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 Annals of Mathematics, 147 (1998), 225-267

 The Hausdorff dimension of the boundary

 of the Mandelbrot set and Julia sets

 BY MITSUHIRO SHISHIKURA*

 Dedicated to Professor John W. Milnor on the occasion of his sixtieth birthday

 Abstract

 It is shown that the boundary of the Mandelbrot set M has Hausdorff

 dimension two and that for a generic c E AM, the Julia set of z I > Z2 + C

 also has Hausdorff dimension two. The proof is based on the study of the

 bifurcation of parabolic periodic points.

 Introduction

 The dynamics of complex quadratic polynomials Pc(Z) = z2 + c has been stud-

 ied extensierely in recent years (e.g., see [DH]). The main interest in this subject

 is the nature of the Julia sets Jc in the dynamical plane and the Mandelbrot

 set M in the parameter space. The boundary of M also has a meaning as "the

 locus of bifurcation", or more precisely (by Mane-Sad-Sullieran [MSS] or by

 Lyubich [Lyl]) AM = {c E (: | Pc is not J-stable} (see 01 for the definition).

 In this paper, we are concerned with the Hausdorff dimension (denoted by

 H-dim( )) of these sets. Some of the consequences are:

 THEOREM A.

 H-dim(0M) = 2.

 Moreover for any open set U which intersects AM? H-dim(0M n u) = 2.
 .

 . .

 .

 THE:OREM B. For a generic c E AM,

 H-dim Jc = 2.

 In other words, there exists a residual (hence dense) subset 1Z of AM s?l,ch

 that if c E 1t, then H-dim Jc = 2.

 *This paper was originally written in 1991.
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 226  MITSUHIRO SHISHIKURA

 THEOREM C. There exists a residual set 1?U' of R/2 such that if Pc has a
 periodic point with multiplier exp(2erioe) with oe 1Z', then H-dimJc = 2.

 Theorem A was conjectured by many people (for example, Mandelbrot
 [Ma], Milnor [Mi2, Conjecture I.7]). It means that the bifurcation locus is
 large in dimension, and this explains the complexity of M, demonstrated by
 many numerical experiments. As to the Julia sets-, if Pc is hyperbolic, or if O is
 strictly preperiodic, H-dim JC is less than 2 (see §1, Property (1.4)). However, it
 was conjectured that there exists a sequence of parameters such that H-dim JC
 tends to 2. Theorem B gives a stronger solution to this conjecture. We will see
 that the method in this paper applies to other families under certain condition.

 The above theorems are obtained as consequences of Theorems 1 and 2
 stated in Section 1. Theorem 1 amounts to comparing the Hausdorff dimension
 of the set of J-unstable parameters with that of a certain subset ("hyperbolic
 subset") of the Julia set. It reflects the similarity between the Mandelbrot set
 and some Julia sets (cf. Tan Lei [T]). Theorem 2 is the most important result
 in this paper, and it assures that one can obtain maps whose Julia sets hazze
 Hausdorff dimension (or "hyperbolic ditnension") arbitrarily close to 2, from
 "the secondary bifurcation" of a parabolic periodic point. See Figures 1, 2 and
 the remark after Theorem 2 in Section 2.

 +1|4_/

 FIGURE 1. The boundary of the Mandelbrot set (top left) and its blow-ups near the cusp c = 4.

 It has been observed that after a small perturbation of a parabolic peri-
 odic point, the Julia set may inflate drastically. In fact, the proof of Theorem
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 FIGURE 2. The Julia sets for c = 4 (left) and for c _ 0.25393 + 0.00048i (middle) and its blow-up

 near the fixed points (right).

 2 shows that such an inflated part of the Julia set can have Hausdorff di-

 mension close to 2. The main tool in the study of such a bifurcation is the

 theory of Ecalle cylinders, which was introduced by Douady-Hubbard [DH] and

 derreloped by Lazzaurs [L]. Using the Ecalle cylinder, we introduce a new renor-

 malization procedure associated with parabolic fixed points (see Remark (ii)

 in §6). Our result can be irlterpreted as follows: The renormalization induces

 a map between old and new dynamical planes, which resembles an exponential

 map. Comparing this obserrration with McMullen's result [Mc] which claims

 that the Julia set of an exponential map always has Hausdorff dimension 2,

 we- can conceirre that a certain subset of the Julia set can hazze Hausdorff di-

 mension close to 2. The proof in this paper will justify this argument, or erren

 more, twice renormalization is enough to attain dimension two.

 One can compare the aborre theorems with Jakobson's result for the family

 of unimodal interrral-maps [J], M. Rees' result for a certain family of rational

 maps [Re] and Benedicks-Carleson's result on the family of Henon maps [BC].

 These results show the existence of a "chaotic dynamics" for a set of positirre

 Lebesgue measure of parameters. For example, M. Rees' result shows that

 there exists a set of positirre Lebesgue measure of parameters for which the

 Julia sets are the whole Riemann sphere. Such parameters are found near a

 special parameter for which all critical points are strictly preperiodic. For this

 parameter, the map has good ergodic theoretical properties and the Julia set

 is the whole sphere.

 On the other hand, for a polynomial PC acting on ¢D, the Julia set Jc or

 the filled-in Julia set KC can nerrer be the entire plane, since there is always

 the basin of oo. So there always exist some orbits which escape to oo from the

 neighborhood of KC. Moreorrer, as remarked aborre, if the critical point 0 is

 strictly preperiodic, H-dim Jc < 2. For example if c =-2, J-2 = [-2, 2] C Dt

 and H-dim J-2 = 1. Therefore one can hardly expect an analogous result or

 approach for the family PC as for those of Jakobson and Rees. Instead, in this

 paper, we use the perturbation of parabolic periodic points.
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 228  MITSUHIRO SHISHIKURA

 As for the area (the 2-dimensional Lebesgue measure), it is conjectured
 that AM and JC (for any c) have area zero. There are partial results: the set of
 parameters in AM for which PC are not infinitely renormalizable has area zero
 [Shl]. If Pc has no irrationally indifferent periodic point and is not infinitely
 renormalizable, then the Julia set JC has area zero [Ly2] and [Shl].

 This paper is organized as follows: In Section 1, we define the notion of
 hyperbolic subsets and the hyperbolic dimension, state our main results (The-
 orems 1 and 2, Corollary 3). Assuming these results, we prorre Theorems A,
 B and C. In Section 2 we prorre basic properties of hyperbolic subsets and
 hyperbolic dimension. Theorem 1 is prorred in Section 3, using holomorphic
 motions. The rest of the paper is derroted to the proof of Theorem 2. The the-
 ory of the parabolic bifurcation and Ecalle cylinders is rerriewed in Section 4.
 Further properties of the Ecalle transformation are studied in Section 5. After
 these preparations, Theorem 2 is prorred in Section 6 (the case with multiplier
 1) and in Section 7 (the other cases). In the appendix, we girre proofs of the
 facts stated in Sections 4 and 7.

 Acknowledgement. I would like especially to thank Curt McMullen for
 introducing me to these problems and for hazzing inspired me throughout their
 inrrestigation; A. Douady for his lectures which introduced me to the theory
 of Ecalle cylinders; and also A. Hinkkanen, M. Lyubich, M. Rees, D. Sullirran,
 Tan Lei, S. Ushiki and J. Milnor for helpful discussions and comments. This
 paper was written during my rrisit to the Institute for Mathematical Sciences,
 State Unirrersity of New York at Stony Brook, to which I am grateful for its
 hospitality. I also would like to thank the editors for their patience with my
 slow rerrision of this paper.

 Computer pictures hazze been produced using J. Milnor's program.

 1. Some definitions and main results

 In this section, we define the hyperbolic subset and the hyperbolic di-
 mension for a rational map, and state our main results, Theorems 1 and 2.
 Assuming these results, we girre the proofs of Theorems A, B and C from the
 introduction.

 Definitions. Let f be a rational map. A closed subset X of (: is called a
 hyperbolic subset for f, if f (X) c X and there exist positirre constants c and
 N > 1 such that

 Il(fn)lll > C^;n on X for n > O,

 where 11 1I denotes the norm of the derirratirre with respect to the spherical
 metric of (C. (A similar notion was discussed in [Ru] and [Lyl]. The condition
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 MANDELBROT SET 229

 requires that f be expanding on X; however, we call such a set "hyperbolic"
 following the standard terminology for dynamical systems.)

 The hyperbolic dimension of f is

 hyp-dim(f) = sup{H-dim(X) I X is a hyperbolic subset of f}.

 PROPERTIES OF HYPERBOLIC SUBSETS AND HYPERBOLIC DIMENSION.

 Let X be a hyperbolic subset of f.

 (1.0) There are no critical points of f in X.

 (1.1) X is a subset of the Julia set J(f) of ff. Hence

 H-dim J(f ) > hyp-dim(f ).

 (1.2) X is "stable" under a perturbation, i.e. there exists a neighborhood

 K" of f in the space of rational maps of the same degree, such that if g E K
 then g has a hyperbolic subset Xg and there is a homeomorphism tg: X -+ Xg
 which conjugates f to g. Moreover, for each z E X, tg(z) is a complex analytic
 function in g, and tf = idx. ({Ig} is a holomorphic motion in the sense of
 Section 3.)

 (1.3) f | hyp-dim(f) is lower semi-continuous, or equivalently, for any

 number k, the set {If I hyp-dim(f) > k} is open.
 (1.4) Suppose that f is a hyperbolic rational map (i.e., all critical points

 are attracted to attracting periodic orbits) or a subhyperbolic polynomial (every

 critical point is either attracted to an attracting periodic orbit or a pre-periodic

 orbit; see [DH]). Then

 H-dim J(f) = hyp-dim(f).

 Moreover J(f) has positive and finite 6-dimensional Hausdorff measure if 6 =

 H-dim J(f), and H-dim J(f) < 2.

 For the proof and remarks, see Section 2.

 Problem. When does hyp-dim(f) coincide with H-dim J(f)?

 Definition. A family {fA, I A E A } of rational maps is J-stable at Ao
 E A, if there exists a continuous map h: A' x J(fAO) -( t, such that A' is
 a neighborhood of Ao in A, h= h(A, ) is a conjugacy from (J(fx0), fx0O) to
 (J(fA\), fA,) and hA0 = idj(fo). We also say that fx0 is J-stable in this family,
 if there is no confusion.

 THEOREM 1. Let {fA, I A E A } be a complex analytic family of rational
 maps of degree d (> 1), where A is an open set in C. Suppose fA0 (Ao c A) is
 not J-stable in this family. Then

 fix is not J-stable and has a hyperbolic )

 H-dim A E A subset containing a forward orbit of > > hyp-dim(f,0).
 { a critical point J
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 o t g

 FIGURE 3 The region for oe

 The proof will be given in Section 3. There we will make use of a "sim-
 ilarity" between a hyperbolic subset and a subset of the set on the left-hand
 side of the above inequality.

 nefinition. A periodic point is called parabolic if its multiplier is a root of
 unity. The parabolic basin of a parabolic periodic point ( of period k is

 {z E C I f > ( (n > oo) in a neighborhood of z},

 and the irntnediate parabolic basin of ( is the union of periodic connected com-
 ponents of the parabolic basin.

 THEOREM 2. S1>ppose that a rational rnap fo of degree d (> 1) has a
 parabolic fixed point ( with mtbltiplier exp(2Tip/q) (p,q E 2, (p,q) = 1) and
 that the irntnediate parabolic basin of ( contains only one critical point of fo.
 Then: For any E > O and b > O, there exist a neighborhood J\F of fo in the space
 of rational rnaps of degree d, a neighborhood V of ( in C, positive integers N1
 and N2 stbeh that if f E J\E, and if f has a fixed point in V with m1>ltiplier
 exp(27rioe), where

 qot=Pi 1
 al i a2-+:

 withtntegersa1 >N1, a2 >N2 and,B E (S, O < Re,8 < 1,1Im,(Sl < b, then

 hyp-dim(f) > 2-s.

 The proof will be given in Sections 6 and 7, after preparation in Sections 4
 and 5.

