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The Hausdorff dimension of the boundary
of the Mandelbrot set and Julia sets

By MITSUHIRO SHISHIKURA*

Dedicated to Professor John W. Milnor on the occasion of his siztieth birthday
Abstract

It is shown that the boundary of the Mandelbrot set M has Hausdorff
dimension two and that for a generic ¢ € OM, the Julia set of z — 22 + ¢
also has Hausdorff dimension two. The proof is based on the study of the
bifurcation of parabolic periodic points.

Introduction

The dynamics of complex quadratic polynomials P,(z) = 22+ ¢ has been stud-
ied extensively in recent years (e.g., see [DH]). The main interest in this subject
is the nature of the Julia sets J. in the dynamical plane and the Mandelbrot
set M in the parameter space. The boundary of M also has a meaning as “the
locus of bifurcation”, or more precisely (by Mafié-Sad-Sullivan [MSS] or by
Lyubich [Lyl]) 8M = {c € C | P. is not J-stable} (see §1 for the definition).
In this paper, we are concerned with the Hausdorff dimension (denoted by
H-dim(-)) of these sets. Some of the consequences are:

THEOREM A.
H-dim(OM) = 2.

Moreover for any open set U which intersects OM, H-dim(OM NU) = 2.
THEOREM B. For a generic c € OM,
H-dim J, = 2.

In other words, there exists a residual (hence dense) subset R of OM such
that if c € R, then H-dim J, = 2.

*This paper was originally written in 1991.
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226 MITSUHIRO SHISHIKURA

THEOREM C. There ezists a residual set R' of R/Z such that if P, has a
periodic point with multiplier exp(2mic) with o € R', then H-dim J, = 2.

Theorem A was conjectured by many people (for example, Mandelbrot
[Ma), Milnor [Mi2, Conjecture 1.7]). It means that the bifurcation locus is
large in dimension, and this explains the complexity of M, demonstrated by
many numerical experiments. As to the Julia sets, if P, is hyperbolic, or if 0 is
strictly preperiodic, H-dim J_ is less than 2 (see §1, Property (1.4)). However, it
was conjectured that there exists a sequence of parameters such that H-dim J,
tends to 2. Theorem B gives a stronger solution to this conjecture. We will see
that the method in this paper applies to other families under certain condition.

The above theorems are obtained as consequences of Theorems 1 and 2
stated in Section 1. Theorem 1 amounts to comparing the Hausdorff dimension
of the set of J-unstable parameters with that of a certain subset (“hyperbolic
subset”) of the Julia set. It reflects the similarity between the Mandelbrot set
and some Julia sets (cf. Tan Lei [T]). Theorem 2 is the most important result
in this paper, and it assures that one can obtain maps whose Julia sets have
Hausdorff dimension (or “hyperbolic dimension”) arbitrarily close to 2, from
“the secondary bifurcation” of a parabolic periodic point. See Figures 1, 2 and
the remark after Theorem 2 in Section 2.
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FiGure 1. The boundary of the Mandelbrot set (top left) and its blow-ups near the cusp ¢ = %.

It has been observed that after a small perturbation of a parabolic peri-
odic point, the Julia set may inflate drastically. In fact, the proof of Theorem

This content downloaded from 129.49.5.35 on Mon, 20 Feb 2017 06:03:43 UTC
All use subject to http://about.jstor.org/terms



MANDELBROT SET 227

~

e
A

\
{

N,

e

S

)
~7 ind /

S A

FIGURE 2. The Julia sets for c = % (left) and for ¢'= 0.25393 + 0.00048i (middle) and its blow-up
near the fixed points (right).

2 shows that such an inflated part of the Julia set can have Hausdorff di-
mension close to 2. The main tool in the study of such a bifurcation is the
theory of Ecalle cylinders, which was introduced by Douady-Hubbard [DH] and
developed by Lavaurs [L]. Using the Ecalle cylinder, we introduce a new renor-
malization procedure associated with parabolic fixed points (see Remark (ii)
in §6). Our result can be interpreted as follows: The renormalization induces
a map between old and new dynamical planes, which resembles an exponential
map. Comparing this observation with McMullen’s result [Mc] which claims
that the Julia set of an exponential map always has Hausdorff dimension 2,
we can conceive that a certain subset of the Julia set can have Hausdorff di-
mension close to 2. The proof in this paper will justify this argument, or even
more, twice renormalization is enough to attain dimension two.

One can compare the above theorems with Jakobson’s result for the family
of unimodal interval maps [J], M. Rees’ result for a certain family of rational
maps [Re] and Benedicks-Carleson’s result on the family of Hénon maps [BC|.
These results show the existence of a “chaotic dynamics” for a set of positive
Lebesgue measure of parameters. For example, M. Rees’ result shows that
there exists a set of positive Lebesgue measure of parameters for which the
Julia sets are the whole Riemann sphere. Such parameters are found near a
special parameter for which all critical points are strictly preperiodic. For this
parameter, the map has good ergodic theoretical properties and the Julia set
is the whole sphere.

On the other hand, for a polynomial P, acting on C, the Julia set J,. or
the filled-in Julia set K. can never be the entire plane, since there is always
the basin of co. So there always exist some orbits which escape to co from the
neighborhood of K.. Moreover, as remarked above, if the critical point 0 is
strictly preperiodic, H-dim J. < 2. For example if ¢ = -2, J_2 = [-2,2] C R
and H-dim J_5 = 1. Therefore one can hardly expect an analogous result or
approach for the family P, as for those of Jakobson and Rees. Instead, in this
paper, we use the perturbation of parabolic periodic points.
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228 MITSUHIRO SHISHIKURA

As for the area (the 2-dimensional Lebesgue measure), it is conjectured
that M and J. (for any c) have area zero. There are partial results: the set of
parameters in OM for which P, are not infinitely renormalizable has area zero
[Sh1]. If P. has no irrationally indifferent periodic point and is not infinitely
renormalizable, then the Julia set J, has area zero [Ly2] and [Sh1].

This paper is organized as follows: In Section 1, we define the notion of
hyperbolic subsets and the hyperbolic dimension, state our main results (The-
orems 1 and 2, Corollary 3). Assuming these results, we prove Theorems A,
B and C. In Section 2 we prove basic properties of hyperbolic subsets and
hyperbolic dimension. Theorem 1 is proved in Section 3, using holomorphic
motions. The rest of the paper is devoted to the proof of Theorem 2. The the-
ory of the parabolic bifurcation and Ecalle cylinders is reviewed in Section 4.
Further properties of the Ecalle transformation are studied in Section 5. After
these preparations, Theorem 2 is proved in Section 6 (the case with multiplier
1) and in Section 7 (the other cases). In the appendix, we give proofs of the
facts stated in Sections 4 and 7. '

Acknowledgement. 1 would like especially to thank Curt McMullen for
introducing me to these problems and for having inspired me throughout their
investigation; A. Douady for his lectures which introduced me to the theory
of Ecalle cylinders; and also A. Hinkkanen, M. Lyubich, M. Rees, D. Sullivan,
Tan Lei, S. Ushiki and J. Milnor for helpful discussions and comments. This
paper was written during my visit to the Institute for Mathematical Sciences,
State University of New York at Stony Brook, to which I am grateful for its
hospitality. I also would like to thank the editors for their patience with my
slow revision of this paper.

Computer pictures have been produced using J. Milnor’s program.

1. Some definitions and main results

In this section, we define the hyperbolic subset and the hyperbolic di-
mension for a rational map, and state our main results, Theorems 1 and 2.
Assuming these results, we give the proofs of Theorems A, B and C from the

introduction.

Definitions. Let f be a rational map. A closed subset X of C is called a
hyperbolic subset for f, if f(X) C X and there exist positive constants ¢ and

k > 1 such that
I(F™)|| = ex™ on X for n >0,

where || - || denotes the norm of the derivative with respect to the spherical

metric of C. (A similar notion was discussed in [Ru] and [Ly1]. The condition
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MANDELBROT SET 229

requires that f be expanding on X; however, we call such a set “hyperbolic”
following the standard terminology for dynamical systems.)
The hyperbolic dimension of f is

hyp-dim(f) = sup{H-dim(X) | X is a hyperbolic subset of f}.

PROPERTIES OF HYPERBOLIC SUBSETS AND HYPERBOLIC DIMENSION.
Let X be a hyperbolic subset of f.

(1.0) There are no critical points of f in X.

(1.1) X s a subset of the Julia set J(f) of f. Hence

H-dim J(f) > hyp-dim(f).

(1.2) X is “stable” under a perturbation, i.e. there exists a neighborhood
N of f in the space of rational maps of the same degree, such that if g € N'
then g has a hyperbolic subset Xy and there is a homeomorphism 14: X — X
which conjugates f to g. Moreover, for each z € X, 14(2) is a complex analytic
function in g, and vy = idx. ({tg} is a holomorphic motion in the sense of
Section 3.)

(1.3) f — hyp-dim(f) is lower semi-continuous, or equivalently, for any
number k, the set {f | hyp-dim(f) > k} is open.

(1.4) Suppose that f is a hyperbolic rational map (i.e., all critical points
are attracted to attracting periodic orbits) or a subhyperbolic polynomial (every
critical point is either attracted to an attracting periodic orbit or a pre-periodic
orbit; see [DH]). Then

H-dim J(f) = hyp-dim(f).

Moreover J(f) has positive and finite 6-dimensional Hausdorff measure if 6 =
H-dim J(f), and H-dim J(f) < 2.

For the proof and remarks, see Section 2.
Problem. When does hyp-dim(f) coincide with H-dim J(f)?

Definition. A family {fy | A € A } of rational maps is J-stable at Ao
€ A, if there exists a continuous map h: A’ x J(f),) — C, such that A’ is
a neighborhood of Ag in A, hy = h(),-) is a conjugacy from (J(fy,), f),) tO
(J(£r), fr) and hy, = idy Fro)® We also say that f), is J-stable in this family,
if there is no confusion.

THEOREM 1. Let {fx | A € A } be a complex analytic family of rational
maps of degree d (> 1), where A is an open set in C. Suppose f, (Ao € A) is
not J-stable in this family. Then

f is not J-stable and has a hyperbolic
H-dim { A € A | subset containing a forward orbit of > hyp-dim(fy,).
a critical point
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230 MITSUHIRO SHISHIKURA
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FIGURE 3. The region for o

The proof will be given in Section 3. There we will make use of a “sim-
ilarity” between a hyperbolic subset and a subset of the set on the left-hand
side of the above inequality.

Definition. A periodic point is called parabolic if its multiplier is a root of
unity. The parabolic basin of a parabolic periodic point ¢ of period k is

{z€CT| f™ = ¢ (n - o0) in a neighborhood of z},

and the immediate parabolic basin of { is the union of periodic connected com-
ponents of the parabolic basin.

THEOREM 2. Suppose that a rational map fo of degree d (> 1) has a
parabolic fized point ¢ with multiplier exp(2mip/q) (p,q € Z, (p,g) = 1) and
that the immediate parabolic basin of { contains only one critical point of fo.
Then: For any e > 0 and b > 0, there exist a neighborhood N of fo in the space
of rational maps of degree d, a neighborhood V' of ¢ in C, positive integers Ny
and Ny such that if f € N, and if f has a fized point in V with multiplier

exp(2mia), where
1
a1 + —1—
1= o348

with integers a; > N1, ag > Ny and B € C,0 < Ref < 1,|ImB| < b, then
hyp-dim(f) > 2 —e.

ga=p=k

The proof will be given in Sections 6 and 7, after preparation in Sections 4
and 5.

