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Preface

The purpose of this book is twofold. On the one hand, I wanted to write a book which
is a concise introduction to the beautiful topic of Schramm—Loewner evolution for
anybody, having some mathematical background, interested in it. On the other hand,
I wanted to organize some material for a self-contained textbook for a semester long
course in advanced mathematics.

The history of this book goes back to Fall 2011 — to a lecture course which
I gave at University of Helsinki on the subject. The lecture notes of that course
formed the seed of this book project. Later, I gave a similar set of lectures during
Spring 2016 based on the draft of this book. I added to the book, compared to those
lectures, more on regularity and convergence of random curves, a topic presented in
Chapter [6] I kept the key parts of the original material including the background in
stochastic analysis and complex analysis.

The text intends to be fairly rigorous, but skipping some details; we focus on
the core ideas. I have prepared appendices to this text which I have posted on the
webpage

http://www.helsinki.fi/sle-book.

The reader may choose consult that supplementary material if he/she wishes to learn
more on the omitted details.

I want to thank the people I discussed on the material while writing the lecture
notes for the courses, most importantly, my colleagues Kalle Kytol4, Miika Nikula
and Petri Tuisku. The two last were the teaching assistants of those courses. I also
thank the audience of those courses.

Helsinki, Antti Kemppainen
June 2017
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Chapter 1
Introduction

In this introductory chapter, we look at iterations of conformal maps, random pro-
cesses such as random walks and statistical physics and establish some connections.

1.1 Iteration of conformal maps

We assume that the reader has some familiarity with Complex Analysisﬂ Recall
that a differentiable function f: U — C, where U C C is a set containing an open
neighborhood of a point zg, is conformal at z, if the map f preserves angle at
z0. If this holds for all points of U, we call f a conformal map. Remember also
that a function in a planar domain is conformal if and only if it is holomorphic and
one-to-one.

Let H be the upper half-plane and let f; : HH — H be a sequence of conformal
maps where k € Z>0 Define

fl(z) = fiofro...0 fu(2).

Suppose that each f; maps H onto a set which is the complement (with respect to
H) of a bounded set K, whose boundary is a curve, and suppose that | f;(z)| — = as
|z| — co. Then it turns out that f; extends continuously to the closure H.

Suppose that the set Kj is a line segment [, §;], where & € R is the base point
and {; € H is the tip point. By the continuity of f; to the boundary, we can talk
about the point x; € R which is mapped to the tip & by f;. Define now f;(z) =

I The reader can use, for instance, Rudin’s book [7]] as a reference. Notice the supplementary
material (appendices) of this book described in the [preface] and also Chapter 3| below.

2 In the sense that if P; and P> are smooth curves that form an angle 6 at zg, then also f o P and
foP, form an angle 0 at f(z9).

3 Throughout this text we use the notations Zso = {k € Z : k> 1}, Zso ={k€Z : k> 0}, Roo =
{xeR:x>0},Rsg={x€R:x>0}aswellas [j,k] for the ordered set j, j+1,j+2,....k—1,k,
where j < k are integers.
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] HEE C
(a) The grid lines in H. (b) The gridlines transformed  (c) The gridlines trans-
by the mapping z — fr(z). formed by the mapping

2= fu(2).

Fig. 1.1 Two elementary conformal transformations that are being iterated in the process illus-
trated in Figure[T:2] Grid lines can be used to illustrate the action of conformal maps.

fi(z+x¢) —&. Then fx is conformal and it maps H onto the complement of a line
segment, whose base point is 0, it maps oo to e and 0 to the tip of the line segment.
It turns out (as we will later see) that it is useful to consider conformal maps that
for large values of |z| are close to identity, in the sense that they neither expand or
shrink the grid as in Figure [T.T|far away from the origin.

If we iterate maps of this form, for instance, fj o f>, then the composition will be
a map from H onto the complement of a piecewise smooth curve. The continuity of
the curve at the points where the (images of) line segments meet, follows from the
fact that 0 is the base point of £ and 0 is mapped to the tip point of f; by f.