 Figure 3 shows the region for oe described in Theorem 2.
 - The condition al > N1 is in fact unnecessary, since al must be large
 when g is close to fo. However if we take a family {fa} such that f>(O) = O,
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 MANDELBROT SET 231

 f (0) = exp(27ria), then the condition in Theorem 2 can be expessed in terms
 of ae (without KV and V).

 The condition on oa has a meaning that f is obtained by a "secondary

 bifurcation", in the following sense: The primary bifurcation of fo produces a

 sequence of maps having parabolic fixed points with multipliers exp(27ria,,),
 where qcan = P 1 1 (n = 1, 2,...). Then the bifurcation from these maps gives n

 rise to the maps as in Theorem 2.

 There are immediate consequences of Theorems 1 and 2 for the family Pew

 Before stating them, let us recall the definition of J, and M:

 Kc = {z E C I P~n(z) +7 o0 as n --+ oo} (the filled-in Julia set of Pa),

 J, = OK -Closure of {repelling periodic points of Pj}
 (the Julia set of Pa),

 M - {c E C I 0 E Kc} = {c e CI Kc is connected} (the Mandelbrot set).

 COROLLARY 3. (i) If U is an open set containing c E &M, then

 H-dim(&M n U) > H-dimf c E OM n Up O is non-recurrent under Pj}
 > hyp-dim(P,).

 (ii) If P, has a parabolic periodic point, then there exists a sequence {cn}
 in OM such that cn --+ c and hyp-dim(Pcn) -- 2, as n -- oo.

 Proof of Corollary 3. (i) This is immediate from Theorem 1 and the fact

 that c E oM if and only if P, is J-unstable ([MSS],[Lyl]).
 (ii) It is known that if P, has a parabolic periodic point ( of order k,

 then fo = Pk satisfies the hypothesis of Theorem 2, since there is only one
 critical point (in C) for Pew Any parabolic periodic point of P, is not persistent
 (otherwise all P, would have parabolic periodic points), and it can be perturbed
 into a periodic point whose multiplier is as in Theorem 2. If Im/3 = 0, then
 the new periodic point is indifferent, and the perturbed polynomial is also J-

 unstable. One can thus obtain the sequence {cn} (c AM). Furthermore, it is
 also possible to choose cn such that 0 is strictly preperiodic under Pn, since
 such parameters are dense in &9M by [MSS]. E

 Now we can prove Theorems A, B and C.

 Proof of Theorem A. By Marie-Sad-Sullivan [MSS] or Lyubich [Lyl], pa-

 rameters for which P, has (non-persistent) parabolic periodic points are dense
 in &9M. The assertion follows immediately from Corollary 3. [I

 Proof of Theorem B. Let Rn = {C E OM I hyp-dim(Pc) > 2 -
 (n = 1,2 ...) Then 1? = nn>o Rn {c e OM I hyp-dim(Pc) = 2} C
 {c E AM I H-dim J(Pc) = 2}. By Property (1.3), the Rn. are open in AM.
 Moreover IR are dense in OM, by Corollary 3(ii) and the above remark (the
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 232 MITSUHIRO SHISHIKURA

 density of parabolic parameters in OM). Hence R is residual. (A residual set is

 a set containing the intersection of a countable collection of open dense subsets
 of OM.) Such an R is dense in OM by Baire's theorem. El

 Proof of Theorem C. Let W be a hyperbolic component, i.e. a connected

 component of the set of c's such that P, has an attracting periodic point. Then
 as shown by Douady-Hubbard [DH], there exists a homeomorphism from W

 onto the closed unit disc (conformal in W) defined by the multiplier of a non-
 repelling periodic orbit. So in OW, the parameters with parabolic periodic

 points are dense. By the proof of Corollary 3(ii) and a similar argument to the

 proof of Theorem B, we can prove that for generic a e IR/Z, if c E OW and P,
 has a periodic point with multiplier exp(2-ioi), then H-dim J, = 2. However,
 there are only countably many hyperbolic components. Hence the assertion

 follows. El

 Remark 1.1. (i) It also follows easily from Theorem 2 that

 sup H-dim(Jc) = sup H-dim(Jc) = 2,
 cEWo cEC\M

 where Wo {c I Pc has an attracting fixed point} (the cardioid).
 (ii) It is easy to see that a similar result holds for other families of rational

 maps which have "only one critical point" that can be involved in the parabolic

 basin. For example, fa(z) = Z3 + az2, 9b(z) = (z2 + b)/(z2 - 1).
 (iii) There are immediate consequences on the continuity of functions c

 H-dim(Jc)- and c e > hyp-dim(Pc). If co E C- OM, then both functions are
 continuous at c = co because of J-stability (see Section 3). Now suppose

 co E OM. If hyp-dim(Pco) = 2, then H-dim(Jco) = 2 and both dimension
 functions are still continuous at c = co by (1.1) and (1.3). If H-dim(Jco) < 2,
 then hyp-dim(Pco) < 2 by (1.1) and both dimension functions are discontinuous
 at c = co by the proof of Theorem B. If H-dim(Jc0) = 2 and hyp-dim(Pco) < 2,
 then the hyperbolic dimension is discontinuous at c = co again by the proof of
 Theorem B, but the continuity of the Hausdorff dimension is not known. In

 fact, it is not known whether this case can happen.

 2. Hyperbolic subsets and hyperbolic dimension

 In this section, we give proof of Properties (1.0)-(1.3). We also give an
 example of the hyperbolic subset and an estimate of its Hausdorff dimension,

 which will be used later.

 Proof of the properties of hyperbolic subsets and hyperbolic dimension.

 (1.0) is obvious.
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 233 MANDELBROT SET

 (1.1) The family {fn} cannot be normal in any open set intersecting X,

 since the derivatives grow exponentially. Hence the assertion follows.

 (1.2) This is a well-known fact. The outline of the proof is as follows.

 There exists a neighborhood V of X such that for g near f) g is expanding on

 V. Hence for x E X, the orbit {fn(x)}°°=O with respect to f is a pseudo-orbit

 for g, which can be traced by an orbit (a real orbit) of a point y for g (the

 Pseudo-Orbit liacing Property; see [Bol]). Then let y = lg(X). In fact, y can

 be expressed as

 y nlm 9xO ° 9X1 ° ° 9Xn (Xn+l))

 where xj = fi(x) and gz 1 is the branch Of 9-1 defined in a neighborhood of

 f(z) such that gz l(Z(z)) is near z. By the expanding property for g near f) lg

 is well-defined and conjugates flx to glxg with Xg = lg(X) Moreover, lg(X)

 depends analytically on g, since the convergence in the above is uniform. (In

 [Lyl], the analyticity is proved under the assumption that periodic points are

 dense in X, which is in fact unnecessary by the above.)

 (1.3) Let JW, Xg and lg be as in (1.2). (Suppose X is open.) It is enough

 to prove that JW 9 g | > H-dimXg is continuous. We will prove this fact in

 Section 3, using a result on holomorphic motions. It is also possible to prove

 it directly. In fact, one can estimate the exponent of the Holder continuity of

 lg, in the proof of (1.2).

 (1.4) We do not use this fact for the proof of our main theorems. If

 f is hyperbolic, then J(f) itself is a hyperbolic subset; hence H-dimJ(f) =

 hyp-dim(f); the second assertion follows from Bowen's formula ([Bo], [Ru]),

 and the fact that H-dim J(f) < 2 can be shown by a standard argument using

 the expanding property of v and Lebesgue's density theorem. (See [Su].) The

 case with preperiodic critical points will be discussed in another paper, but

 the fact that H-dim J(f) < 2 seems already to be known. 2

 In the proof of Theorem 2 (§6), we will construct special kinds of hyper-

 bolic subsets which are described as follows.

 Suppose that U is a simply connected open set of ¢: (with t(¢:-U) >

 2); U1,...,UN are disjoint simply connected open subsets of U with Ui c

 U; nl,...,nN are positive integers such that fni maps Ui onto U bijectively

 (i = 1,...,N). It follows from Schwarz' lemma that ri--(fnilui)-l: U U

 is a contraction with respect to the Poincare metric of U (at least on UiUi).

 So there exists a Cantor set Xo generated by {ri3; that is, Xo is the minimal

 nonempty closed set satisfying

 Xo = tl(X0) U * * * U TN(X0)

 LEMMA 2.1. The setX = XoU f(Xo)U...U fM-1(Xo) (where M =

 maxni) is a hyperbolic stzbset of f.
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 Proof. Obviously X is closed. We have f(X) C X, since f(fM-l(Xo)) =

 f (71(XO) U * * * U TN(XO)) = fM-nl (Xo) U * * * U fM-nN(Xo) c X

 Note that fnilUi is expanding on Xo n Ui with respect to the Poincare

 metric of U which is equivalent to the spherical metric on Xo. In order to see

 that f is expanding on X, it suffices to factorize the iterate fn at z ( X) to

 fjl o (fnil |Ui ) O * * * O (f k |uik ) ° f

 where il,...,ik E {1,...,N} and 0 < ilvi2 < M are determined by z' =

 fi2(z) E XO, zt E tik ° *- °7il(x0) and n =il nil + +nik +i2 °

 We only use the simplest estimate for the Hausdorff dimension of X0.

 Suppose oo ¢ U.

 LEMMA 2.2. Let 6 = H-dimXo. Then

 N \-6

 -ZE u I t1 - max SUPI(fNi)/I) ;

 hence
 log N

 -log (maxi supui | (fni )' l)

 Proof. The first inequality is well-known; it can be proved, for example,

 from Bowen's formula ([Bo2] and [Ru]). The rest is immediate. [1

 3. Holomorphic motions

 Definition. Let X be a subset of ¢: and A a complex manifold with a base

 point So E A. A family of maps ix: X > ¢: (S E A) is called a holomorphic

 motion- of X, if each ix is injective, ixo = idX and for each z E X, ix(z) is

 analytic in A. We also say that Xx--ix(X) is a holomorphic motion of X. We

 are mostly interested in the case A = {S E ¢::| 1A1 < R} (R > O) with the base

 point So = °

 LEMMA 3.1. If i>: X C ( |A| < R) is a holomorphic motion, then both

 iz and iA 1 are Holder continvUozus with exponent oe(lAl/R), where a: (0,1) > DR+

 is a ftbnction (independent of the motion) satisfying a(t) jE 1, as t \, O.

 Proof. The improved A-lemma in [ST] (see also [MSS], [BR]) implies that

 ix can be extended to a K(lAl/R)-quasiconformal mapping and K(t) \, 1 (as

 t \, 0). Since a K-quasiconformal mapping is l/K-Holder continuous (Mori's

 inequality, see [A]), the assertion holds with oe(t) = l/K(t). For example, by

 [BR], one can have

 I > ot(t) > (l-3t)/(1 + 3t), for 0 < t < 1/3.
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 235 MANDELBROT SET

 As an application, we can now complete the proof of (1.3) (see §2), by

 showing that: For JV (an open neighborhood of f) and Xg in (1.2), N 3 9 1 >

 H-dimXg is continuous.

 Proof. For any go E N, lgolgo1 (z) is a holomorphic motion of XgO . Lemma

 3.1 implies that for 9 near gO, lg o lgol is oe'-bi-Holder (O < oe' = Ol/(go, 9) < 1)

 and al/ > 1 when 9 > go. Then we have

 oe' H-dim Xgo < H-dim Xg < ae/ 1 H-dim Xgo .

 Hence H-dim Xg is continuous in 9. O

 LEMMA 3.2. Let i<: X ¢;: ()< G A -- {)< E (C: | |A| < 1}) be a

 holomorphic motion. S?sppose v: A > (E is an analytic map such that v(O)-

 zo E X and v()i) g iJ,(z)). Then

 H-dim{A E A t v(A) E ix(X)} > limOH-dim(X n Dr(z))))

 where Dr(z) denotes the disc of radius r centered at zo with respect to the

 spherical metric.

 Proof. Changing the coordinate by Mobius transformations depending an-

 alytically on A, we may assume that zo = O and ix(O)-O. First suppose

 that v'(O) 7£ O. There exist positive constants p (< 1) and a such that in

 {A | 1A1 < P}, v(A) is injective and alAl < Iv(A)l < oo. Let

 br = sUp{|ix(z) 11 z E X n Dr(o), 1>1 < P}

 It follonvs from the A-lemma [MSS] (or Montel's theorem) that br O as r > O.