Figure 3 shows the region for o described in Theorem 2.

The condition a; > N is in fact unnecessary, since a; must be large
when f is close to fy. However if we take a family {f,} such that f,(0) = 0,
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MANDELBROT SET 231

fL(0) = exp(2miar), then the condition in Theorem 2 can be expessed in terms
of a (without A and V).

The condition on o has a meaning that f is obtained by a “secondary
bifurcation”, in the following sense: The primary bifurcation of fo produces a
sequence of maps having parabolic fixed points with multipliers exp(27icay,),
where ga, = p+ —71; (n=1,2,...). Then the bifurcation from these maps gives
rise to the maps as in Theorem 2.

There are immediate consequences of Theorems 1 and 2 for the family F..
Before stating them, let us recall the definition of J, and M: '

K. = {z€C|P!z)+ ooasn— oo} (the filled-in Julia set of F),

Jo. = 0K, = Closure of {repelling periodic points of P}
(the Julia set of P,),
M = {ceC|0€ K.} ={ceC| K, is connected} (the Mandelbrot set).

COROLLARY 3. (i) IfU is an open set containing c € OM, then

H-dim(@M NU) > H-dim{c € M NU]| 0 is non-recurrent under P.}
> hyp-dim(P,).

(ii) If P, has a parabolic periodic point, then there erists a sequence {cp}
in OM such that ¢, — ¢ and hyp-dim(FP.,) — 2, as n — oo.

Proof of Corollary 3. (i) This is immediate from Theorem 1 and the fact
that ¢ € OM if and only if P, is J-unstable ([MSS],[Ly1]).

(ii) It is known that if P, has a parabolic periodic point ¢ of order k,
then fo = PF satisfies the hypothesis of Theorem 2, since there is only one
critical point (in C) for P,. Any parabolic periodic point of P, is not persistent
(otherwise all P, would have parabolic periodic points), and it can be perturbed
into a periodic point whose multiplier is as in Theorem 2. If Im 3 = 0, then
the new periodic point is indifferent, and the perturbed polynomial is also J-
unstable. One can thus obtain the sequence {c,} (C OM). Furthermore, it is
also possible to choose ¢, such that 0 is strictly preperiodic under P, since
such parameters are dense in M by [MSS]. O

Now we can prove Theorems A, B and C.

Proof of Theorem A. By Mané-Sad-Sullivan [MSS] or Lyubich [Ly1], pa-
rameters for which P, has (non-persistent) parabolic periodic points are dense
in OM. The assertion follows immediately from Corollary 3. O

Proof of Theorem B. Let R, = {c € M | hyp-dim(P;) > 2 — 1}
(n = 1,2---). Then R = Ny>oRn = {¢c € OM | hyp-dim(P,) = 2} C
{c € &M | H-dim J(P,) = 2}. By Property (1.3), the Ry, are open in M.
Moreover R are dense in M, by Corollary 3(ii) and the above remark (the
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232 MITSUHIRO SHISHIKURA

density of parabolic parameters in M ). Hence R is residual. (A residual set is
a set containing the intersection of a countable collection of open dense subsets
of 9M.) Such an R is dense in OM by Baire’s theorem. O

Proof of Theorem C. Let W be a hyperbolic component, i.e. a connected
component of the set of ¢’s such that P, has an attracting periodic point. Then
as shown by Douady-Hubbard [DH], there exists a homeomorphism from W
onto the closed unit disc (conformal in W) defined by the multiplier of a non-
repelling periodic orbit. So in OW, the parameters with parabolic periodic
points are dense. By the proof of Corollary 3(ii) and a similar argument to the
proof of Theorem B, we can prove that for generic @ € R/Z, if c € OW and P,
has a periodic point with multiplier exp(2nic), then H-dim J, = 2. However,

there are only countably many hyperbolic components. Hence the assertion

follows. U

Remark 1.1. (i) It also follows easily from Theorem 2 that

sup H-dim(J;) = sup H-dim(J;) =2,
ceWp ceC\M
where Wy = {c | P, has an attracting fixed point} (the cardioid).

(ii) It is easy to see that a similar result holds for other families of rational
maps which have “only one critical point” that can be involved in the parabolic
basin. For example, f,(2) = 2% + a2?, go(2) = (22 + b) /(2% — 1).

(iii) There are immediate consequences on the continuity of functions ¢ —
H-dim(J;) and ¢ + hyp-dim(F,). If ¢ € C— OM, then both functions are
continuous at ¢ = ¢y because of J-stability (see Section 3). Now suppose
co € OM. If hyp-dim(P,,) = 2, then H-dim(J,,) = 2 and both dimension
functions are still continuous at ¢ = ¢ by (1.1) and (1.3). If H-dim(J,) < 2,
then hyp-dim(FP,,) < 2 by (1.1) and both dimension functions are discontinuous
at ¢ = ¢y by the proof of Theorem B. If H-dim(J,,) = 2 and hyp-dim(F,) < 2,
then the hyperbolic dimension is discontinuous at ¢ = ¢y again by the proof of
Theorem B, but the continuity of the Hausdorff dimension is not known. In
fact, it is not known whether this case can happen.

2. Hyperbolic subsets and hyperbolic dimension

In this section, we give proof of Properties (1.0)—(1.3). We also give an
example of the hyperbolic subset and an estimate of its Hausdorff dimension,
which will be used later.

Proof of the properties of hyperbolic subsets and hyperbolic dimension.
(1.0) is obvious.
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MANDELBROT SET 233

(1.1) The family {f™} cannot be normal in any open set intersecting X,
since the derivatives grow exponentially. Hence the assertion follows.

(1.2) This is a well-known fact. The outline of the proof is as follows.
There exists a neighborhood V of X such that for g near f, g is expanding on
V. Hence for z € X, the orbit {f™(x)}32, with respect to f is a pseudo-orbit
for g, which can be traced by an orbit (a real orbit) of a point y for g (the
Pseudo-Orbit Tracing Property; see [Bol]). Then let y = ¢4(x). In fact, y can
be expressed as

y= lim gzlogzlo - o0g; (zn4),
where z; = fJ(z) and g; ! is the branch of g~! defined in a neighborhood of
f(z) such that g;1(f(z)) is near z. By the expanding property for g near f, i4
is well-defined and conjugates f|x to g|x, with X = 14(X). Moreover, ¢4(x)
depends analytically on g, since the convergence in the above is uniform. (In
[Lyl], the analyticity is proved under the assumption that periodic points are
dense in X, which is in fact unnecessary by the above.)

(1.3) Let NV, X, and ¢4 be as in (1.2). (Suppose AV is open.) It is enough
to prove that N' 3 g — H-dim X, is continuous. We will prove this fact in
Section 3, using a result on holomorphic motions. It is also possible to prove
it directly. In fact, one can estimate the exponent of the Holder continuity of
Lg, in the proof of (1.2).

(1.4) We do not use this fact for the proof of our main theorems. If
f is hyperbolic, then J(f) itself is a hyperbolic subset; hence H-dim J(f) =
hyp-dim(f); the second assertion follows from Bowen’s formula ([Bo], [Ru}),
and the fact that H-dim J(f) < 2 can be shown by a standard argument using
the expanding property of f and Lebesgue’s density theorem. (See [Su].) The
case with preperiodic critical points will be discussed in another paper, but
the fact that H-dim J(f) < 2 seems already to be known. O

In the proof of Theorem 2 (§6), we will construct special kinds of hyper-
bolic subsets which are described as follows. '

Suppose that U is a simply connected open set of C (with §(C — U) >
2); Uy,...,Un are disjoint simply connected open subsets of U with U; C
U; n1,...,nN are positive integers such that f™ maps U; onto U bijectively
(i=1,...,N). It follows from Schwarz’ lemma that 7 = (f™|y,)~!: U — U;
is a contraction with respect to the Poincaré metric of U (at least on U{(ji).
So there exists a Cantor set Xy generated by {;}; that is, Xo is the minimal
nonempty closed set satisfying

Xo = Tl(Xo) U... UTN(X()).
LEMMA 2.1. The set X = XoU f(Xo) U... U fM~1(Xy) (where M =

maxn;) is a hyperbolic subset of f.
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234 MITSUHIRO SHISHIKURA

Proof. Obviously X is closed. We have f(X) C X, since f(fM~1(Xy)) =
M(r(Xo)U---Urn(Xo)) = FM—™(Xo)U---U fM— (X)) C X.

Note that f™|y, is expanding on Xy N U; with respect to the Poincaré
metric of U which is equivalent to the spherical metric on Xy. In order to see
that f is expanding on X, it suffices to factorize the iterate f™ at z (€ X) to

firo (™ ,Uil) 0-.-0 (fm"'Uik) o f2

where 41,...,ix € {1,...,N} and 0 < j;,jo < M are determined by 2’ =
f2(z) € Xo, 2 € 13, 0+ -+ o1, (Xo) and n = j1 +nyy + - -+ + 0y, + Jo. O

We only use the simplest estimate for the Hausdorff dimension of Xj.
Suppose oo ¢ U.

LEMMA 2.2. Let 6 = H-dim Xy. Then

N -6
1> inf|7/|® > N - [ max sup|(f™) :
> S igilri* > ( U?|<f>|)
hence log N
6> o8

~ log (max; supy,|(f™)'])

Proof. The first inequality is well-known; it can be proved, for example,
from Bowen’s formula ([Bo2|] and [Ru]). The rest is immediate. O

3. Holomorphic motions

Definition. Let X be a subset of C and A a complex manifold with a base
point A9 € A. A family of maps iy: X — C (A € A) is called a holomorphic
motion of X, if each iy is injective, iy, = idx and for each z € X, iy(2) is
analytic in \. We also say that X = 4x(X) is a holomorphic motion of X. We
are mostly interested in the case A = {\ € (C’ |A| < R} (R > 0) with the base

point Ag = 0.

LEMMA 3.1. If ix: X — C (|A| < R) is a holomorphic motion, then both
ix and iy ' are Holder continuous with exponent a(|\|/R), where c: (0,1) — Ry
is a function (independent of the motion) satisfying a(t) /' 1, ast \ 0.

Proof. The improved A-lemma in [ST] (see also [MSS], [BR]) implies that
iy can be extended to a K (|A|/R)-quasiconformal mapping and K (t) \, 1 (as
t \\ 0). Since a K-quasiconformal mapping is 1/K-Holder continuous (Mori’s
inequality, see [A]), the assertion holds with a(t) = 1/K(t). For example, by
[BR], one can have

1>oa(t)>(1-3t)/(1+3t), for 0 <t <1/3.
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MANDELBROT SET 235

As an application, we can now complete the proof of (1.3) (see §2), by
showing that: For A (an open neighborhood of f) and X in (1.2), N'3 g —
H-dim X is continuous.

Proof. For any go € N, Lgoz,g‘ol (z) is a holomorphic motion of X4 . Lemma
3.1 implies that for g near go, tg 0 L;ol is o/-bi-Holder (0 < o/ = &/(go,g9) < 1)
and o — 1 when g — go. Then we have

o - H-dim X4 < H-dim X, < o/ " - H-dim X,,.
Hence H-dim X is continuous in g. O
LEMMA 3.2. Letiy: X - C AeA={AeC: ||\ <1}) bea

holomorphic motion. Suppose v: A — C is an analytic map such that v(0) =
20 € X and v(A) # ix(20). Then

H-dim{\ € A | v(3) € ix(X)} 2 lim H-dim(X N Dr(x)),

where D,(29) denotes the disc of radius r centered at zo with respect to the
spherical metric.

