as the unique solution to (1.2) starting from z. In case gt(z) = ζt for some
time t, then define γt = g−1

t (ζt) (we know already a priori that since γ is a
simple curve, the map g−1

t extends continuously to the boundary). Note that
if gt(z) = ζt, then gs(z) is not well-defined for s ≥ t.

Hence, in order to define the random curve γ that should be the scaling
limit of loop-erased random walks, it suffices to define the random function
ζt = exp(iWt), where (Wt, t ≥ 0) is real-valued. Our previous considerations
suggest that the following conditions should be satisfied:

– The process W is almost surely continuous.
– The process W has stationary increments (this is because gt is obtained

by iterations of identically distributed conformal maps)
– The laws of the processes W and −W are identical (this is because the law

of L and the law of the complex conjugate L are identical).

The theory of Markov processes tells us that the only possible choices are:
Wt = βκt where β is standard Brownian motion and κ ≥ 0 a fixed constant.
In order to simplify some future notations, we will usually write

Wt =
√
κBt, t ≥ 0

where (Bt, t ≥ 0) is standard (one-dimensional) Brownian motion.
In summary, we have just seen that on a heuristic level, if the scaling

limit of loop-erased random walk exists and is conformally invariant, then
the scaling limit in the unit disk should be described as follows: For some
fixed constant κ = κLERW , define ζt = exp(i

√
κBt), t ≥ 0, solve for each

z ∈ U, the equation (1.2) with g0(z) = z. This defines a conformal map gt

from the subset Ut of the unit disk onto U. Then, one can construct γ because

Ut = U \ γ[0, t]
and

γt = g−1
t (ζt).

As we shall see later on in the lectures, this heuristic arguments can be made
rigorous, and it will turn out that κLERW = 2.
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1.4 The critical percolation exploration process

In the context of LERW, the random curve joins a point in the inside of
the domain to a point on the boundary of the domain. In statistical physics
models, one is often interested in “interfaces”. Some of these interfaces appear
to be random curves from one point on the boundary to another point on the
boundary. A natural setup is to study curves from 0 to infinity in the upper
half-plane H := {x+ iy : y > 0}. Then, we look for random non-self-crossing
curves γ such that the law of γ[t,∞) given γ[0, t] has the same law than the
conformal image of an independent copy γ̃ of γ under a conformal map from
H onto H \ γ[0, t] that maps ∞ onto itself and 0 onto γt.

We now very briefly describe an important discrete model for which it
has now also been proved that it behaves in a conformally invariant way in
the scaling limit (more details on the model and its conformal covariance will
be given in Chapter 10): Critical site percolation on the triangular lattice.
Actually, it is more convenient to describe this in terms of cell-colouring of
the honeycombe lattice. Suppose that a simply connected domain D is fixed,
as well as two distinct points a and b on ∂D. Let Dδ denote a suitably chosen
approximation of D by a simply connected union of hexagonal cells of size δ.
Let aδ (resp. bδ) denote a vertex of the honeycombe lattice on ∂Dδ that is
close to a (resp. to b). Then, the cells on ∂Dδ can be divided into two “arcs”
Bδ and Wδ in such a way that aδ, Bδ, bδ and Wδ are oriented clockwise
“around” Dδ. Decide that all hexagons in Bδ are colored in black and that
all hexagons in Wδ are colored in white. On the other hand, all other cells in
Dδ are chosen to be black or white with probability 1/2 independently of each
other. Consider now the (random) path γδ from aδ to bδ that separates the
cluster of black hexagons containing Bδ from the cluster of white hexagons
containing Wδ.

For deep reasons that will be discussed later in these lectures, it will turn
out that when δ → 0, the law of γδ converges towards that of a random curve
γ from a to b in D, and that the law of that curve is conformally invariant:
The law of Φ(γ) when Φ is a conformal map from D onto Φ(D) is that of the
corresponding path (i.e. of the scaling limit of percolation cluster interfaces)
from Φ(a) to Φ(b) in Φ(D).

Again, on the discrete level, it is easy to see that γδ has the same type
of Markovian property that LERW. More precisely, conditioning on the first
steps of γ is equivalent to condition the percolation process to have black
hexagons on the left-boundary of these steps and white hexagons on the
right side. Hence, the conditional law of the remaining steps is that of the
percolation interface in the new domain obtained by slitting Dδ along the
first steps of γδ. Figure 1.4 shows the beginning of the interface γδ in the case
where D is the upper half-plane.

Another equivalent way to define the interface γδ goes as follows: It is a
myopic self-avoiding walk. At each step γδ looks at its three neighbours (on
the honeycomb lattice) and chooses at random one of the sites that it has not
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Fig. 1.4. The beginning of the discrete exploration process.

visited yet (there are one or two such sites since one site is anyway forbidden
because it was the previous location of the walk).

This discrete walk in the upper half-plane is a very special discrete model
that will turn out to converge to an SLE. The corresponding value of κ is
6. Here, the starting point a = 0 and the end-point b = ∞ are both on the
boundary of the domain, so that the previous definition of radial SLE is not
well-suited anymore.

1.5 Chordal versus Radial

The natural time-parametrization in the previous setup goes as follows: Let
gt denote the conformal map from H \ γ[0, t] onto H that is normalized at
infinity in the sense that when z → ∞,

gt(z) = z +
at

z
+ o(1/z).

It is easy to see that at is positive, increasing and that it is natural to
parametrize gt in such a way that at is a multiple of t (since the at terms
add up when one composes two such conformal maps). It is natural to choose
at = 2t (this is consistent with the chosen parametrization in the radial case).
Then, define wt = gt(γt), and observe that

∂tgt(z) =
2

gt(z) − wt
. (1.3)
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Fig. 1.5. The exploration process, proved to converge to SLE6 (see Chapter 10)

Hence, just as in the radial case, we observe that it is possible to recover γ
using w, and that the only choice for w that is consistent with the “Marko-
vian property” is to take wt =

√
κBt, where B is ordinary one-dimensional

Brownian motion.
Hence, one is lead to the following definition: Let wt =

√
κBt, and define

for all z ∈ H, the solution gt(z) of (1.3) up to the (possibly infinite) time
T (z) at which gt(z) hits wt. Then, define

Ht = {z ∈ H : T (z) > t}

and
Kt = {z ∈ H : T (z) ≤ t}.

Then, gt is the normalized conformal map fromHt onto H. We call (Kt, t ≥ 0)
the chordal SLEκ in the upper half-plane.

It turns out that radial and chordal SLE’s are rather closely related:
Consider for instance, the conformal image of radial SLEκ under the map
that maps U onto H, 1 to 0 and 0 to i. Consider both this process and chordal
SLEκ up to their first hitting of the circle of radius 1/2 around zero say. Then,
the laws of these two processes are absolutely continuous with respect to each
other [87]. This justifies a posteriori the choice of time-parametrization in the
chordal case.
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1.6 Conclusion

We have seen that if one considers a discrete model of random curves (or
interfaces) that combine the two important features:

– The Markovian type property in the discrete setting,
– Conformal invariance in the limit when the mesh of the lattice goes to zero,

then the good way to construct the possible candidates for the scaling limit
of these curves is to encode them via the corresponding conformal mappings.
Then, these (random) conformal mappings are themselves obtained by iter-
ations of identically distributed random conformal maps. Loewner’s theory
shows that such families of conformal maps are themselves encoded by a one-
dimensional function. If one knows this one-dimensional function, one can
recover the family of conformal maps, and therefore also the two-dimensional
curve. The one-dimensional random function that generates the scaling limits
of the discrete models must necessarily be a one-dimensional Brownian mo-
tion. The corresponding random two-dimensional curves are SLE processes.

Bibliographical comments

Most of the intuition about how to define radial and chordal SLE (with LERW
as a guide) was already present in the introduction of Oded Schramm’s first
paper [123] on SLE that he released in March 1999. Our presentation of
Lemma 1.1 is borrowed from Lawler [81], but there are other proofs of it
(it is for instance closely related to Wilson’s algorithm [136] that will be
discussed in Chapter 9).





2 Loewner chains

This chapter does contain background material on conformal maps and on
Loewner’s equation (no really new results will be presented here). The setup
is deterministic in this Chapter. SLE will be introduced in the next Chapter.

2.1 Measuring the size of subsets of the half-plane

We study increasing “continuously growing” compact subsets (Kt, t ≥ 0) of
the upper half-plane. It will turn out to be important to choose the good
time-parametrization. We want to find the natural way to measure the size
a(K) of a compact set K and we will then choose the time-parametrization
in such a way that a(Kt) = t. We will use the following definition throughout
the paper.

Definition. We say that a compact subset K of the closed upper half-plane
H, such that H := H \K is simply connected, is a hull.

Riemann’s mapping theorem asserts that there exist conformal maps Φ
from H onto H with Φ(∞) = ∞. Actually, if Φ is such a map, the family of
maps bΦ+b′ for real b′ and positive b is exactly the family of conformal maps
from H onto H that fix infinity.

Note that since K is compact, the mapping Ψ : z 7→ 1/Φ(1/z) is well-
defined on a neighbourhood of 0 in H. It is possible to extend this map Ψ
to a whole neighbourhood of 0 in the plane by reflection along the real axis
(this is usually called Schwarz reflection) and to check that this extension
is analytic. This implies that Φ can be expanded near infinity: There exist
b1, b0, b−1, . . ., such that

Φ(z) = b1z + b0 + b−1z
−1 + · · · + b−nz

−n + o(z−n)

when z → ∞ in H. Furthermore, since Φ preserves the real axis near infinity,
all coefficients bj are real.

Hence, for each K, there exists a unique conformal map Φ = ΦK from
H = H \K onto H such that:

Φ(z) = z + 0 + o(1/z) when z → ∞.
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This is sometimes called the hydrodynamical normalization. In particular,
there exists a real a = a(K) such that

Φ(z) = z +
2a

z
+ o(1/z) when z → ∞.

This number a(K) is a way to measure the size of K. In a way, it tells “how
big K is in H, seen from infinity”. It may a priori not be clear that a is a
non-negative increasing function of the set K. There is a simple probabilistic
interpretation of a(K) that immediately implies these facts: Suppose that
Z = X + iY is a complex Brownian motion started from Z0 = iy (for some
large y, so that Z0 /∈ K) and stopped at its first exit time τ of H . The
expansion Φ(z) = z + o(1) near infinity shows that ℑ(Φ(z)− z) is a bounded
harmonic function in H . The martingale stopping theorem therefore shows
that

E[ℑ(Φ(Zτ )) − Yτ ] = ℑ(Φ(iy) − iy) =
2a

iy
+ o(1/y).

But Φ(Zτ ) is real because of the definition of τ . Therefore

2a = lim
y→+∞

y E[ℑ(Yτ )].

In particular, a ≥ 0.
One can also view a as a function of the normalized conformal map ΦK

instead of K. The chain rule for Taylor expansions then immediately shows
that

a(Φ1 ◦ Φ2) = a(Φ1) + a(Φ2)

for any two normalized maps Φ1 and Φ2. In particular, this readily implies
that a(K) ≤ a(K ′) if K ⊂ K ′ (because there exists a normalized conformal
map from H \ ΦK(K ′ \K) onto H).

Let us now observe two simple facts:

– If λ > 0, then a(λK) = λ2a(K). This is simply due to the fact that

Φ(z/λ) =
z

λ
+

2a(K)λ

z
+ o(λ/z)

so that

ΦλK(z) = λΦK(z/λ) = z +
2a(K)λ2

z
+ oλ(λ/z) (2.1)

when z → ∞.
– When K is the vertical slit [0, iy], then

ΦK(z) =
√

z2 + y2.

In particular, we see that a([0, iy]) = y2/4. Note that if y is very small, the
actual diameter of the vertical slit [0, iy] is much larger than a([0, iy]).
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Equation (2.1) shows that for all K such that a(K) = 1, one has
a(
√
λK) = λ and

lim
λ→0

Φ√
λK(z) − Φ{0}(z)

λ
= lim

λ→0

Φ√
λK(z) − z

λ
=

2

z
. (2.2)

Actually, it is not very difficult to prove that for all given r, there exists
C > 0 such that this convergence takes place uniformly over all K of radius
smaller than r and |z| > Cr. See Lemma 2.7 in [86].

2.2 Loewner chains

Suppose that a continuous real function wt with w0 = 0 is given. For each
z ∈ H, define the function gt(z) as the solution to the ODE

∂tgt(z) =
2

gt(z) − wt
(2.3)

with g0(z) = z. This is well-defined as long as gt(z) − wt does not hit 0, i.e.,
for all t < T (z), where

T (z) := sup{t ≥ 0 : min
s∈[0,t]

|gs(z) − ws| > 0}.

We define

Kt := {z ∈ H : T (z) ≤ t}
Ht := H \Kt.

Note for instance that if wt = 0 for all t, then

gt(z) =
√

z2 + 4t

and Kt = [0, 2i
√
t].

It is very easy to check that gt is a bijection fromHt onto H (in order to see
that it is surjective, one can just look at the ODE “backwards in time” to find
which point z is such that gt(z) = y). Moreover Kt is bounded (because w is
continuous and bounded on [0, t]) and Ht has a unique connected component
(because g−1

t is continuous). Standard arguments from the theory of ordinary
differential equations can be applied to check that gt is analytic and that one
can formally differentiate the ODE with respect to z, so that

∂tg
′
t(z) =

−2g′t(z)

(gt(z) − wt)2
.

So, gt is a conformal map from Ht onto H.
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Note also that |∂tgt(z)| is uniformly bounded when z is large and t belongs
to a given finite interval [0, t0]. Hence, it follows that gt(z) = z + O(1) near
infinity and uniformly over t ∈ [0, t0]. Hence (using the ODE yet again),
∂tgt(z) = 2/z + o(1/z) uniformly over t ∈ [0, t0] so that finally, for each t,

gt(z) = z +
2t

z
+ o(1/z)

when z → ∞. In other words, a(Kt) = t. The family (Kt, t ≥ 0) is called the
Loewner chain associated to the driving function (wt, t ≥ 0).

Loewner’s original motivation was to control the behaviour of the coef-
ficients of the Taylor expansion of conformal maps and for this goal, it is
sufficient to consider smooth slit domains (see e.g., [2, 49]). For this reason,
the following question was only addressed later (see [72]): If the continuous
function (wt, t ≥ 0) is given, what can be said about the family of compact
sets (Kt, t ≥ 0)?

In the introduction, we started with a continuous curve γ, then using γ,
we defined Ht, the conformal maps gt, the function wt and argued that one
could recover γ from wt, using the fact that we a priori knew that g−1

t extends
continuously to wt ∈ ∂H and that g−1

t (wt) was well-defined (and equal to γt)
because γ is a continuous curve. But if one starts with a general continuous
function wt, then it can in fact happen that g−1

t does not extend continuously
to wt.

Before making general considerations, let us exhibit a simple example to
show that (Kt, t ≥ 0) does not need to be a simple curve. For θ ∈ [0, π), let
η(θ) = exp(iθ)−1. Define t(θ) = a(η[0, θ]) the “size” of the arc η[0, θ]. Finally,
define the reparametrization γ of η in such a way that a(γ[0, t]) = t. γ is
defined for all t < T := limθ→π− a(η[0, θ]). It is simple to see that there exists
a continuous function (wt, t < T ) such that the normalized conformal maps gt

from H\γ[0, t] onto H satisfy the equation (2.3). Furthermore, when t→ T−,
wt converges to a finite limit wT . At time T , the curve γ[0, T ] disconnects
the inside of the semi-circle from the outside. Just before T , because gt is
normalized “from infinity”, the inside of the semi-circle is mapped onto a
small region which is very close to wt = gt(γt). When t → T−, all points
inside the semi-circle are hitting wT . In other words, KT is the whole semi-
disc, HT is the complement of the semi-disc, and gT is the normalized map
from the simply connected domain HT onto H.

Let us now give a couple of general definitions:

– We say that (Kt, t ≥ 0) is a simple curve if there exists a simple continuous
curve γ such that Kt = γ[0, t].

– We say that (Kt, t ≥ 0) is generated by a curve if there exists a continuous
curve γ with no self-crossings, such that for all t ≥ 0, Ht = H \Kt is the
unbounded connected component of H \ γ[0, t]. In other words, Kt is the
union of γ and of the inside of the loops that γ creates.

– We say that (Kt, t ≥ 0) is pathological if it is not generated by a curve.
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In each of these three cases, one can find (deterministic) continuous func-
tions wt such that the family (Kt, t ≥ 0) that it constructs falls into this
category: For the first case, consider for instance wt = 0 as before, for the
second case, one can use the example with the semi-circle. For the more in-
tricate third case, let us mention the following example (due to Don Marshal
and Steffen Rohde, see [108]): Let γ denote a simple curve in H started from
γ0 = 0 that spirals clockwise around the segment [i, 2i] an infinite number of
times, and then unwinds itself. Then at the “time” at which it winds around
the segment an infinite number of times, γ is not continuous i.e. Kt \Kt− is
the whole segment. However, this Loewner chain corresponds to a continuous
function wt. Such pathologies could arise at any scale.

We now characterize the families (Kt, t ≥ 0) of compact sets that are
Loewner chains:

Proposition 2.1 The following two conditions are equivalent:

1. (Kt, t ≥ 0) is a Loewner chain associated to a continuous driving function
(wt, t ≥ 0).