 So there is ro > O such that ap > br for O < r < ro. Take such an r.

 For z E X n Dr(O) and 181 < Rr _ ap/br, let us ccxnsider the equation

 (3.3) v(A)-i>u(z) = O (S E A,u-{S | 1>1 < min{p,p/l,2l}})

 Both v(A) and ix(z) are analytic in AH, and for A E 0AH we have

 lu(>)l > a min{p,p/|p|} > br > li>H(z)l.

 Since v = O has the unique solution O in At^, the equation (3.3) also has a unique

 solution by Rouche's theorem, and it depends analytically on ,u. Moreover, for

 the same ,zk and a different z, the equation giares a different solution, because

 of the injectivity of ix.

 Now define

 ESlr = {S E i\1-u f v(\)v) = i)iz(z) for some z E X n Dr(o)}.

 Then by the above, Y/r (lul < Rr) is a holomorphic motion of MOr, and the

 injections i: yOr ESlr are given by the following: A-j(v-l(z)) is the

 unique solution of the equation (3.3). Note that yOr = V-l(x n Dr(())) hence
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 H-dimY0r = H-dim(X n Dr(O)), and that Elr c {S E hI v(A) E ix(X)}. By
 Lemma 3.1, j: yOr > Epr is oe(l,ul/Rr)-bi-Holder; therefore we have

 H-dim{S j v(A) E ix(X)} > H-dimElr > oe(l/Rr) H-dimYOr
 = Oe(l/Rr) H-dim(X n Dr(o))

 Letting r > 0, we obtain the desired inequality.
 Let us consider the case v'(0) = 0. By the assumption, v t 0. By

 a coordinate change, we may assume that oo E X and ix(oo) - oo. Let
 m = order(v,0) and G(z) = zm. Define Xx = G-1(X) and X = Xo By
 lifting v and ix by G which is a branched covering branched over 0 and oo,
 one obtains an analytic map v: 1t > ¢: satisfying v = G o v, v(0) 74 0, and

 - - - -

 a holomorphic motion ix: X > Xx satisfying ix o G = G o ix. Hence the
 inequality holds for ix and v. On the other hand,

 {> j v(>) E X>} = {S | v(A) E Xx3 and
 H-dim(X n Dr(o)) = H-dim(X n G-1(Dr(O))),

 since G is locally Lipschitz except at 0 and oo. Thus we obtain the inequality
 for ix and v. O
 Now we can give:

 Proof of Theorem 1. For any E > 0, there exists a hyperbolic subset X for
 fx0 such that H-dimX > hyp-dim(fx0)-s. By the compactness of X, there
 exists a point zo E X such that limro H-dim(X n Dr(zO)) = H-dim X.
 By Property (1.2) of the hyperbolic subset, there exist a neighborhood

 lt'(c 1t) of So and a holomorphic motion ix: X > Xx for A E 1t' such that
 ix o fx0 = fx o ix, Xx is a hyperbolic subset of fx and ixo = idX. Moreover 1t'
 can be chosen smaller so that limro H-dim(Xx n Dr(ix(zo))) > H-dimX-E
 for A E 1t', by Lemma 3.1, and so that the critical points of fx do not bifurcate
 in 1t' except at So.

 It follows from Mane-Sad-Sullivan's theory (Lemma III.2 [MSS]) that there
 exist A1 1t'-{So}) an integer N > O and a critical point c °f fx1 such that
 fX1(c) = ix1(zo). Then there exists a branch of critical points cx of f in
 a neighborhood lt"(c 1t') of A1 with cxl = c, (hence cx is a meromorphic
 function). Note that in the above, A1 and c can be chosen so that f, (ci) g
 ix(Zo) in 1t". Applying Lemma 3.2 to ix (S 1t") and v(A)-f, (ci), (after a
 suitable affine change of parameter), one obtains

 H-dim{> E 1t" | f (c0i) E Xa } > limO H-dim(X>1 n Dr(iAl (ZO)))

 > hyp-dim(f>O)-26

 It is easy to see that if fX (cx) E Xx, fx is not J-stable in the family, since
 fX (cx) g ix(z) for any z. As E > O was arbitrary, the theorem is proved. C1
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 Remark 3.1. (i) If we assume a certain transversality condition for the

 motion of the critical value v(A) relative to the hyperbolic subset (this condition

 corresponds to v'(O) 7& 0 in the proof of Lemma 3.2), it is also possible to prove

 a similar result (to Theorem 1 or to Lemma 3.2) without assuming the analytic

 dependence of ix and v on the parameter.

 (ii) Under the transversality assumption, the proof of Lemma 3.2 gives

 rise to the map

 jl O v: x n Dr(O) > ylr C TA E 1t | f) (C)\) E X)\}v

 which means a "similarity" between the hyperbolic subset X and a certain

 part of the "J-unstable set" in the parameter space.

 4. Parabolic bifurcation and Ecalle cylinders

 4.0. Overview. Let us consider a holomorphic mapping

 fO(z) = Z + a2Z2 + a * -

 defined near O with a2 7£ O. The origin z = O is a parabolic fixed point of

 fo. If we perturb fo) this fixed point bifurcates into two fixed points near O in

 general.

 1 Z o t tt-\
 1 zo t
 sx to

 s * op p p I  - * * - p 1

 X S o t

 I '

 sS. to

 _ g > op >

 /t * \N

 f'S t q v 1

 * \ /

 fo

 FIGURE 4.

 Figure 4 indicates the phase portraits of fo and some of its perturbations.

 Obserare that a perturbation can create new types of orbits which go through
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 FIGURE 5.

 "the gate" between the two fixed points. Such orbits can give rise to a drastic
 change of the global dynamics (such as the-inflation of the Julia set). However
 it takes an extremely long time for these orbits to go through the gate, so
 we need to consider a large number of iterates of the map in order to see the
 phenomenon.

 We analyze such a bifurcation using the theory of Ecalle cylinders, and

 the principle can be summarized as follows. For fo, one can find "fundamental
 regions" S+ ands6 S each of which has a boundary consisting of two curves
 joining the fixed point 0 such that one curve is mapped to the other. See
 Figure 5.

 Gluing these two curves of SJ- (resp. St), one obtains a topological cylin-

 der CJ- (resp. Coj), called the outgoing (resp. incoming) Ecalle cylinder, which
 turns out to be conformally isomorphic to the bi-infinite cylinder C* (or C/Z).
 The orbits going from the ends ("horns") of S~7 to S+ induce a continuous and

 analytic mapping Sfo from a neighborhood of the ends of C(~ to C+ (the Ecalle
 transformation). The identification C/Z -* can be lifted and extended to a
 map ~po, defined on a subset of C (which is considered to be the universal cover
 of C/2) into the dynamical plane of fo; similarly the identification C+ -*+ C/Z
 can be lifted to a map 45o: 1 --* C, where 13 is the parabolic basin of 0. Note
 that these functions can have critical points after extension to the maximal
 domain of definition.

 We consider perturbation of the form f (z) = e2iaz + 0(z2) with ce -7 0
 satisfying I arg ajI < 7i-/4. Then it can be shown that fundamental regions
 Sf, S}- continue to exist, with boundary curves joining two fixed points. See

 f ~a I If 1

 Figure 5. The quotient cylinders C7, C} are still isomorphic to C*. So we can

 define functions Wfo, (Df S which are similar to wo, 4Do, 8fo. (The domains of
 definition may be smaller.)

 Now there is "a gate" open between the fixed points, and any orbit starting
 from S p es through the gate and eventually falls into S. This induces
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 a new map Xf from Cf to Cf, which is a conformal isomorphism. Thus we

 define the retqxrn map 1tf = %f o £f, which corresponds near the ends of Cf to

 the map of Sf sending z E Sf to the first return point to Sf along its forward

 orbit. Therefore the return map corresponds to a high iterate of the map f.

 Now one can study orbits of f which return many times to the neighborhood

 of O using the return map.

 Moreover it will be shown that when f tends to fo with the above restric-

 tion on argot, the limit behavior of the return map is determined by oe and

 £fo.

 These facts are formulated in the following subsections, and the proof will

 be given in the appendix, although most of the results can be found in [Mi]

 and [DH]

 Note. The Ecalle cylinders were first studied and applied to some prob-

 lems by Douady-Hubbard and Lavaurs ([DH], [L]). The aim of this section

 is to state some notions and facts in this theory; actually, we state only the

 facts about fov bov £fov (pf and 14f. The formulation presented here is some-

 what different from [DH], [L]. In this paper, we focus more on the return map,

 the quantitative aspect of the theory and the renormalization arising from the

 Ecalle transformation.

 Notation. In the following, a function f is always associated with its do-

 main of definition Dom(f) (an open set of ¢:: or ¢:/2, etc.); that is, two functions

 are considered as distinct if they have distinct domains, even if one is an ex-

 tension of the other. A neighborhood of an analytic map f: Dom(f) > ¢: is a

 set containing

 {g: Dom(g) ¢: l g is analytic, Dom(g) 2 K and SUp d(g(z), f (Z)) < £},

 z{K

 where K is a compact set in Dom(f), £ > 0 and d(,) is the spherical metric.

 (If the map is to some other space, then d should be replaced by an appro-

 priate metric.) The system of these neighborhoods defines "the compact-open

 topology together with the domain of definition", which is unfortunately not

 Hausdorff, since an extension of f is contained in any neighborhood of f.

 Let

 fF= {f: Dom(f) ¢: I f is analytic ,0 E Dom(f) c ¢: and f(O) = O}.

 We use the following notation:
 7r ¢ > ¢ -¢ -{O}, 7r(z) = exp(21riz);

 7rl: ¢: > ¢:/2 (the natural projection); 7r2: /2 *, X = T2 ° T1;

 Note that 7r2 sends "the upper end" of ¢:/2 (Imz > oo) to 0, and "the

 lower end" (Im z - >-oo) to oo.

 T: (S C, T(z) = z + 1;

 mO(Z) = z
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 FIGURE 6.

 4.1. Parabolic fixed point. Let fo E fF be such that fO(O) = 1 and fO'(O)
 74 O. By a linear coordinate change, we may suppose that fO'(O) = 1. We assume this throughout this section.

 FACT. There exist objects Q+,fo,¢?o and Efo satisfying (4.1.1)-(4.1.4).

 (4.1.1) Q+ and Q_ are simply connected domains and Q+, Q_ c Dom(fo);
 the boundaries AQ+, AQ_ are Jordan curves containing O; Q+ U Q_ U {O} is a
 neighborhood of O; fo(Q+) C Q+ U {O} and fo(Q_ U {O}) 3 Q_; f is injective
 on Q+ U Q_ U {O}; Q+ n Q_ consists of two components; gOn > 0 as n > oo
 uniformly on Q+; a point z belongs to the parabolic basin B of O for fov if and
 only if for some n > O, fOn(z) is defined and belongs to Q+. (See Figure 6.)

 Here, the parabolic basin of a parabolic fixed point ( of an analytic function
 , .

 I 1S

 , _ f z has a neighborhood on which f n (n = 1, 2, . . .) are defined |
 t and fn > ( uniformly as n > oo J

 Note that ( itself is not in the parabolic basin.

 (4.1.2) fo: Dom(o) > ¢: is an analytic function satisfying:

 fo(w + 1) = fo o fo(w) if both sides are defined,

 and in fact the left-hand side is defined if and only if the right-hand side is;
 Dom(o) contains Qo = {w E ¢: I r/3 < arg(w + (o) < S7r/3} (see
 Figure 6) and {w I I Im wl > 770} for large (o, 770 > 0;
 fo(Qo) = Q_; fo is injective on Qo;
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 let 90 = To-l o 90, then

 fO(w) = w+alogw+b+o(1) as Qo 9 w oo,

 where a, b are some constants.
 It follows from the above condition that if fo is a rational map or an entire

 function, then Dom((Ro) = ¢:-

 (4.1.3) 4Xo: B ¢: is an analytic function satisfying

 ¢?o o fo(z) = df?o(z) + 1 for z E 8,

 and bo is injective on Q+ (c B).

 (4.1.4) Let B = fo-l (B); then T(B) = B and B contains {w | | Im wl > ?o}
 for some ?o > O.