Proof. Changing the coordinate by Mobius transformations depending an-
alytically on A, we may assume that zy = 0 and 5(0) = 0. First suppose
that v’(0) # 0. There exist positive constants p (< 1) and a such that in
{X ] |A < p}, v(X) is injective and a|A| < |u(A)| < co. Let

b, = sup{[ir(2) || # € X N D,(0), |A| < p}.

It follows from the A-lemma [MSS] (or Montel’s theorem) that b, — 0 as r — 0.
So there is rg > 0 such that ap > b, for 0 < r < ry. Take such an r.
For z € X N D,(0) and |u| < R, = ap/by, let us consider the equation

(3.3) v(A) —iau(2) =0 (A € Ay = {A[|A] <min{p, p/|ul}}).
Both v()) and iy,(z) are analytic in A, and for A € A, we have

[v(M)] = a - min{p, p/|u[} > br 2 |iru(2)].

Since v = 0 has the unique solution 0 in A, the equation (3.3) also has a unique
solution by Rouché’s theorem, and it depends analytically on u. Moreover, for
the same p and a different z, the equation gives a different solution, because
of the injectivity of ).

Now define

Y, ={A € Ay [ v(A) = iru(2) for some z € X N D,(0)}.

Then by the above, Y (Ju| < Ry) is a holomorphic motion of Y{, and the
injections jj,: Y§ — Y] are given by the following: A = jﬁ(v‘l(z)) is the
unique solution of the equation (3.3). Note that Y7 = v~1(X N D,(0)), hence
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236 ' MITSUHIRO SHISHIKURA

H-dim YJ = H-dim(X N D,(0)), and that Y7 € {} € A v()) € ix(X)}. By
Lemma 3.1, j;,: Y§' — Y] is a(|ul/R,)-bi-Hélder; therefore we have

H-dim{X | v(\) € ix(X)} > H-dimY{ > a(1/R,) H-dim Y]
= a(1/R,) - H-dim(X N D,(0)).

Letting r — 0, we obtain the desired inequality.

Let us consider the case v/(0) = 0. By the assumption, v # 0. By
a coordinate change, we may assume that co € X and iy(0c0) = oco. Let
m = order(v,0) and G(z) = z™. Define X, = G~1(X)) and X = X,. By
lifting v and i) by G which is a branched covering branched over 0 and oo,
one obtains an analytic map v: A — C satisfying v = G o 7, v’ (0) # 0, and
a holomorphic motlon v X — X, satisfying iy o G = G o). Hence the
inequality holds for 7 and ©. On the other hand,

Ao\ eXa} = {M|9(\) e Xy} and
H-dim(X N D,(0)) = H-dim(X NnG~Y(D,(0))),

since G is locally Lipschitz except at 0 and co. Thus we obtain the inequality

for iy and v. O

Now we can give:

Proof of Theorem 1. For any € > 0, there exists a hyperbolic subset X for
o such that H-dim X > hyp-dim(fy,) — €. By the compactness of X, there
exists a point zp € X such that lim, o H-dim(X N D,(2)) = H-dim X.

By Property (1.2) of the hyperbolic subset, there exist a neighborhood
A (C A) of \p and a holomorphic motion iy: X — X, for A € A’ such that
ix o fr, = faoiy, X\ is a hyperbolic subset of fy and ¢y, = idx. Moreover A’
can be chosen smaller so that lim,_,o H-dim(X N D,(ix(20))) > H-dim X — ¢
for A € A’ , by Lemma 3.1, and so that the critical points of f) do not bifurcate
in A’ except at \g.

It follows from Mainié-Sad-Sullivan’s theory (Lemma III.2 [MSS]) that there
exist Ay € A’ — {Xo}, an integer N > 0 and a critical point c of f), such that
f/{\f (¢) = ix,(20). Then there exists a branch of critical points cy of f) in
a neighborhood A”(C A’) of A; with ¢), = ¢, (hence c) is a meromorphic
function). Note that in the above, A; and c can be chosen so that f{¥(c)) #
ix(20) in A”. Applying Lemma 3.2 to iy (A € A”) and v(A) = fI¥(c»), (after a
suitable affine change of parameter), one obtains

H-dim{\ € A" | fl(ex) € Xx} > lim H-dim(X, N Dr (i, (20)))
> hyp-dim(fy,) — 2e.

It is easy to see that if f{¥(cx) € Xy, fy is not J-stable in the family, since
N (cx) #Zia(2) for any z. As e > 0 was arbitrary, the theorem is proved. O
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Remark 3.1. (i) If we assume a certain transversality condition for the
motion of the critical value v(\) relative to the hyperbolic subset (this condition
corresponds to v/(0) # 0 in the proof of Lemma 3.2), it is also possible to prove
a similar result (to Theorem 1 or to Lemma 3.2) without assuming the analytic
dependence of ¢) and v on the parameter.

(ii) Under the transversality assumption, the proof of Lemma 3.2 gives
rise to the map

jiov: XND.(0) = Y] C{re | f{(ar) € Xn},

which means a “similarity” between the hyperbolic subset X and a certain
part of the “J-unstable set” in the parameter space.

4. Parabolic bifurcation and Ecalle cylinders

4.0. Overview. Let us consider a holomorphic mapping
fo(2) = 2+ agz* + -

defined near 0 with ag # 0. The origin z = 0 is a parabolic fixed point of
fo- If we perturb fy, this fixed point bifurcates into two fixed points near 0 in
general.

s TN
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<N [P ANE { )\l
(PN WM
\\ ff — > > 0 O > —> —> \‘—— 7
e N —
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N ST
RS
fo f's % )
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FIGURE 4.

Figure 4 indicates the phase portraits of fy and some of its perturbations.
Observe that a perturbation can create new types of orbits which go through
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So S

FIGURE 5.

“the gate” between the two fixed points. Such orbits can give rise to a drastic
change of the global dynamics (such as the inflation of the Julia set). However
it takes an extremely long time for these orbits to go through the gate, so
we need to consider a large number of iterates of the map in order to see the
phenomenon.

We analyze such a bifurcation using the theory of Ecalle cylinders, and
the principle can be summarized as follows. For fj, one can find “fundamental
regions” Sg‘ and S;, each of which has a boundary consisting of two curves
joining the fixed point 0 such that one curve is mapped to the other. See
Figure 5.

Gluing these two curves of Sy (resp. S7), one obtains a topological cylin-
der Cy (resp. Cf), called the outgoing (resp. incoming) Ecalle cylinder, which
turns out to be conformally isomorphic to the bi-infinite cylinder C* (or C/Z).
The orbits going from the ends (“horns”) of Sy to Sy induce a continuous and
analytic mapping &y, from a neighborhood of the ends of Cy to C(T (the Ecalle
transformation). The identification C/Z — Cj can be lifted and extended to a
map o, defined on a subset of C (which is considered to be the universal cover
of C/Z) into the dynamical plane of fy; similarly the identification Cj — C/Z
can be lifted to a map ®¢: B — C, where B is the parabolic basin of 0. Note
that these functions can have critical points after extension to the maximal
domain of definition.

We consider perturbation of the form f(z) = e?™®z 4+ O(2?) with o # 0
satisfying |arga| < m/4. Then it can be shown that fundamental regions
SJT, S}* continue to exist, with boundary curves joining two fixed points. See
Figure 5. The quotient cylinders CJT, CJT are still isomorphic to C*. So we can
define functions ¢y, ®¢, £ which are similar to g, ®o, £f,. (The domains of
definition may be smaller.)

Now there is “a gate” open between the fixed points, and any orbit starting
from S}" passes through the gate and eventually falls into Sy . This induces
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a new map Xy from C}* to C]?, which is a conformal isomorphism. Thus we
define the return map Ry = x ¢ o £, which corresponds near the ends of Cy to
the map of SJZ sending z € SJ? to the first return point to SJT along its forward
orbit. Therefore the return map corresponds to a high iterate of the map f.
Now one can study orbits of f which return many times to the neighborhood
of 0 using the return map.

Moreover it will be shown that when f tends to fo with the above restric-
tion on argc, the limit behavior of the return map is determined by a and
Efo-

These facts are formulated in the following subsections, and the proof will
be given in the appendix, although most of the results can be found in [Mi]
and [DH].

Note. The Ecalle cylinders were first studied and applied to some prob-
lems by Douady-Hubbard and Lavaurs ([DH], [L]). The aim of this section
is to state some notions and facts in this theory; actually, we state only the
facts about ¢g, ®o, £y, ¢y and Ry. The formulation presented here is some-
what different from [DH], [L]. In this paper, we focus more on the return map,
the quantitative aspect of the theory and the renormalization arising from the
Ecalle transformation.

Notation. In the following, a function f is always associated with its do-
main of definition Dom(f) (an open set of C or C/Z, etc.); that is, two functions
are considered as distinct if they have distinct domains, even if one is an ex-
tension of the other. A neighborhood of an analytic map f: Dom(f) — C is a
set containing

{g: Dom(g) — C| g is analytic, Dom(g) D K and sup d(g(z), f(2)) < €},
2€K

where K is a compact set in Dom(f), € > 0 and d(-,-) is the spherical metric.
(If the map is to some other space, then d should be replaced by an appro-
priate metric.) The system of these neighborhoods defines “the compact-open
topology together with the domain of definition”, which is unfortunately not
Hausdorff, since an extension of f is contained in any neighborhood of f.

Let

F ={f: Dom(f) — C| f is analytic ,0 € Dom(f) C C and f(0) = 0}.

We use the following notation:

m: C— C* = C — {0}, 7(2) = exp(2miz);

m1: C — C/Z (the natural projection); me: C/Z — C*, m = w3 0 my;
Note that 72 sends “the upper end” of C/Z (Imz — +o0) to 0, and “the
lower end” (Imz — —00) to 0.

T: C—C,T(2)=2+1,;

To(2) = -1
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FIGURE 6.

4.1. Parabolic fized point. Let fo € F be such that fj(0) =1 and f3(0)
# 0. By a linear coordinate change, we may suppose that fj(0) = 1. We
assume this throughout this section.

Fact. There erist objects Q4 ,00,20 and &, satisfying (4.1.1)~(4.1.4).

(4.1.1) Q4 and Q_ are simply connected domains and Q,Q_ C Dom(fp);
the boundaries 0, 02— are Jordan curves containing 0; Q4 UQ_U {0} is a
neighborhood of 0; fo(Q+) C Q4 U {0} and fo(2_ U {0}) D Q_; f is injective
on Q4 UQ_U{0}; Q4 NQ_ consists of two components; f§! — 0 as n — oo
uniformly on €2, ; a point z belongs to the parabolic basin B of 0 for fy, if and
only if for some n > 0, f§(2) is defined and belongs to Q. (See Figure 6.)

Here, the parabolic basin of a parabolic fixed point ¢ of an analytic function

fis

5= {s

Note that ( itself is not in the parabolic basin.

z has a neighborhood on which f™ (n =1,2,...) are defined
and f™ — ¢ uniformly as n — oo )

(4.1.2) pp: Dom(ypp) — C is an analytic function satisfying:
wo(w+1) = foowo(w) if both sides are defined,

and in fact the left-hand side is defined if and only if the right-hand side is;
Dom(pg) contains Qp = {w € C | n/3 < arg(w + &) < 57/3} (see
Figure 6) and {w | |Imw| > no} for large &y, no > 0;
v0(Qo) = Q2—; o is injective on Qp;
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let pf = 7'0_1 o g, then
wp(w) =w+alogw+b+o(l) as Qp > w — oo,

where a, b are some constants.
It follows from the above condition that if fy is a rational map or an entire
function, then Dom(pg) = C.