2. For all t ≥ 0, a(Kt) = t, and for all T > 0, and ε > 0, there exists δ > 0
such that for all t ≤ T , there exists a bounded connected set S ⊂ H \Kt

with diameter not larger than ε such that S disconnects Kt+δ \Kt from
infinity in H \Kt.

Sketch of the proof. Let us now prove that 2. implies 1. (the fact that 1.
implies 2. is very easy): 2. implies that for all t ≥ 0, the diameter of the sets
gt(Kt+δ \Kt) decrease towards 0 when δ → 0. Hence, one can simply define
wt by

{wt} = lim
δ→0

gt(Kt+δ \Kt).

Then, one uses 2. to show that t 7→ wt is uniformly continuous. It then only
remains to check that indeed

lim
δ→0

gt+δ(z) − gt(z)

δ
=

2

gt(z) − wt
.

This is achieved by applying the uniform version of (2.2). ⊓⊔
Suppose now that Kt is the Loewner chain

Kt = [0, c
√
t]

for some c = c(θ) exp(iθ) ∈ H. Here, θ 6= 0 is given, and then the positive real
c(θ) is chosen in such a way that a(K1) = 1. Scaling immediately shows that
a(Kt) = t for all t > 0, so that there exists therefore a continuous driving
function w that generates these slits. Again, scaling (because Kλt =

√
λKt)

shows that necessarily, this function w must be of the type

wt = c1
√
t
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for some real constant c1 = c1(θ). Let gθ
t denote the corresponding family of

conformal maps.
Let us now choose a new driving function w as follows: wt = 0 when t < 1

and for t ≥ 1:
wt = c1

√
t− 1.

When t < 1, then Kt is just the straight slit. In particular, g1(z) =
√
z2 + 4.

When t > 1, then Kt is obtained by mapping the angled slit Kθ
t−1 back by

g−1
1 . In particular, we see that the curve γ generated by this function w is

not differentiable at t = 1. This is one simple hint to the fact that Hölder-1/2
regularity may be critical (note that at t = 1, w is just Hölder 1/2).

The general relation between smoothness of the driving function and reg-
ularity of the slit has also recently been investigated (in the deterministic
setting) by Marshall-Rohde [108]. In this paper, it is shown that Hölder-1/2
is in a sense a “critical regularity” for the driving function wt: Loosely speak-
ing (their results are more precise than that), if w is better than Hölder-1/2,
then it defines a “smooth” (in some appropriate sense) slit, but nasty “patho-
logical” phenomena can occur for Hölder-1/2 driving functions. See [108] and
the references therein.

Bibliographical comments

For general background on complex analysis, Riemann’s mapping theo-
rem, there are plenty of good references, see for instance [1, 119]. Loewner
introduced his equation (in the radial setting) in 1923 [103]. For general in-
formation about Loewner’s equation, and in particular how Loewner used
it to prove that |a3| ≤ 3 for univalent functions z +

∑

n≥2 anz
n on U as

well as other applications, see for instance [2, 49]. For how it is used in de
Branges’ proof of the Bieberbach conjecture, a good self-contained reference
is Hayman’s book [58]. For basics on hypergeometric functions, see e.g., [99].

Proposition 2.1 is derived in [86], see also [114]. Carleson and Makarov
[35, 36] have used Loewner’s (radial) equation in the context of Diffusion
Limited Aggregation.



3 Chordal SLE

3.1 Definition

Chordal SLEκ is the Loewner chain (Kt, t ≥ 0) that is obtained when the
driving function

wt = Wt :=
√
κBt

is
√
κ times a standard real-valued Brownian motion (Bt, t ≥ 0) with B0 = 0.

Let us now list a couple of consequences of the simple properties of Brownian
motion:

– Brownian motion is a strong Markov process with independent increments.
This implies that for any stopping time T (with respect to the natural
filtration (Ft, t ≥ 0) of B), the process

(gT+t(KT+t \KT ) −WT , t ≥ 0)

is independent of FT and that its law is identical to that of (Kt, t ≥ 0).
Note that one has to shift by WT in order to obtain a process starting at
the origin.

– Brownian motion is scale-invariant: For each λ > 0, the process Wλ
t :=

Wλt/
√
λ, t ≥ 0 has the same law than W . But

∂t(gλt(
√
λz)) =

2λ

gt(
√
λz) −Wλt

.

In particular, if
gλ

t (z) := gλt(z
√
λ)/

√
λ,

then

∂tg
λ
t (z) =

2

gλ
t (z) −Wλ

t

and gλ
0 (z) = z. In other words, (Kλt, t ≥ 0) and (

√
λKt, t ≥ 0) have the

same law: Chordal SLEκ is scale-invariant.
– Brownian motion is symmetric (W and −W have the same law). Hence,

the law of (Kt, t ≥ 0) is symmetric with respect to the imaginary axis.

It is actually possible to prove the following result:
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Proposition 3.1 For all κ ≥ 0, chordal SLEκ is almost surely not patholog-
ical. When κ ≤ 4, it is a.s. a simple curve γ, when κ > 4, it is a.s. generated
by a (non-simple) curve γ.

This result is due to Rohde-Schramm [118] (see [93] for the critical case
κ = 8). It is not an easy result, especially for the values κ > 4. Actually,
while this fact is important and useful in order to understand heuristically the
behaviour and the properties of SLEκ, it turns out that one can derive many
of them without knowing that the SLEκ is generated by a continuous curve.
We therefore omit the proof in these lectures, and we will call (Kt, t ≥ 0) the
SLE. In some cases that we will focus on (κ = 2, 8/3, 6, 8), the fact that SLEκ

is a.s. generated by a curve will actually follow from other considerations.
It is however easy to see that κ = 4 is a critical value: Consider chordal

SLEκ, and define

Xt =
gt(1) −Wt√

κ
.

Note that X hits zero if and only if the chordal SLE absorbs the boundary
point 1. But X satisfies

dXt = dBt +
2

κXt
dt. (3.1)

It is a 1+(4/κ) dimensional Bessel process, and it is well-known (see e.g. [117])
that such a process a.s. hits zero if and only if κ > 4. This can for instance be
viewed as a consequence of the fact that if X is a Bessel process of dimension
d started away from zero, then if d 6= 2, X2−d is a local martingale, and when
d = 2, logX is a local martingale.

It follows that:

Proposition 3.2 – If κ ≤ 4, then almost surely ∪t≥0Kt ∩ R = {0}.
– If κ > 4, then almost surely, R ⊂ ∪t≥0Kt.

Assuming that the SLE is generated by a curve, this readily shows that
the SLE curve is simple if and only if κ ≤ 4.

If one defines, for all z ∈ H, the solution Xz
t to (3.1) started from

Xz
0 = z/

√
κ (up to the stopping time T (z)). Then, we see that SLEκ can be

interpreted in terms of the flow of a complex Bessel process: For each t > 0,
Kt is the set of starting points such that Xz

t has hit 0 before time t.

3.2 A first computation

We now compute the probability of some simple events involving the chordal
Schramm-Loewner evolution. Suppose that a < 0 < c. Let κ > 0 be fixed.
Define the event Ea,c that the chordal SLEκ hits [c,∞) before (−∞, a]. For
the reasons that we just discussed, this makes sense only if κ > 4 (otherwise,
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it never hits these intervals). The goal of this section is to compute the
probability of Ea,c. The scaling property of chordal SLE shows that this
is a function of the ration c/a only. We can therefore define F = Fκ on the
interval (0, 1) by

P[Ea,c] = F (−a/(c− a)).

Proposition 3.3 For all κ > 4 and z ∈ (0, 1),

F (z) = c(κ)

∫ z

0

du

u4/κ(1 − u)4/κ

where c(κ) = (
∫ 1

0
u−4/κ(1 − u)−4/κdu)−1 is chosen so that F (1) = 1.

Note that this Proposition is in fact a property of the real Bessel flow:
Ea,c is the event that Xc hits 0 before Xa does.

Proof. Suppose that Ft = σ(Bs, s ≤ t) is the natural filtration associated
to the Brownian motion, and define Ta = T (a) and Tc = T (c) as before (the
times at which a and c are respectively absorbed by Kt). For t < Ta and
t < Tc respectively, define

At := gt(a) and Ct := gt(c).

Suppose that t < min(Ta, Tc), and define

Kt,s = gt(Kt+s \Kt) −Wt.

The strong Markov property shows that (Kt,s, s ≥ 0) is also chordal SLEκ,
and that it is independent from Ft. Also, if t < min(Ta, Tc), the event Ea,c

corresponds to the event that (Kt,s, s ≥ 0) hits [Ct−Wt,∞) before (−∞, At−
Wt]. Hence, if t < min(Ta, Tc),

P[Ea,c | Ft] = F

(

Wt −At

Ct −At

)

.

In particular, this shows that the right-hand side of the previous identity is
a (bounded) martingale. We know that Wt =

√
κBt, and that

∂tAt =
2

At −Wt
, ∂tCt =

2

Ct −Wt
.

Hence, if we put Zt := (Wt −At)/(Ct −At), stochastic calculus yields

dZt =

√
κdBt

Ct −At
+

2dt

(Ct −At)2

(

1

Zt
− 1

1 − Zt

)

.

One can now also introduce the natural time-change

s = s(t) :=

∫ t

0

du

(Cu −Au)2
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and define Z̃ in such a way that Z̃s(t) = Zt. Then,

Z̃s =
√
κdB̃s + 2

(

1

Zs
− 1

1 − Zs

)

ds

where (B̃s, s ≥ 0) is a standard Brownian motion.
But Kt hits (−∞, a) if and only Zt hits 0, and Kt hits (c,∞) if and only

if Zt hits 1. Hence, F (z) is the probability that the diffusion Z̃ started from
Z̃0 = z hits 1 before 0. One can invoke (for instance) the general theory of
diffusions to argue that the function F is therefore smooth on (0, 1). Itô’s
formula (since F (Z̃s) is a martingale) then implies that

κ

4
F ′′(z) +

(

1

z
− 1

1 − z

)

F ′(z) = 0. (3.2)

Furthermore, the boundary values of F are simple to work out: When κ > 4,
one can see (for instance comparing Z̃ with a Bessel process) that

lim
z→0

F (z) = 0 and lim
z→1

F (z) = 1.

Hence, F is the only solution to the ODE (3.2) with boundary values F (0) = 0
and F (1) = 1. This immediately proves the Proposition. ⊓⊔

Note that when z → 0,

F (z) ∼ c(κ)

1 − 4/κ
z1−4/κ.

In particular, for κ = 6, we get the exponent 1/3.
Exactly in the same way, it is possible (for κ > 4) to compute the proba-

bility that chordal SLEκ (started from 0) hits the interval [a, c] before [c,∞)
when 0 < a < c. This is a function F̃ of the ratio a/c, satisfying a linear
second-order differential equation, with the boundary conditions

F̃ (1) = 0 and F̃ (0) = 1.

3.3 Chordal SLEκ in other domains

Suppose that D is some given non-empty open simply connected subset of
the complex plane with D 6= C. We do not impose any regularity condition on
∂D. Riemann’s mapping theorem shows that there exist (many) conformal
maps Φ from the upper half-plane H onto D. Even if the boundary of ∂D
is not smooth, one can define a general notion that coincides with that of
boundary points when it is smooth: For each x ∈ R, we say that (if some
map Φ is given) Φ(x) is a prime end of D (see e.g. [116] for a more precise
and correct definition).
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Suppose that O and U are two distinct prime ends in D. Then, there
exists a conformal map Φ from H onto D such that Φ(0) = O and Φ(∞) = U .
Actually, this only characterizes Φ(·) up to a multiplicative factor (because
Φ(λ·) would then also do).

Suppose that (Kt, t ≥ 0) is chordal SLEκ in H as defined before. We
define SLEκ in D from O to U as the image of the process (Kt, t ≥ 0)
under Φ. Recall that Φ is defined up to a multiplicative constant. However,
the scaling property of SLEκ in H shows that the law of (Φ(Kt), t ≥ 0) is
invariant (modulo linear time-change) if we replace Φ(·) by Φ(λ·).

To illustrate this definition, consider the following setup: Suppose that
κ = 6 and that OAC is an equilateral triangle. Let Φ denote the conformal
map from H onto the triangle defined in such a way that

Φ(a) = A,Φ(0) = O,Φ(c) = C

where a < 0 < c are given. This conformal map can be easily described
explicitly using the Schwarz-Christoffel transformations [1, 119]. Note that
U = Φ(∞) is on the interval AC. It turns out that

AU

AC
= F (z)

where z = −a/(c − a) and F = Fκ=6 is precisely the same hypergeometric
function as in Proposition 3.3. Hence, the probability that chordal SLE6

from O to U in the equilateral triangle OAC hits AU before UC is simply
the ratio AU/AC.

Suppose now that κ ∈ (4, 8). Just as for the hypergeometric function F ,
the functions F̃ that were defined at the end of the last subsection have a
nice interpretation in terms of conformal mappings onto triangles: Consider
an isocele triangle T = OAU with OA = AU = 1 and angle π(1 − 4/κ) at
the vertices O and U . The angle at the vertex A is therefore π(8/κ − 1).
Consider now a chordal SLEκ from O to U in the triangle T . Let X denote
the random point at which it first hits the segment AU .

Proposition 3.4 The law of X is the uniform distribution on AU .

This is a direct consequence of the explicit computation of F̃ and of the
explicit Schwarz-Christoffel mapping from the upper half-plane onto T : For
each C ∈ AU , one can compute the probability that X ∈ [AC] via the
function F̃ . ⊓⊔

This gives a first justification to the fact that the only possible confor-
mally invariant scaling limit of the critical percolation exploration process
is SLE6 (see more on this in Chapter 10). Indeed, suppose that the critical
percolation exploration process is conformally invariant. We have argued in
the first chapter that the scaling limit is one of the SLEs. Suppose that it is
SLEκ for a given value of κ, and consider the corresponding triangle T .
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Clearly in the discrete case (for a fixed small meshsize), up to the first
time at which it hits the edge AU , the critical exploration process from O to
U and the critical exploration process from O to A in T coincide. Hence, the
hitting distributions on AU for chordal SLEκ from O to U and for chordal
SLEκ from O to A coincide. In particular, the uniform distribution on AU
must be invariant under the anti-conformal map from T onto itself that maps
O onto itself and interchanges the vertices A and U . This is only true when
the triangle is symmetric (i.e. the angles at U and A are identical), in other
words when α = π/3 or κ = 6.

We shall see in the next chapter that indeed, for SLE6, the whole paths
from O to A and from O to U coincide up to their first hitting of AU . This
is the so-called locality property of SLE6.

3.4 Transience

We conclude this chapter with the following fact (assuming the fact that the
SLE is a.s. a simple curve γt = Kt \Kt− for κ < 4). This is also to illustrate
the type of techniques that is used to derive such properties of SLE:

Proposition 3.5 For κ < 4, almost surely, limt→∞ γt = ∞.

Loosely speaking, the SLE is transient. Actually (see [118]), this result is in
fact valid for all κ, but the proof is (a little bit) more involved.

Proof. Let δ ∈ (0, 1/4), x > 1, and suppose that

tδ := inf{t > 0 : d(γt, [1, x]) ≤ δ}

is finite. Let zδ = γtδ
. Clearly, gtδ

(zδ) = Wtδ
. Note that gtδ

(1/2) −Wtδ
is

(up to a multiplicative constant) the limit when y → +∞ of y times the
probability that a planar Brownian motion started from iy exits H in the
interval [Wtδ

, gtδ
(1/2)]. By conformal invariance, this is the same as the limit

of y times the probability that a planar Brownian motion started from iy
exits Htδ

through the boundary of Htδ
which is “between” zδ and 1/2. But

in order to achieve this, the planar Brownian motion has in particular to hit
the vertical segment joining zδ to the real line before exiting H. This segment
has length at most δ. Hence,

|gtδ
(1/2) −Wtδ

| ≤ O(δ).

On the other hand, limt→∞(gt(1/2) − Wt) = ∞ because κ < 4 (and the
corresponding Bessel process is transient). It follows that a.s.,

d(γ[0,∞], [1, x]) > 0.

By the scaling property and monotonicity, it follows that almost surely, for all
0 < x1 < x2, the distance d(γ[0,∞], [x1, x2]) is almost surely strictly positive.
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Let τ denote the hitting time of the unit circle by the SLE. Since R ∩
γ[0, τ ] = {0}, it follows that 0 ∈ ∂Hτ . For all ε > 0, there exists 0 < x1 < x2

such that with probability at least 1− ε the two images of 0 under gτ are in
[Wτ − x2,Wτ − x1] ∪ [Wτ + x1,Wτ + x2]. It follows from the strong Markov
property and from the previous result that with probability at least 1 − ε,

d(gτ (γ[τ,∞)) −Wτ , [−x2,−x1] ∪ [x1, x2]) > 0.

Hence, it follows that in fact, almost surely

d(0, γ[τ,∞)) > 0

and the Lemma readily follows (for instance using the scaling property once
again). ⊓⊔

Bibliographical comments

Again, many of the ideas in this chapter were contained or follow readily
from Schramm’s first paper [123]. Rohde-Schramm [118] have derived various
almost sure properties of SLE (Hölder boundary, generated by a continuous
path, transience). Proposition 3.3 is derived (in a more general setting) in [86].
It was Carleson who first noted that Cardy’s formula (which Cardy predicted
for crossing probabilities for critical percolation) has a simple interpretation
in an equilateral triangle. The interpretation of the functions F̃ in terms of
isocele triangles was pointed out by Dubédat [39]. Another justification to
the fact that κ = 6 is the unique possible scaling limit of critical percolation
exploration processes (for site percolation on the triangular lattice, or for
bond percolation on the square lattice) uses the fact that for these models
the probability of existence of a left-right crossing of a square must be 1/2 (see
[123]). For references on Bessel processes, stochastic calculus, see e.g. [59, 117].