 Now define £fo: B > ¢: by

 £fo = b° ° f°

 It satisfies

 £fo(w+1) =£fO(w)+1 for w E B.

 Hence £fo = r o £fo ° r-l: 7r(B) > ¢:* is well-defined. Moreover it extends
 to O and oo analytically by £fo(0) = O and £fo(00) = oo, and £fo(0) 7& O,
 £fo(00) 7& O. So Dom(£fO) = r(B) U {O, oo}.

 The map £fo is called the Ecalle transformation, or the horn map (since
 it is defined near the ends of the cylinder).

 (4.1.5) Normalization. Note that fo(w + c) and bo(Z) + c' also satisfy
 (4.1.2) and (4.1.3). So we adjust bo by adding a constant so that

 £fo(0)-1.

 4.2. Perturbation. Let

 fF1 = {f E n | f'(O) = exp(2erioe) with oe 74 0 and | arg oel < r/4}.

 In the following, we consider only the perturbations 7 E fF1.
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 Notation. If f fE fF and f(O) 7& O, we express the derivative f(O) as

 f(O) = exp(2Xiat(f))

 whereot(f)s(Cand-2<Re(f)<2.

 If f E fF is close to fO, then f has two fixed points near 0 counted with

 multiplicity; one of them is O and the other is denoted by a(f). Note that

 a(f) =-2xioe(f)(1 + o(l)) as f > fo

 FACT. There exist a neighborhood Xo of fo and a constant (o > O (which

 can be the same as that in the deySinition of Qo (4.1.2)) sllch thatfor f E XoXZFl,

 thereexistanalytiemapsff: Dom((pf) >-(Cand14z: Dom(1Zf) >(Usatisfying

 (4a2a1)-(4.2.4) .

 (4.2.1) If w, w + 1 E Dom(f), then (pf (w) E Dom(f) and

 (pf(w+1)=foff(W3;

 Dom(f) contains Qf (see Figure 6), where

 Qf = tw E ¢: | 7r/3 < arg(w +40) < 51r/3 and arg (w + (f )-(o) < 2T/3};

 ff(W) 0 when w E Qf and Imw > +X; ff(w) > a(f) when w E Qf and

 Imw >-oo.

 (4.2.2) 0, oo E Dom(14z), 1Zf(0)-0, 7tf (00) = 00; 7zf (Dom(1Zf) n c*) c

 C*;

 1zf(0)=exp(-27ri (7))7 henceor(1Zf)-- (z) (mod2).

 (4.2.3) If W,W/ E Dom(f), 1zf(X(W)) = T(W/) and larg(w'+2a(a)-w)l <

 2er/3, then fn(ff(W)) = ff(W/) for some n > 1.

 Moreover if U, U' are connected subsets of Dom(f) such that Rfm(r(U)) c

 r(U') for some m > l, fflU, rlu, are injective, and | arg(w'+20ff(ff) w)l < 27r/3

 for w E U, w' E U', then there exists an n > m such that

 fn=(Rfo(r|U) 1O1Zf ouro(fflu) 1 onff(U).

 (4.2.4) With respect to the topology defined in Section 4.0,

 nd e27ri/a(f)1tf gfo when f E Xo n Fl and F fo

 Denote gfo = T2-1 0 gfo C) 7T2 and 1tf = r2 1 o 7tf ° 7r2. Then

 7zf + (+) £fo when f E J\No n ZF1 and F > fo.
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 (4.2.5) To study the quantitative aspect, it is often more conarenient to

 work with Wf-Co 1 0 ff.

 For t7 E EtX define D(n) = {w E C | Iw-inl < 1n1/4} and D'(n) -

 {w E C I Iw - inl < 17ll/2}.

 As a corollary of the above facts7 we have:

 For large 7 > O, there exists a neighborhoodJ\Sl(77)(c J\No) of fo, depending

 on 77) such that if X E f1(77) n 51, then wf is defined and injective on D(in)v

 the image wf(D(in)) is contained in D'(in) and 2 < l(9)'l < 2 on D(in).

 4.3. Remarks.

 (4.3.1) For f E s with 37r/4 < argoe(f) < 57r/4) instead of being in 51,

 we can obtain a similar result with the following changes:

 The lower end of ¢::/Z corresponds to the fixed point O;

 In (4n2n1) ff(W) (f) (W E Qf and Imw +X), ff(W) > 0 (W G Qf

 and Imw -oo);

 In (4.2.1), (4.2.3) and (42.4), use instead of ;

 In (4.2.2), 1tf(X) = exp(-2Xt).

 (4.3.2) The above facts suggest the following factorization:

 7tf = f 1/<> ° (Rf + ) '

 where T l/^(w) = w-1/oe on ¢::/Z, a oe(g) Here (1tf + (>) is a nonlinear

 map defined only in a subset of ¢:/Z, but approaches a fixed map Efo, whereas,

 T-1/<x is an isomorphism of ¢/Z, but depends:sensitively on f, since at(f) O as f fo. Therefore if {fn} is a sequence in Xo n 51 such that fn fo and l/ae(fn)-kn c as n oo, where kn are integers, then there exists a limit

 nlim 87Z,jFn = Efo + C?

 since we are considering the maps in C/z.

 The Ecalle transformation Efo was originally defitled as a map between

 two different spaces-(a part of) CO and C+. So there is, a priori, no meaning

 as a dynamical system. Howearer the above observation implies that for any

 c E ¢D, the map - -

 E ( )

 on ¢::/Z can be realized as the limit of return maps of fn.

 (4.3.3) In [DH] and [L], they use fo o 7; o o where Zc(Z)-z + c (c E ¢:),

 instead of Efo + c = X o 4XO o 90. Then for a sequence {fn} as above, there

 is a sequence of integers kn such that epo ° Zc o bo is the limit Of fkn on the

 parabolic basin 13.

 (4.3.4) A more accurate statement of (4.2.3) is as follows: There exists

 a particular lift of Rf to the universal cover, GZf: 1r-l(Dom(Rf)) > C, such
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 that if w, w' E Dom(f) and 1Zf (w) + n = w', where n, m > O are integers,

 then f n( f f (W)) = Wf (w')

 5. Global behaviour of the Ecalle transformation

 In this section, we study the property of the maximal extension of the

 Ecalle transformation for a certain class of maps Zo. As in the previous section,

 we suppose that go E n is a function satisfying gO(O) = 1 and gO'(O) = 1. So

 we have Sno and Efo as in the previous section. Let us denote 9o = EfO.

 5.1. Inverse orbits and fo.

 Definition. For a mapping f, a sequence of points {z;}j°°O is called an

 inverse orbit (of zo) for f, if z; E Dom(f) and f(z;) = zj-1 for j > 1.

 LEMMA 5. 1. For w E Dom($no), let z; = fo(w-j) (j = 0v1) ) Then

 {Zj}jOo-o is an inverse orbit for fo converying to 0. This gives a one-to-one

 correspondence between Dom(qno) and the set of inverse orbits converying to 0,

 except the orbit z; = O (j = 0,1,. ..).

 Moreover if z; (j > 1) are not critical points, then fo(w) 7& O.

 Proof. If w E Dom(qno), then w-j E Dom(o) (j = 0,1,...) and

 fo(w-j) O by (4.1.2); so the first statement is obvious. Let {z;} be an

 inverse orbit converging to O and suppose z; 7& 0 for some j. For large j, say

 for j > jo, z; belongs to Q+UQ_ (see (4.1.1)). But fon tends to O uniformly on

 Q+, so there exists jo such that z; E Q_ for j > jo Let w = (Sno|2o)-1(zj) + j

 (j > jo). It is easy to see that w does not depend on j > jo and corresponds

 to the inverse sequence {z;}. If w and w' give the same inverse sequence, take

 j > O such that w-j, w'-j E Qo) then we have w = w' by the injectivity of

 Sno on 20.
 The last statement follows from the facts that fo(W) = fo o (po(w-n) for

 w E Dom(qno) and that Sno 7& 0 in Qo. O

 5.2. Imrnediate parabolic basin.

 Definition. Let ( be a parabolic fixed point of an analytic function f. A

 connected open set B c Dom(f) is called an imrnediate parabolic basin of ( for

 f, if B is a connected component of the parabolic basin of ( for f (see (4.1.1))

 such that f(B) = B and f: B B is proper (hence a branched covering).

 For a rational map, a parabolic periodic point always has an immediate

 parabolic basin and it coincides with the previous definition (§1). However, a

 parabolic fixed point for analytic maps in general may not have any immediate

 parabolic basin in this sense.
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 LEMMA 5.2. Stsppose that f E JF and f'(O) = 1, f(k)(O) = O (1 < k < q),

 f(q+l)(0) 7& 0 (q > 1), i.e. q + 1 is the order of f(z)-z at 0. Then f has

 at rnost q irntnediate parabolic basins of 0, each of which contains at least one

 critical valtse of f, except for a parabolic Mobitbs transfortnation. Moreover if

 an irntnediate parabolic basin contains only one critical point (or critical valtse),

 then it is sirnply connected.

 Proof. This is a well-known argument for rational maps. Let us examine

 it briefly. By local analysis as in Section 4.1 (case q = 1) (see also 07 or

 [Mi]), it can be shown that there exist q disjoint simply connected open sets

 V(1),...,V(q) (c Dom(f)) (called "attracting petals") such that 0 E AV(i);

 f(V(i)) c V(i) U {O}; f is injective on V(i); a point z E Dom(f) belongs to

 the parabolic basin of 0 if and only if f n(z) E UiV(i) for some n > O. The orbit

 spaces V(i-)/ (where z f (z) if z, f (z) E V(i)) are isomorphic to ¢:/z.

 Let B be an immediate basin of 0, and Bt the parabolic basin. By the

 above, B n uiv(i) 7& 0 and UiV(i) c Bt. Since B is a component of Bt) B

 contains one of the V(i)'s. So there are at most q immediate basins.

 Define Vn(i) (n = 0,1,...) inductively, as follows: Vo(i)-V(i); if f(Vn(i)) C

 Vn(i)) Vn(i)l is the component of f-l(Vn(i)) containing Vn(i)) which exists and

 f(Vn(i)l) = Vn(i) C Vn(i)ls Itiseasytoseethatforeachi, UnzoLn(i) isa

 component of B'. Now suppose B = UnzoEn(i) is an immediate parabolic basin;

 hence by definition, f: B B is a branched covering. If B contains no critical

 value or no critical point, then f: Vn(i)l > Vn(i); hence fn: Vn(i) > V(i) are

 covering maps; therefore they induce a covering map B - ) V(i)/ . Moreover

 the Vn(i)s hence B are simply connected. Therefore B must be isomorphic to

 ¢: and f is a Mobius transformation.

 Similarly? if B contains only one critical point or critical value, then one

 can show inductively that Vnt) are simply connected; hence so is B. Cl

 Let us go back to the fo defined at the beginning of this section. Suppose

 that fo has an immediate parabolic basin B of 0. The above argument applies

 to V(1) = Q+, hence B is unique and contains Q+ (see (4.1.1)). Let Bt be the

 (whole) parabolic basin of 0, and define B = (po 1(B) and Bt = (po 1(B'). By

 (4.1.4), {w | | Imwl > r70} c Bt. Since for any w E Bt there is n > O such that

 Tn(w)B,wehave

 {w t | Im w| > r70} C B.

 Denote by B1b (resp. by Bt) the component of B containing {w t Im w > }

 (resp. {w | Imw <-r7}). (The superscript "u" stands for upper, and "t" for

 lower.) In general, B1b and Bt may coincide. Obviously TB1b = B1b, TBt = Bt.

 Then define Bu = 1r(B1%), Bt = 1r(Bt).
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 5.3. Covering property of go.

 Definition. Let Fo be the set of functions f E F such that f'(0)

 = 1, f"(O) = 1 and f has an immediate parabolic basin which contains only

 one critical point of f. Then the basin is automatically simply connected by

 Lemma 5.2.

 PROPOSITION 5.3. Let fo e Fo and B, RU, Be as before. Then

 go: BU U Bt --+ Q* is a branched covering of infinite degree, ramified only
 over one point v E C*.