Figureillustrates the iterates fI'"]. We have chosen two conformal maps (see
Figure [II)) that correspond to the line segments of the same length forming angles
ot and (1 — o) 7w with the positive real axis, and each fj is one of the two maps.

The parameter n acts naturally as discrete time of the growth process. If we wish
study a continuous time limit of the iterates f1'"], we need to take large n and adjust
the elementary conformal maps so that the sizes of the line segments are small, but
the composed piecewise smooth curve reaches roughly to a constant height. This can
be achieved by considering ¢ (z) = n~%f;(n"z) where a > 0 is a suitable constant.

Let F,<n> denote the iterate ¢['-1")] for any n € Z-¢ and r € [0, 1]E| When n is
large, the composed piecewise smooth curve corresponding to ¢I:1!] increases by

tiny steps as ¢ is increased. It seems reasonable to expect that the limit lim,,_,., F,(")
exists and defines a continuous-time flow of the points of ]HIE| This is indeed the case
at least when the sequence f; are random, symmetrically distributed (/g and f; are
equally likely) and independent. The continuous-time versions in the case of ran-
dom, symmetric and independent sequences are the Schramm—Loewner evolutions.

4 We use a common notion that |x] is the largest integer smaller or equal to x.

5 Such a limit is an example of scaling limit. Two typical features of a scaling limit are that there
are scaling factor involved, such as n™¢ and n above, which ensure that the limit exists, and that
the limiting object will be described by continuous variables (another term is a continuum limit).
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) z— fiofaofa(2) ) z— fiofrofsofalz) )z fiofro...0fi0(2)

Fig. 1.2 Consider conformal maps from the upper half-plane onto the complements of line seg-
ments. We can arrange so that « is mapped to oo and that the base point of the line segment is 0
as well as the point which gets mapped to the tip of the segment. The figures here illustrate how
iterations of such maps look like.

1.2 On stochastic models and connection to statistical physics

1.2.1 Random walk and Brownian motion

We also assume some familiarity with Probability Theoryﬁ

Recall that a stochastic process is a collection of random variables indexed by an
ordered set which is interpreted as the time variable. Let’s consider random walks
on Z as an example. We will denote probability measures generally by P. Let X,
k € Z~0, be a sequence of random variables which take two possible values +1, i.e.,
P[X;, = —1]+P[Xy = +1] = 1. Assume that X, k € Z~, are independenﬂ and fix
some x € Z. The formula .

Sy =x+ Z X
k=1

defines a stochastic processﬁ (St)tezzo- If the random variables X, k € Z~(, have
symmetric distribution, that is, P[X; = —1] = P[X; = +1] = 1, then the process is
called symmetric simple random walk on 7Z.

Often we wish to derive a continuum limit of the simple random walk or other
processes. Such a limit is a scaling limit in the same sense as in the previous sec-
tion. For that purpose, we choose a constant a > 0 and consider the continuous-time
process (n~4S |t ] )tGRgo- For suitably chosen constant a this process will converge

6 The reader can use, for instance, Durrett’s book as a reference. Notice the supplementary
material (appendices) of this book described in the and also ChapterEl below.

7 Remember that for these given random variables, X, k € Z-., are independent if for any n € Z~
and for any x1,x3,...,%, € {—1,+1}, P[ Xy = x; for all k € [1,n]] = [Tkeq1,n) PXx = ).
8 We use the notation (X;)rer where usually I = Zx( or I = R, to denote a stochastic process.
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Fig. 1.3 Simple random walk

as n — o to a stochastic process (B;);cr., called Brownian motion. From the cen-
tral limit theorem (CLT) we know that a = 1/2 and that all the finite dimensional
distributions (distributions of vectors of type (B;,,B,,. .. ,B,k)) are Gaussianﬂ

1.2.2 Ising model and other statistical physics models

The study of Schramm-Loewner evolutions is motivated by their applications to
statistical physics. Those random curves appear in statistical physics under specific
circumstances as interfaces, that is, domain walls separating parts of the system
which differ in some microscopic property.