4 Chordal SLE and restriction

4.1 Image of SLE under conformal maps

Suppose now that (Kt, t ≥ 0) is chordal SLEκ in the upper half-plane H.

Definition. We say that a hull A that is at positive distance of the origin is
a Hull (with capital H). When A is such a Hull, we define ΦA the normalized
conformal map from H\A onto H as before. We also define ΨA the conformal
map from H\A onto H such that Ψ(z) ∼ z when z → ∞ and Ψ(0) = 0. Note
that Ψ(z) = Φ(z) − Φ(0).

Let A ⊂ H denote a Hull. Define T = inf{t : Kt ∩ A 6= ∅} and for all
t < T ,

K̃t := Φ(Kt).

Let us immediately emphasize that the time-parametrization ofKt and there-
fore also of K̃t is given in terms of the “size” of Kt = Φ−1(K̃t) in H and not
in terms of the “size” of K̃t itself in H. One of the goals of this section is to
study the evolution of K̃t and to compare it with that of Kt.

For t < T , we also define the conformal map ht from gt(Ht ∩H) onto H

(where H = H \A). Note that h0 = Φ. Since gt(A) is at positive distance of
Wt for t < T , we can define

W̃t = ht(Wt).

Define finally also the normalized conformal map g̃t from Φ(Ht ∩H) onto H.
Note that (as long as t < T ),

ht ◦ gt = g̃t ◦ h0.

In short, all these maps are normalized, h0 = Φ removes A and g̃t removes
K̃t, while gt removes Kt and ht removes gt(A).

The family (K̃t, t < T ) is a “continuously” growing family of subsets of
H satisfying Proposition 2.1 except that a time-change is required in order
to parametrize it as a Loewner chain. We therefore define the function

a(t) := a(A ∪Kt) = a(A) + a(K̃t).

A simple time-change shows that
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∂g̃t(z) =
2∂ta

g̃t(z) − W̃t

.

Hence, in order to understand the evolution of K̃t, we have to understand
the evolutions of W̃t and of a(t).

The scaling rule a(λ·) =
√
λa(·) shows that

∂ta(t) = h′t(Wt)
2.

On the other hand,
ht = g̃t ◦ Φ ◦ g−1

t

and

∂t(g
−1
t (z)) = −2

(g−1
t )′(z)

z −Wt

so that putting the pieces together, we see that

∂tht(z) =
2h′t(Wt)

2

ht(z) − W̃t

− 2h′t(z)

z −Wt
. (4.1)

Recall that W̃t = ht(Wt). The previous formula is valid for all z ∈ H \ gt(A).
In fact, one can even extend it to z = Wt:

(∂tht)(Wt) = lim
z→Wt

(

2h′t(Wt)
2

ht(z) − W̃t

− 2h′t(z)

z −Wt

)

= −3h′′t (Wt)

(note that ht is smooth near Wt because of Schwarz reflection). Itô’s formula
(this is not the classical formula since ht is random, but it is adapted with
respect to the filtration of Wt, it is C1 with respect to t, so that Itô’s formula
still holds, see e.g., exercise IV.3.12 in [117]) can be applied:

dW̃t = (∂tht)(Wt)dt+ h′t(Wt)dWt +
κ

2
h′′t (Wt)dt.

Hence,
dW̃t = h′t(Wt)dWt + [(κ/2) − 3]h′′t (Wt).

Clearly, the value κ = 6 will play a special role here. The next section is
devoted to this case.

4.2 Locality for SLE6

Throughout this section, we will assume that κ = 6. Then,

W̃t =

∫ t

0

h′s(Ws)dWs.
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Recall also that at−a0 =
∫ t

0
h′s(Ws)

2ds = 〈W̃ 〉t. Hence, if we define (Ŵa, a ≥
0) in such a way that

W̃t = Ŵa(t)−a(0),

then Ŵ − Ŵ0 and W have the same law. If we define ĝa in such a way that
g̃t = ĝa(t), then

∂aĝa(z) =
2

ĝa(z) − Ŵa

.

Hence, modulo time-change, the evolution of K̃t − Ŵ0 up to t = T is that of
chordal SLE6. Suppose that T̃ is the first time at which Kt hits Φ(∂A). We
have just proved SLE6’s locality property:

Theorem 4.1. Modulo time-reparametrization, the processes (K̃t−Φ(0), t <
T ) and (Kt, t < T̃ ) have the same law.

We now discuss some consequences of this result. Suppose first that

A = Aε = {eiθ : θ ∈ [0, π − ε]}.

Recall that Φ = Φε is the normalized map from H \A onto H. Let

ψε(z) =
Φε(z)

Φ′
ε(0)

.

It is easy to see that when ε → 0, the mappings ψε converge uniformly on
any set Vδ := {z ∈ H : |z| < 1 − δ} towards the conformal map ψ from
V := {z ∈ H : |z| < 1} onto H such that ψ(0) = 0, ψ′(0) = 1 and
ψ(−1) = ∞. Theorem 4.1 shows that for each ε > 0, the law of the process
ψε(Kt) up to its hitting time of ψε(Aε) is a time-change of chordal SLE6. In
particular, letting ε→ 0 for each fixed δ > 0 shows readily that:

Corollary 4.1. Let (Kt, t ≥ 0) denote the law of chordal SLE6 from 0 to −1
in V . Let T the first time at which Kt hits the unit circle. Then, the law of
(Kt, t < T ) is identical (modulo time-change) to that of chordal SLE6 in H

(from 0 to ∞) up to its first hitting time of the unit circle.

The same reasoning can be applied to {eiθ : θ ∈ [ε, π]} instead of Aε.
It shows that the law described in the corollary is also identical to that of
chordal SLE6 from 0 to +1 in V (up to the hitting time of the unit circle).
By mapping the set V onto any other simply connected domain, we get the
following splitting property:

Corollary 4.2. Let D ⊂ H denote a simply connected subset of H such that
the boundary of ∂D is a continuous Jordan curve. Let a, b, b′ denote three
distinct points on ∂D and call ∂ the connected component of ∂D \ {b, b′} that
does not contain a. Then: up to their first hitting times of ∂ and modulo
time-change, the laws of chordal SLE6 from a to b and from a to b′ in D are
identical.
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Note that these properties of chordal SLE6 are not surprising if one thinks
of SLE6 as the scaling limit of critical percolation interfaces. They general-
ize the properties of hitting probabilities for SLE6 that we derived in the
previous chapter.

4.3 Restriction for SLE8/3

We now apply the same technique as in the first subsection to understand
how h′t(Wt) evolves. Recall that ht is smooth in the neighbourhood of Wt

by Schwarz reflection. Hence h′t(Wt) is a positive real (as long as t < T ).
Differentiating Equation (4.1) with respect to z (this is licit as long as t < T )
gives

∂th
′
t(z) =

−2h′t(Wt)
2h′t(z)

(ht(z) − W̃t)2
+

2h′t(z)

(z −Wt)2
− 2h′′t (z)

z −Wt
.

If we take the limit when z →Wt, we get that

(∂th
′
t)(Wt) =

h′′t (Wt)
2

2h′t(Wt)
− 4

3
h′′′t (Wt).

Hence, Itô’s formula (in its random version as before) shows that

d[h′t(Wt)] = h′′t (Wt)dWt +

[

h′′t (Wt)
2

2h′t(Wt)
+ (κ/2 − 4/3)h′′′t (Wt)

]

dt.

This time, it is the value κ = 8/3 that plays a special role. Let us in this
section from now on suppose that κ = 8/3. Then, we see that

d[h′t(Wt)
5/8] =

5h′′t (Wt)

8h′t(Wt)3/8
dWt.

The important feature is that the drift term disappear so that: (h′t(Wt)
5/8, t <

T ) is a local martingale. This has the following important consequence:

Proposition 4.2 Consider chordal SLE8/3 in H. Then, for any Hull A,

P[∀t ≥ 0, Kt ∩A = ∅] = Φ′
A(0)5/8.

Proof. The quantity Mt := h′t(Wt)
5/8 is a local martingale. Recall that ht

is a normalized map from a subset of H onto H. Hence, for all t < T , Mt ≤ 1
and M is a bounded martingale. We have to understand the behaviour of Mt

when t → T in the two cases T < ∞ and T = ∞. When T = ∞, one can
use the transience of the SLE: Define for each R, the hitting time τR of the
circle of radius R. Then, simple considerations using harmonic measure for
instance show that

lim
R→∞

h′τR
(WτR

) = 1.
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In the case where T <∞, one can for instance first approximate A by a Hull
with a smooth boundary, and show that in this case, limt→T h

′
t(Wt) = 0 for

any path γ in the upper half-plane that hits A away from the real line. See
[95] for details.

Finally, since Mt converges in L1 and almost surely when t → T , we get
that P[T = ∞] = E[MT ] = E[M0] = Φ′(0)5/8. ⊓⊔

Let us now define the random set

K∞ = ∪t>0Kt.

Corollary 4.3. Suppose that A0 is a Hull, then the conditional law of K∞
given K∞ ∩A0 = ∅ is identical to the law of Ψ−1

A0
(K∞).

Proof. Note that K∞ is a closed set because of the transience of (Kt, t ≥
0). The law of such a random set is characterized by the value of P[K∞ ∩
A = ∅] for all Hulls A (this set of events is a generating π-system of the
σ-field on which we define K∞). Suppose now that the Hull A0 is fixed. By
Proposition 4.2, K∞ avoids A0 with positive probability. Suppose that A is
another Hull. Then

P[ΨA0
(K∞) ∩A = ∅|K∞ ∩A0 = ∅]

=
P[K∞ ∩ (H \ (Ψ−1

A0
◦ Ψ−1

A (H)) = ∅]
P[K∞ ∩A0 = ∅]

=

(

Ψ ′
A0

(0)Ψ ′
A(0)

Ψ ′
A0

(0)

)5/8

= P[K∞ ∩A = ∅].

Since this is true for all Hull A, it follows that the the law of ΨA0
(K∞) given

{K∞ ∩A0 = ∅} is identical to the law of K∞. ⊓⊔
This striking property of SLE8/3 has many nice consequences. It will

enable us to relate it to the Brownian frontier in the next chapter. It also
shows that it is the natural candidate for the scaling limit of planar self-
avoiding walks. More precisely, one can show that when n→ ∞, the uniform
measure on self-avoiding walks of length n in the upper half-plane N × Z

started from the origin converges to a law of infinite self-avoiding walks. The
conjecture is that the scaling limit of this infinite self-avoiding walk is SLE8/3.
See [94] for more on this. Note that there exist algorithms to simulate half-
plane self-avoiding walks (see [60, 105]; Figure 4.1 is due to Tom Kennedy).
The conjecture that the half-plane SAW scaling limit is chordal SLE8/3 has
recently been comforted by simulations [61].

Let us briefly conclude this chapter by mentioning the following charac-
terization of SLE8/3 that does not use explicitly Loewner’s equation (even
though its proof does):
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Fig. 4.1. Sample of the beginning of a half-plane walk (conjectured to converge
to chordal SLE8/3).

Theorem 4.3. Chordal SLE8/3 is the unique measure on continuous simple
curves γ from 0 to ∞ in H such that for all Hull, the law of γ conditioned to
avoid A is identical to the law of Ψ−1(γ).

The proof of this Theorem uses the complete description of all measures
on simply connected closed sets (not necessarily curves) joining 0 to ∞ in
H that satisfy this condition. These measures (called restriction measures in
[95]) are constructed using SLEκ (in fact, by adding Brownian bubbles to
the SLEκ paths) for other values of κ (in fact for κ ∈ (0, 8/3]) and it turns
out that the only measure with these properties that is supported on simple
curves is SLE8/3.

Bibliographical comments

All the material of this chapter is borrowed from [95], to which we refer for
further details. The locality property for SLE6 was first proved in [87], using
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a different method. Restriction properties are closely related to conformal
field theory [17, 18, 30, 31, 32, 34], as pointed out in [52, 53]. They have also
interpretations in terms of highest-weight representations of the Lie algebra of
polynomial vector fields on the unit circle. In fact, Theorem 4.3 corresponds
to the fact that the unique such representation that is degenerate at level 2
has its highest weight equal to 5/8. See [52, 53].





5 SLE and the Brownian frontier

5.1 A reflected Brownian motion

In this section, we introduce a two-dimensional Brownian motion with a
certain oblique reflection on the boundary of a domain, and we will relate its
outer boundary to that of SLE6.

Let us first define this reflected Brownian motion in the upper half-plane
H. Define for any x ∈ R, the vector u(x) = exp(iπ/3) if x ≥ 0 and u(x) =
exp(2iπ/3) if x < 0. It is the vector field with angle 2π/3 pointing “away from
the origin”. Suppose that Z∗

t = X∗
t + iY ∗

t is an ordinary planar Brownian
path started from 0. Then, there exists a unique pair (Zt, ℓt) of continuous
processes such that Zt takes its values in H, ℓt is a non-decreasing real-valued
continuous function with ℓ0 = 0 that increases only when Zt ∈ R, and

Zt = Z∗
t +

∫ t

0

u(Zs)dℓs.

The process (Zt, t ≥ 0) is called the reflected Brownian motion in H with
reflection vector field u(·). Note that the process Z in fact only depends
on the direction of u(·) and not on its modulus. For instance Z is also the
reflected Brownian motion in H with reflection vector field 2u(·) (just change
ℓ into ℓ/2).

An equivalent way to define this process is to first define the reflected
(one-dimensional) Brownian motion

Yt = Y ∗
t − min

s∈[0,t]
Y ∗

s .

The local time at 0 of Y is simply lt = −min[0,t] Y
∗. Then, define X in such

a way that

Xt = X∗
t +

∫ t

0

sgn(Xs)
1√
3
dls

and verify that Zt = Xt + iYt satisfy the required conditions.
Brownian motion with oblique reflection on domains have been exten-

sively studied, and this is not the proper place to review all results. We just
mention that the general theory of such processes (e.g., [130]) ensures that
the previously defined process Z∗ exists.
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Reflected planar Brownian motion (even with oblique reflection) are also
invariant under conformal transformations. Suppose for instance that φ is a
conformal transformation from a smooth subset V (such that [−1, 1] ⊂ ∂V )
of H onto a smooth domain D. Recall that

Zt = Z∗
t +

∫ t

0

u(Zs)dℓs.

Define
σV := inf{t > 0 : ∂V \ (−1, 1)}.

Taylor-expanding each term in the sum

φ(Zt) − φ(0) =

n
∑

j=1

(φ(Zjt/n) − φ(Z(j−1)t/n))

just as in the proof of Itô’s formula (letting n → ∞), it follows (using the
fact that the real and imaginary parts of φ are harmonic) that for all t ≤ σV ,

φ(Zt) =

∫ t

0

φ′(Zs)dZ
∗
s + +

∫ t

0

u(Zs)φ
′(Zs)dℓs.

Hence, if one time-changes φ(Z) using the clock u(t) =
∫ t

0
|φ′(Zs)|2ds, we

see that φ(Zu) is also a stopped reflected Brownian motion in D with the
reflection vector field (φ′(φ−1(·)) × u(φ−1(·)) on ∂D.

This has the following useful consequences: Suppose that V ⊂ H and
σV are as before. Note that σH is the first time at which Zt hits R \ (−1, 1).
There exists a unique conformal map φ from V onto H such that φ(−1) = −1,
φ(0) = 0 and φ(1) = 1.

Lemma 5.1. Modulo time-change, the laws of (φ(Zt), t ≤ σV ) and of (Zt, t ≤
σH) are identical.

In other words, The reflected Brownian motion Z satisfies the same locality
property as SLE6.

A slight modification of the above proof of conformal invariance for re-
flected Brownian motions shows that the image of Z under the conformal
map z 7→ z1/3 from H onto the wedge

W := {reiθ : r > 0, θ ∈ (0, π/3)}

is reflected Brownian motion in that wedge, started from the origin, with
reflection vector field u(x) = eiπ/3 on R+ and u(x) = 1 on eiπ/3R+. We
use this observation to give a simple proof of the following fact on hitting
probabilities for Z:
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Lemma 5.2. Suppose that Φ is the conformal transformation from H onto
an equilateral triangle OAC such that Φ(0) = O, Φ(−1) = A and Φ(1) = C.
Then, the law of Φ(Zσ

H
) is uniform on AC.

Proof. One elementary convincing proof uses discrete approximations. Here
is a brief outline of this proof: Define ω = exp(iπ/3). Consider a triangular
grid in the wedge W i.e. {m + m′ω : m,m′ ≥ 0}. Let (Sn, n ≥ 0) denote
simple random walk on this grid that is started from 0. In the inside of W ,
its transition probabilities are that of simple random walk (with probability
1/6 to jump to each of its neighbours). When S hits the (positive) real line
at x, it has the following transition probabilities: p(x, x+ 1) = 1/3 and

p(x, x− 1) = p(x, x+ ω) = p(x, x+ ω2) = p(x, x) =
1

6
.

and the symmetric ones on ωN: p(x, x + ω) = 1/3 and

p(x, x+ 1) = p(x, x+ 1/ω) = p(x, x+ 1/ω2) = p(x, x) =
1

6
.