 The sets BU, Bt, Bu U {0}, Bt U {oo} are simply connected, and Bu n Bt
 =0.

 Proof. Let us first show that (o: B - : C is a branched covering. In

 fact, bolQ+ is infective; hence Po: f&-n(Q+) n B -+ T-n4ho(Q+) is a branched
 covering ramified only over the translations of the image of the critical value

 by 4o (n > 0). So it follows that 4>o on B is a branched covering.

 Now let us show that poo: Bu U Bt -- B is a branched covering. Let z be a

 point in B. Take simply connected neighborhoods U, U' of z such that U C U'
 and U' contains at most one forward orbit of the critical point. Let z' be a

 point in po- (U) n (bu U Bt). Let Un' be the component of f-n (U') containing
 o(z' -n) (n = 0,1, ... .). Then for some m > 0, U' (n > m) do not contain the
 critical point. Hence there exist inverse branches f (jU) U/ - U+k of fo.

 The family {f fj } is normal, since it avoids at least three values (O and the
 orbit of the critical point). Moreover it converges to 0 uniformly on compact

 sets, since it does so near oo(z' - m). Hence there exists an n > m such that

 = f(-n+m) (Ur) C Q- = po(Qo). Let V = Tnfo(poIQ0)- 1(Un). Then z' E V
 and (poIv = (fonIun) o (oIQ) oT-. So go: V -- U is a branched covering with
 at most one critical point, since U contains at most one critical orbit. This

 shows that each component of po-' (U) is either unramified or ramified over a
 common point in U; hence (op: Bu U B' B is a branched covering.

 Therefore Efo = 4 oSooo: BUUBe -- C and &fo: BUUBt e C* are branched
 coverings. Moreover it is easy to see from the above that gfo is ramified only
 over v = ir o 4Xo(c), where c is the unique critical point.

 Now let U be a component of fg-&(fo(Q+)) contained in B, different from
 Q+. Then we have fon(U) n U = 0 (n > 1). Hence for any component V of
 po- (U), 1rlv is infective (by the functional equation for Po). On the other
 hand, ir o 4Po: U -: C* is infinite to one, since ir o 4ol = ir o 4Xo1Q+o foIU and
 ir o 4Xo n is infinite to one. Hence go is of infinite degree.

 Let us show the simple connectivity of Bu (or Be). If -y is a closed curve

 in RU, -y' = T-ny C Qo for some n > 0. Let W be a region bounded by Wo(-y),
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 not containing 0. Since both the immediate basin B and Q = fo(Qo) are

 simply connected and do not contain 0, we have W c B n Q_. It follows that

 wy' is trivial in Bu and so is wy. Therefore Bu is simply connected.

 Therl B8U{O} (or BtU{0}) is also simply connected, since the fundamental

 group Of Bu is generated by a curve around 0, which is trivial in BU U {0}.

 Finally, let us show that Bu and Bt are different components of B. Sup-

 pose Bu = Bt. Then Bu-Bt = C, since Bu and Bt are invariant under

 T, simply connected, and contain half planes. Therefore B contains Q+ and

 Q_ = fo(Qo)) and the union is a punctured neighborhood of 0. But B is a

 simply connected, punctured neighborhood of 0, so that B _ ¢:-{0}. Hence

 fo is a parabolic Mobius transformation, since it is analytic on ¢: and has no

 periodic point in B. Then fo has no critical point and this contradicts the

 assumption. Thus we have Bu n Be = 0, hence Bu n Be = 0. O

 5.4. Iteration of go. By the normalization in (4.1.5), we have g0(0) = 1.

 So 0 is again a parabolic fixed point of go.

 LEMMA 5.4. Let fo E fFo and 9o-£fo. Then g0'(0) 7& 0 and 9o has

 a simply connected immediate parabolic basirt which contains only one critical

 point. In other words, 9o belongs to Zo after a linear scaling of the coordinate.

 Moreover 90n(V) (n-0,1, . . .) are defined and 90n(V) -> O (n -----> x), where v is

 the unique critical value of 9o.

 Proof. Obviously go(Z) g z. So there exist attracting petals V(i)

 (i = 1, . . ., q) for 9o as in the proof of Lemma 5.2, where q+ 1 _ ord(go(z)-z).

 Since gb: BU U Bt > CF is a branched covering, we can also construct V(i) and

 go: Vn+1 V(t) is a branched covering with at most one critical point. Then

 V(i) are simply connected and deggolv(i) (n = 0,1,...) are eventually con-

 stant. It follows that the Bi = UiV(i) are simply connected and go: Bi - > Bi

 is a branched covering; with at most one critical point. Hence the Bi are im-

 mediate parabolic basins. By Lemma 5.2, we have q-1, i.e., g0'(0) ¢ 0. The

 rest follows easily. O

 6. The construction of a hyperbolic subset

 In this section, we prove Theorem 2 in case the multiplier is 1 (hence

 q = 1, p = O). We will see in Section 7 how to modify the proof in other cases.

 To construct a hyperbolic subset as in Section 2, we trace certain inverse

 images of the fixed point 0 using fo, £fo) fo, E9O, etc., then analyze the per-

 turbed maps along these orbits.

 Step 0. fo and {z;}. Suppo$e fo is a rational map and fo e So. There

 exists an inverse orbit (see §S for definition) {z;}?=0 for fo such that zo = °,
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 z; 7& 0 (j > O) and z; > O (j > oo). In fact, since O is in the Julia set, there is
 an inverse image of O near O (see [Bl], [Mi]). This point must have an inverse
 sequence coverging to 0, otherwise it would belong to the parabolic basin (see
 the local analysis in j4.1).

 Step 1. 9o and twj}, twj}. By the construction in the previous sections,
 we obtain fo and 9o = £fo. Let v be the unique critical value of go.

 By Lemma 5.1, there exists a unique wo E Dom(o) corresponding to the
 inverse orbit {z;} such that fo(wo-j) = z;. In fact, note that zo = O does not
 belong to the parabolic basin of O; hence 7r(wo) ¢ Dom(go) by the definition
 of 9o

 LEMMA 6.1. For given wo E (C*, there exist two inverse orbits twj}j°°O,
 tw; } j°° 0 of wo for the map 9o such that:

 Wo = WO; wj, Wj > o (j > 0O); tWj}jOo-l n twj}j°°1 = 0; and Wj, Wj (j > 2)
 are not critical points of go. Moreover if wo ¢ Dom(go), w1, w1 are not critical
 points.

 Proof. First note that go-l(wo) can contain at most one periodic point.
 It is easy to see that if go-l(wo) contains two points of {gOn(v) I n > O},
 then one of them must be periodic. Hence t(go-1(wo) n {9On(V) I n > O}) < 2.
 So we can choose two distinct non-periodic points w1 and w1 in (go)-1(wo)-
 {90n(V) I n > O}, since 9o is a branched covering of infinite degree.

 Since O is a parabolic fixed point of go) there exists an inverse orbit tw^!}j°° l
 for 9o such that w^! > O as j > O, w^! 7& 0 and tw^!}j°° l n {(90)n(U)}ono=o = 0.
 By Lemma 5.4, gon(U) > O (n > oo). So we can take a simply connected open
 set D c (C*-{gOn(v)}°n°=O containing wl, w1 and w1'.

 Since 9o is a branched covering onto (C* ramified only over v, for each

 j > 1, there exists an inverse branch Gj: D (C* of 90 such that 9O o Gj = idD

 and Gj(w'l') = w^'+l. The family {Gj} is normal, since it omits at least three

 values 0, oo and v. As w:^'+1 = Gj(w'1') > O (j > oo), Gj O on D.

 Now define wj+l = Gj(wl) and w^+l = Gj(wl). It is easy to check that
 these sequences have the claimed properties. C1

 Applying this lemma to wo = 7r(wo), we obtain tw;}, tw:^} as above.

 Step 2. h and tWj}. As 9o E JFo) one can apply the construction of
 Sections 4 and 5 to go. Denote fo = fo,gO ("o" corresponding to go) and
 ho = £90, for simplicity. As in the previous step, by Lemma 5.1, there exist

 (o,4o E Dom(fO) corresponding to twj}, tw^}, respectively. Hence wo = - - - -

 fo(4o) and wO = fo((0) Moreover fO((o) 7& 0 and +0(40) 7& O. The following
 is the key lemma in the proof of Theorem 2.

 LEMMA 6.2. Let b > O. There exist: a neighborhood 2 of ho, where
 O,oo E Dom(ho); two disdoint discs W,W' c (C/2 containing (o = 7r1((o),
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 40 = 7r1((0) respectively; and positive constants Co,Cl,C1, with the following

 properties.

 If h1 E f2, yB E (C/2 with } Im,dl < b and

 h(() = 7r2-1 o h1 o 7r2(()-p (for ( E Dom(h)-s2-l(Dom(h1)) c /z),

 then there exists a sequence of disjoint topological discs Wj c (C/z satisfying:

 Wo = W or W';

 Wj c Dom(h), h(Wj) = Wj_1 and hlwi is injective (j > 1);

 for any K > O, Wj c {4 E ¢:/z I I Impl > K}, for larpe j;

 diamWj < 1/2, dist(Wj,Wj+1) < Co) and

 C1 < {(hi)'l < C1 on Wj, for j > O.

 Proof. Let us first consider h = e2XiPho with IIm>BI < b, and h = 7r2-l o

 h o 7r2. We denote by Bu and Bt, as in Section 5, the upper and the lower
 - - -

 domains of definition of 69O (not for 9o = Efo!) and also define Bu = 7r(BU)

 and Bt = 7r(Bt)

 Since Bu and Bt are disjoint, at least one of them, say BU, does not

 contain the unique critical value of h. Hence, by Lemma 5.3, the local inverse

 of h near O can be extended to Bu U {03. So we have an analytic function

 H: Bu U {0} > Bu U {O} such that h o H = id, H(O) = O and [H'(O)[ < 1 by

 Schwarz' lemma. Then it is well known (see [Mi]) that there exists a linearizing

 coordinate L(z) such that L is conformal near 0, L(O) = O, L'(O) = 1 and

 L o H(z) = H'(O) L(z) near 0. Passing to the ¢:/2 model, where we denote

 1

 H = T2-1 ° H o r2, we obtain the following:

 (a) There exist constants yo E Ill, C1', C2' > O and an analytic function

 L: Y = {( E ¢:/2 [ Im > yo} > ¢:/2 such that in Y, H is defined, O <

 Im(H(()-() < C1', L o H = L + a, where a = 21 i log H'(O) and Im a > O, and

 C2'-1 < IL'l < C2'.

 Note that in the case where Bt does not contain the critical value, we

 obtain a similar result with Im( ) replaced by-Im( ).

 As for (o and (O, at least one of them, say (o) is not the critical value. So

 pick 41 E h-1((o) XBu and let (j = Hi-1((l) (j > 2). Then there exists jo > 1

 such that (jo E Y.

 (b) There exist jo > 1, a small disc neighborhood Wo of (o (or (0) and

 its inverse image W1,.. . ,Wjo such that Wj (j = O,.. . , jo) are disjoint, are

 contained in B8, and contain no critical points of h; h maps Wj onto Wj_

 bijectively (j = 1 , . . ., jo) ; Wo n Y = 0 and Wjo c Y.

 Note that the properties (a) and (b) are stable under a perturbation, i.e.,

 (a) and (b) still hold for h = e2Xip h1 with h1 near ho and ' near , and

 the constants are uniform in the neighborhood. Then, by the compactness

 of {,B E C/2 | [Impl < b }, there exist a neighborhood N-2 of ho disjoint

 discs W, W' in ¢:/2 containing (o) (O, respectively, such that for hl E JV2 and
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 ,B with IIm,Sl < b, (a) and (b) hold with uniform constants and Wo = W
 or W'. Moreover we may assume that there are also uniform estimates for
 (hi Iwj)', diamWj, dist(%, Wj+1) (O < j < jo). Now define Wj = Hi-i° (Wjo)
 (j > jo). Then we have uniform estimates on (hilwi)' etc., since l(hi-i°)'(()l =
 L'(()l IL'(hi-i°(())l-1. The rest of statements can be checked easily. O

 Step 3. Many Ui 's. The results in Section 4 apply both to fo and to go.
 So let us denote the objects ff, 7Zf, J\Al(r1), etc. in Section 4.2, by (pf, 7tf,
 J\41 (fo, 71) for fo, f, and +9, 1Zg) JV^1 (go, 71) for go, 9.