Fig. 1.4 Ising model with Dobrushin boundary conditions for T < 7., T =T, and T > T... Here the
black pixels are vertices with ¢ = +1 and the white pixels are vertices with 6 = —1. An interface
is a broken line separating white and black regions.

A typical example of a lattice model of statistical physics (i.e., a simplified model
defined on a lattice such as Zd) is the Ising model, which models ferromagnetic
material. Each site v is occupied by an elementary magnet, spin, which takes values
o, € {£1}. The Ising model is defined by an energy functional

H(c)=—) 0,0,.

9 Remember that the result that a sum of independent and identical centered random variables
scaled by n~!/2 converges to a Gaussian random variable in distribution, is called the central limit
theorem.
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Here o = (0,),ev is the spin configuration of the system and V is a finite subset
of the square lattice 7?2 (we focus here on two-dimensional model). The sum in H
is over neighboring pairs of sites. The more there are pairs of aligned spins, the
more this functional favors the configuration (that is, the configuration has smaller
energy) — this can be seen as the source of the ferromagnetic phenomenon.

In the Ising model, we take the configuration ¢ € {£1}" to be random. Its law is
given by the Boltzmann distribution corresponding to the energy functional H, i.e.,
the probability of observing o is proportional to exp(—BH(0)). Here f = 1/T, the
inverse temperature, is a parameter.

The behavior of the systems depends drastically on the temperature 7', as the
reader can see from Figure In the figure we use so called Dobrushin boundary
conditions, where we force the spins on the two complementary boundary arcs to be
constant —1 on one of them and +1 on the other. The interface which is the broken
line separating the large +1-cluster and the large —1-cluster, can be studied when
these boundary conditions are used.

The scaling limit of the interface is obtained by fixing a shape, say, a square and
the Dobrushin boundary conditions on its boundary and then by approximating that
shape by finite subsets of a lattice with a lattice mesh parameter. The scaling limit
is the limit as the lattice mesh tends to zero.

The phase transition of the model can be explained in terms of interface in the
following way. There is a critical temperature 7, such that for T < T; for large sys-
tems looked far away (i.e. in the scaling limit) the interface is close to the minimal
energy line with fluctuations of order v/N, where N is the side length of the box.
As T approaches T, the fluctuations grow and at 7, they are of the size of the sys-
tem. Therefore T = T, is the smallest value of the parameter where we expect a
non-trivial scaling limit for the interface. The fact that the scaling limit at T < T;.
is non-random is a result of [6]. For T > T, when looked far away, the spins be-
have more or less independently of the of each other and the interface looks like the
interface of T = oo, for which value the spin configuration is truly totally disordered.

1.2.3 Conformal invariance of the scaling limits

Schramm-Loewner evolutions give an efficient tool for verifying conformal invari-
ance in the context of random curves of statistical physics and their scaling limits.
Based on physical arguments, the scaling limit is expected to be scale invariant.
In fact, under some hypothesis such as partial rotation invariance of the Hamiltonian
(7t /4-rotation invariance of the Ising model on Z?) and short range of the interac-
tions, it is expected that the scaling limit is even conformally invariant. Conformal
invariance could be described to be local rotation, scale and translation invariance.
Here “local” refers to the fact that the factor that we use in e.g. scale invariance
can vary over the domain. Consult, for instance, the introduction of [3]] for an in-
troduction to the physical theories of phase transitions. The conformal invariance
property of the Ising model should be understood concretely in the following way.
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If we start from any two shapes (simply connected domains) and approximate both
with sequences of discrete domains then the laws of the interfaces are equal in the
scaling limit, in the sense that they are conformal images of each other.

This property is related to the conformal Markov property of iterates of confor-
mal maps. Namely consider the conditional law of fI'*"] given that we know f,
k € [1,n]. That conditional law is just the law of fI"+1n+7] transformed by the
(known) conformal map fI'"]. This is an evidence of a connection between statis-
tical physics and the iterates of conformal maps. We call the argument Schramm’s
principle, see [10], the original article by Schramm [8]] or Sectionmbelow.