Finally, at the origin, p(0, 1) = p(0, ω) = 1/2. It is not difficult to see that
in the scaling limit, such a random walk converges to reflected Brownian
motion in W with the reflection vector field u(·) on ∂W . This is due to the
fact that the bias of the simple random walk when it hits ∂W is proportional
to u. Moreover, it is easy to check that if S0 = 0, then if one writes Sn =
eiπ/6rn +ω2sn, then the conditional law of sn given (rj , j ≤ n) is the uniform
distribution among the permitted values of s given rn. In other words, the
“uniform distribution of s is preserved, independently from r”. In particular,
the hitting distribution of the simple random walk S on the segment N +
ω2[0, N ], is simply the uniform distribution on {N,N+ω2, N +2ω2, . . . , N +
Nω2}. The Lemma follows, letting N → ∞. ⊓⊔

We are now ready to state and prove the following result:

Theorem 5.1. Define the following two sets:

– Consider chordal SLE6 (Kt, t ≥ 0) in H (or in V ) up to its first hitting time
T of R \ (−1, 1). Let e denote the point at which the SLE hits R \ (−1, 1),
and let E := {e} ∪ ∪t<TKt.

– Consider the set of points F in H that are disconnected (in H) from R \
(−1, 1) by Z[0, σH].

Then, the laws of E and of F are identical.

Proof. Note that Lemma 5.2, Lemma 5.1, Theorem 4.1 and Proposition 3.4
show that E and F both have the following properties:

– They are random compact sets that intersect R \ (−1, 1) at just one point
x and the law of Φ(x) is uniform on AC.
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Fig. 5.1. The reflected Brownian motion stopped at its hitting time of the unit
circle

– Their complement in H consists of two connected components (one un-
bounded, one bounded).

– For all V as before, the probability that E ⊂ V is identical to the proba-
bility that σV = σH (and the corresponding result for F ).

If we combine these two properties, we see that for all such V ,

P[E ⊂ V ] = P[F ⊂ V ] =
length(Φ ◦ φ(∂V \ R))

AC

(this is because the law of the image under Φ ◦ φ of the “hitting point” of
∂V \ (−1, 1) is uniform on AC. But this determines completely the laws of
E and of F and therefore implies that they are equal. ⊓⊔

Using conformal invariance, the previous result can be adapted in any
domain. For instance, Figure 5.2 could represent both the filling of a reflected
Brownian motion (or of a SLE6 curve), started at the bottom of the triangle
stopped at their first hitting of the top segment. Recall that the law of this
hitting point is uniformly distributed.

5.2 Brownian excursions and SLE8/3

We now describe a probability measure on Brownian excursions from 0 to
infinity in H (which is closely related to the measures on excursions that
were considered in [97]). One can view this measure on paths as the law of
planar Brownian motionW (not to be confused with the

√
κB in the previous

chapters) started from 0 and conditioned to stay in H at all positive times.
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Fig. 5.2. The filling of RBM (or of the SLE6 curve) in a triangle

Let X and Y denote two independent processes such that X is standard
one-dimensional Brownian motion and Y is a three-dimensional Bessel pro-
cess (see e.g., [117] for background on three-dimensional Bessel processes,
its relation to Brownian motion conditioned to stay positive and stochas-
tic differential equations) that are both started from 0. Let us briefly recall
that a three-dimensional Bessel process is the modulus of a three-dimensional
Brownian motion, and that it can be defined as the solution to the stochastic
differential equation

dYt = dwt +
1

Yt
dt

(where w is one-dimensional standard Brownian motion). It is very easy to
see that (1/Y, t ≥ t0) is a local martingale for all t0 > 0, and that if Tr denotes
the hitting time of r by Y , then the law of (YTr+t, t < TR −Tr) is identical to
that of a Brownian motion started from r and conditioned to hit R before 0
(if 0 < r < R). Loosely speaking Y is a Brownian motion started from 0 and
conditioned to stay forever positive. Note that almost surely limt→∞ Yt = ∞.

We now define W = X + iY . In other words, W has the same law as the
solution to the following stochastic differential equation:

dWt = dβt + i
1

ℑ(Wt)
dt (5.1)

with W0 = 0, where β is a complex-valued Brownian motion. Note that W
is a strong Markov process. Let Tr denote the hitting time of the line R + ir
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by this process W (i.e., the hitting time of r by X). Let S denote a random
variable with the same law as WT1

. Then, scaling and the relation between
one-dimensional Brownian motion conditioned to stay positive and the three-
dimensional Bessel process shows immediately that for all 0 < r < R, the
law of W [Tr, TR] is the law of a Brownian motion started with the same law
as rS, stopped at its first hitting of iR + R, and conditioned to stay in the
upper half-plane up to that time. Note that the probability of this event is
r/R.
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Fig. 5.3. An excursion from 0 to i in the strip R× [0, 1]

By mapping conformally H onto any other simply connected domain D
(D 6= C), and looking at the image of the Brownian excursion in H under this
map, one gets the law of a Brownian excursion in D from the image of 0 to
the image of ∞. As for SLE, this law is well-defined up to linear time-change.
One can also directly define this excursion in D as the solution to a stochastic
differential equation “forcing the Brownian motion to hit ∂D at the image of
infinity.”

The following result was observed by Bálint Virág [129] (see also [97, 95]):

Lemma 5.3. Suppose A is a Hull and W is a Brownian excursion in H from
0 to ∞. Then P[W [0,∞) ∩A = ∅] = Φ′

A(0).

Proof. Suppose that W is a solution to (5.1) started from z ∈ Φ−1(H).
Let Z denote a planar Brownian motion started from z. Let τR(V ) denote
the hitting time of iR + R by a process V . When ℑ(z) → ∞, ℑ(Φ(z)) =
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ℑ(z) + o(1), and it therefore follows easily from the strong Markov property
of planar Brownian motion that when R → ∞,

P[Φ(Z)[0, τR(Z)] ⊂ H] ∼ P[Φ(Z)[0, τR(Φ(Z))] ⊂ H].

But since Φ(Z) is a time-changed Brownian motion, the right-hand probabil-
ity is equal to ℑ(Φ(z))/R, so that

P[W [0, τR(W )] ⊂ Φ−1(H)] =
P[Z[0, τR(Z)] ⊂ Φ−1(H)]

P[Z[0, τR(Z)] ⊂ H]
=

ℑΦ(z)

ℑ(z)
+ o(1)

when R → ∞. In the limit R → ∞, we get

P[W [0,∞) ⊂ Φ−1(H) |W0 = z] =
ℑΦ(z)

ℑ(z)
. (5.2)

When z → 0, Φ(z) = zΦ′(0) +O(|z|2) so that

P[W [0,∞) ⊂ Φ−1(H)] = lim
r→0

P[W [Tr,∞) ⊂ Φ−1(H)]

= lim
r→0

E[ℑ(Φ(rA))/ℑ(rA)]

= Φ′(0)

(one can use dominated convergence here since ℑ(Φ(z)) ≤ ℑ(z) for all z). ⊓⊔
We now define the filling H of W [0,∞) as the set of points in H that are

disconnected from R by W [0,∞). This set is obtained by filling in all the
bounded connected components of the complement of the curve W . Then, H
is a closed unbounded set and H \ H consists of two open connected compo-
nents (with [0,∞) and (−∞, 0] on their respective boundaries). The law of
such a random set is characterized by the values of P[H ∩ A = ∅], where A
spans all Hulls, because this family of events turn out to generate the σ-field
on which H is defined, and to be stable under finite intersections. Hence, as
in the case of K∞ for SLE8/3, the fact that

P[H ∩A = ∅] = Φ′(0) (5.3)

characterizes the law of H and yields that H also satisfies Corollary 4.3.

Theorem 5.2. Suppose that H8 denotes the filling of the union of 8 inde-
pendent chordal SLE8/3’s. Suppose that H5 denotes the filling of the union
of 5 independent Brownian excursions. Then, H5 and H8 have the same law.

Proof. This is simply due to the fact that for all Hull A

P[H5 ∩A = ∅] = P[H8 ∩A = ∅] = Φ′
A(0)5

and that this characterizes these laws. ⊓⊔
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This has various nice consequences (see [95]), some of which we now
heuristically describe: First, since the boundary of H8 consists of the union of
some parts of the SLE8/3 curves, it follows that “locally”, the outer bound-
ary of a Brownian excursion (and therefore also of a Brownian motion) looks
like one SLE8/3 path. In the previous section, we did see that the outer
boundaries of reflected Brownian motion and of SLE6 are the same. Hence,
“locally”, the outer frontiers of SLE6 and of planar Brownian motion look
like an SLE8/3 curve. Furthermore, since SLE8/3 is symmetric, this shows
that one cannot distinguish the inside from the outside of a planar Brownian
curve by only seeing a part of its frontier. Since SLE8/3 is conjectured to be
the scaling limit of self-avoiding walks, this would also show that the Brow-
nian frontier looks locally like the scaling limit of long self-avoiding curves
(see [94]).

Bibliographical comments

The idea that conformal invariance and restriction defines measures on
random sets and makes it possible to understand the Brownian frontier in
terms of other models (or the corresponding exponents) first appears in [97].
Most of the material of this chapter is borrowed from [95].

A discussion of the conjectured relation between SLE8/3 and planar self-
avoiding walks is discussed in [94]; one can in particular recover the predic-
tions of Nienhuis [110] on the critical exponents for self-avoiding walks using
SLE arguments.

The fact that the Brownian frontier had the same dimension as the scaling
limit of self-avoiding walks was first observed visually by Mandelbrot [107].



6 Radial SLE

6.1 Definitions

Motivated by the example of LERW (among others) given in the introductory
chapter, we now want to find a nice way to encode growing families of compact
subsets (Kt, t ≥ 0) of the closed unit disk that are growing from the boundary
point 1 towards 0. As in the chordal case, we are in fact going to focus on the
conformal geometry of the complement Ht of Kt in the unit disc U. One first
has to find a natural time-parametrization. It turns out to be convenient to
define the conformal map gt from Ht onto U that is normalised by

gt(0) = 0 and g′t(0) > 0.

Note that g′t(0) ≥ 1. This can be for instance derived using the fact that
log g′t(0) is the limit when ε → 0 of log(1/ε) times the probability that a
planar Brownian motion started from ε hits the circle of radius ε2 before
exiting Ht (an analyst would find this justification very strange, for sure).

Then (and this is simply because with obvious notation, (g̃s ◦ gt)(0) =
g̃s(0) ◦ g′t(0)), one measures the “size” a(Kt) of Kt via the derivative of gt at
the origin:

g′t(0) = exp(a(t)).

Hence, we will consider growing families of compact sets such that a(Kt) = t.
Suppose now that (ζt, t ≥ 0) is a continuous function on the unit circle

∂U. Define for all z ∈ U, the solution gt(z) to the ODE

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z) − ζt

(6.1)

such that g0(z) = z. This solution is well-defined up to the (possibly infinite)
time T (z) defined by

T (z) = sup{t > 0 : min
s∈[0,t)

|gs(z) − ζs| > 0}.

We then define
Kt := {z ∈ U : T (z) ≤ t}

and
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Ut := U \Kt.

The family (Kt, t ≥ 0) is called the (radial) Loewner chain associated to the
driving function ζ.

The general statements that we described in the chordal case are also
valid in this radial case. One can add one feature that has no analog in the
chordal case: It is possible to estimate the Euclidean distance dt from 0 to
Kt in terms of a(t) = t. Indeed, since Ut contains the disc dt × U, it is
clear that g′t(0) ≤ 1/dt. On the other hand, a classical result of the theory of
conformal mappings known as Koebe’s 1/4 Theorem states that (if a(Kt) = t)
1/dt ≤ 4g′t(0). This is loosely speaking due to the fact that the best Kt can
do to get as close to 0 in “time t” is to shoot straight i.e. to choose ζ = 1.
Hence, for all t ≥ 0,

e−t/4 ≤ d(0,Kt) ≤ e−t. (6.2)

This will be quite useful later on.
Radial SLEκ is then simply the random family of sets (Kt, t ≥ 0) that is

obtained when
ζt = exp(i

√
κBt)

where κ > 0 is fixed and (Bt, t ≥ 0) is standard one-dimensional Brownian
motion.

As in the chordal case, one can then define radial SLE from a ∈ ∂D to
b ∈ D in any open simply connected domain D by taking the image of radial
SLE in U under the conformal map Φ from U onto D such that Φ(1) = a and
Φ(0) = b. Note that this time, the time-parametrization is also well-defined
since there exists only one such conformal map (recall that in the chordal
case, one had to invoke the scaling property to make sure that chordal SLE
in other domains than the half-space was properly defined).

6.2 Relation between radial and chordal SLE

In this section, we show that chordal SLE and radial SLE are very closely
related. Let us start with the special case κ = 6.

Theorem 6.1. Suppose that x ∈ (0, 2π). Let (Kt, t ≥ 0) be a radial SLE6

process. Set
T := inf{t ≥ 0 : exp(ix) ∈ Kt}.

Let (K̃u, u ≥ 0) be a chordal SLE6 process in U starting also at 1 and growing
towards exp(ix), and let

T̃ := inf{u ≥ 0 : 0 ∈ K̃u}.

Then, up to a random time change, the process t 7→ Kt restricted to [0, T )
has the same law as the process u 7→ K̃u restricted to [0, T̃ ).
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Note that T (resp. T̃ ) is the first time where Kt (resp. K̃u) disconnects 0
from 1.

When κ 6= 6, a weaker form of equivalence holds:

Proposition 6.2 Let (Kt, t ≥ 0), (K̃u, u ≥ 0), T and T̃ be defined just as in
Theorem 6.1, except that they are SLE with general κ > 0. There exist two
nondecreasing families of stopping times (Tn, n ≥ 1) and (T̃n, n ≥ 1) such
that almost surely, Tn → T and T̃n → T̃ when n → ∞, and such that for
each n ≥ 1, the laws of (Kt, t ∈ [0, Tn]) and (K̃u, u ∈ [0, T̃n]) are equivalent
(in the sense that they have a positive density with respect to each other)
modulo increasing time change.

These results imply that the properties of chordal SLE such as “being
generated by a continuous curve” are also valid for radial SLE.

We prove both results simultaneously:

Proof. Let us first briefly recall how K̃u is defined. For convenience, we will
restrict ourselves to x = π (the proof in the general case is almost identical).
Define the conformal map

ψ(z) = i
1 − z

1 + z

from U onto H that satisfies ψ(−1) = ∞, ψ(1) = 0, and ψ(0) = i. Suppose
that u 7→ B̃u is a real-valued Brownian motion such that B̃0 = 0. For all
z ∈ U, define the function g̃u = g̃u(z) such that g̃0(z) = ψ(z) and

∂ug̃u =
2

g̃u −√
κB̃u

.

This function is defined up to the (possibly infinite) time T̃z where g̃u(z)
hits

√
κB̃u. Then, K̃u is defined by K̃u = {z ∈ U : T̃z ≤ u}, so that g̃u

is a conformal map from U \ K̃u onto the upper half-plane. This defines the
process (K̃u, u ≥ 0).

We are now going to compare it to radial SLE. Let gt : U \Kt → U be
the conformal map normalized by gt(0) = 0 and g′t(0) > 0. Recall that

∂tgt(z) = gt(z)
ζt + gt(z)

ζt − gt(z)
, (6.3)

where ζt = exp(i
√
κBt), and B is Brownian motion on R with B0 = 0. Let

ψ be the same conformal map as before, and define

et := gt(−1),

ft(z) := ψ
(

gt(z)/et

)

,

rt := ψ
(

ζt/et

)

.

These are well defined, as long as t < T . Note that ft is a conformal map
from U \Kt onto the upper half-plane, ft(1) = ∞, and rt ∈ R. From (6.3) it
follows that
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∂tf = − (1 + r2)(1 + f2)

2(r − f)
.

Let
φt(z) = a(t)z + b(t)

where
a(0) = 1, ∂ta = −(1 + r2)a/2

and
b(0) = 0, ∂tb = −(1 + r2)ar/2.

Set

ht := φt ◦ ft ,

βt := φt

(

r(t)
)

.

Then (and this is the reason for the choice of the functions a and b)

∂th = −(a/2)
(1 + r2)2

r − f
= − (1 + r2)2a2/2

β − h
.

ht is also a conformal map from U\Kt onto the upper half-plane with ht(1) =
∞. Note also that h0(z) = ψ(z). We introduce a new time parameter u = u(t)
by setting

∂tu = (1 + r2)2a2/4, u(0) = 0 .

Then
∂h

∂u
=

−2

β − h
.

Since this is the equation defining the chordal SLE process, it remains to
show that u 7→ βt(u)/

√
κ is related to Brownian motion (stopped at some

random time). This is a direct but tedious application of Itô’s formula:

drt =
(1 + r2)

√
κ

2
dBt +

r(1 + r2)

2

(κ

2
− 1

)

dt

and

dβt =
(1 + r2)a

2

(√
κdBt + (−3 +

κ

2
)r dt

)

.

When κ = 6, the drift term disappears and this proves Theorem 6.1. When
κ 6= 6, the drift term does not disappear. However, the law of u 7→ βt(u) is
absolutely continuous with respect to that of

√
κ times a Brownian motion,

as long as r and u remain bounded. More precisely: It suffices to take

Tn = min
{

n, inf{t > 0 : |ζt − et| < 1/n}
}

.

Before Tn, |r| remains bounded, a is bounded away from 0 (note also that
a ≤ 1 always), so that t/u is bounded and bounded away from 0. Hence,
u(Tn) is also bounded (since Tn ≤ n).