 Let Wj be the discs in Lemma 6.2. Then there exists a constant ny > O
 (depending only on Co3 such that for large 71 > O, if f E JV^1(fo) r1) n ZF1 and

 g E N1 (go) e2T) n 51, then there exist disjoint topological discs U1, . . ., UN,
 where N > ny71(e2T)2, satisfying:
 Ui c (pf(D(r1)) c D'(%1);

 Vi = X ° (pf ID(n))-1(Ui) C Fg(D(%//)) c D(r1/), where 711 = i:e2Tn;
 Wj(i) = 7rl ° (+slD(n/))-l(Ei) for some j(z) E N.

 Proof. Let us denote (pf TO-1 O Wf, ff = T0 1 0 ff and 7r* = T0 1 0 7r. By

 Lemma 6.2, the Wi's tend to the upper or lower end of ¢:/z. Suppose they tend
 to the upper end, and let 71' = e2ti. (In the other case we take 711 =-e2Xi.)

 Then the disc D(r1') contains entirely at least aI(n1)2 components of the
 7r1 1(Wi)'s for some constant ny' > O, since the area of D(r1') is (7r/16)(71')2. By
 (4.2.5), fg maps these components into D'(') injectively. The inverse image
 of D'(r1') by 7r* consists of components, each of which is coxltained in a "box"

 {z E ¢: l n < Re z < n + l, 7 + 2 log 2 < Im Z < a7 + 2 log 2 }

 for some n E 2. So D(r1) contains at least /3 of these components, for n
 large. Finally (pf maps D(r1) into D'(r1) injectively. As for the components of

 l (Wi) 's, they have at least (7//3)n(n1)2 entire preimages by tl O (+g lD(n,) ) -l O

 1r* ° (Pf ID(n) )-1 @ And this proves the above assertion, since (+g ID(D') )-1 O T* =
 (+g ID(D') ) 7r@ O
 Let us denote Ui* = ro-l(Ui), Vi = (fflD(n))-l(Ui), Vi* = tO-l(Vi). Then

 we have maps

 r-1 (9f ID(t7)) - T* 7rlO(+9 ID(t7/))
 Ui > Ui* > Vi > Vi* > Wj(i)

 and the estimates on the derivatives

 2 < |[((FflD(n)) ] | < 2, 2 < |[7rl o (+g|D(n/)) 1]'| < 2,

 1 2 < l(zllU )l < 9n2 and xe2Tn < 1( Ivi) | < 3

 For the last estimate, use the fact that Vi is contained in a box as above.
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 Step 4. From Wo to U. There exists an integer k > 0 such that the zj
 (j > k) are not critical points of fo. Let 7r(&1) be the local inverse of Xr near

 wo such that 7r(-1) (wo) = o- k. Similarly let 7r( 1) be the local inverse of 7r

 near Co and Co such that 7r(1)() = Co and r( 1)(4.) = foe
 Note that in Lemma 6.2, we may take W, W' smaller without changing

 the statement. By Lemma 5.1, we have p'(ilvo - k) # 0, 0'(bo) # 0 and
 00o((o) 0 O.

 Then it follows that we can change W, W' smaller, so that there exist

 a small neighborhood U of Zk, neighborhoods A3(fo), f3(go) of fo, go and
 constants C2, C02 such that for f E AF3(fo) n F1 and g E x3(fo) n 1,

 Wf o 7r(-1) 0og 0 A- 1) is defined and injective on W and on W';
 both of the images of W and of W' cover U;

 the derivative has a bound C2 < j(pf o7r( 1) ofg7rir '))/I < C2 on WUWI.

 Step 5. Last k iterate. Let U be as above and v = degZk fk. Then it can
 be easily seen that there exists a neighborhood A4(fo, 77) of fo, depending on
 large y > 0, such that for f E Af4(fo, 27), there exists an open set U' C U such

 that fk: U' - ro(D'(77)) is bijective and

 C3Q)<I(f)I<03.Q) on U'

 where C3, C3 > 0 are constants independent of q.

 Step 6. A hyperbolic set Xf. Let fo be a rational map belonging to the
 class So, b > 0 and y > 0 large. First note that if an analytic function is close

 to fo, then it can be conjugated to a function in Y close to fo by a translation
 near id. So for Theorem 2, we only need to consider the functions in Y.

 Suppose that f C Y is close to fo and

 ce(f)=
 al a2+

 with large positive integers a,, a2 and /8 E C satisfying 0 < Re / < 1, IIm j
 < b. Other cases with different signes in the expression of oa(f) can be treated
 similarly, by using the complex conjugates or by reformulating the procedure

 for the lower end of C/Z instead of the upper end. See Remark (4.3.1).

 If f is close to fo and al is large, then Iarga(f )I < xr/4, 1Jf is defined
 and e2,i/,(f)7Zf is close to g9- fo (or 1 + is close to Po = Efo). Let
 us denote g = 7Zf. If, moreover, a2 is sufficiently large, then g itself is close
 to go, I arg oa(g)l arg a2+ < t/4, h = Zg exists and hl -
 e2 "Oh is close to ho= Eg. (Note here that, by (4.2.2), oa(g) -1/M(f)
 1/(a2 + /) (mod 2).) Therefore, for f close to fo, al, a2 large, we have f E

 KI(fo,27) n N3(fo) n N4(fo,77), g E Kl (go,j7I) n N3(go) and hie E AF2 In
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 */ 2 ~~~~~~~~~~the first Ecalle cylinder
 /~~~~
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 FIGURE 7.

 particular, we can apply Lemma 6.2 to h = o h a 7r2 to obtain Wj. Then
 let Ui, U be as in Steps 3 and 4.

 Now let us consider the following sequence of maps:
 (*) _

 U~~~~~~( r ID ('R ,~7)) Vi *7r0(10*1 , 7')-l

 jhj(i)

 fk (Of lr(1) 0ro l[g {
 fk(U) ~ U - V~

 where V =bg o7r )(Wo) and U' = Pf oi7r(-1)(V). Note that all maps except
 the last fk are injective. Write U = To(D'(?7)) and let U' c U be the set
 obtained in Step 5. Then tracing the inverse image of U via U' by the maps
 (*), we obtain U% c U%.
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 Moreover the composition of (*) on Ui is equal to fni for some integer

 ni > 1 (i = 1, . . ., N). In fact, by (4.2.3), gmi = f907r(-1)ohi(i)o7rlo(+ 1 )-1

 on Vi, since | arg(zt + -z)l < 27r/3 for z E D(71t), z' E 7r( 1)(W U W'), if

 177'1 is large. Similarly, we have f n* = (pf 0 7r(-l) 0 9m* o T ° ((#f ID(77))-1 on Ui,

 for some ni > 1. And recall that (pf = zrO 1 o (pf, 7rF = zrO 1 o 7r, etc.

 Thus we -obtained ( f, Uv Ui) as described in Section 2-, i.e.t Ui C U such that

 the Ui's are disjoint, simply connected subsets of U, fn*: Ui - > a is bijective

 (i= 1,...,N).

 Now, combining all the above estimates, we have

 N > )z77(e27r7R)2,

 and

 l(fn* lu )'I < C77l+l/lJe27rD?

 where ty and C are positive constants independent of r7.

 Hence by Lemmas 2.1 'and 2.2, we have a hyperbolic subset Xf for f and

 an estimate for the Hausdorff dimension

 o$ = H-dim Xf > log ny + log r7 + 47r71
 - log C + (1 + -) log71 + 27r71

 The right-hand side tends to 2 as r7 oo. Thus we have proved Theorem 2 in

 the case go(0) = 1. 0

 Remarks. (i) Note that the maps in (*) other than fkluv T* C0 1lu* have

 bounded derivatives, and that the effect of 7rF dominates others.

 (ii) The procedure NFo 3 fo | ) 9o = EfO E fFo can be considered as a

 renormalization. It it related, as we have seen, to the return map of J near

 fo. One can interpret 7r o (p0 1 as a correspondence between the phase spaces of

 fo and "its renormalization" go. Also, it has an exponential effect, because 0

 moves points extremely slowly near 0 and'requires a large number of iterates

 for the return map. In this sense, the renormalization procedure is essential in

 the above estimate.

 (iii) It will be instructive to make a "caricature" (proposed by Curt Mc-

 Mullen) to understand the situation. For simplicity, assume k = O (zo = 1), and

 pretend that the maps in (*) other than z0 1 and 7r* were afflne. In particular,
 A

 h is supposed to be a translation on (C/z.' So it produces a one-dimensional

 array of discs Wj; then 7r1 1 unwraps them to a two-dimensional array. These

 discs are squeezed by (7r*)-1, and finally inverted by mo. One can show that

 an invariant set produced by this system has dimension two.

 (iv) Note that the map fo need not be a rational map. In fact, it is enough

 to assume that fo E NFo and 0 has an inverse orbit {z;} as in Step 0.
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 FIGURE 8.

 7T. Parabolic fixed points with multiplier $ 1

 Let us consider an analytic function fo(z) near 0 such that

 fo (0) = 0, fo (0) = exp(2irip/q),

 where p, q E 2, q > 1 and (p, q) = 1. It is known that if f (z) g z, then it has

 an expansion of the form

 fo (z) = z + avq+ 1zq+l + O(zvq+2)

 where v is a positive integer and avq+l $& 0. In the following, we assume that

 v = 1; in other words, (fo)(q+l) 5 0. Then, as before, we may assume that
 aq+1 = 1. The dynamics of fo and its perturbation are shown in Figure 8.

 To analyze the bifurcation, we need to consider q incoming and q outgoing

 Ecalle cylinders CO' (k c Z/qZ); see Figure 9. Now the Ecalle transfor-

 mations map the upper end of C0' to that of CO+, the lower end of CO' to
 that of CO1ll.

 Consequently, the statements of Sections 4-6 should be changed as follows.

 We only note the part which is to be changed.

 Changes in Section 4 (4.1).

 (4.1.1) There are 2q regions Qk), q (k) (k E Z/qZ) instead of two regions
 A+ A-;

 Uk0()U 0 U {O} is a neighborhood of 0, on which fo is infective;

 fo((k)) c (k+P) U {O} and fo() U {O}) D (k+P)
 q (k) Q(+) n is nonempty and connected, if j = k or j = k - 1, it is empty

 otherwise;

 fon -+ >0 as n -* ox uniformly on +

This content downloaded from 129.49.5.35 on Mon, 20 Feb 2017 06:03:43 UTC
All use subject to http://about.jstor.org/terms



 255 MANDELBROT SET

 fo fq

 FIGURE 9.

 The parabolic basins t3(k) are defined to be Unzof-nq(Q(k)); then a point

 belongs to Uk]3(k) if and only if it has a neighborhood on which fn (n = 1, 2, . . .)

 are defined and fnq 0 uniformly as n x.

 Let us fix a k E 2/q2.

 (4.1.2) 90, fo) Q_ should be replaced by fok), goq) 0(k). As for 90, define

 9(k)*(W) =- ( j

 then
 fok)*(W)=w+O(w q ).

 (4.1.3) o) 13, fo) Q+ are to be replaced by bok)) B(k)) gOq) 0(k).

 (4.1.4) Let t3(k,u) = (tpok) )-1 (t3(k) ) and t3(k,) = (ok) )-1 (k3(k-1) ) Then

 (k,u)) t3(kt) are invariant under T and 13(kXU) D {W | Imw > 0}, t3(kt) D

 {w | Imw <-rBo} for some 7/0 > °

 Define £( X ) ,8(k,u) > < £(kt) Fti(k,e) C by

 50 bo ° wo 5 and £fk't) = b(k-1) (k)
 They satisfy

 £50 (w + 1) = £fo' )(w) + 1 for w E t3(k,U) etc;

 £fok'U) = 1r o £fok'U) o 7r-l: 1r(B) U {O} > C is well-defined and analytic, and

 £fok') (O) 7& O. Similarly, £fok't) = 7r o £fokXt) o s-1: 7r(1S) U {oo} C-{O} is

 analytic, and £fOk't) (oo) 7& O.
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 In 4.2. Perturbation. Let

 JF1 = { F C F § f'(O) = exp (27riP ) with oe 7& 0 and f argotl < 7r/4},

 and denote

 f'(O)=exp (21riP+ (f)).