(4.1.3) ®9: B — C is an analytic function satisfying
®g o fo(z) = Po(2) +1 for z € B,

and P is injective on Q4 (C B).

(4.1.4) Let B = ¢y 1(B); then T(B) = B and B contains {w | | Imw| > no}
for some 1y > 0. o
Now define £f,: B — C by

gfo = (I)O © ©o-

It satisfies

gfo(w +1) =&y (w) +1 for w € B.

Hence &, = mo Ef on~ ! : w(B) — C* is well-defined. Moreover it extends
to 0 and oo analytically by £f,(0) = 0 and &f,(c0) = oo, and €% (0) # 0,
&}, (00) # 0. So Dom(Ef,) = 7(B) U {0, 0}

The map &, is called the Ecalle transformation, or the horn map (since
it is defined near the ends of the cylinder).

(4.1.5) Normalization. Note that po(w + ¢) and ®p(z) + ¢ also satisfy
(4.1.2) and (4.1.3). So we adjust ®o by adding a constant so that

£,(0) = 1.

4.2. Perturbation. Let
F1={f € F| f(0) = exp(2mia) with a # 0 and | arga| < 7/4}.
In the following, we consider only the perturbations f € Fj.
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Notation. If f € F and f/(0) # 0, we express the derivative f/(0) as
£'(0) = exp(2mic(f))

where a(f) € Cand —1 <Rea(f) <1
If f € F is close to fp, then f has two fixed points near 0 counted with

multiplicity; one of them is 0 and the other is denoted by o(f). Note that
o(f) = —2mia(f)(1 +o(1)) as f — fo.
FACT. There exist a neighborhood Ny of fo and a constant & > 0 (which
can be the same as that in the definition of Qo (4.1.2)) such that for f € NoNFi,

there exist analytic maps ¢: Dom(pf) — C and Ry: Dom(R¢) — C satisfying
(4.2.1)-(4.2.4).

(4.2.1) If w,w+ 1 € Dom(yy), then ¢s(w) € Dom(f) and
pr(w+1) = fops(w)
Dom(¢y¢) contains Qf (see Figure 6), where

arg(w—l— 0 §0> <27r/3};

@f(w) — 0 when w € Q¢ and Imw — +00; @f(w) — o(f) when w € Qy and
Imw — —oo0.

Q= {w eC ‘ w/3<arg(w+&) < 5m/3 and

(4.2.2) 0,00 € Dom(Ry), Rf(0) = 0, Rf(00) = 00; Ry(Dom(Ry)NC*) C
C*;
R%(0) = exp (—2m’a—(1}7) , hence a(Ry) = (f) (mod Z).

(4.2.3) If w,w’ € Dom(py), Ry(m(w)) = m(w') and la,rg(w’—l-z?l(ﬁ —w)| <
27/3, then f™(pf(w)) = ¢f(w’) for some n > 1.
Moreover if U, U’ are connected subsets of Dom(¢) such that R} (n(U)) C

7(U’) for some m > 1, ¢¢|y, 7|y are injective, and |arg(w’+§-&%¢7—w)| <2m/3
for w € U, w' € U’, then there exists an n > m such that

o= g0 (nly) ™ o RF oo (psly) ™ on pp(U).

(4.2.4) With respect to the topology defined in Section 4.0,
pf — @o and ez”i/a(f)Rf — &5, when f € MyNFy and f — fo.
Denote c‘:'fo =m0 Esy 0 m2 and ’ﬁ’,f =75 0o Ry omy. Then

7':’,f+azl—f5——><§fo when f € My N F1 and f — fo.
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(4.2.5) To study the quantitative aspect, it is often more convenient to
work with ¢% = 75 0 s

For n € R, define D(n) = {w € C | |lw—in| < |n|/4} and D'(n) =
{weC||w—in| < |nl/2}.

As a corollary of the above facts, we have:

For large n > 0, there exists a neighborhood N (n)(C AMp) of fo, depending
on 7, such that if f € N1(n) N Fi, then ¢y is defined and injective on D(£n),
the image ¢}%(D(£n)) is contained in D'(£n) and i< I(¢})'] <2 on D(n).

4.3. Remarks.

(4.3.1) For f € F with 3r/4 < arga(f) < 5m/4, instead of being in Fi,
we can obtain a similar result with the following changes:

The lower end of C/Z corresponds to the fixed point 0;

In (4.2.1), pf(w) — o(f) (w € Qf and Imw — +00), pf(w) — 0 (w € Q5
and Imw — —00);

In (4.2.1), (4.2.3) and (4.2.4), use — 5y instead of 6L

In (4.2.2), R'(00) = exp(— 27”'&(7‘7)

(4.3.2) The above facts suggest the following factorization:

A A A 1
Ry =T—1/a° (Rf—l* -a—) ,

where 7. 1/a(w) = w—1/a on C/Z, o = o(f). Here (Rs + 1) is a nonlinear

map defined only in a subset of C/Z, but approaches a fixed map £ f0» Whereas,

7,4 /a is an isomorphism of C/Z, but depends sensitively on f, since a(f) — 0

as f — fo. Therefore if {f,} is a sequence in Ny N Fy such that f, — fo and

1/a(fn) — kn — —c as n — 0o, where k, are integers, then there exists a limit
lim Rf = Sfo +c,

n—oo

since we are considering the maps in C/Z.

The Ecalle transformation £, was originally defined as a map between
two different spaces— (a part of) C; and C(')" . So there is, a priori, no meaning
as a dynamical system. However the above observation implies that for any
¢ € C, the map

wr— gy (w) +

on C/Z can be realized as the limit of return maps of f,.

(4.3.3) In [DH] and [L], they use g o 7 0 @9, where T¢(z) = z+c¢ (c € C),
instead of & fo +¢=Tc0®g 0. Then for a sequence {fn} as above, there
is a sequence of integers k, such that g o 7, o ®¢ is the limit of f’“n on the
parabolic basin B.

(4.3.4) A more accurate statement of (4.2.3) is as follows: There exists
a particular lift of Ry to the universal cover, Ry 7~ (Dom(Rs)) — C, such
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that if w,w’ € Dom(ps) and ﬁ?(w) +n = w', where n,m > 0 are integers,
then £"(p7(w)) = 7 (w).

5. Global behaviour of the Ecalle transformation

In this section, we study the property of the maximal extension of the
Ecalle transformation for a certain class of maps Fy. As in the previous section,
we suppose that fo € F is a function satisfying f3(0) = 1 and f§'(0) = 1. So
we have g and &, as in the previous section. Let us denote go = &y,.

5.1. Inverse orbits and ¢g.

Definition. For a mapping f, a sequence of points {z,-};’i_o is called an
inverse orbit (of zp) for f, if z; € Dom(f) and f(2;) = zj—1 for j > 1.

LEMMA 5.1. For w € Dom(yy), let z; = po(w — j) ( =0,1,...). Then
{Zj}?io is an inverse orbit for fo converging to 0. This gives a one-to-one
correspondence between Dom(pp) and the set of inverse orbits converging to 0,
except the orbit z; =0 (j =0,1,...). _

Moreover if z; (j > 1) are not critical points, then pp(w) # 0.

Proof. If w € Dom(pp), then w — j € Dom(yp) (j = 0,1,...) and
wo(w — j) — 0 by (4.1.2); so the first statement is obvious. Let {2;} be an
inverse orbit converging to 0 and suppose z; # 0 for some j. For large j, say
for j > jo, z; belongs to Q4 US_ (see (4.1.1)). But f§ tends to 0 uniformly on
€24, so there exists jo such that z; € Q_ for j > jo. Let w = (polg,) 1(2;) +J
(4 = jo)- It is easy to see that w does not depend on j > jp and corresponds
to the inverse sequence {z;}. If w and w’ give the same inverse sequence, take
j > 0 such that w — j,w’' — j € Qp, then we have w = w’ by the injectivity of

o on Qp. .
The last statement follows from the facts that ¢o(w) = f§ o po(w —n) for
w € Dom(pp) and that ¢ # 0 in Q. O

5.2. Immediate parabolic basin.

Definition. Let ¢ be a parabolic fixed point of an analytic function f. A
connected open set B C Dom(f) is called an immediate parabolic basin of { for
f, if B is a connected component of the parabolic basin of ¢ for f (see (4.1.1))
such that f(B) = B and f: B — B is proper (hence a branched covering).

For a rational map, a parabolic periodic point always has an immediate
parabolic basin and it coincides with the previous definition (§1). However, a
parabolic fixed point for analytic maps in general may not have any immediate
parabolic basin in this sense.
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LEMMA 5.2. Suppose that f € F and f'(0) =1, f®)(0) =0 (1 < k < q),
F@tD©0) # 0 (g > 1), i.e. g+ 1 is the order of f(2) — z at 0. Then f has
at most q immediate parabolic basins of 0, each of which contains at least one
critical value of f, except for a parabolic Mobius transformation. Moreover if
an immediate parabolic basin contains only one critical point (or critical value),
then it is simply connected.

Proof. This is a well-known argument for rational maps. Let us examine
it briefly. By local analysis as in Section 4.1 (case ¢ = 1) (see also §7 or
[Mi]), it can be shown that there exist ¢ disjoint simply connected open sets
v, ...,V@ (c Dom(f)) (called “attracting petals”) such that 0 € oV,
f(T/'(”) c V@& u{0}; f is injective on V®; a point z € Dom(f) belongs to
the parabolic basin of 0 if and only if f*(z) € U;V® for some n > 0. The orbit
spaces VD /, (where z ~ f(2) if z, f(z) € V®) are isomorphic to C/Z.

Let B be an immediate basin of 0, and B’ the parabolic basin. By the
above, BNU;V® #£ @ and U;V® c B’. Since B is a component of B', B
contains one of the V(’s. So there are at most ¢ immediate basins.

Define V,\") (n=0,1,...) inductively, as follows: V() =V®;if f (Vrfi)) C

V(z) V,Eﬂl is the component of f_l(Vrgi)) containing Véz), which exists and
f(V,f:zl) = V(Z) V,E:}l It is easy to see that for each 1, Un>0V() is a
component of B’. Now suppose B = UnZOVéi) is an immediate parabolic basin;
hence by definition, f: B — B is a branched covering. If B contains no critical
value or no critical point, then f: V, (21 — VTS ), hence f™: (Z) — V@ are
covering maps; therefore they induce a covering map B — V(z) /~. Moreover
the V(z) ’s hence B are simply connected. Therefore B must be isomorphic to
C and f is a Mébius transformation.

Similarly, if B contains only one critical point or critical value, then one

can show inductively that Vrfi) are simply connected; hence so is B. O

Let us go back to the fy defined at the beginning of this section. Suppose
that fo has an immediate parabolic basin B of 0. The above argument applies
to V(Y = Q, hence B is unique and contains Q. (see (4.1. 1)). Let B’ be the
(whole) parabolic basin of 0, and define B = ¢ 1(B) and B' = p5}(B’). B
(4.1.4), {w | | Imw| > no} C B'. Since for any w € B’ there is n > 0 such that
T™(w) € B, we have

{w | |Imw| > no} C B.

Denote by B (resp. by BY) the component of B containing {w | Imw > n}
(resp. {w | Imw < —n}). (The superscript “u” stands for upper, and “¢” for
lower.) In general, B* and B? may coincide. Obviously TBv = B*, TB! = B*.
Then define B* = n(B%), B! = =(BY).
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5.3. Covering property of go.