It now follows directly from Girsanov’s Theorem (see e.g., [117]) that the
law of

(

β(u)/
√
κ
)

u≤u(Tn)
is equivalent to that of Brownian motion up to some

(bounded) stopping time, and Proposition 6.2 follows. ⊓⊔
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6.3 Radial SLE6 and reflected Brownian motion

If one combines the radial-chordal equivalence for SLE6 with the locality
property for chordal SLE6, one gets immediately a locality property for ra-
dial SLE6, and the relation between fillings of radial SLE6 and of reflected
Brownian motion. We do not state the locality property here (and leave it
to the interested reader), but we state the relation between fillings of radial
SLE and of reflected Brownian motions that we will use in the next chapters.

Before that, we have to say some words about how this reflected Brownian
motion is defined in the unit disc. Suppose that (Zt, t ≥ 0) is the reflected
Brownian motion in the upper half-plane with reflection angle 2π/3 away
from the origin as in the previous chapter. Let us now define

Z̃t := exp(−iZt)

so that Z̃ takes its values in the unit disk and is started from Z̃0 = 1. Clearly,
since Z̃t 6= 0 for all t, one can define the continuous version of its argument
(θt, t ≥ 0). Conformal invariance of planar Brownian motion shows that Z̃t

behaves like (time-changed) Brownian motion as long as it stays away from
the unit circle, and when it hits the unit circle, then it is reflected with angle
2π/3 in the direction that “increases” |θ|. Define

σ̃(r) := inf{t > 0 : |Z̃t| = r}

which is also the first time at which the imaginary part of Z hits log(1/r).

Theorem 6.3. Suppose that r < 1. Define the two following random hulls:

– Suppose that (Kt, t ≥ 0) is radial SLE6 as before. Let τr denote the first
time at which radial Kt intersects the circle {|z| = r}. Define the event
H(x, τr) that Kτr

does not disconnect 0 from exp(ix).
– On the event H̃(x, σ̃r) that Z̃[0, σ̃r] does not disconnect 0 from exp(ix),

define the connected component H of U \ Z̃ that contains 0, and the hull
K̃σr

= U \H.

Then, the two random sets 1H(x,τr)Kτr
and 1H̃r(x,σ̃r)K̃σ̃r

have the same law.

In particular,
P[H(x, τr)] = P[H̃(x, σ̃r))].

This shows that one can compute non-disconnection probabilities for reflect-
ing Brownian motions using radial SLE6.

Bibliographical comments

For basic results on Loewner’s equation, and basic complex analysis, we refer
again to [1, 2, 49, 58]. The radial-chordal equivalence for SLE6 has been
derived in [87].





7 Some critical exponents for SLE

7.1 Disconnection exponents

In this section, we fix κ > 4, and we consider radial SLEκ in the unit disc
started from 1. Our goal will be to estimate probabilities of events like

H(x, t) = {exp(ix) ∈ ∂Ht}

that Kt has not swallowed the point exp(ix) ∈ ∂U from 0 at time t. Let us
define the numbers

q0 = q0(κ) := 1 − 4

κ

and

λ0 = λ0(κ) :=
κ

8
− 1

2
.

Proposition 7.1 There exists a constant c such that for all t ≥ 1 and for
all x ∈ (0, 2π),

e−λ0t(sin(x/2))q0 ≤ P[H(x, t)] ≤ ce−λ0t(sin(x/2))q0 .

Proof. We will use the notation

f(x, t) = P[H(x, t)].

Let ζt = exp(i
√
κBt) be the driving process of the radial SLEκ, with B0 = 0.

For all x ∈ (0, 2π), let Y x
t be the continuous real-valued function of t which

satisfies
gt(e

ix) = ζt exp(iY x
t )

and Y x
0 = x. The function Y x

t is defined on the set of pairs (x, t) such that
H(x, t) holds. Since gt satisfies Loewner’s differential equation

∂tgt(z) = gt(z)
ζt + gt(z)

ζt − gt(z)
, (7.1)

we find that
dY x

t =
√
κ dBt + cot(Y x

t /2) dt. (7.2)

Let
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τx := inf
{

t ≥ 0 : Y x
t ∈ {0, 2π}

}

denote the time at which exp(ix) is absorbed by Kt, so that

f(x, t) = P[τx > t].

We therefore want to estimate the probability that the diffusion Y x (started
from x) has not hit {0, 2π} before time t as t → ∞. This is a standard
problem. The general theory of diffusion processes can be used to argue that
f(x, t) is smooth on (0, 2π) × R+, and Itô’s formula immediately shows that

κ

2
∂2

xf + cot(x/2)∂xf = ∂tf. (7.3)

Moreover, for instance comparing Y with Bessel processes when Y is small,
one can easily see that (here we use that κ > 4) for all t > 0,

lim
x→0+

f(x, t) = lim
x→2π−

f(x, t) = 0. (7.4)

Hence, f is solution to (7.3) with boundary values (7.4) and f(x, 0) = 1. This
in fact characterizes f , and its long-time behaviour is described in terms of
the first eigenvalue of the operator κ∂2

x/2+cot(x/2)∂x. More precisely, define

F (x, t) = E[1H(x,t) sin(Y x
t /2)q0 ].

Then, it is easy to see that F also solves (7.3) with boundary values (7.4)
but this time with initial data F (x, 0) = sin(x/2)q0 . One can for instance
invoke the maximum principle to construct a handcraft proof (as in [86]) of
the fact that this characterizes F . Since e−λ0t sin(x/2)q0 also satisfies these
conditions, it follows that

F (x, t) = e−λ0t sin(x/2)q0 .

Hence,

f(x, t) = P[H(x, t)] ≥ E[1H(x,t) sin(Y x
t /2)q0 ] = e−λ0t sin(x/2)q0 .

To prove the other inequality, one can for instance use an argument based
on Harnack-type considerations: For instance, one can see that (uniformly in
x) a positive fraction of the paths (Y x

t , t ∈ [0, 1]) such that τx > 1 satisfy
Y x

1 ∈ [π/2, 3π/2]. This then implies readily (using the Markov property at
time t− 1) that for all t ≥ 1,

f(x, t) ≤ c0P[τx > t and Y x
t ∈ [π/2, 3π/2]] ≤ c1F (x, t) = c1e

−λ0t sin(x/2)q0 .

⊓⊔
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7.2 Derivative exponents

The previous argument can be generalized in order to derive the value of other
exponents that will be very useful later on: We will focus on the moments of
the derivative of gt at exp(ix) on the event H(x, t). Note that on a heuristic
level, |g′t(eix)| measures how “far” eix is from the origin in Ht.

More precisely, we fix b ≥ 0, and we define

f(x, t) := E
[

∣

∣g′t
(

exp(ix)
)∣

∣

b
1H(x,t)

]

.

We also define the numbers

q = q(κ, b) :=
κ− 4 +

√

(κ− 4)2 + 16bκ

2κ

λ = λ(κ, b) :=
8b+ κ− 4 +

√

(κ− 4)2 + 16bκ

16
.

The main result of this Section is the following generalization of Proposi-
tion 7.1:

Proposition 7.2 There is a constant c > 0 such that for all t ≥ 1, for all
x ∈ (0, 2π),

e−λt
(

sin(x/2)
)q ≤ f(x, t) ≤ ce−λt

(

sin(x/2)
)q

Proof. We can assume that b > 0 since the case b = 0 was treated in the
previous section. Let Y x

t be as before and define for all t < τx

Φx
t :=

∣

∣g′t
(

exp(ix)
)∣

∣ .

On t ≥ τx set Φx
t := 0. Note that on t < τx

Φx
t = ∂xY

x
t .

By differentiating (7.1) with respect to z, we find that for t < τx

∂t logΦx
t = − 1

2 sin2(Y x
t /2)

(7.5)

and hence (since Φx
0 = 1),

(Φx
t )b = exp

(

− b

2

∫ t

0

ds

sin2(Y x
s /2)

)

, (7.6)

for t < τx. So, we can rewrite

f(x, t) = E

[

1H(x,t) exp

(

− b

2

∫ t

0

ds

sin2(Y x
s /2)

)]

.
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Again, it is not difficult to see that the right hand side of (7.6) is 0 when
t = τx and that

lim
x→0

f(x, t) = lim
x→2π

f(x, t) = 0 (7.7)

holds for all fixed t > 0.
Let F : [0, 2π] → R be a continuous function with F (0) = F (2π) = 0,

which is smooth in (0, 2π), and set

h(x, t) = hF (x, t) := E
[

(Φx
t )b F (Y x

t )
]

.

By (7.6) and the general theory of diffusion Markov processes, we know that
h is smooth in (0, 2π) × R+. From the Markov property for Y x

t and (7.6),
it follows that h(Y x

t , t
′ − t)(Φx

t )b is a local martingale on t < min{τx, t′}.
Consequently, the drift term of the stochastic differential d

(

h(Y x
t , t

′−t)(Φx
t )b

)

is zero at t = 0. By Itô’s formula, this means

∂th = Λh , (7.8)

where

Λh :=
κ

2
∂2

xh+ cot(x/2) ∂xh− b

2 sin2(x/2)
h .

We therefore choose
F (x) :=

(

sin(x/2)
)q
,

and note that F (x)e−λt = hF because both satisfy (7.8) on (0, 2π) × [0,∞),
and have the same boundary values. Finally, one can conclude using the same
type of argument as in Proposition 7.1. ⊓⊔

7.3 First consequences

Recall that for all t ≥ 0, d(0,Kt)e
t ∈ [1/4, 1]. Hence, if τr denotes the hitting

time of the circle of radius r < 1 by the radial SLEκ, then reτr ∈ [1/4, 1].
Combining this with Propositions 7.1 and 7.2 then implies that for all fixed
κ > 4, all b ≥ 0, if λ, q are defined as before, there exists two positive finite
constants c1 and c2 such that for all r < r0,

c1r
λ(sin(x/2))q ≤ E

[

1H(x,τr)|g′τr
(exp(ix))|b

]

≤ c2r
λ(sin(x/2))q (7.9)

(we used also the fact that |g′t(exp(ix)| is an decreasing function of t).
When b = 1, one can note that

lt :=

∫ 2π

0

dx|g′t(eix)|1H(x,t)

is simply the length of the image under gt of the arc At := ∂Ht ∩ ∂U on
the unit circle that have not yet been swallowed by Kt. In particular, if one
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starts a planar Brownian motion from 0, it has a probability lt/2π to hit the
unit circle on the arc gt(At). By conformal invariance of planar Brownian
motion, we see that lt/2π is also the probability that a planar Brownian
motion started from 0 hits the unit circle before hitting Kt. Let Z denote
planar Brownian motion, stopped at its hitting time σ of the unit circle.
Integrating Proposition 7.2 for x ∈ [0, 2π] therefore shows that there exist
constants c′1 and c′2 such that (if Kt is radial SLE6)

c′1r
5/4 ≤ P[Z[0, σ] ∩Kτr

= ∅] ≤ c′2r
5/4. (7.10)

Combining these results with Theorem 6.3, we see that these estimates
are also valid for reflected Brownian motions. In particular, let us now define
a reflected Brownian motion Z̃ in the unit disc as in Theorem 6.3 (reflected
on ∂U with angle 2π/3 “away” from Z̃0 = 1). Let σ̃r denote its hitting time of
the circle r∂U. Then there exist constants c1 and c2 such that for all r < 1/2,

c1r
1/4 ≤ P[Z̃[0, σ̃r]does not disconnect 0 from − 1] ≤ c2r

1/4. (7.11)

Similarly, (7.10) holds if one replaces Kτr
by Z̃[0, σ̃r].

We will see in the next chapter that this also yields the corresponding
estimates for (non-reflected) Brownian motions.

Bibliographical comments

The material of this chapter is borrowed from [87], in which the reader
can find more detailed proofs. It is possible to compute analogous exponents
for chordal SLE. These “half-plane exponents” are determined in [86, 88].

Other important exponents are derived in [118, 92, 15]. As in this chap-
ter, the exponents appear always as leading eigenvalues of some differential
operators.





8 Brownian exponents

8.1 Introduction

The goal of this chapter is to relate the previous computations to the ex-
ponents associated to planar Brownian motion itself (not only to reflected
Brownian motion).

Suppose that a planar Brownian motion Z is started from 1. Let σr denote
its hitting time of the circle of radius r > 0, and let

pr := P[D(Z[0, σr])],

where D(K) denotes the event that K does not disconnect the origin from
infinity. Note that by inversion, pR = p1/R for all R > 1 (one can map the
disk {|z| < R} conformally on {|z| > 1/R} by z 7→ 1/z and use conformal
invariance of planar Brownian motion).

The strong Markov property and the scaling property of planar Brownian
motion imply readily that for all R,R′ > 1,

pRR′ ≤ P[D(Z[0, σR]) and D(Z[σR, σRR′ ])] ≤ pRpR′ .

On the other hand, it is not difficult to see that

pR ≥ P[Z[0, σR] ∩ [−R, 0] = ∅] ≥ cR−1/2

for all R > 1 and some constant c. Hence, a standard subadditivity argument
implies that there exists a constant η ≤ 1/2 such that

pR ≈ R−η

when R → ∞, where this notation means that log pR ∼ −η logR. It turned
out that there seems to be no direct way to determine the value of this
exponent η.

Similarly, if Z1 and Z2 denote two independent Brownian motions started
uniformly on the unit circle, then subadditivity implies the existence of a
positive constant ξ such that

P[Z1[0, σ1
R] ∩ Z2[0, σ2

R] = ∅] ≈ R−ξ.

The exponents η and ξ are respectively called the disconnection exponent
and the intersection exponent for planar Brownian motion.
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8.2 Brownian crossings

We now make some considerations that will help us relating the results on
reflected Brownian motions derived in the previous chapter to the exponents
η and ξ. For simplicity, we first focus on the disconnection exponent η.

Suppose that Z denotes a planar Brownian motion that is started from
1, and define the random times:

σr := inf{t > 0 : |Zt| = r}
σ#

r := max{t < σr : |Zt| = 1}
σ∗

r = inf{t > σ#
r : |Zt| = 1/2}.

It is a fairly standard application of the decomposition of the path
ℜ(logZ) into excursions away from the origin to see that

– The paths P 1
r := (Zt, t ∈ [0, σ#

r ]) and P 2
r := (Zt+σ#

r
/Zσ#

r
, t ∈ [0, σr − σ#

r ])
are independent.

– The law of P 3
r := (Zt+σ∗

r
/Zσ∗

r
, t ∈ [0, σr−σ∗

r ]) is identical to the conditional
law of (Zt, t ≤ σ2r) on the event Er := {Z[0,σ2r] ⊂ 2U}.

Note also that P[Er ] = log 2/ log r because log |Z| is a local martingale. We
will call P 2

r a Brownian crossing of the annulus Ar := {1 > |z| > r}.
When r′ < r, one can construct a Brownian crossing of the annulus Ar′

starting from a crossing P 2
r of the annulus Ar as follows: Attach to the

endpoint er := Zσr
/Zσ#

r
of P 2

r a Brownian motion started from er, that is

conditioned to hit the circle of radius r′ before the unit circle, and stop it at
that hitting time of the circle of radius r′ (note that this event has probability
log(1/r)/ log(1/r′)).

We now define the probability p∗r that the crossing does not disconnect
the origin from infinity:

p∗r := P[D(P 2
r )].

Since a crossing is a subpath of a stopped Brownian motion, it follows from
the a priori lower bound for pr that p∗r ≥ cr1/2 for some absolute constant c.

We now define for δ > 0,

p∗r(δ) := P[D(P 2
r ∪ B(1, δ) ∪ B(er, δ))],

where B(z, r) stands for the ball of radius r around z.
The following observations will be useful:

Lemma 8.1. There exists δ > 0 and ε > 0 such that for all integer n, then
for at least 99% of the integers j ∈ {1, . . . , n}, one has

p∗rj
(δ) > εp∗rj

where rj = 2−j.
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Proof. We only sketch the main ideas of the proof. First, notice that j 7→
p∗rj

is decreasing in j so that the a priori lower bound for p∗rj
implies that

there exists ε such that for all n, then for at least 99% of the values of j
in {1, . . . , n − 1}, 2εp∗rj

≤ p∗rj+1
(otherwise prn

would be too small). On the
other hand, it is easy to see that there exists δ > 0 such that

p∗rj+1
≤ ε(p∗rj

− p∗rj
(δ)) + p∗rj

(δ).

This is due to the fact that one can construct a sample of P 2
rj+1

by extend-

ing the crossing P 2
rj

into a crossing of {
√

2 > |z| > r/
√

2} by attaching
conditioned Brownian motions to both ends (and then rescale this into a
crossing of Arj+1

). And if δ is sufficiently small, then each of the attached
parts disconnect the ball of radius δ around their starting point with very
high probability. It therefore follows that “for 99% of the values of j”,

p∗rj
(δ) ≥ p∗rj+1

− εp∗rj
≥ εp∗rj

.

⊓⊔

Lemma 8.2. For all fixed δ, for some constant c = c(δ),

P[P 1
r ⊂ B(1, δ/2)] ≥ c

log(1/r)
.

Proof. With positive probability, Z hits the circle of radius 1 − δ/4 around
0 before ∂B(1, δ/2). Then, if this is the case, with probability log(1/(1 −
δ/4))/ log(1/r) it hits the circle of radius r before going back to the unit
circle. ⊓⊔

8.3 Disconnection exponent

We now use combine these considerations with the computation of the expo-
nents for reflected Brownian motion to prove the following result:

Theorem 8.1. One has η = 1/4. Furthermore, there exist two constants c1
and c2 such that for all R > 1,

c1R
−1/4 ≤ pR ≤ c2R

−1/4.