 The periodic points of p of period q near O are labelled so that

 (k)(k) = (-21Fiq0t(t))l/qe2Xik/q(l + o(1)) as f > fo,

 where I arg(-21riat( ( ))l/ql < 1r/q; then q ((J(k)(f)) = C(k+p)( p ).

 The functions ff, Rf, Efo are to be replaced by f(k), %(k,U), (okU). The
 functionnal equation for f f becomes

 9(k)(W + 1) = fq O ff (W).

 In (4.2.3) and (4.3.4), fn is to be replaced by fnq+r) where r is an integer such
 that O < r < n and rp---1 (mod q). Finally

 W(k)* (W) =-

 satisfies (4.2.5).

 In 4.3. Remarks: (4.3.1) If a E s satisfies 37r/4 < argoe(f) < 57r/4, then
 we use 14(kt)) g(kt) instead offR(k,u) g(k,u)

 Changes in Section 5. Let fo be as in Section 4. Then fo has q parabolic
 basins 8(k) ( E 2/q2). Let Zo be the set of such functions go E n having an
 immediate parabolic basin B(k) in each t3(k), containing only one critical point
 of goq Let B(kU) be the component of 8(kU) containing {w j Imw > no}) and
 B(k,U) = 1r(8(k,U) )

 Then 9o = E(krU) B(k,U) * iS a branched covering of infinite degree,

 ramified only over one point (Proposition 5.3).
 Other statements are similar.

 Changes in Section 6. Note that 9o is in 50 in the sense of Section 4;
 that is, 90(0) = 1. So we only need to change ff as above and zo-1lui to

 z

 qzq

 Hence in Step 3, the estimate on the derivative of zo-1 should be replaced by

 cnq+ < (zo lUt) < cnq+l,
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 and in Step 6, the estimate on (f lni u)' becomes

 I (flilul )I < Cql/e27.

 This is enough to prove that H-dim Xf -+ 2 as 7 -+ 00.

 Appendix. Proof of the properties of Ecalle cylinders

 In this appendix, we give the proof or comments for the facts which were

 stated in Sections 4 and 7. Note that the facts in Section 4.1 can be found in

 [Mi] and most of those in Section 4.2 in [DH]. We complete 4.2 by introducing a

 new coordinate, which makes clearer the relationship between the return map

 and the renormalization of functions with irrationally indifferent fixed points

 (cf. Yoccoz [Y]).

 A.1. Coordinate changes. Let fo(z) = z + z2 + * be as in Section 4.1.
 We introduce a new coordinate w by z =-1/w = To(w); then fo corresponds
 to the map Fo of the form

 (A.1.1) Fo(w) = w + 1 + O(1/w).

 For functions near fo, we introduce a new coordinate by the following.

 LEMMA A.1.2. There exist a neighborhood K' of fo in T and a neigh-
 bourhood V of 0 in C such that if f E K' then V c Dom(f) and f(z) can be
 expressed as

 (A.1.3) f(z) = z + z(z -- c)u(z),

 where a = a(f) is a point in V and u(z) = uf(z) is a nonzero holomorphic
 function defined in a neighborhood of V. Hence 0 and a(f) are the only fixed

 points of f in V. Moreover u(fo) = 0, uf0(z) = (fo(z) - z)/z2, e2T7ia(f) -

 f '(0) = 1- (f )uf (0); hence

 (A.1.4) o"(f) = -27ria(f)(1 + o(1)) as f fo.

 The correspondences f f-4 a(f), f F Uf(z) (with Dom(uf) -V fixed) are
 continuous (with respect to the topology defined in Section 4.0).

 The proof is left to the reader.

 For a function f E K' with a(f) #,( 0 (i.e. a(f) #& 0), let us introduce a
 new coordinate w E C by

 (A.1.5) Z = Tf(W) o- e2lriawv
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 where cr = a(f) and oe = oe(g). Define the map Ff (w) by

 (A.1.6) Ff (W) = w + 21rioe log (1- 1 + ( ) ) with z = Tf (W)
 and

 Tf (w) = w--.

 Here Ff(w) is defined for w such that lau(z)/(1 + zu(z))l < 1/2, and the
 above formula defines a single-valued function using the branch of logarithm with-7r < Imlog( ) < lr.

 LEMMA A.1.7 (properties of Ff, orf and Tf). There exist Ro > O and a
 neighborhood X c ' of fo such that if f E X and a(f ) 7& O, then:

 (i) The map orf: C > ¢::-{O,(f)}, w -) z = orf(w), is a universal
 covering, whose covering transformation group is generated by Tf; orf (w) > O

 as Im ogw oo, and rf (w) a as Im ogw >-oo;

 (ii) If

 w C- ( -U TfnDRov where DRO = {W' | |w'| < Ro}, nz

 then orf (w) E V and lau(z)/(l + zu(z))l < 1/2; hence (A.1.6) is well-defined and moreover satisfies

 lFf(W)-(w+1)1<4,lFf(w)-11<4.

 Now, Ff (w) = w + 1 + O(l/w2) as Imogw oo;

 (iii) f o orf = orf o Ff and Tf o Ff = Ff o Tf;

 (iv) When f > fov orf (w) tro(w) uniformly on {w | | Re(otw) | < 43 } \DRO

 and Ff (w) > Fo (w) uniformly on (S-UnTfnDRo .

 The proof is immediate by a computation and is left to the reader.

 A.2. General construction. For bl, b2 E (: with Re bl < Re b2, define

 Q(bl, b2 ) = {z E ( j Re (z-bl ) >-j Im(z-bl ) |, Re (z-b2 ) < | Im(z-b2 ) l }

 If bl =-oo (resp. b2 = oo), the condition involving bl (resp. b2) should be removed.

 PROPOSITION A.2.1. Let F be a holomorphic function defined in Q =
 Q(b1,b2), where Reb2 > Reb1 + 2 (here b1 or b2 may be-oo or oo). Suppose

 (A.2.2) IF(Z)-(Z +1)1< 4, andlF'(z)-11<4 forzEQ.
 Then

 (O) F is univalent on Q.
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 (i) Let zo E Q be a point s1>ch that Rebl < Rezo < Reb2-5/4. Denote

 by S the closed region (a strip) bo1>nded by the two curves e = {zO +iy I y E s}

 and F(#). Then for any z E Q, there exists a uniqtbe n E z such that Fn(z) is

 defined a7?d belongs to S-F(t).

 (ii) There exists a 1>nivalent function b: Q (S satisfying

 §(F(z)) = b(z) Jr 1

 whenever both sides are defined. Moreover 4> is unique up to addition of a

 corwstant.

 (iii) If i is normalized by 4?(Zo) = O, where zo E Q, then the correspon-

 dence F 4> is continvous with respect to the compact-open topology. (See

 also Section 4.0. Notation.)

 Proof. (O) arld (i) are easy and left to the reader.

 (ii) Let zo E Qbeasin (i). Defineh1: {z j O<Rez< 1} Qby

 h1(x+i8) = (1-x)(zo +iy) xF(zo +iy), for O < x < 1, y E Et.

 Then

 3 1 = F(zo + iy)-(zo + iy), a 1 = isFt(zo + iy) + i(1-x).

 Hence

 a 1 1 = 2 |{F(Z° + iY)-(zo + iY + 1)} + x(F'(zo + iy)-1)| < 4,

 01 =2 |{F(ZO+iY) (ZO+iY+1)} X(F(ZO+iY)-1)I< 4

 Therefore lW/hLl < 1/3 and hl is a quasiconformal mapping onto

 the strip S, and satisfies h1 1(F(z)) = h1 1(z) + 1 for z E e. Let cro be

 the standard conformal structure of ¢:D, and take the pull-back cJ = h1cro on

 {z | O < Rez < 1}. Then extend cJ to C by a = (Tn)*cs on {z |-n < Rez <

 -n + 1}, where T(z) = z + 1. By the Ahlfors-Bers measurable mapping the-

 orem [A], there exists a unique quasiconformal mapping h2: C > ¢ such that

 hzCro = a and h2(0) = O, h2(1)-1. By the definition of cs, T preserves cr.

 Hence h2 o T o h2 1 preserves the standard conformal structure cro; therefore

 it must be an affine function. Since T has no fixed point in C, neither does

 h2 ° T o h2-1; hence it is a translation. Using h2 o T o h21(0) = 1, we have

 h2oToh2-1 =T.

 Now define b by b = h2 o hl 1 on S, and extend to the whole Q using;

 the relation b(F(z)) 4>(z) + 1. Then b is well-defined by (i), continuous and

 homeomorphic by the above relations on hl 1 and h2. Moreover 4) is analytic

 outside the orbit of X, then analytic in the whole Q by Morera's theorem. Thus

 we have obtained the desired univalent function 40.
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 If ' is another such function, then @//(z) = b/ o -1 commutes with T
 at least in (Q). Hence @"(z)-z extends to ¢: as a periodic function; then
 " extends to C as a holomorphic function commuting with T. Similarly "-1
 also has this property, and therefore " must be an affine function. However
 an affine function commuting with the translation T is also a translation by a
 constant. Hence the assertion follows.

 (iii) Let us consider F and FO defined in the same Q and satisfying
 the condition of Proposition A.2.1. As in (ii), we can construct h1, h2, @ for
 F and h1,o) h2,0, o for FO. It is easy to see that on any compact set

 {z I O < Rez < 1}, ahl/8hl > / as F FO. Hence (JF = h*l<ro

 CJFo = h*l,o<ro and h2 > h2,0 on any compact set as F > FO. It follows from

 the definition of the extension of @ that @ o as F > FO. g

 A strip S as in Proposition A.2.1 (i), is called a ftbndamental region for
 the map FIQ The quotient space

 C = S/, where e D z F(Z) E F(e) = Q/, where z F(Z) if z E Q n F-1 (Q)

 is topologically a cylinder which is called the Ecalle cylinder. Moreover, C
 has the natural structure of a Riemann surface, when F near e is used as a
 coordinate patching.

 LEMMA A.2.3. Let F, Q, S be as above. Then 7r o a induces an isomor-
 phism

 : C = S/ > C* = C-{°}

 Proof. It is easy to see from the construction that C is a covering map
 and induces an isomorphism between the fundamental groups. O

 LEMMA A.2.4. Suppose that ¢? and v are holomorphic functions in a
 region U satisfying:

 ¢? is tbnivalent inU, Iv(z)-11 < 1/4 forz E U and

 ¢?(z + v(z)) = ¢?(Z) + 1, if z,z + v(z) E U.

 (i) There exist tbniversal constants R1,C1,C2 > O stbeh that if U =
 {Z l lz-zol < R} for R > R1, then

 z>/(Zo) _ (z ) < C1 (R2 + lv (zo)l)- R

 (ii) Sqxppose U = {z E (C* I °1 < argz < °2} (°2 < °1 + 2T) and tv'(z)l <
 K/lzll+> (z E U) for some K,v > O. For zo E U and 0l, °2 with °1 < °1 <
 °2 < °2, there exist R2,C3 > O and ( E ¢:: such that

 @(Z)-| (()-( < C3 ( l Z l + Iz l > ) ,
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 for z satisfying 01 < argz < °2, dist(z,-U) > R2. iMoreover C3 depend only
 on °i,°'

 See [Y] for a similar estimate.

 Proof. In the following, C and C' denote universal constants, which may
 differ at each appearence.