Definition. Let Fo be the set of functions f € F such that f/(0)
=1, f/(0) =1 and f has an immediate parabolic basin which contains only
one critical point of f. Then the basin is automatically simply connected by

. Lemma 5.2.

ProproOSITION 5.3. Let fy € Fo and B, B¥, B! as before. Then
go: B*U BY — C* is a branched covering of infinite degree, ramified only
over one point v € C*.

The sets B, B¢, B*U {0}, B¢U{oo} are simply connected, and B* N B

Proof. Let us first show that ®o: B — C is a branched covering. In
fact, ®olo, is injective; hence @q: fy"(2+) N B — T "Po(§24) is a branched
covering ramified only over the translations of the image of the critical value
by ®o (n > 0). So it follows that ®y on B is a branched covering.

Now let us show that pg: B¥ UB! — B is a branched covering. Let z be a
point in B. Take simply connected neighborhoods U, U’ of z such that U C U’
and U’ contains at most one forward orbit of the critical point. Let 2’ be a
point in ¢y 1(U) N (B*U BY). Let U, be the component of f;™(U’) containing
wo(2'—n) (n=0,1,...). Then for some m > 0, U}, (n > m) do not contain the
critical point. Hence there exist inverse branches f( k). — U/ mak Of fk.

The family { fé’?}Z} is normal, since it avoids at least three values (0 and the
orbit of the critical point). Moreover it converges to 0 uniformly on compact
sets, since it does so near (2’ —m). Hence there exists an n > m such that
= (_"+m)(U ) C Q- = ¢o(Qo). Let V = T"0(wo|g,) " (Un). Then 2’ € V

and <p0|V = (ffMu.)o(wolgy)oT~™. So ¢o: V — U is a branched covering with
at most one critical point, since U contains at most one critical orbit. This
shows that each component of ¢y SH(U) is either unramified or ramified over a
common point in U; hence ¢o: B¥ U Bt - B is a branched covering.

Therefore €5, = ®gopp: B*UB — C and £,: B*UB* — C* are branched
coverings. Moreover it is easy to see from the above that £, is ramified only
over v = 7 o ®g(c), where c is the unique critical point.

Now let U be a component of f5(fo(2+)) contained in B, different from
Q4. Then we have f§(U)NU = @ (n > 1). Hence for any component V' of
w5 L(U), 7|y is injective (by the functional equation for ¢p). On the other
hand, m o ®: U — C* is infinite to one, since 7 o $g|y = 7o Pp|q, o foly and
7 o ®ol, is infinite to one. Hence g is of infinite degree.

_Let us show the simple connectivity of B (or BY). If « is a closed curve
in BY, v/ = T~"y C Qg for some n > 0. Let W be a region bounded by ¢o(v'),
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not containing 0. Since both the immediate basin B and Q_ = ¢o(Qp) are
simply connected and do not contain 0, we have W C BN Q_. It follows that
~' is trivial in B* and so is ~. Therefore BY is simply connected.

Then B*U{0} (or B*U{0}) is also simply connected, since the fundamental
group of B* is generated by a curve around 0, which is trivial in B* U {0}.

Finally, let us show that B* and B are different components of B. Sup-
pose B* = B¢, Then B* = B! = C, since B* and B! are invariant under
T, simply connected, and contain half planes. Therefore B contains {2, and
Q_ = ¢9(Qo), and the union is a punctured neighborhood of 0. But B is a
simply connected, punctured neighborhood of 0, so that B = C — {0}. Hence
fo is a parabolic Mdbius transformation, since it is analytic on C and has no
periodic point in B. Then fy has no critical point and this contradicts the
assumption. Thus we have B* N BY = (), hence B* N B! = 0. |

5.4. Iteration of go. By the normalization in (4.1.5), we have g;(0) = 1.
So 0 is again a parabolic fixed point of go.

LEMMA 5.4. Let fo € Fo and go = &, Then g4(0) # 0 and go has
a stmply connected immediate parabolic basin which contains only one critical
point. In other words, go belongs to Fo after a linear scaling of the coordinate.
Moreover gg(v) (n =0,1,...) are defined and g§(v) — 0 (n — o©), where v is
the unique critical value of gg.

Proof. Obviously go(z) # z. So there exist attracting petals V®
(t=1,...,q) for go as in the proof of Lemma 5.2, where ¢+ 1 = ord(go(z) — 2).
Since go: B*U Bl — C* is a branched covering, we can also construct V,S") and
go: Vn21 — V¥ is a branched covering with at most one critical point. Then

"D are simply connected and deg golvrsi) (n = 0,1,...) are eventually con-
stant. It follows that the B; = U; éi) are simply connected and go: B; — B;
is a branched covering with at most one critical point. Hence the B; are im-
mediate parabolic basins. By Lemma 5.2, we have ¢ = 1, i.e., g5(0) # 0. The
rest follows easily. O

6. The construction of a hyperbolic subset

In this section, we prove Theorem 2 in case the multiplier is 1 (hence
g =1, p=0). We will see in Section 7 how to modify the proof in other cases.

To construct a hyperbolic subset as in Section 2, we trace certain inverse
images of the fixed point 0 using o, £f,, Yo, £gy, €tc., then analyze the per-
turbed maps along these orbits.

Step 0. fo and {z;}. Suppose fo is a rational map and fy € Fy. There
exists an inverse orbit (see §5 for definition) {2;}52, for fo such that z =0,
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zj #0 (j > 0) and z; — 0 (j — o0). In fact, since 0 is in the Julia set, there is
an inverse image of 0 near 0 (see [Bl], [Mi]). This point must have an inverse
sequence coverging to 0, otherwise it would belong to the parabolic basin (see
the local analysis in §4.1).

Step 1. go and {w;}, {w}}. By the construction in the previous sections,
we obtain ¢g and go = £f,. Let v be the unique critical value of go.

By Lemma 5.1, there exists a unique wy € Dom(pg) corresponding to the
inverse orbit {z;} such that ¢o(wo —j) = 2;. In fact, note that zp = 0 does not
belong to the parabolic basin of 0; hence m(wp) ¢ Dom(gp) by the definition

of g0-

LEMMA 6.1. For given wo € C*, there exist two inverse orbits {w;}52,,
{w}}320 of wo for the map go such that:
wo = wp; wj, wi — 0 (5 — 00); {w;}2; N{w;}2, =0; and wj, w; (§ > 2)
are not critical points of go. Moreover if wy ¢ Dom(gp), w1, w) are not critical

points.

Proof. First note that gy '(wp) can contain at most one periodic point.
It is easy to see that if gy '(wp) contains two points of {g§(v) | n > 0},
then one of them must be periodic. Hence #(gy ™ (wo) N {gf(v) | n > 0}) < 2.
So we can choose two distinct non-periodic points w; and w} in (go)~*(wo) —
{g0(v) | n > 0}, since go is a branched covering of infinite degree.

Since 0 is a parabolic fixed point of go, there exists an inverse orbit {w}}32;
for go such that wj — 0 as j — 0, wj # 0 and {w}}32; N {(g0)"(v)}7Zo = 0.
By Lemma 5.4, g3(v) — 0 (n — 00). So we can take a simply connected open
set D C C* — {gf(v)}52, containing wy, w) and wf.

Since go is a branched covering onto C* ramified only over v, for each
J > 1, there exists an inverse branch Gj: D — C* of g such that ggoGj =idp
and Gj(w{) = wy,,. The family {G,} is normal, since it omits at least three
values 0, co and v. As wj,; = Gj(wf) — 0 (j — o), Gj; —» 0 on D.

Now define wj1 = Gj(w1) and wj,; = Gj(w}). It is easy to check that
these sequences have the claimed properties. O

Applying this lemma to wo = 7 (o), we obtain {w;}, {w}} as above.

Step 2. h and {W;}. As go € Fo, one can apply the construction of
Sections 4 and 5 to go. Denote 1y = o4, (“po” corresponding to go) and
ho = &gy, for simplicity. As in the previous step, by Lemma 5.1, there exist

g:o,f(’, € Dom(tp) corresponding to {w;}, {w}}, respectively. Hence wp =

¥o(Co) and wh = ({l). Moreover ¥h($o) # 0 and 9)(Ch) # 0. The following
is the key lemma, in the proof of Theorem 2.

LEMMA 6.2. Let b > 0. There erist: a neighborhood Na of ho, where
0,00 € Dom(hg); two disjoint discs W,W' C C/Z containing (o = m1(¢o),
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66 = 7r1(56) respectively; and positive constants Cg,C1,C}, with the following
properties.
If hy € Ny, B € C/Z with |Im 3] < b and

h(¢) =m53tohyom(¢) — B (for ¢ € Dom(h) = 7y} (Dom(hy)) C C/Z),

then there exists a sequence of disjoint topological discs W; C C/Z satisfying:
Wo=W or W/,
W; c Dom(h), h(W;) = W;_; and th is injective (j > 1);
for any K >0, W; C {{ € C/Z | |Im{(| > K}, for large j;
diamW; < 1/2, dist(Wj,WjH) < Cy, and
Cy1 < |(RY| < C} on W, for j > 0.

Proof. Let us first consider h = €*™Phgy with [ImB| < b, and A = 7, ' o
h o my. We denote by B* and BY, as in Section 5, the upper and the lower
domains of definition of &, (not for go = & fo') and also define B* = w(BY)
and B = (B¢

Since B* and B! are disjoint, at least one of them, say B%, does not
contain the unique critical value of A. Hence, by Lemma 5.3, the local inverse
of h near 0 can be extended to B* U {0}. So we have an analytic function
H: B*U {0} — B*U {0} such that ho H = id, H(0) = 0 and |H'(0)| < 1 by
Schwarz’ lemma. Then it is well known (see [Mi]) that there exists a linearizing
coordinate L(z) such that L is conformal near 0, L(0) = 0, L'(0) = 1 and
Lo H(z) = H'(0) - L(2) near 0. Passing to the C/Z model, where we denote
H = 77! 0 H o 19, we obtain the follovving:

(a) There exist constants yo € R, C7,C3 > 0 and an analytic function
L:y={e (C/Z | Im¢ > yo} — C/Z such that in Y, H is defined, 0 <
Im(H(¢)—¢) < C¥, LoH = L +a, where a = 5--log H'(0) and Ima > 0, and
ot < |l < C’”.

Note that in the case where B does not contain the critical value, we
obtain a similar result with Im(-) replaced by — Im(:).

As for CO and §0, at least one of them, say CO, is not the critical value. So
pick ¢; € A~1({p) N B* and let {; = HI~1({;) (j > 2). Then there exists jo > 1
such that ¢, € Y.

(b) There exist jo > 1, a small disc neighborhood W of o (or &) and
its inverse image Wi, ..., Wj, such that W (j =0,...,J0) are disjoint, are
contained in B¥, and contain no critical points of fz; fz maps W; onto W;_;
bijectively (j =1,...,j0); WoNY =0 and W, C Y.