As we shall see later, it is important to have estimates “up-to-constants”
as in this Theorem (rather than ≈) in order to make the link with Hausdorff
dimensions.
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Proof. By inversion, this is equivalent to corresponding result for small r
i.e., that for all r < 1,

c1r
1/4 ≤ pr ≤ c2r

1/4. (8.1)

In order to compare pr to p̃r (this is the non-disconnection probability for
reflected Brownian motion that was defined at the end of the previous chapter
where we proved that it is close to r1/4), we will in fact compare both to p∗r .

First, one can notice using the previous lemma that

pr ≥ P[D(P 2
r ∪ B(1, δ)) ∩ {P 1

r ⊂ B(1, δ/2)}]
≥ p∗r(δ) ×

c

log(1/r)

for some constant c which is independent of r < 1/2. The same argument
can be adapted to the reflected Brownian motion Z̃. Hence, “for 99% of j’s”,

prj
≥
cp∗rj

j
and p̃rj

≥
cp∗rj

j

for some universal constant c.
On the other hand, let us now define inductively the stopping times:

ρ0 = 0 and for all n ≥ 0,

τn := inf{t > ρn : |Zt| = 1/2}
ρn+1 := inf{t > τn : |Zt| = 1}

the successive times of downcrossings and upcrossings between the two circles
{|z| = 1} and {|z| = 1/2}. Let Nr denote the number of upcrossings before
σr. In other words,

N = N(r) := max{n ≥ 0 : ρn < σr}.
Note that the probability that a Brownian motion started on the circle {|z| =
1/2} hits {|z| = r} before the unit circle is cr := log 2/ log(1/r), because
log |Z| is a local martingale. Hence, P[Nr ≥ n] = (1 − cr)

n. For each n ≥ 0,
the probability that Z[ρn, τn] disconnects 0 from the unit circle and does not
hit the circle of radius 1/4 is strictly positive (and independent from n). Note
that if Z[0, σr] does not disconnect the origin from the unit circle, then for
all n ≤ N , Z[ρn, τn] does not disconnect the origin from the unit circle, and
Z[τn, σn,r] doesn’t either, where

σn,r = inf{t > τn : |Zt| = r}.
It follows that for some absolute constant c > 0,

pr ≤
∑

n≥0

(1 − c)n(1 − cr)
nP[D(Z[τn, σn,r])]

≤ p∗2r

ccr

≤ log 2

c
× p∗2r

log 1/r
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A close inspection at the proof actually shows that the very same proof goes
through if one replaces the Brownian motion Z by the reflected Brownian
motion Z̃. Hence, for some absolute constant c′,

pr ≤ c′
p∗2r

log(1/r)
and p̃r ≤ c′

p∗2r

log(1/r)
.

Putting the pieces together, we see that “for 98% of j′s”,

p̃rj
≤ c1

p∗2rj

log(1/rj)
≤ c2p2rj

≤ c3
p∗2rj

log(1/rj)
≤ c4p̃4rj

.

But we know that r−1/4p̃r is bounded and bounded away from zero. It there-
fore follows that for some absolute constants c1 and c2 and at least 98% of
the j’s,

c1r
1/4
j ≤ prj

≤ c2r
1/4
j .

It then remains to get rid of the last 2% of “bad” values of j. This can be
done by pasting together “good” configurations that are “well-separated at
the end” of the annuli {1 > |z| > rj1} and {rj1 > |z| > rj1+j2}, where j1
and j2 are “good” values such that j1 + j2 = j. See for instance [91] for more
details. ⊓⊔

8.4 Other exponents

The previous proofs need to be somewhat adjusted to show the corresponding
result for the intersection exponent ξ (things are more complicated due to
the fact that there are two Brownian motions to take care of, but no really
new ideas are needed):

Theorem 8.2. One has ξ = 5/4. Furthermore, there exist two constants c1
and c2 such that for all R > 1,

c1R
−5/4 ≤ P[Z1[0, σ1

R] ∩ Z2[0, σ2
R] = ∅] ≤ c2R

−5/4.

Actually, it is possible to derive the value of many other exponents. For
instance, suppose that Z1, . . . , Zk, . . . are independent planar Brownian mo-
tions started uniformly on the unit circle, and denote by σ1

R, σ
2
R, . . . their

respective hitting times of the circle R∂U, then:

Theorem 8.3. For all k ≥ 1, there exist constants c1, c2 such that for all
R > 1,

c1R
−ηk ≤ P[D(Z1[0, σ1

R] ∪ · · · ∪ Zk[0, σk
R])] ≤ c2R

−ηk

and

c1R
−ξk ≤ P[The sets Z1[0, σ1

R], . . . , Zk[0, σk
R] are disjoint] ≤ c2R

−ξk ,
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where

ηk =
(
√

24k + 1 − 1)2 − 4

48

and

ξk =
4k2 − 1

12
.

The proof of these results is however more involved. For other results
and generalizations, see [86, 87, 88]. For instance, one can make sense of a
continuum of exponents, or study intersection exponents for Brownian motion
in a half-plane.

Let us mention that an instrumental role is also played in the definition
and determination of the exponents in Theorem 8.3 by the critical exponents
associated to non-intersection events in a half-space. For instance, the half-
space analog of the intersection exponent ξ is:

Theorem 8.4. If Z1 and Z2 are defined as before. Define

qR := P[Z1[0, σ1
R] ∩ Z2[0, σ2

R] = ∅ and Z1[0, σ1
R] ∪ Z2[0, σ2

R] ⊂ H].

There exist two constants c1 and c2 such that for all R > 1,

c1R
−10/3 ≤ qR ≤ c2R

−10/3.

There is a close relation between all these exponents (disconnection, in the
whole space, in the half-space), see [96]. The critical exponents in the half-
space can be determined in a similar way than the the whole-space exponents:
First one computes the “derivative” exponents associated to chordal SLE.
Then, using the identification between chordal SLE6 and reflected Brownian
motion, one transfers the SLE results into Brownian motion results. For the
statements and proofs of all these “half-space exponents”, see [86, 88]. In
order to get the value of all ηk exponents, one then uses the fact that a
family of generalized exponents is analytic, see [89] for more on this.

It has also been proved (using strong approximation of simple planar
random walks by Brownian motions) that these exponents describe the prob-
abilities of the corresponding events for planar simple random walks (see
[27, 37, 84, 85]). For instance, if S1 and S2 denote two independent simple
random walks starting from neighbouring points, then

P[S1[0, n] ∩ S2[0, n] = ∅] ≈ n−ξ/2 = n−5/8

when n→ ∞ (up-to-constants hold as well). The exponent is here ξ/2 because
we used here the parametrization in time and not in space. It is worthwhile
stressing that it seems that to prove this result that seems of combinato-
rial nature, one has to understand and use conformal invariance of planar
Brownian motion, its relation to SLE6 as well as the properties of SLE6.
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8.5 Hausdorff dimensions

In series of papers [76, 77, 78, 79] (before the mathematical determination of
the exponents in [86, 87, 88]), Lawler showed how to use such up-to-constants
estimates to estimate the Hausdorff dimension of various interesting random
subsets of the planar Brownian curve in terms of the corresponding exponents.

More precisely, let (Zt, t ≥ 0) denote a planar Brownian motion. Then,
we say that

– The point z = Zt is a cut-point if Z[0, t] ∩ Z(t, 1] = ∅.
– The point z = Zt is a boundary point if D(Z[0, 1] − z) i.e. if Z[0, 1] does

not disconnect z from infinity.
– The point z = Zt is a pioneer point if D(Z[0, t] − z).

Note that, loosely speaking, near z = Zt, there are two independent Brownian
paths starting at z: The future Z1 := (Zt+s, s ∈ [0, 1 − t]) and the past
Z2 := (Zt−s, s ∈ [0, t]). Furthermore, z = Zt is a cut-point if Z1 ∩ Z2 = {z},
z is a boundary point if Z1 ∪Z2 do not disconnect z from infinity and z is a
pioneer point if Z2 does not disconnect z from infinity. Hence, the previous
theorems enable us to estimate the probability that a given point x ∈ C is
in the ε-neighbourhood of a cut-point (resp. boundary point, pioneer point).
Independence properties of planar Brownian paths then make it also possible
to derive second moment estimates (i.e. the probability that two given points
x and x′ are both in the ε-neighbourhood of such points) and to obtain the
following result:

Theorem 8.5.

– The Hausdorff dimension of the set of cut-points is almost surely 2 − ξ.
– The Hausdorff dimension of the set of boundary points is almost surely

2 − η2.
– The Hausdorff dimension of the set of pioneer points is almost surely 2−η.

Recall that 2− ξ = 3/4, 2−η2 = 4/3, 2−η = 7/4. Similar results hold for
various other random subsets of the planar curve. We choose not to give the
proof of this theorems in these lectures since they are more using features of
planar Brownian motion rather than SLE6, but here is a brief sketch in the
case of the pioneer points.

Sketch of the proof. Let P denote the set of pioneer points on Z[0, 1].
Theorem 8.1 roughly shows that for each z, the probability that Z comes
ε-close to z without disconnecting z from infinity is comparable to ε1/4. It
follows that the expectation of the number Nε of ε-balls that are needed in
order to cover P is comparable to (i.e. up-to-constants away from) ε−2+1/4 =
ε−7/4. This in fact already shows that the Hausdorff dimension of P can a.s.
not be larger than 7/4.

On the other hand, one has good bounds on the second moment of Nε:
This is due to the fact that for two points x and x′ with |x − x′| = r to be
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ε-close to pioneer points, then the following three events must occur before
time one:

– Z reaches B(x, 2r) without disconnecting x
– Z crosses the annulus {z : ε < |z − x| < r/2} without disconnecting x
– Z crosses the annulus {z : ε < |z − x′| < r/2} without disconnecting x′.

Hence, it follows that E[N2
ε ] ≤ cst× ε−7/2 ≤ cstE[Nε]

2. Standard arguments
can then be used to deduce from this that with positive probability, the
dimension of P is not smaller than 7/4. A zero-one law can finally be used to
conclude that the dimension is a.s. equal to 7/4. See e.g. [82] for details. ⊓⊔

Bibliographical comments

The fact that one probably had to compute the value of the Brownian
exponents via an universality argument using another model (that should
be closely related to critical percolation scaling limits) first appeared in [97].
The mathematical derivation of the value of the exponents was performed in
the series of papers [86, 87, 88, 89]. The properties of SLE that were later
derived in [95] enable to shorten some parts of some proofs, but it seems
that analyticity of the family of generalized exponents derived in [89] can
not be by-passed for all exponents (for instance, it seems that it is needed
to determine the exponent describing the probability that the union of three
Brownian motions does not disconnect a given point). It can however be
by-passed for those exponents that we have to focus on i.e., η, η2, ξ.

Lemma 8.1 is a “separation Lemma” of the type that had been derived
by Lawler in the series of papers relating the Hausdorff dimensions to the
exponents [75, 76, 77, 78, 79]. The proof presented here is adapted from
the proof of the analogous but more general results for the other exponents
in [91]. A good reference for the relation between Brownian exponents and
Hausdorff dimensions is Lawler’s review paper [82]. See also, Beffara [13, 14].

Determining the Hausdorff dimensions of subsets of the SLE processes is
a difficult question. Rohde-Schramm [118] have shown that the dimension of
the SLE generating curve is not larger than 1 + κ/8. It was conjectured to
be a.s. equal to that value (for κ ≤ 8). This has been proved to hold for the
special values κ = 8/3 and κ = 6, making use of the locality and restriction
properties (see [95], Beffara [14]). It now seems that Beffara [15] managed to
prove the general conjecture.

The value of most of these exponents had been predicted/conjectured be-
fore: Duplantier-Kwon [48] had predicted the values of ξk using non-rigorous
conformal field theory considerations, Duplantier [44] more recently used also
the so-called “quantum gravity” to predict the values of all exponents. The
fact that the dimension of the Brownian boundary was 4/3 was first observed
visually and conjectured by Mandelbrot [107]. Before the proof of this conjec-
ture, some rigorous bounds had been derived, for instance that the dimension
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of the Brownian boundary is strictly larger than 1 and strictly smaller than
3/2 (see [24, 28, 132]).





9 SLE, UST and LERW

9.1 Introduction, LERW

In the next two chapters, we will survey the rigorous results that show that
for some values of κ, SLEκ is indeed the scaling limit of discrete models.
There are at present only three values of κ for which this is the case: κ = 2
is the scaling limit of LERW, κ = 6 is the scaling limit of percolation cluster
interfaces, and κ = 8 is the scaling limit of the uniform spanning tree contour.

In all three cases, the convergence to SLE is derived as a consequence of
three facts:

– The “Markovian” property holds in the discrete case (this is usually a
trivial consequence of the definition of the microscopic model).

– Some macroscopic functionals of the model converge to conformally invari-
ant quantities in the scaling limit (for a wide class of domains).

– One has “a priori” bounds on the regularity of the discrete paths.

Before going into more details, let us state the convergence theorem in the
case of LERW that was presented in the introductory chapter: Consider γδ

the (time-reversal of the) loop-erasure of a simple random walk in D ∩ δZ2,
started from 0 and stopped at the first exit time of the simply connected
(say, bounded) domain D. Let γ denote a radial SLE2 in the unit disc started
uniformly on the unit circle (and aiming at 0). Let Φ denote a conformal map
from U onto D that preserves 0. We endow the set of paths with the metric
of uniform convergence modulo time-reparametrization:

d(Γ, Γ ′) = inf
ϕ

sup
t≥0

|Γ (t) − Γ ′(ϕ(t))|

where the inf is over all increasing bijections ϕ from [0,∞) into itself. Then,

Theorem 9.1. The law of γδ converges weakly when δ → 0 to the law of
Φ(γ).

Actually, one can also use the convergence result to justify the fact that
SLE2 is a simple path. Instead of giving the basic ideas of the proof of this
theorem, we will focus on a closely related problem: The uniform spanning
trees scaling limit.
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9.2 Uniform spanning trees, Wilson’s algorithm

Suppose that a connected finite graph G = (V,E) is given (V is the set
of vertices and E is the set of edges). We say that the subgraph T ⊂ E
is a spanning tree if it contains no loop, and if it has only one connected
component. We then define the uniform spanning tree as the uniform measure
on the set of spanning trees. For any two fixed points a and b in G, and any
spanning tree T , there exists a unique simple path in T that joins a to b (it
exists because T has one connected component, it is unique because T has
no loops). Hence, if T is picked according to the UST measure, this defines a
random path γ from a to b. The following result had first been observed by
Pemantle [113]:

Proposition 9.2 The law of γ is that of the loop-erasure of simple random
walk on G started at a and stopped at its first hitting of b.

Fig. 9.1. A loop-erased walk as a subpath of the UST

This shows that LERW and UST are very closely related. Actually, it
turns out that an even stronger relationship hold: Suppose that an ordering
of the vertices v0, v1, . . . , vm of G is given. Define inductively the sets Am

as follows: A0 = {v0}, and for all j ≤ m, Aj = Aj−1 ∪ γj where γj is the
loop-erasure of a random walk started from vj and stopped at its first hitting
of Aj−1. Clearly, in this way, Am is a (random) tree that contains all vertices:
It is a spanning tree.
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Proposition 9.3 (Wilson’s algorithm) The law of Am is the uniform
spanning tree measure.

Note that this algorithm yields a natural extension of uniform spanning
trees (or forests) in infinite graphs (see e.g. [20] and the references therein for
more on this subject).

Proof. One can derive this result using the explicit formulas that we derived
in the introductory chapter for loop-erased random walks: Indeed, it follows
readily from the definition and the symmetry of the function F that was
defined there, and the fact that (since we are considering simple random
walks), the transition probabilities p(x, y) are simply equal to 1/dx where dx

is the number of neighbours of x), that for any possible spanning tree T ,

P[Am = T ] = F (v1, v2, . . . , vm; {v0})
m
∏

j=1

(1/dvj
).

This quantity is the same for all T : The law of Am is uniform. ⊓⊔
Hence, if LERW has a conformally invariant scaling limit then UST also

has a conformally invariant scaling limit (in a rather weak sense though,
such as: for all k given fixed points, the “finite subtree that go through these
points” converges in the scaling limit).

There is another way to encode planar trees that goes as follows. Suppose
for instance that we are looking at a spanning tree of a bounded “simply
connected” graph G ⊂ Z

2. Then, one can associate to each tree the contour
of the tree which is a simple closed curve living on a subset G# of the lattice
(1/4+ Z/2)2. It is easy to see that (under mild assumptions on the domain),
this curve visits every point of (1/4 + Z/2)2 that is close to the vertices of
G. If the tree is chosen according to the uniform measure on spanning trees,
then the contour is chosen according to the uniform measure on space-filling
simple closed curves in this graph G#.

Hence, it is natural to study the behaviour of this space-filling curve in
the scaling limit. In order to obtain SLE (and not a closely related object
that we would have to define first) it is (slightly) more convenient to consider
a variant of the previously defined space-filling curve.