 (i) We may suppose zo = O. We take R so that R >> 1. It follows from
 Koebe's distortion theorem [P] that if lZl < R-2, then

 lv(z)l < b(z + v(z)) - @(z) < lv(z)l
 (1 + lv(z)l/2)2 - ,(z) - (1 - lv(z)l/2)2 '

 since 4> is univalent in {( | 14-zl < 2 }. Hence C < l@/(Z)l < CX if Izl < R-2.
 We have l@tt(z)l < C/R if Izl < R/2. (:In fact, by Cauchy's formula, @"(z)
 can be expressed in terms of an integral of q>/(()/(( _ Z)2 over the contour
 {( 1 14- Zl = R/3}, and use of the above estimate.) By the formula

 rl
 (z + a) f= (z) + a4?t(z) + a2 J (1-t)4>tl(z + at)dt,

 o

 we obtain 11-4X'(z)v(z)l < C/R if lZl < R/2-5/4. Again by Cauchy's
 formula, 1(1-b'(z)v(z))'l = I4>"(z)v(z) + 4X'(z)v'(z)l < C/R2 if lZl < R/4.
 It also follows from Cauchy's formula that Ivt(z)l < C/R and Iv"(z)l < C/R2
 for lZl < R/2. Therefore Iv'(z)l < Iv'(O)l + C/R2 for lZl < 5/4 . Hence we
 have I4>//(Z)l < C(1/R2 + Iv'(0)13 for lZl < 5/4. By the above formula again,
 we have 11-4X'(O)v(O)l < C(1/R2 + Iv'(O)|) < C/R. So we obtain the desired
 inequality.

 (ii) Note that in the sector 01 < argz < °2 we have dist(z, ¢:-U) >
 C4lzl for some constant C4 > 0. So the result in (i) applies to the region
 {w | Iw-zl < C4lzl}, and gives

 @/(z) - ( ) < Cl ((C | 1)2 + IV'(z0)l) < C5 (l 12 + | 11+M) @

 Integrating this formula along a straight path from oo to z in the smaller sector,
 we have

 JZ (b/(,) _ 1 )) dc, < C3 (lzl + lZlv) v

 where the integral does not depend on the choice of the path. Since

 J (b/(,)_ (lC,))dg=b(Z)-Jgo (/:)-(@(z°)+Jz (b(()-v(())d)'

 this completes the proof.
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 A.3. Fatou coordinates for fo. Proof of 4.1. Let QO+ = Q(l,oo), QO =
 Q(- x-l) for 41 > O. If 41 is large enough, Fo satisfies (A.2.2) on QO+
 and QO-. Hence by Proposition A.2.1, there exist univalent analytic functions

 +,0: QO+ > C and _,o: QO- > C satisfying 4>+,o(Fo(w)) = 4>+,o(w) + 1 and

 4>_,o (Fo (w)) = _,o (w) + 1. If

 Fo(w) = w + 1 +-+ ° ( 2 ) '
 W W

 then by Lemma A.2.4 (ii),

 4>+,o(w)=w-alogw+c+,o+o(1)

 as w tends to oo within a sector as in Lemma A.2.4 (ii) with U = QO+, where

 c+,o are constants and the branches of logarithms for 4>+,o are chosen so that

 they coincide in the upper component of QO+ n QO- and differ by 27ri in the

 lower. Then for large (o > O, QO as in (4.1.2) is contained in @_,o(Qo-). Define

 Q+ = mo(T(Qo+)), Q- = mo(4>_lo(Qo)). The properties in (4.1.1) are easily
 verified. (If necessary, take a larger (o.)

 Let fo = mo°-lo and then 90 = ro-1 o fo = @ lo Now by the above,

 QO c Dom(9o) and fo(w+ 1) = fo of o(w) if w, w+ 1 E QO. Using this relation,
 we extend fo to the maximal domain {w E C | w-n E QO for an integer n

 > O and foJ (fo(w-n)) E Dom(fO) for j = O, . . ., n-1}. Note that for a large
 710 > O, {w 0 tRewl < 1/2, tImwl > 710} is contained in QO and its image by

 fo is contained in mo(QO+) c B. The rest of (4.1.2) can be checked easily.

 Let bo = b+,o o no-1 and extend it similarly to B using the functional

 equation for b+,o. Hence (4.1.3) follows.

 The properties of B in (4.1.4) follow from the above. The function Efo

 = bo ° fo = b+,o ° @ lo satisfies the functional equation and is univalent in

 {w | | Imwl > 7Bo} for a large 7/0 > O. Moreover ImEfO(w) > ioo as Imw >

 zEoo. Hence Efo can be extended to 0 and oo conformally. This proves (4.1.4).

 By the normalization (4.1.5), we have c+,o = c_,o.

 A.4. Fatou coordinates for f E X n 51. Proof of 4.2. Let f E X n 51,
 where J\F is as in Lemma A.1.7 and 51 is as in Section 4.2. Define Qf+ =

 Q(41,-(1 + 1 ) and Qf = Q(41-a. X-(1 ) = Tf ( Qf+ ) for (1 > 0. One can choose

 J\F small and (1 large so that Re a > 261 + 2, Qf c Dom(Ff) and Ff satisfies

 (A.2.2) on Qfi. By Proposition A.2.1, there exist univalent analytic functions

 <?+,f: Qf+ > C and <?_,f: Qf- > C satisfying ¢?+,f (Ff (w)) = ¢?+,f (w) + 1 and

 <?_,f (Ff (w)) = <?_,f (w) + 1. We fix two points w+ E QO+ and w_ E Qo- 7 and

 normalize ¢?,f by setting ¢?,f (w) = ¢?i,o(wi)

 Since Ff (w) = w + 1 + O(l /w2) as Im ogw > oo by Lemma A. 1.7, it follows

 from Lemma A.2.4 (ii) that there exist constants ci = c(f) such that

 (A.4.1)
 bf (W) = W + Ci + o(l)
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 when w tends- to oo within a sector of the form {w | 01 < arE(w-Uo) < 02} C

 QC, where 1r/3 < 01 < 02 < 3er/4 and zo E C.

 The function 4>_, f o Tf is defined on Qf+ and satisfies the same functional
 equation as b+,f by Lemma A.1.7 (iii). It follows from the uniqueness in
 Proposition A.2.1 (ii) that there exists a constant d1-d1(n) such that

 (A.4.2) ¢_,f o Tf = b+,f + dl.

 In fact, (A.4.1) determines the constant: d1 _ c_(f)-c+(f)--.
 Now define £+(w)-b+,f o b_lf on b_,f(Qf+ n Qf), which contains at

 least the vertical strip {w \ IRewl < 1, IImwl > 710} for a large 10 > O. This
 710 can be chosen uniformly for f E X n s1 near fo. It satisfies the functional
 equation £F(w + 1) _ £S(w) + 1 whenever both sides are defined. By this
 relation, £f can be extended to {w | | Imwl > 770}. By (A.4.1), we have

 (A.4.3) £f(W) = W+c+(f)-C_(f) +o(1) when Imw ) oo.

 Similarly, £C(w)-w tends to a constant as Imw ) oo.

 By Proposition A.2.1, we have b+ b > <>+,o and _,f _,o as f ) fo;

 - - ,

 therefore £f £fo uniformly on {w \ O < Rew < 1, Imw = 7go} Then

 rl+i710 rlli710

 (A.4.4)C+(f)-C_(f) = J (£f(W)-w)dwJ (£fo(W)-w)dw ino i71o
 = C+,0-C_,O = O,

 where the integrals are over the segment joining t710 and 1 + tt10.
 Let us showthat @_,f(Qf) contains Qf as in Section 4.2, for large (o,no

 > O. Combining (A.1.6), Lemma A.2.4 and Proposition A.2.1 (iii), one can
 show that the right boudary curve of Qf iS contained in @_,f (Qf-), if (o and No

 are large enough. Similarly, the left boundary curve of 79-1(Qf) is contained
 in +,f(Qf+). Using Qf = Tf(Qf+), (A.4.2) and (A.4.4) and increasing (o,no
 if necessary, we conclude that the left boundary curve of Qf iS contained in
 _,f(Qf-). Therefore Qf C -,f(Qf-)@

 Defining ff = Tf O -lf, we have Qf C Dom(f) and ff(W + 1) -
 f O ff(W) if W,W + 1 G Qf. Using this relation, extend ff to the domain
 {w E C I w-n E Qf for an integer n > O and fi(npf (w-n)) E Dom(f) for j =
 O,...,n-1}. Then ff satisfies (4.2.1).

 Let 1tf = @_,f oSf °b_lf. Then Rf coincides with Ef +c_(f)-c+(f)--
 on its domain of definition and satisfies 7Zf(w + 1) = 1tf(W) + 1. So 7tf =
 X o 7Zf o 7r-l is well-defined and extencls analytically to O by (A.4.3) and sim-

 ilarly extends to oo Since 7tf(W) = W-ot + o(1) as Imw oo, 1tf(0) =

 exp(-21rz0g). Thus (4.2.2) is proved. O
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 It is easy to see that c'f -, (po and Ef - Efo when f e fniFl and f fo.
 Hence

 Rf + - = Ef + (C_(f)-C+(f)) fo.

 Using the fact that lRf is extended analytically to 0 and oo, we have

 e2i/a1Zf __ 8fo.

 Thus (4.2.4) is proved.

 In order to see (4.2.3), let us first verify (4.3.4). In fact the latter is

 immediate from the definition of Wf and lZf, rf o Tf = rf and the functional
 equation for Wf. To obtain (4.2.3), we restrict Dom(lRf) so that

 (A.4.5) 1Zf(w)+--w < on Dom(lRf). a~~2a

 Note that (4.2.4) is still true. Now suppose that w,w' E Dom(pf) and

 1ZT(7r(w)) = 7r(w') for a positive integer m. Then for the lift, there exists
 f~~~~~~~

 an integer n such that 7ZT(w) + n = w'. By (A.4.5), we have n > m. Hence

 the assertions of (4.2.3) follows from (4.3.4).

 The corollary (4.2.5) follows from (4.1.2) and (4.2.4).

 One can prove (4.3.1) similarly.

 A.5. Parabolic fixed points with the multiplier $ 1. We only state the
 coordinate changes which correspond to A.1. The rest of the arguments in

 A.2-A.4 are immediately generalized to this case.

 First, let fo be as in Section 7. There exists a coordinate near 0, in which

 foq has the form

 fo (z) - z + Zq+l + Q(z2q+l).

 Let us introduce a coordinate w by

 1

 qZq

 Then the corresponding map in this coordinate has the form

 Fo(w) =w + 1 + O(1/w),

 where F0 is multi-valued.

 The coordinate w should be understood in terms of the Riemann surface

 W as follows. Let + Qo'k (k E Z/qZ) be q copies of Q+, Q- in A.3. The
 intersection QJ n Q- has two components-the upper and lower sectors. Iden-
 tify the upper sector of Q0+k with that of Q0-k; and the lower sector of Q+,k-1
 with that of Qo-k (k E Z/qZ). The obtained Riemann surface W is isomorphic
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 to a punctured disc and the map w -z =-1/qwq gives a conformal map from
 W onto a punctured neighborhood of 0 in C. We consider that the map F0
 sends Q+)k into Q+Qk+P, and Q .k \ (a neighborhood of the boundary curve)
 into Q0 .

 Now let f E :F1 and a(k) (f) be the periodic points of f as in Section 7.
 We choose a new coordinate near 0 so that 5(k) (f) e2xik/q.(O) (f), as follows.
 Put

 (z - a(0)(f)) ... (z - o(kl)(f)) - -bqjl(f)z-l bi(f)z - bo(f).

 Then it is easily seen that

 bo(f) = -27ric(f)(1+o(1)) and bj(f) = O(ai(f)) (j 1,... ,q-1) as f - fo.

 Define a new coordinate z' by

 z

 (l+ E b + be q-1)l/

 This is a well-defined coordinate near 0, and in this coordinate we have 0(k)-
 e2,iklqT(0).

 So we can write

 [fq(Z)]q Zq + Zq(Zq (f)q)Uf(Z)

 where a(f) -=0) (f) and Uf (z) is a nonzero analytic function defined near 0.
 Finally, we introduce the coordinate w by

 -Zcq  . 2,iaw.

 and the map Ff by

 1 ( cTaqUf(Z)
 Ff(w) = w + log 1- +

 2i7ria~ + ZqUf (Z)J

 Here the coordinate w should be interpreted on a suitable Riemann surface

 which is isomorphic to a neighborhood of 0 in C with 0 and (k)(f) removed.
 Then the z in the definition of Ff can make sense.

 For these maps, one can obtain analogous results as in A.2-A.4. The
 detail is left to the reader.
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