Note that the properties (a) and (b) are stable under a perturbation, i.e.,
(a) and (b) still hold for h = €2™#'h; with h; near hg and @' near 8, and
the constants are uniform in the neighborhood. Then, by the compactness
of {8 € C/Z | |ImB| < b }, there exist a neighborhood N2 of hg disjoint
discs W, W' in C/Z containing CO, 40, respectively, such that for h; € N3 and
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B with |[ImB3| < b, (a) and (b) hold with uniform constants and Wy = W
or 'W’ . Moreover we may assume that there are also uniform estirpaj;es for
(R lw,)', diamW, dist(W;, Wjt1) (0 < j < jo). Now define W; = HI77°(Wj,)
( > jo). Then we have uniform estimates on (h lw;)’ etc., since [(RF=d0Y (¢)| =
|L/(¢)] - | (RF=90(¢))| L. The rest of statements can be checked easily. O

Step 3. Many U;’s. The results in Section 4 apply both to fo and to go.
So let us denote the objects ¢f, Rf, Ni(n), etc. in Section 4.2, by ¢y, Ry,

jV’l(fO)ﬂ) for fO’ f, and ¢ga Rga M(QO’T]) for g0, g
Let W; be the discs in Lemma 6.2. Then there exists a constant v > 0

(depending only on Cp) such that for large n > 0, if f € N1(fo,n) N F1 and
g € N1(go,€%™) N Fi, then there exist disjoint topological discs Uy, ..., U,
where N > yn(e*™)2, satisfying;

Ui Cps(D(n)) C D'(n);

Vi = 0 (01pen) " (Ui) C o(D()) C D'(), where 1f = e,

Wj(i) =m0 (’lﬁng(n/))—l(V;) for some j(i) € N.

Proof. Let us denote ¢} = 7'6‘1 ops, Yi = 7'0‘1 oty and 7 = 7'0“1 ow. By
Lemma, 6.2, the W;’s tend to the upper or lower end of C/Z. Suppose they tend
to the upper end, and let 7/ = e2™™. (In the other case we take n’ = —e?".)

Then the disc D(7’) contains entirely at least 4'(n’)? components of the
77 L (W;)’s for some constant v’ > 0, since the area of D(n') is (7/16)(n’)%. By
(4.2.5), 14 maps these components into D’(n’) injectively. The inverse image
of D'(n') by ©* consists of components, each of which is contained in a “box”

2
for some n € Z. So D(n) contains at least /3 of these components, for n
large. Finally ¢} maps D(n) into D'(n) injectively. As for the components of
w1} (W;)’s, they have at least (v'/3)n(n’)? entire preimages by m10(¥}|p(yy) o
7™ 0 (pf|p(m) " And this proves the above assertion, since (3;] D) tom* =
(%glD@ry) "t o m

Let us denote U} = 7, (U;), Vi = (eflpm) M), Vi* = 75 1(Vi). Then
we have maps

1 1 1 3
ze€C|n<Rez<n+1l, 17+———-log—<Imz<17+—log—}
2 2w 2

' o)™ . X 0¥ p(ny)

Ui Ui Vi Vi * Wi
and the estimates on the derivatives

1 N - 1 x -
5 < |I@Hpe) ™| <25 < |m o @lbe) | < 2,

1 9
;1-772 < (g < 1772 and we*™ < |(n*|,)'| < 3me*™.

For the last estimate, use the fact that V; is contained in a box as above.
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Step 4. From Wy to U. There exists an integer k > 0 such that the z;
(j > k) are not critical points of fy. Let 7(=1) be the local inverse of 7 near

wo such that w(‘l)(wo) = Wy — k. Similarly let 71';_1) be the local inverse of m;

near (o and ¢} such that {™(¢o) = {o and 7{ "V (¢}) = &

Note that in Lemma 6.2, we may take W, W’ smaller without changing
the statement. By Lemma 5.1, we have ¢n(@o — k) # 0, ¥h(Co) # 0 and
%0(8) #0.

Then it follows that we can change W, W’ smaller, so that there exist
a small neighborhood U of 2k, neighborhoods N3(fo), N3(g0) of fo, go and
constants Cy, Ch such that for f € N3(fo) N F1 and g € N3(fo) N Fi,

@pfo a(=Do 1,0 om 1) i5 defined and injective on W and on W’;

both of the images of W and of W’ cover U,

the derivative has a bound Cs < |(pgon(~V) 0’(/)g71'(~1)) | < Cjon WUW'.

Step 5. Last k iterate. Let U be as above and v = deg,, fk. Then it can
be easily seen that there exists a neighborhood Ny (fo,n) of fo, depending on
large n > 0, such that for f € Ny(fo,n), there exists an open set U’ C U such
that f*: U’ — 79(D'(n)) is bijective and

v—1 v—1

6 (5) " <lMI<a(;) T e u,

where C3,C3 > 0 are constants independent of 7.

Step 6. A hyperbolic set Xy. Let fo be a rational map belonging to the
class Fp, b > 0 and n > 0 large. First note that if an analytic function is close
to fo, then it can be conjugated to a function in F close to fy by a translation
near id. So for Theorem 2, we only need to consider the functions in F.

Suppose that f € F is close to fy and

of) = ———
al — Zl_2+—ﬂ

with large positive integers a;,a2 and § € C satisfying 0 < Ref < 1, |Im g|

< b. Other cases with different signes in the expression of a(f) can be treated

similarly, by using the complex conjugates or by reformulating the procedure

for the lower end of C/Z instead of the upper end. See Remark (4.3.1).

If f is close to fo and a; is large, then |a.rga(f)| < /4, Ry is defined
and e2™/*()R; is close to go = £, (or Ry + ) is close to go = £f,). Let
us denote g = Ry. If, moreover, ay is sufficiently large, then g itself is close
to go, |arga(g)| = | arg a2]:|-[3| < m/4, h = Ry exists and h; = e2"/*IR, =
e?™Ph is close to hg = Eg. (Note here that, by (4.2.2), a(g) = —1/a(f) =
1/(a2 + B) (mod Z).) Therefore, for f close to fo, a1, ag large, we have f €
Ni(fo,n) N N3(fo) N Na(fo,n), g9 € Ni(go, [7') N N3(go) and h1 € Nz. In
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particular, we can apply Lemma 6.2 to h = Ty 16 h oy to obtain W;. Then
let U;, U be as in Steps 3 and 4.
-1

Now let us consider the following sequence of maps:
(*)
75 . (@}p@m) !

5 - . meWslney)
U — Uf — ¥ — VP Wy

Ji,,j(i)
f* prom(~1) pgom{ Y
Uy e vcr v 2w,

where V = 1)40 wg_l)(Wo) and U’ = ¢ o 7(=1(V). Note that all maps except
the last f* are injective. Write U = 70(D’'(n)) and let 4’ C U be the set

obtained in Step 5. Then tracing the inverse image of U via U’ by the maps
(*), we obtain U; C Us.
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Moreover the composition of (*) on U; is equal to f™ for some integer
ni >1(i=1,...,N). In fact, by (4.2.3), g™ = ghgom. “ohI®om o(shy|pam))
on V;, since |arg(z’ + 5@ —2)| < 2n/3 for z € D(n'), 2 € wg_l)(WU w’), if
|7’| is large. Similarly, we have = pfo aDogMionmo (cpf|D(,7))_1 on U,
for some n; > 1. And recall that ¢} = 75 o s, T =15t o, ete.

Thus we obtained (f,U,U;) as described in Section 2, i.e., U; C U such that
the U;’s are disjoint, simply connected subsets of U, f™: U; — U is bijective
(t=1,...,N).

Now, combining all the above estimates, we have

N > yn(e®™)?,

and
|(f"iles )] < OnFH/ver™,

where v and C are positive constants independent of 7.
Hence by Lemmas 2.1 and 2.2, we have a hyperbolic subset X for f and
an estimate for the Hausdorff dimension

logy + logn + 47n
C+(1+L)logn+2mn

§ = Hdim X5 >
im f_log

The right-hand side tends to 2 as 7 — 0o. Thus we have proved Theorem 2 in
the case f3(0) = 1. a

Remarks. (i) Note that the maps in (*) other than f*|y, 7*, 75|y, have
bounded derivatives, and that the effect of 7* dominates others.

(if) The procedure Fy 3 fo — go = &5, € Fo can be considered as a
renormalization. It it related, as we have seen, to the return map of f near
fo. One can interpret mo ¢ ! as a correspondence between the phase spaces of
fo and “its renormalization” gg. Also, it has an exponential effect, because f
moves points extremely slowly near 0 and requires a large number of iterates
for the return map. In this sense, the renormalization procedure is essential in
the above estimate.

(iii) It will be instructive to make a “caricature” (proposed by Curt Mc-
Mullen) to understand the situation. For simplicity, assume k = 0 (v = 1), and
pretend that the maps in (*) other than 75 ' and 7 were affine. In particular,
h is supposed to be a translation on C/Z. So it produces a one-dimensional
array of discs Wj;; then m ! unwraps them to a two-dimensional array. These
discs are squeezed by (7*)~!, and finally inverted by 7o. One can show that
an invariant set produced by this system has dimension two.

(iv) Note that the map fo need not be a rational map. In fact, it is enough
to assume that fo € Fo and 0 has an inverse orbit {z;} as in Step 0.
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7. Parabolic fixed points with multiplier # 1

Let us consider an analytic function fy(z) near 0 such that
fo(0) = 0, f5(0) = exp(2mip/q),

where p,q € Z, ¢ > 1 and (p,q) = 1. It is known that if fJ(z) # z, then it has
an expansion of the form

flz) =2+ a,,,q+1z"q+1 + O(z”q+2),

where v is a positive integer and a,q4+1 # 0. In the following, we assume that
v = 1; in other words, (f)@tY) # 0. Then, as before, we may assume that
ag+1 = 1. The dynamics of fo and its perturbation are shown in Figure 8.

To analyze the bifurcation, we need to consider ¢ incoming and ¢ outgoing
Ecalle cylinders C(I,C ’+,C0’_ (k € Z[ qZ); see Figure 9. Now the Ecalle transfor-
mations map the upper end of Cy’~ to that of c{)“'*, the lower end of C(’,c " to
that of Co Y.

Consequently, the statements of Sections 4-6 should be changed as follows.
We only note the part which is to be changed.

Changes in Section 4 (4.1).

(4.1.1) There are 2q regions QS{“), o® (k € Z/qZ) instead of two regions
Qy, Q_;

Ukﬂff) U Q@) U {0} is a neighborhood of 0, on which fy is injective;

fo@) c ol U0} and fo(@® U {0}) > 0P

Qg) N Q(_k) is nonempty and connected, if j = k or j = k — 1, it is empty
otherwise;

f& — 0 as n — oo uniformly on Qgc).
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The parabolic basins B*) are defined to be Un>of ‘"q(QS{c)); then a point
belongs to UpB%¥) if and only if it has a neighborhood on which f* (n =1,2,...)
are defined and f™? — 0 uniformly as n — oo.

Let us fix a k € Z/qZ.

(4.1.2) o, fo, 22— should be replaced by cp fo, Q(k) As for ¢, define

(k) 1
¥o (w) =
q(so(k))"

cp((,k)*(w) =w+0 (w%l) .

(4.1.3) @y, B, fo, 24+ are to be replaced by <I>( ) , B®) £ Q(f).

(4.1.4) Let B*w = (¢ (k)) 1(B®)) and Bk e) = (w(k)) 1(B*-1)), Then
Bkw) | BkD are invariant under T and B&® 5 {w | Imw > no}, B®H >
{w| Imw < —mno} for some ng > 0.