More precisely, suppose that a certain connected graph of (1/4+ Z/2)2 is
given together with two distinct “boundary points” a and b. Then (for a suit-
able class of “admissible” graphs), one is interested in the uniform measure
on simple space-filling curves η from a to b in the graph (i.e. paths from a
to b that visit all vertices exactly once). An example of “admissible” graphs
is given by the graph obtained from removing from G# a part of a simple
closed space-filling curve γ. This time, there is a one-to-one correspondence
between the family of simple space-filling curve η (from a to b) and the set
of spanning trees in a certain subgraph G of Z

2 obtained by wiring one part
of the boundary between a and b (i.e. by conditioning the tree to contain
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Fig. 9.2. The wired tree, the dual tree, the Peano curve.

this part of the boundary). This is best seen on pictures, and not difficult to
understand heuristically, but it is somewhat messy to formulate precisely, so
we will omit the precise statements here (see e.g., [93] for more details).

Note that in this set-up, the Markovian type property for η is immediate:
If one conditions on the first step η(1) of η, then the law of η(1), . . . , η(n) = b
is simply the uniform measure on the space filling curves from η(1) to b in
the remaining graph.

9.3 Convergence to chordal SLE8

Suppose that D is a simply connected bounded planar domain with C1

boundary and let a, b denote two distinct points on ∂D. For each δ, we asso-
ciate in a “suitable approximation” of D ∩ δZ2, denoted by Dδ, and the two
boundary points aδ and bδ close to a and b. We define ηδ, a uniformly chosen
space-filling curve from aδ to bδ in Dδ.

Theorem 9.4. When δ → 0, the law of ηδ converges weakly to that of a
space-filling continuous path η, such that the law of (η[0, t], t ≥ 0) is (up to
time-change) that of chordal SLE8 in D from a to b.

Some rough ideas from the proof. A first step is to obtain regularity
estimates on the (discrete) random space-filling curve. This shows that the
families of probability measures defining ηδ is tight in an appropriate sense
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Fig. 9.3. A sample of the beginning of the Peano curve.

and therefore has subsequential limits. These estimates have been derived in
[123] (see also [5, 6]) and the basic tools are Wilson’s algorithm and estimates
for simple random walks. This is not easy, and we refer to [123] for details.
Hence, one can work with a given decreasing sequence δn → 0 such that the
law of ηδn

converges towards that of a random curve η, and one has to show
that η is in fact chordal SLE8.

Let us first work on the discrete level. Suppose that zδ is some discrete
lattice approximation of z ∈ D and that cδ is some discrete lattice approx-
imation of c ∈ ∂D that is on the wired part of the boundary of D. Let P δ

1

denote the part of the wired boundary of Dδ which is between aδ and cδ,
and let P δ

2 denote the part of the wired boundary which is between cδ and
bδ (and P1, P2 are defined similarly in D).

We consider the event Eδ that there exists a path in the corresponding
tree that goes from zδ to P δ

2 without touching P δ
1 . By Wilson’s algorithm, we

see that P[Eδ(c, z)] is the probability that simple random walk on Dδ hits P δ
2

before P δ
1 . One first key-observation is that when δ goes to 0, the probability

of this event can be controlled in a rather uniform way: Uniformly over some
suitable choices of z, c, a, b and D, it converges towards the probability that
a Brownian motion in D that is orthogonally reflected on the ‘free’ part of
∂D, hits P2 before P1. This is a conformally invariant quantity. Mapping D
onto the upper half-plane by some given fixed mapping g in such a way that
g(b) = ∞, we see that

lim
δ→0

P[Eδ] := h(A,C,Z) = F

(

Z − A

C −A

)

,

where

F (reiθ) =
1

π
tan−1

(

1 − r

2
√
r sin θ/2

)
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and A = g(a), Z = g(z), C = g(c). This function F can be computed for
instance by first using reflection so that this probability is the probability that
(non-reflected) Brownian motion in the complex plane, started from g(z) hits
[g(c),∞) before [g(a), g(z)], then to use the map x 7→ (

√
x−√

z)/(
√
x+

√
z)

from C\ [g(a),+∞) onto the unit disk and to look at the length of the image
of [g(c),+∞) on the unit circle).

At each step n, define the conformal map φδ
n from a continuous approx-

imation Dδ
n of Dδ \ η[0, n] onto the upper half-plane that is characterized

by φδ
n(x) − φδ

0(b) = o(1) when x → b. We then define tδn to be the “size”
a(φδ

0(η
δ[0, n])) of φδ

0(η[0, n]) and we put

Aδ
n = φδ

n(ηn), Cδ
n = φδ

n(cδ) and Zδ
n = φδ

n(zδ).

Suppose now that ε > 0 is small but fixed. If one stops the uniform Peano
curve at the first step N , at which either |Aδ

n − Aδ
0| reaches ε or tδn reaches

ε2, (if c and z are not close to a), then one does not yet know whether Eδ

holds or not. In fact the conditional probability is just equal to

P[Eδ(cδ, zδ, ηN , bδ, D
δ
N )].

Hence,
E[P[Eδ(cδ, zδ, ηN , bδ, D

δ
N)] = P[Eδ].

The right-hand side is close to h(A,C,Z) and the right-hand side is close to
E[h(Aδ

N , C
δ
N , Z

δ
N )] (in a uniform way as δ goes to 0). In fact, one can prove

that
E[h(Aδ

N , C
δ
N , Z

δ
N)] = E[h(A0, C0, Z0)] +O(ε3).

It turns in fact out, that the conformal map Φδ
N is very close to the (properly

normalized) conformal map from D \ η[0, N ] onto H (i.e. removing the slit
or the “tube” does not make much difference when δ is small). In particular,
when ε is small (and δ very small), Loewner’s equation shows that

(Zδ
N − Z0) =

2tδN
Z0 −A0

+O(ε3) and (Cδ
N − C0) =

2tδN
C0 −A0

+O(ε3).

Hence, one can Taylor-expand h in the previous estimate, so that

1

2
E[(Aδ

N −A0)
2]∂2

Ah(A0, C0, Z0) + E[Aδ
N −A0]∂Ah(A0, C0, Z0)

+2E[tδN ]

(

∂Ch(A0, C0, Z0)

C0 −A0
+
∂Zh(A0, C0, Z0)

Z0 −A0

)

= O(ε3).

Using the explicit expression of h as well as the fact that this holds for various
values c and z yields that in fact:

E[Aδ
N −A0] = O(ε3) and E[(Aδ

N −A0)
2] = 8E[tδN ] +O(ε3).
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One can iterate this procedure using inductively defined stopping times
N2, N3, . . ., and one can then use this as a seed to show that it is possible
to find a Brownian motion B such that Aδ

n remains close to B8tδ
n
, and then,

after some additional work can be improved into the convergence theorem.
⊓⊔

As the reader can see, this is only a very sketchy outline of a fairly long
and technical proof. For details, see [93].

9.4 The loop-erased random walk

The strategy of the proof of Theorem 9.1 follows roughly the same lines. One
has to identify a conformal invariant quantity that appears in the scaling
limit of LERW and that plays the role of the probability of the events E
in the case of the uniform Peano curve. The macroscopic quantities that are
used are related to the mean number of visits to a given point z by the simple
random walk started from 0 and conditioned to leave the domain at the same
point as the LERW. See [93] for details.

Bibliographical comments

The convergence results presented in this chapter are proved in [93], where
the reader can find more details. For an introduction to LERW and UST,
see for instance [104, 81]. Rick Kenyon [62, 64] had proved that LERW (and
UST’s) have conformally invariant features exploiting the relation between
UST and dimer models (and some explicit computations). He also managed to
determine directly (without using SLE2 or SLE8) [65, 66] the value of various
critical exponents related to LERW and UST that had been conjectured
by Majumdar and Duplantier [106, 43]. For instance, he showed that the
expected length of a LERW from 0 to the boundary of the unit disc on the
lattice δZ2 is of the order δ−5/4. See also, Fomin’s paper [50] for another
approach to some of these exponents.

In the recent preprint [71], Gady Kozma gives a completely different ap-
proach and justification to the existence of a scaling limit of LERW (that
does not seem to use conformal invariance or SLE).





10 SLE and critical percolation

10.1 Introduction

Consider a planar “periodic” lattice such that simple random walk on that
lattice converges to planar Brownian motion. For convenience, let us limit our
discussion to the square lattice and to the triangular lattice. Fix p ∈ [0, 1],
and for each site of the lattice, decide that with probability p, the site is open
(with probability 1− p, it is therefore closed), and do that independently for
all sites of the lattice. One is interested in the properties of the connected
components (or “clusters”) of open sites. It is now classical (see e.g., [55] for
an introduction to percolation) that there exists a critical value pc ∈ (0, 1)
such that:

– If p ≤ pc, there exists a.s. no infinite open cluster (note that in dimension
greater than 2, the non-existence of an infinite open cluster at pc is still an
open problem).

– If p < pc, there exists a positive ξ(p) such that when n → ∞, the proba-
bility that 0 is in the same connected component than (n, 0) decays expo-
nentially fast, like ≈ exp(−n/ξ(p)) (the positive quantity ξ(p) is called the
correlation length).

– If p > pc, there exists almost surely no infinite open cluster.

The value of pc is lattice-dependent. In the case of the square lattice, it has
been shown to be larger than .556 [22] (it is not expected to be any special
number), while for the triangular lattice, it has been shown by Kesten and
Wierman to be equal to 1/2 (see e.g. [67]). This is not surprising because the
triangular lattice has a self-matching property: It is equivalent to say that the
origin is in a finite open cluster or to say that it is surrounded by a circuit (on
the same lattice, this is what makes the triangular lattice so special) of closed
sites. This property shows also that if p = 1/2 on the triangular lattice, the
probability that there exists a left-to-right crossing of open sites of a square
is exactly 1/2 (otherwise, there is a top-to-bottom crossing of closed sites).
Russo, Seymour and Welsh [120, 125] have shown (this is sometimes known
as the RSW theory) that this in fact implies that for any fixed a and b, there
exists a constant c > 0, such that the probability q(aN, bN) of a left-to-right
crossing of the aN × bN rectangle satisfies
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1 − c > q(aN, bN) > c

for all large N . This strongly suggests that when N → ∞, q(aN, bN) con-
verges to a limit F (b/a). A renormalizing group argument (loosely speaking,
the rectangle 2aN×2bN can be divided into four rectangles of size aN× bN ,
which themselves can be divided into four rectangles etc.) also heuristically
suggests that not only the crossing probabilities converge but that in some
sense, the information about “macroscopic connectivity properties” should
converge. Note however that things are rather subtle. Benjamini, Kalai and
Schramm [19] have for instance proved that if A[N ] denotes the event that
there is a left-to-right crossing of a N ×N square say, and if one changes the
status of a fixed proportion ε of the N2 sites and looks at the event Ã[N ] that
there exists a left-to-right crossing for the new configuration, then the events
A[N ] and Ã[N ] are asymptotically independent when N → ∞. These events
are “sensitive to noise”. When N is large, it is not easy to “see” whether the
crossing events occur or not (in the Figure 10.1, each occupied site on the
triangular lattice is represented by a white hexagon).

Fig. 10.1. Is there a left to right crossing of white hexagons?

In fact, the renormalization argument suggests that even though the value
of pc is lattice-dependent, on large scale, what one sees at the value pc be-
comes lattice-independent. In other words, in the scaling limit, the behaviour
of critical percolation should become lattice-independent (just as simple ran-
dom walk converges to Brownian motion, for all “regular” lattices). Hence,
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Fig. 10.2. And now?

the function F (b/a) should be a universal function describing the crossing-
probabilities of a “continuous percolation process.” In fact, this continuous
percolation should be scale-invariant (it is a scaling limit) as well as rotation-
ally invariant (which would follow from lattice-independence). This leads to
the stronger conjecture that it should be conformally invariant: The connec-
tions in a domain D and those in a domain D′ should have the same law,
modulo a conformal map from D onto D′.

10.2 The Cardy-Smirnov formula

Using the conformal field theory ideas developed in [18, 30], John Cardy [31]
gave an exact prediction for the function F . Extensive numerical work (e.g.,
[73]) did comfort these predictions. Carleson noted that Cardy’s function F
is closely related with the conformal maps from rectangles onto equilateral
triangles, and that Cardy’s prediction could be rephrased as follows:

Conjecture 10.1 (Cardy’s formula). IfD is conformally equivalent to the equi-
lateral triangleOAC, and if the four boundary points a, o, c, x are respectively
mapped onto A,O,C,X ∈ [CA], then (in the scaling limit when the mesh
of the lattice goes to zero), the probability that there exists a crossing in D
from the part (ao) of ∂D to (cx) is equal to CX/CA.

We have seen that the SLE approach did provide a new justification to
this formula. Indeed, if the percolation exploration path has a conformally
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invariant scaling limit, it must be one of the chordal SLEs, as argued it the
first Chapter. Also, as the hitting probabilities computations in Chapter 3
show, SLE6 is the unique SLE such that for all X ∈ [CA], the two following
probabilities are identical:

– The SLE from O to A in the equilateral triangle hits AX before XC
– The SLE from O to X in the equilateral triangle hits AX before XC

This has to hold for the scaling limit of the critical exploration process.
Hence, the unique possible conformally invariant scaling limit of the critical
exploration process is SLE6. Another way to justify this is that this scaling
limit has to satisfy locality and (cf. Chapter 4) that SLE6 is the unique SLE
that satisfies locality. Yet another (simpler) justification is that SLE6 is the
unique SLE for which the probability of the event corresponding to a left-
right crossing of a square (or a rhombus) is 1/2 (for an SLE starting from
one corner and aiming at a neighbouring corner).

We have also seen that an SLE6 from O to C in the equilateral triangle
hits XC before AX with probability CX/CA. Also, for the discrete explo-
ration process, the corresponding event is precisely the event that there exists
a crossing from AO to CX . Hence, we get a conditional result of the following
type: If the scaling limit of critical percolation exists and is conformally in-
variant, then the scaling limit of the exploration process is SLE6 and Cardy’s
formula holds.

But in order to prove conformal invariance of critical percolation, one has
to work with discrete percolation itself. In 2001, Stas Smirnov, proved that:

Theorem 10.1. Cardy’s prediction is true in the case of critical site perco-
lation on the triangular lattice.

In fact, Smirnov’s proof is a direct proof of Cardy’s formula that does not
rely at all on SLE. Then, with Smirnov’s result, one can show that indeed
the scaling limit of the percolation exploration process is SLE6.

Sketch of the proof. Suppose first for convenience that AOC is an equi-
lateral triangle and that the sides of the triangle have unit length and are
parallel to the axis of the triangular grid (as we will see, this has in fact no
other influence on the proof than simplifying the notations). For all δ = 1/n,
consider critical site percolation in AOC on the triangular grid with mesh-size
1/n. For convenience, put τ = exp(2iπ/3) and write A1 = A, Aτ = A2 = O
and Aτ2 = A3 = C. For each face z of the triangular grid (i.e. for each site of
the dual hexagonal lattice), let E1(z) denote the event that there exists a sim-
ple open (i.e. white) path from A1Aτ to A1Aτ2 that separates z from AτAτ2 .
Similarly, define the events Eτ (z) and Eτ2

(z) corresponding to the existence
of simple open paths separating z from A1Aτ2 and A1Aτ respectively. Define
finally for j = 1, τ, τ2,

Hj(z) = Hδ
j (z) := P[Ej(z)].



83

The Russo-Seymour-Welsh theory ensures that the functions Hδ
j are uni-

formly “Hölder” (actually, one first has to smooth out their discontinuities
for instance in a linear way keeping only the values of Hδ

j at the center of
the triangles). In particular, it shows that any for any sequence δn → 0, the
triplet of functions (Hδ

1 , H
δ
τ , H

δ
τ2) has a subsequential limit. Our goal is now

to identify the only possible such subsequential limit.
The Russo-Seymour-Welsh estimates also show that when z → AjτAjτ2 ,

the functions Hδ
j go uniformly to zero, and that when z → Aj , the functions

Hδ
j go uniformly to one. Hence, for any subsequential limit (H1, Hτ , Hτ2),

one has Hj(z) → 0 when z → AjτAjτ2 , and Hj(z) → 1 when z → Aj .
Now comes the key-observation of combinatorial nature: Suppose that z

is the center of a triangular face. Let z1, z2, z3 denote the three (centers of
the) neighbouring faces (with the same orientation as the triangle A1A2A3)
and s1, s2, s3 the three corners of the face containing z chosen in such a way
that sj is the corner “opposite” to zj . We focus on the event E1(z1) \E1(z).
This is the event that there exists three disjoint paths l1, l2, l3 such that

– The two paths l2 and l3 are open and join the two sites s2 and s3 to A1A3

and A1A2 respectively.
– The path l1 is closed (i.e., it consists only of closed sites), and joins s1 to
A2A3.

One way to check whether this event holds is to start an exploration process
from the cornerA3, say (leaving the open sites on the side ofA1 and the closed
sites on the side ofA2). If the event E1(z1)\E1(z) is true, then the exploration
process has to go through the face z, arriving into z through the edge dual
to s1s2. In this way, one has “discovered” the simple paths l2 and l1 that
are “closest” to A3. Then, in the remaining (unexplored domain), there must
exist a simple open path from s3 to A1A3. But, the conditional probability of
this event is the same as that of the existence of a simple closed path from s3
to A1A3 (interchanging open and closed in the unexplored domain does not
change the probability measure). Changing all the colors once again, shows
finally that E1(z1) \ E1(z) has the same probability as the event that there
exist three disjoint paths l1, l2, l3 such that

– The paths l1 and l3 are open and join the two sites s1, s3 to A2A3 and
A1A2 respectively.