Define gﬁf’u)z Bk _ ¢, g}((’:f): Bkb s C by

g}(l)cu) = 3 0 o g}:)c,e) = D o o).

then

and
They satisfy

(k D(w+1) = é}f’u) (w) +1 for w e B®Y, etc;
5(k " =ro g(k u) on~: 7(B) U {0} — C is well-defined and analytic, and
8}5 w’ (0) # 0. Similarly, 8( D =no g}f’l) on~ 1 w(B)U {co} — C — {0} is
analytic, and E¢; (k) (00) #0.
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In 4.2. P_erturbation. Let

Fi={re 7170 =ow (2m®22) with a0 and [argal < /1),

and denote
f'(0) = exp (27rip—+;—(f)) .
The periodic points of f of period g near 0 are labelled so that
a®(f) = (~2miga(f))"/%€*™*/9(1 4 o(1)) as f — fo,

where | arg(—2mia(f))'/9| < 7/q; then f(e®(f)) = o®+P)(f).
The functions ¢y, Ry, £, are to be replaced by (p;k), ’R,gck’u), }f’") . The
functionnal equation for ¢; becomes

w}k)(w +1) = fl0 w}k)(w)-

In (4.2.3) and (4.3.4), f™ is to be replaced by f™*"  where r is an integer such
that 0 <7 < n and rp = —1 (mod q). Finally

*)* () = 1
ey () a(pp(w))

satisfies (4.2.5).

In 4.3. Remarks: (4.3.1) If f € F satisfies 37/4 < arga(f) < 57 /4, then
we use R}k’e) , € }f’e) instead of ’Rgck’u), £ J(cf’u).

Changes in Section 5. Let fp be as in Section 4. Then fy has g parabolic
basins B%) (k € Z/qZ). Let Fy be the set of such functions fy € F having an
immediate parabolic basin B%*) in each B®, containing only one critical point
of fJ. Let B®*% be the component of Bk-) containing {w | Imw > no}, and
B(k:,u) — W(B(k,u))

Then gy = E}S’U): Bk s C* is a branched covering of infinite degree,
ramified only over one point (Proposition 5.3).

Other statements are similar.

Changes in Section 6. Note that gp is in Fp in the sense of Section 4;
that is, g5(0) = 1. So we only need to change o7 as above and 75|y, to

1
R > ——
qz9

Hence in Step 3, the estimate on the derivative of 7~ ! should be replaced by
O™ < (15! w,)' < C'p?*,
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and in Step 6, the estimate on (f™|y,)’ becomes
(5™ )| < O+ e,

This is enough to prove that H-dim Xy — 2 as n — oo.

Appendix. Proof of the properties of Ecalle cylinders

In this appendix, we give the proof or comments for the facts which were
stated in Sections 4 and 7. Note that the facts in Section 4.1 can be found in
[Mi] and most of those in Section 4.2 in [DH]. We complete 4.2 by introducing a
new coordinate, which makes clearer the relationship between the return map
and the renormalization of functions with irrationally indifferent fixed points
(cf. Yoccoz [Y)).

A.1. Coordinate changes. Let fo(z) = z + 22 - be as in Section 4.1.
We introduce a new coordinate w by z = —1 Jw = T()(’w), then fo corresponds
to the map Fj of the form :

(A.1.1) Fo(w) =w+ 1+ O(1/w).
For functions near fy, we introduce a new coordinate by the following.

LEMMA A.1.2. There exist a neighborhood N of fo in F and a neigh-
bourhood V of 0 in C such that if f € N' then V C Dom(f) and f(z) can be
expressed as

(A.1.3) f(z) =z + 2(z — o)u(z),

where o = o(f) is a point in V and u(z) = us(z) is a nonzero holomorphic
function defined in a neighborhood of V. Hence 0 and o(f) are the only fized
points of f in V. Moreover o(fy) = 0, “fo( 2) = (fo(z) — 2)/22, e2melf) =
f(0) =1 —o(f)ur(0); hence '

(A.1.4) o(f) = —2mia(f)(1 +o(1)) as f — fo.

The correspondences f — o(f), f +— us(z) (with Dom(us) = V fized) are
continuous (with respect to the topology defined in Section 4.0).

The proof is left to the reader.
For a function f € N’ with a(f) # 0 (i.e. o(f) # 0), let us introduce a
new coordinate w € C by

1 — e—2miow !
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258 MITSUHIRO SHISHIKURA

where 0 = o(f) and o = a(f). Define the map Fy(w) by

(A.1.6) Fr(w) =w + 573—25 log (1 - 1—%) with z = 77(w)
and 1
Tp(w) =w— e

Here Fy(w) is defined for w such that |ou(z)/(1 + zu(2))| < 1/2, and the
above formula defines a single-valued function using the branch of logarithm

with —7 < Imlog(-) < 7.

LEMMA A.1.7 (properties of Fy, 75 and Tf). There ezist Ro > 0 and a
neighborhood N' C N of fo such that if f € N and a(f) # 0, then:

(i) The map 151 C — C — {0,0(f)}, w = 2z = 7f(w), is a universal
covering, whose covering transformation group is generated by T¢; T¢(w) — 0
as Imaw — oo, and 7¢(w) — o as Im aw — —o0;

(if) If

w e C— | J TfDr,, where D, = {w'||w'| < Ro},
nezZ
then Tr(w) € V and |ou(z)/(1 + zu(z))| < 1/2; hence (A.1.6) is well-defined
and moreover satisfies

1 1
[Fy(w) - (w+ D] < 7, [Fw) — 1 < 7.

Now, F(w) =w+ 14 O(1/w?) as Imaw — oo;

(i) forf=Tpo Fy and Ty o Fy = Fy o Ty;

(iv) When f — fo, T¢(w) — 10(w) uniformly on {w | | Re(aw)| < 33\ Dr,
and Fy(w) — Fo(w) uniformly on C — UnezTF DRy, -

The proof is immediate by a computation and is left to the reader.
A.2. General construction. For by, by € C with Reb; < Re by, define
Q(bl,bz) = {Z eC | Re(z —b) > -|Im(z - bl)l, Re(z — b2) < |Im(z - b2)| }

If by = —oo (resp. by = o), the condition involving b; (resp. bz) should be
removed.

PROPOSITION A.2.1. Let F be a holomorphic function defined in Q =
Q(b1,b2), where Reby > Reby + 2 (here by or by may be —oo or 00). Suppose

—~

, and |F'(2) — 1] <i for z € Q.

e e

(A.2.2) IF(2) - (z+1)| <

Then
(0) F is univalent on Q.
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(i) Let zp € Q be a point such that Reb; < Rezp < Reby — 5/4. Denote
by S the closed region (a strip) bounded by the two curves £ = {20+1iy | y € R}
and F(£). Then for any z € Q, there exists a unique n € Z such that F™(z) is
defined and belongs to S — F(¢).

(ii) There ezists a univalent function ®: Q — C satisfying

O(F(2)) =®(2)+1

whenever both sides are defined. Moreover ® is unique up to addition of a
constant.

(iii) If ® is normalized by ®(2p) = 0, where zp € Q, then the correspon-
dence F' — ® is continuous with respect to the compact-open topology. (See
also Section 4.0. Notation.)

Proof. (0) and (i) are easy and left to the reader.
(ii) Let 20 € Q be as in (i). Define h;: {z |0 < Rez <1} — Q by

hi(z+1iy) = (1 —x)(20 + 1Y) + F (20 +1y), for 0<z <1, yeR.
Then

6h1 _ . , ahl s / . .
B F(z0 +1y) — (20 + 1), 5y ixF (20 + 1y) + i(1 — z).
Hence
Oh 1 1
T2 1| = 3|FGo+ i)~ Go+ iy+ D} +a(F o +in) - ] < 7,
Ohy

= Lo + i) - o+ iy + DY = a(F (o + i) ~1)| < -

0z

Therefore |%’§1 / %"zl| < 1/3 and h; is a quasiconformal mapping onto
the strip S, and satisfies h7'(F(z)) = h7'(2) + 1 for z € £. Let gp be
the standard conformal structure of C, and take the pull-back ¢ = hjop on
{#]0 < Rez < 1}. Then extend o to C by 0 = (T™)*0 on {2 | —n < Rez <
—n + 1}, where T'(2) = z + 1. By the Ahlfors-Bers measurable mapping the-
orem [A], there exists a unique quasiconformal mapping hs: C — C such that
h300 = o and h2(0) = 0, ha(1) = 1. By the definition of o, T' preserves o.
Hence hy o T o hy 1 preserves the standard conformal structure og; therefore
it must be an affine function. Since T has no fixed point in C, neither does
haoT o hy 1. hence it is a translation. Using hg o T o hy 1(0) = 1, we have
hooTohy'=T.

Now define ® by ® = hy o h! on S, and extend to the whole Q using
the relation ®(F(z)) = ®(z)+1. Then & is well-defined by (i), continuous and
homeomorphic by the above relations on hi‘l and hs. Moreover @ is analytic
outside the orbit of ¢, then analytic in the whole Q by Morera’s theorem. Thus
we have obtained the desired univalent function ®.
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If ®' is another such function, then ®”(z) = ® o ®~! commutes with T
at least in ®(Q). Hence ®”(z) — z extends to C as a periodic function; then
®” extends to C as a holomorphic function commuting with 7'. Similarly ®" !
also has this property, and therefore ®” must be an affine function. However
an affine function commuting with the translation T is also a translation by a

constant. Hence the assertion follows.
(iii) Let us consider F' and Fy defined in the same Q and satisfying

the condition of Proposition A.2.1. As in (ii), we can construct hj, hy, ® for
F and hyg, h2g, ®o for Fy. It is easy to see that on any compact set
{z| 0 < Rez < 1}, 3—}‘1/6—"l — 6h1°/ah10 as F' — Fy. Hence o = hjog —
Oy, = h1,000 and hy — hgo on any compact set as F' — Fp. It follows from
the definition of the extension of ® that ® — &y as F' — Fjy. O

A strip S as in Proposition A.2.1 (i), is called a fundamental region for
the map F'|g. The quotient space
C = S/~, where {52z~ F(z) € F({)
Q/~, where z~ F(2)if z€ QN F~1(Q)
is topologically a cylinder which is called the FEcalle cylinder. Moreover, C
has the natural structure of a Riemann surface, when F' near £ is used as a
coordinate patching.

LEMMA A.2.3. Let F, Q, S be as above. Then wo® induces an isomor-
phism
o C=5/.—C*=C-{0}.

Proof. Tt is easy to see from the construction that ® is a covering map
and induces an isomorphism between the fundamental groups. O

LEMMA A.2.4. Suppose that ® and v are holomorphic functions in a
region U satisfying:
® is univalent inU, |v(z)—1]<1/4 forzel and
O(z+v(2)) = ®(2) +1, if zz+v(z) €U.
(i) There exist universal constants Ry,C1,Co > 0 such that if U =
{z | |z — 20| < R} for R > Ry, then

1 1 Cy
&' (z9) — —| < S ! < =,
) U(zo)! < (g + M) < 3
(ii) Suppose U = {z € C* | 01 < argz < 62} (62 < 01 + 27) and |[V'(2)| <
K/|z|1* (2 € U) for some K,v > 0. For z € U and 0}, 0, with §; < 6} <
0% < 02, there exist R2,C3 > 0 and &£ € C such that

o0 - [~ =<0 (i p)
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for z satisfying 0} < argz < 64, dist(z,C —U) > Ry. Moreover Cs depend only
on 0;,0..

See [Y] for a similar estimate.

Proof. In the following, C and C’ denote universal constants, which may
differ at each appearence.