– The path l2 is closed, and joins s2 to A1A3.

This event is exactly Eτ (z2) \ Eτ (z). Hence, we get that,

P[E1(z1) \ E1(z)] = P[Eτ (z2) \ Eτ (z)] = P[Eτ2(z3) \ Eτ2(z)].

These identities can then be used to show that for any equilateral contour Γ
(inside the equilateral triangle), the contour integrals of Hδ

j for j = 1, τ, τ2

are very closely related:
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∫

Γ

dzHδ
1 (z) =

∫

Γ

dzHδ
τ (z)/τ +O(δε) =

∫

Γ

dzHδ
τ2(z)/τ2 +O(δε)

when δ → 0 for some ε > 0. To see this, one has to expand the contour
integrals as the sum of all properly oriented contour integrals along all small
triangles inside Γ . Then, the previous identities ensure that almost all terms
cancel out. The remaining “boundary” terms are controlled with the help of
RSW estimates.

This result then shows that for any subsequential limit (H1, Hτ , Hτ2), the
contour integrals of H1, Hτ/τ and of Hτ2/τ2 coincide. It readily follows that
the contour integrals of the functions

Hj +
i√
3
(Hjτ −Hjτ2)

for j = 1, τ, τ2 vanish. By Morera’s theorem (see e.g. [1]), this ensures that
these functions are analytic. In particular, H1 is harmonic. The boundary
conditions Hj = 0 on AjτAjτ2 for j = 1, τ, τ2 then ensure that H1 = 0 on
A2A3 and that the horizontal derivative of H1 on A1A3 ∪ A2A3 vanishes.
Also, H1(A1) = 1. The only harmonic function in the equilateral triangle
with these boundary conditions is the height

H1(z) =
d(z,BC)

d(A,BC)
.

This completes the proof of the Theorem when the domain is an equilateral
triangle.

If D now any simply connected domain, and a = a1, o = aτ , c = aτ2 are
boundary points, the proof is almost identical. In its first part, the only differ-
ence is that one replaces the straight boundaries AjAjτ by approximations
of the boundary of D on the triangular lattice that is between the points
ajajτ . In exactly the same way, one obtains tightness and boundary esti-
mates for the discrete functions Hδ

j . Also, the argument leading to the fact

that the contour integrals on equilateral triangles of Hj + i(Hjτ −Hjτ2)/
√

3
for any subsequential limit vanish, remains unchanged. Hence, for any subse-
quential limit, one obtains a triplet of functions (H1, Hτ , Hτ2) such that for
j = 1, τ, τ2:

– The function Hj + i(Hjτ −Hjτ2)/
√

3 is analytic
– The function Hj(x) tends to zero when x approaches the part of the bound-

ary between ajτ and ajτ2 .
– The function Hj(x) tends to one when x→ aj .

The important feature is that this problem is conformally invariant: If Φ
denotes a conformal map from D onto the equilateral triangle such that
Φ(aj) = Aj , and if (H1, Hτ , Hτ2) is such a triplet of functions, then the triplet
(H1 ◦ Φ−1, Hτ ◦ Φ−1, Hτ2 ◦ Φ−1) solves the same problem in the equilateral
triangle. In the latter case, we have seen that the unique solution is given by
Hj(x) = d(x,AjτAjτ2)/d(Aj , AjτAjτ2). Hence, the Theorem follows. ⊓⊔
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One should stress that this proves much more than just the asymptotic
behaviour of the crossing probabilities. It yields the asymptotic probability of
the events Ej(x) for x inside the domain D (and not only on its boundary).

10.3 Convergence to SLE6 and consequences

One can use the previous result to prove that the discrete exploration process
described in the introductory chapter indeed converges to chordal SLE6.

The regularity estimates are provided by the RSW theory and the discrete
Markovian property is immediate. It remains to show that some macroscopic
quantities converge to a conformally invariant quantity in the scaling limit,
but this is precisely what Smirnov’s theorem shows. Hence, the method de-
scribed in the previous chapter can be applied. Some adjustments are needed
to take care of domains with rough boundary, though. In particular, one
can use the a priori bounds on the probability of having 5 arms joining the
vicinity of the origin to a large circle (the exponent α5 below) derived in [69].

Exploiting this, one can therefore use the computations of critical ex-
ponents for SLE6, to deduce asymptotic probabilities for discrete critical
percolation on the triangular lattice: For instance [128, 92], let An[N ] denote
the event that there exists n disjoint open clusters joining the vicinity of the
origin to the circle of radius N . Then:

Theorem 10.2. When N → ∞, one has P[An[N ]] ≈ N−αn, where α1 =
5/48 and for all n ≥ 2, αn = (4n2 − 1)/12.

Note that the exponents αn for n ≥ 2 are the same than the Brownian
intersection exponents ξn in Chapter 8. This is not surprising because of the
close relation between SLE6 and planar Brownian motion. The exponent α1

corresponds to the event that radial SLE6 winds only “in one direction”
around 0 (see [92].

Actually, Harry Kesten [68] had shown that the previous result (for n =
1 and n = 2) would imply the following description of the behaviour of
percolation when the probability is near to the critical probability:

Theorem 10.3. If one performs site percolation on the triangular lattice with
probability p, then when p → 1/2+, the probability that the origin belongs to
the infinite cluster behaves like (p − 1/2)5/36+o(1). When p → 1/2−, the
correlation length explodes like (1/2 − p)−4/3+o(1).

See [68, 128] for more results as well as for the proofs...
Let us conclude with the following combination of results that we have

mentioned in these lectures: The following three curves are (locally) the same:

– The outer boundary of the scaling limit of a large critical percolation clus-
ter.

– The outer boundary of a planar Brownian motion.
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Fig. 10.3. Part of a (big) critical percolation cluster on the square lattice

Fig. 10.4. A critical percolation cluster on the triangular lattice
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– The scaling limit of long self-avoiding walks, provided this scaling limit
exists and is conformally invariant.

Bibliographical comments

The value of critical exponents for percolation had been predicted by
theoretical physicists [38, 112, 109, 110, 122, 121, 54, 33, 7]. The conformal
invariance conjecture for critical percolation had been discussed by Aizenman
[3, 4].

Smirnov’s complete detailed proof of Cardy’s formula is contained in [126,
127]. The actual detailed proof of the convergence of the discrete exploration
process to SLE6 (announced in [126]) should be written up [127] soon. For
the derivation of formulas and exponents for critical percolation using SLE6,
see [124, 92, 128].





11 What is missing

11.1 A list of ideas

We have listed at the end of each chapter a list of references to papers that
develop ideas that are related to those presented in the corresponding chapter.
One aspect of SLE that we could have spent more time on is the actual
computation of critical exponents. For simplicity, we have shown how to
derive the Brownian exponents using radial SLE6, but in general (for instance
to derive the Hausdorff dimension of the SLE), one might as well work with
chordal SLE. Various exponents are derived in for instance in [86, 87, 88, 92,
118, 14, 15].

Before very briefly reviewing the results related to restriction properties,
we would like to stress that the important ideas underlying Rohde-Schramm’s
[118] proof of the existence and transience of the SLE paths have not been
presented in these lectures. The arguments [118] require some non-trivial
background in complex geometry. In two cases, the existence and/or tran-
sience of the SLE path is especially difficult to establish: For κ = 4, because
the domains generated by the SLE curve are not Hölder (see [118]). For κ = 8,
the only proof uses the fact that it is the scaling limit of the discrete uniform
Peano curves [93] described in Chapter 9.

One can also study geometric questions such as: Does the SLE have (local)
cut points? The answer is positive if and only if κ < 8 (see [14]).

I plan to discuss the following restriction properties in forthcoming lecture
notes. The main reference is the long recent paper [95].

– The full classification of the measures satisfying the restriction properties is
one of the main goals of [95]. These measures form a one-dimensional fam-
ily indexed by a positive real-valued parameter N , that can be interpreted
as the number of Brownian excursions that the measure is equivalent to.
There exist two other important ways to describe this one-dimensional fam-
ily: The first one is via a variant of the SLE8/3 process called SLE(8/3, ρ).
Loosely speaking, one replaces the driving Brownian motion by a Bessel
process (see [95] for all this), and the obtained simple random curve de-
scribes the outer boundary of the set satisfying the restriction property.
The second description goes as follows: Consider an SLEκ with κ ≤ 8/3
and add to this path a certain cloud Brownian loops (this Poisson cloud
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of loops is also studied in [98]). For a well-tuned density d(κ) of the loops,
one constructs the restriction measure corresponding to N(κ) Brownian
excursions. See also [40].

– This last description makes it possible to tie a link [52, 53] with represen-
tation theory, and more precisely with highest-weight representations of
the Lie Algebra of polynomial vector fields on the unit circle (the number
N(κ) is the highest-weight). This is related to considerations from confor-
mal field theory. See also [10, 11, 12] for the relation of SLE with ideas
from conformal field theory.

– The SLE(κ, ρ) processes shed also some light on the computation of the
(chordal) critical exponents. It turns out that they can be understood via
the absolute continuity relations between Bessel processes (following from
Girsanov’s Theorem); see [135].

11.2 A list of open problems

Here is a list of open problems. Some of these were already mentioned in the
previous chapters:

11.2.1 Conformal invariance of discrete models

So far, convergence of natural discrete models towards SLE in the scaling
limit has been proved only in the two very special cases that we described
in the last two chapters (LERW-UST, and critical site percolation on the
triangular lattice). It is believed to hold for many other models:

– The interface for a critical FK-percolation (see e.g. [56] for an introduction
to this dependent percolation model introduced by Fortuin and Kasteleyn)
model for q ≤ 4 is conjectured to converge to chordal SLEκ. Recall that
the probability of a given realization is proportional to

p#open edges(1 − p)#closed edgesq#connected components.

The relation between q and κ should be

cos
4π

κ
= −

√
q

2
,

where q ∈ [0, 4] and κ ∈ [4, 8]. Here (as in the UST case and in some sense
in the percolation case), the boundary conditions have to be mixed (free on
one part of the boundary, wired on the other – this influences the way of
counting the connected components). See [118] for a more precise statement
of this conjecture. Recall that for critical FK-percolation with parameter
q on the square lattice, the self-dual point is p =

√
q/(

√
q + 1) (proving

that this self-dual point is the critical point is another open question, but
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it is not directly related to the SLE question; the question on the square
grid is to prove that for this value of p, the interface converges to SLE).
Here self-dual means that the law of the dual graph of an FK percolation
sample is also an FK percolation sample (in the dual lattice) with the same
parameters (see [56]).
Recall that when q > 4, the FK percolation phase transition is conjectured
to be a first-order transition (i.e. there can exist an infinite open cluster at
the critical probability). The critical value q = 4 corresponds to the special
case κ = 4. Recall also (see e.g. [56]) that the correlation functions of the
critical q-Potts models are the same as those of the critical FK-percolation
model. Recall also that the usual percolation is the q = 1 FK percolation
model, and that the UST can be viewed as the q = 0 critical FK percolation
model (see e.g. [57]). For the critical FK percolation models, the Markovian
property is clearly valid in the discrete case. The missing step is therefore
the proof of conformal invariance.
It is interesting (and encouraging) to note that the integer values of q cor-
respond to the “nice” values of the angles α = π(1 − κ/4) of the isocele
triangles for which hitting distributions are uniform (Dubédat’s observa-
tions [39] mentioned at the end of Chapter 2): cosα =

√
q/2. For q = 1,

it is the equilateral triangle, for q = 2 (Ising), it is the isocele-rectangular
triangle, and for q = 3, α = π/6.

– Among all the critical percolation interfaces that are conjectured to con-
verge to SLE6 (this is the special case q = 1 in the previous conjectures), it
is worth stressing two cases, for which one has self-duality (and therefore
some little hope to be able to prove something): The first one is bond-
percolation on the square grid, and the second one is percolation on a
Voronoi tessellation (see e.g. [21]).

– There exists a special model for which (as for the Ising model and for
the uniform spanning tree model), the tools and arguments developed by
Kenyon seem promising: It is the so-called double-domino path, that is
conjectured to converge to the special curve SLE4 in the scaling limit.

– Note also that the Ising model itself (on the triangular lattice) has some
self-duality properties (this is due to the fact that for the Ising model, there
are exactly two possible states for each site). Hence, Ising cluster interfaces
(for appropriate boundary conditions, and on the triangular lattice) might
converge to an SLE in the scaling limit.

– For κ < 4, the relation with discrete models from statistical physics is not
so clear. One relation is via the duality conjectures that we will discuss be-
low. The main open question is the convergence of the self-avoiding walk
towards the SLE8/3 curve. Again, the main problem is to derive its confor-
mal invariance. See [94] for a discussion. Let us insist that basically nothing
is known rigorously on the asymptotic behaviour of the self-avoiding walk.
For instance, to our knowledge, it has not even been disproved that the
curve becomes space-filling or a straight line in the scaling limit!
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– It is likely that some discrete dynamic models can be shown to converge to
SLE (but their relation to models from statistical physics is unclear). For
instance, variations on the Laplacian random walk description of LERW
that have some conformally invariant features built in the model should in
principle converge to SLEs.

11.2.2 Duality

Another approach to the SLE curves when κ < 4 goes as follows: It was
conjectured (based on the computation of the dimensions) that in the scaling
limit, the outer boundary of an SLEκ′ hull for κ′ > 4 at a given time looks
(locally) like an SLE16/κ′ curve. Hence, the SLEκ curves for κ < 4 corre-
spond to the outer boundary of the scaling limit of critical FK-percolation
clusters. The duality has been proved to hold in two cases: κ = 2 (because
of the relation between LERW and UST that respectively converge to SLE2

and SLE8) and κ = 8/3 (because of the restriction property considerations
that allow to describe the outer boundary of conditioned SLE6 processes in
terms of SLE8/3 processes (see [95]). In the general case, a weak form of du-
ality has been identified by Dubédat [40], that leads to conjecture a precise
identity in law between the outer boundary of an SLE(κ′, ρκ′) process and
the SLE(16/κ′, ρ′κ′) curve for well-chosen values of ρ and ρ′.

Proving this duality relation would be one way to settle the following
open problem (it is only proved when κ = 6 and κ = 8): Prove that the
Hausdorff dimension of the boundary of Kt is almost surely 1 + 2/κ when
Kt is the hull of an SLEκ (chordal or radial) for κ > 4. One would then
combine duality with the computation of the dimension of the SLE curves in
[15]. There should however also exist a direct proof of this fact that does not
rely on duality.

11.2.3 Reversibility

The following conjecture follows very naturally from the fact that the SLEs
are believed to be scaling limit of the previously described lattice models:
Suppose that κ ≤ 8 is given, and consider the chordal SLEκ curve γ from
a to b in a domain D (where a and b are two boundary points). One can
time-reverse γ, and view it as a curve from b to a in D. Then, the law of
this time-reversal should be (modulo time-change) the law of an SLEκ curve
from b to a in D. Another equivalent way of phrasing this is that if γ is the
chordal SLE path in the upper half-plane, the path −1/γ has the same law
as γ (modulo time-change).

This conjecture is very natural in terms of the lattice models, but on the
other hand, it is not natural at all if one thinks of the actual definition of the
SLE in terms of the Loewner chain (this is very non-reversible!). In the special
cases κ = 6, κ = 8 and κ = 2, the result is a consequence of the convergence of
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the discrete reversible models to the SLEs. So far, the reversibility of κ = 8/3
is the only one that can be proved without reference to a reversible discrete
model, and the tool here is the characterization of SLE8/3 as the unique
simple random curve that satisfies the restriction property. In all other cases,
the problem is to our knowledge open. This problem does not seem as out of
reach as some of those that we just discussed.

Note that (as shown to me by Oded Schramm), it is possible to show that
reversibility of SLEκ fails to be true when κ > 8. This can seem surprising;
more generally, the interpretation of SLEκ when κ > 8 in terms of models
from statistical physics is not well-understood. Note that the asymptotic
behaviour of SLEκ when κ→ ∞ is studied in [16].

11.2.4 Quantum gravity and conformal field theory

The arguments developed in conformal field theory under the name of quan-
tum gravity suggest that some very interesting critical phenomena also occur
for systems on certain random lattices. In particular, Duplantier [44, 46, 47]
showed that the value of the critical exponents in the plane (those exponents
that can now be understood thanks to the SLE) can be predicted using the
formula proposed by Knizhnik, Polyakov and Zamolodchikov in [70], that
should relate the value of the critical exponents in the plane to the corre-
sponding exponents on random lattices.

Recent progress has been made in the rigorous understanding of some of
these random systems on these random graphs; see e.g. [9, 8, 25, 26] and the
references therein. It seems that (as opposed to the rigid lattice case), the
behaviour of some of these systems on random lattices might be accessible
by ingenious combinatorial methods.

Note [135] that the KPZ formula seems to have a simple interpretation
in terms of the ρ in the SLE(κ, ρ) processes. Maybe the combination of the
determination of the exponents for SLE, and the results on random graphs
will provide in the end the rigorous justification to the KPZ relation.

More generally, the relation between SLE and conformal field theory (that
has started to be investigated in [10, 11, 12, 51, 52, 53]) and with the mathe-
matical concepts used in conformal field theory needs further understanding.
It is not so clear whether this will be helpful to improve the knowledge on
these critical two-dimensional systems (which was after all probably the ini-
tial motivation for the conformal field framework). One related issue is to
manage to define SLE on general Riemann surfaces, see [51, 137, 42].
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