(i) We may suppose zp = 0. We take R so that R > 1. It follows from
Koebe’s distortion theorem [P] that if |2| < R — 2, then

)] |2t u(2) -2()| . [v(2)]
(1+v(2)l/2)? ~ o'(2) ~ (1= (2)l/2)*

since ® is univalent in {¢ | | —2| <2 }. Hence C < |®'(2)| < C'if |2| < R—2.
We have |®”(z)| < C/R if |z| < R/2. (In fact, by Cauchy’s formula, ®"(2)
can be expressed in terms of an integral of ®'(¢)/(¢ — 2)? over the contour
{¢ | |¢ — 2| = R/3}, and use of the above estimate.) By the formula

®(z +a) = &(2) + ad'(2) + a? /01(1 —t)®"(z + at)dt,

we obtain |1 — ®'(2)v(z)|] < C/R if |2| < R/2 — 5/4. Again by Cauchy’s
formula, |(1 — ®'(2)v(2))| = |®"(2)v(z) + ®'(2)v'(2)| < C/R? if |2| < R/4.
It also follows from Cauchy’s formula that |v/'(2)| < C/R and |v"(2)| < C/R?
for |z| < R/2. Therefore [v/(z)| < [v'(0)| + C/R? for |z| < 5/4 . Hence we
have |®"(z)| < C(1/R? + |v'(0)|) for |z| < 5/4. By the above formula again,
we have |1 — ®'(0)v(0)| < C(1/R? + |[v'(0)]) < C/R. So we obtain the desired
inequality.

(ii) Note that in the sector §; < argz < 65 we have dist(z,C — U) >
C4|z| for some constant Cy > 0. So the result in (i) applies to the region
{w | |w— 2| < C4|z|}, and gives

¥~ 5151 <O (e + W) < (1 + )

Integrating this formula along a straight path from oo to z in the smaller sector,

we have
(20— 5g) <o (i 1)

where the integral does not depend on the choice of the path. Since

L(#0-5g)c=20-[ 5 (oo + [~ (#0- 155) ).

this completes the proof. O
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A.3. Fatou coordinates for fo. Proof of 4.1. Let Qf = Q(&1,00), Qp =
Q(—o00,—&;) for & > 0. If & is large enough, Fy satisfies (A.2.2) on QF
and Qg . Hence by Proposition A.2.1, there exist univalent analytic functions
®y0: Qf — Cand ®_o: Qf — C satisfying @4 o(Fo(w)) = ®4,0(w) + 1 and
&_o(Fo(w)) = ®_o(w) + 1. If

a 1
Fo(w)—w+1+a+0<ﬁ),

then by Lemma A.2.4 (ii),
@4 o(w) =w—alogw+ cx o+ o(1)

as w tends to oo within a sector as in Lemma A.2.4 (ii) with U/ = Q&, where
c+,0 are constants and the branches of logarithms for ®4 o are chosen so that
they coincide in the upper component of QE)" N Qp and differ by 274 in the
lower. Then for large & > 0, Qg as in (4.1.2) is contained in ®_ o(Qy ). Define
Q= (T(QF)), Q- = 7'0(@:,10(90)). The properties in (4.1.1) are easily
verified. (If necessary, take a larger &p.)

Let o9 = 190 <I>:’10 and then ¢ = 7'0'1 oy = <I>:,10. Now by the above,
Qo C Dom(yp) and go(w+1) = foowo(w) if w,w+1 € Qp. Using this relation,
we extend ¢ to the maximal domain {we C|w—n € Q for an integer n
> 0 and f3(po(w —n)) € Dom(fy) for j =0,...,n—1}. Note that for a large
no > 0, {w | |[Rew| < 1/2, |Imw| > no} is contained in Qg and its image by
o is contained in 79(Qg) C B. The rest of (4.1.2) can be checked easily.

Let &9 = @907 1 and extend it similarly to B using the functional
equation for @ o. Hence (4.1.3) follows.

The properties of B in (4.1.4) follow from the above. The function £y,
=®Pgopg =Prpgo0 <I>:,10 satisfies the functional equation and is univalent in
{w | |Imw| > nj} for a large nj > 0. Moreover Im &f,(w) — oo as Imw —
+00. Hence £y, can be extended to 0 and oo conformally. This proves (4.1.4).

By the normalization (4.1.5), we have c g = c_ .

A.4. Fatou coordinates for f € N N Fy. Proof of 4.2. Let f € N NFy,
where N is as in Lemma A.1.7 and F; is as in Section 4.2. Define Q}" =
Q(&, &+ é) and Qf = Q&1 — é, —£) = Tf(Q+) for & > 0. One can choose
N small and & large so that Re L > 2£; + 2, Qf C Dom(FYy) and Fy satisfies
(A.2.2) on Q}t. By Proposition A.2.1, there exist univalent analytic functions
Oy 5 Q}' — Cand ®_;: Q7 — C satisfying @ ¢(F(w)) = @4,s(w) +1 and
®_ ¢(Ff(w)) = _ s(w) + 1. We fix two points wy € Qf and w_ € Qy, and
normalize 4 ; by setting @4 r(ws) = P+ 0(ws).

Since Fy(w) = w+1+0(1/w?) as Im aw — oo by Lemma A.1.7, it follows
from Lemma A.2.4 (ii) that there exist constants ¢+ = c+(f) such that

(A4.1) Oy f(w) =w+ct+o0(1)
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when w tends to oo within a sector of the form {w ' 07 < arg(w —wp) < 05} C
Qf, where 7/3 < 6] < 05 < 37/4 and wy € C.

The function ®_ o Ty is defined on Q}' and satisfies the same functional
equation as @, s by Lemma A.1.7 (iii). It follows from the uniqueness in
Proposition A.2.1 (ii) that there exists a constant d; = dy(f) such that

(A.4.2) O_soT; =, ¢+d.

In fact, (A.4.1) determines the constant di=c_(f)—cp(f) =1L

Now define Ef(w) =&, o0 d? —yon®_ f(Qf N Qy), whlch contains at
least the vertical strip {w | |[Rew| <1, |Imw| > no} for a large no > 0. This
1o can be chosen uniformly for f € N N F; near fy. It satisfies the functional
equation £(w + 1) = £f(w) + 1 whenever both sides are defined. By this
relation, £; can be extended to {w | | Imw| > no}. By (A.4.1), we have

(A.4.3) Ep(w) =w+ c.,.(f) —c-(f)+0(1) when Imw — oo.

Similarly, f:'f(w) w tends to a constant as Imw — —oo.
By Propos1t10n A21,wehave @, s - ®,poand ®_; — ®_gas f — fo;
therefore £; — &j, uniformly on {w | 0 < Rew < 1, Imw = n}. Then

144

1+ino 70 .
(Aad)er(p)—e(f) = [ T Etw) —wydw— [ Epw) ~w)du

Mo
=cy0—Cc-0=0,

where the integrals are over the segment joining ing and 1 + ing.

Let us show that ®_, f(Q;) contains Qy as in Section 4.2, for large &y, no
> 0. Combining (A.1.6), Lemma A.2.4 and Proposition A.2.1 (iii), one can
show that the right boudary curve of Qy is contained in ®_ #(Q5), if £ and 7o
are large enough. Similarly, the left boundary curve of T L ) is contained
in @ ;(QF). Using Qf = Ty(Q}), (A.4.2) and (A.4.4) and increasing &y, no
if necessary, we conclude that the left boundary curve of Q is contained in
<I>_,f(Q;). Therefore Qf C @-J(QJT).

Defining ¢y = 75 0 <I>'_',1f, we have Qf C Dom(pys) and pf(w + 1) =
fops(w) if w,w+1 € Q. Using this relation, extend ¢ to the domain
{w € C|w—n € Qf for an integer n > 0 and f’(¢s(w—n)) € Dom(f) for j =
0,...,n—1}. Then ¢y satlsﬁes (4.2.1).

Let Rf=®_ fono‘I> . Then R coincides with &5 +c—(f) —c4+(f) — 1
on its domain of definition and satisfies Rf(w + 1) = Ry(w) + 1. So Ry =
o 7~2f o7™1 is well-defined and extends analytically to 0 by (A.4.3) and sim-
ilarly extends to co. Since Ryj(w) = w— 1 +0(1) as Imw — oo, R/ $(0) =
exp(—2mit). Thus (4.2.2) is proved. a
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It is easy to see that ¢y — o and c‘:'f — gfo when f e NNF and f — fo.
Hence ) _
Ry+— =&+ (c-(f) = () — &gy

Using the fact that Ry is extended analytically to 0 and co, we have
e27ri/aRf N gfo‘

Thus (4.2.4) is proved. O

In order to see (4.2.3), let us first verify (4.3.4). In fact the latter is
immediate from the definition of ¢y and Ry, 7 o Ty = 7; and the functional
equation for . To obtain (4.2.3), we restrict Dom(R¢) so that

(A.4.5) R (w) + é —w| < 51}071 on Dom(R;).
Note that (4.2.4) is still true. Now suppose that w,w’ € Dom(ys) and
T(m(w)) = m(w') for a positive integer m. Then for the lift, there exists
an integer n such that 7:’,}"(11)) +n =w'. By (A.4.5), we have n > m. Hence
the assertions of (4.2.3) follows from (4.3.4).
The corollary (4.2.5) follows from (4.1.2) and (4.2.4).
One can prove (4.3.1) similarly.

A.5. Parabolic fixed points with the multiplier # 1. We only state the
coordinate changes which correspond to A.1. The rest of the arguments in
A.2-A 4 are immediately generalized to this case.

First, let fp be as in Section 7. There exists a coordinate near 0, in which
fd has the form

fl(z) = 2+ 291 4 O(2%1Y).

Let us introduce a coordinate w by

1
w=——,
qz9

Then the corresponding map in this coordinate has the form
Fo(w) =w+1+0(1/w),

where Fy is multi-valued.

The coordinate w should be understood in terms of the Riemann surface
W as follows. Let Qa' ok Q ok (k € Z/qZ) be q copies of Qf, Q in A.3. The
intersection QE}" NQ, has two components—the upper and lower sectors. Iden-
tify the upper sector of QE)" 'k with that of Qo ’k; and the lower sector of Qg' k=1
with that of Qy ok (k € Z/qZ). The obtained Riemann surface W is isomorphic
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to a punctured disc and the map w — z = —1/qw? gives a conformal map from
W onto a punctured neighborhood of 0 in C. We consider that the map Fjy
sends Qa;’k into Qa*’k""’ , and Qg ok \ (a neighborhood of the boundary curve)
into Q5""*P. .

Now let f € F; and o®)(f) be the periodic points of f as in Section 7.
We choose a new coordinate near 0 so that o(®)(f) = 27/95©)( f), as follows.
Put

(z=0Q(f)) -+ (2 = 0® V() = 22 = bg-1() 27" = -+ = ba(F)z = bo ()
Then it is easily seen that
bo(f) = —2mia(f)(1+0(1)) and b;(f) = O(e(f)) (G =1,...,¢—1) as f — fo.

Define a new coordinate z’ by
, z

_ -
(148244 2t !

This is a well-defined coordinate near 0, and in this coordinate we have o) =
2mik/q5(0)

So we can write
[f9(2)]? = 27+ 29(27 — o(f)T)ur(2),

where o(f) = 0(O(f) and uy(2) is a nonzero analytic function defined near 0.
Finally, we introduce the coordinate w by

29 ,
- e21rzaw

zq-——o-q_

and the map Fy by

olus(z) ) .

1
= —1 1-—
Filw) =w+ omia 8 ( 14 29uf(2)

Here the coordinate w should be interpreted on a suitable Riemann surface
which is isomorphic to a neighborhood of 0 in C with 0 and o®)(f) removed.
Then the z in the definition of Fy can make sense.

For these maps, one can obtain analogous results as in A.2-A.4. The
detail is left to the reader.

THE UNIVERSITY OF TOKYO, KOMABA, MEGURO, TOKYO 153, JAPAN
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