37

0 02 04 06 08 1

Fig. 1.5 Realizations of a 1D Brownian motion (left) and the corresponding SLE(3) (right) driven
by the Brownian motion. SLEs are random curves which are fractal, in the sense, that they contain
statistically similar details repeating on different length scales.

1.3 An example: percolation model and Cardy’s formula

In this section we will present an example with some details that highlight the main
topics of this text and the example is one of the main application of the theory of
Schramm-Loewner evolution. The full argument is presented later in the text.

Consider the triangular lattice which is formed by the centers of the regular
hexagonal tiling of the plane. Take a finite, simply connectecff] subgraph of the
triangular lattice. We call the centers of the hexagons sites.

In the site percolation model, each site carries a random variable which takes
value open or closedE] In any pictures, we color the corresponding hexagon green

10 Simply connectedness means that the domain consisting of the hexagons is a simply connected
domain (i.e. with no holes) — in other words, if we have a closed path of hexagons in the domain,
it cannot disconnect any point in the complement of the domain from infinity.

I From the modelling perspective, the open sites represent channels through which a substance,
say, water can flow. Therefore if we inject water into the sites of a set A;, the water will flow to
all the sites connected by a path of open sites to A;. In particular we are interested in connection
events that for fixed A| and A, there exists a connected path from A; to A, that stays in a set B.

Antti Kemppainen, Schramm—Loewner evolution, 2017/06/24



1.3 An example: percolation model and Cardy’s formula 7

if the site is open and red if the site is closed. The decision, whether a site is
open or closed, is made randomly, independently and from the same distribution
at each site. This leaves only one parameter in the model, which is the quantity
p = P[the site x is open] € [0, 1] which is independent of x.

Consider first the crossing probability for a fixed shape with varying size. More
specifically, take thombi Ry = {xe; + ye, : x,y € [1,N]} where e; = 1 and e; =
exp(iz/3) are two vectors in the plane that generate the triangular lattice. Denote
by f(p,N) the probability of a left-to-right crossing of Ry. Clearly f is monotone
in pJ'“| As illustrated in Figure as N tends to infinity the crossing probability
tends to a sharp step function. More accurately limy_,. f(p,N) equals to 0, % and 1,
when p < % p= % and p > % respectively. We would arrive to a similar conclusion
if we had taken a rhombus with a different aspect ratio. The only difference is that
the limit of the crossing probability at p = % is not necessarily %, but it can take
some other value in (0, 1). The parameter p = % is critical in the sense that outside
criticality limits of crossing probabilities are trivial, either O or 1. In fact, the limit
when p = % depends non-trivially on the aspect ratio of the rhombus.

Fig. 1.6 The crossing probabilities of a left-to-right crossing in a rhombus Ry of side length N.
The crossing probability is estimated using a computer simulation and plotted as a function of p
for different values of N (N =1 blue, N = 4 orange, N = 16 yellow, N = 64 purple). Different
values of p are coupled using standard approach that uses uniform random variables. The sample
size is 200 for each value of N.

1.3.1 Cardy’s formula from SLE(6)

We will describe here how to derive a formula for the crossing probability using a
conformal invariance hypothesis. Consider for simplicity the crossing probability
in a rectangle [0,aL] x [0,a], where a > 0 and L > 0, for an open crossing from
{0} x [0,a] to {aL} x [0,a]. Map the rectangle conformally onto the upper half-
plane H such that (0,0) — Uy, (aL,0) — Vo, (0,a) — Wy, (aL,a) — . The exact
form of the mapping doesn’t play a role here.

12 The reader should stop to think this for a moment, though.
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Fig. 1.7 Percolation on two different shapes. Cardy’s formula tells that the probability of an open
crossing of the quadrilaterals depends only on the conformal modulus in the scaling limit, at criti-
cality, and gives an explicit expression for it.

Next introduce a new layer of hexagons around the rectangle, as in Figure [I.8]
Assign boundary conditions such that the hexagons on ([0,aL] x {0}) U ({aL} x
[0,a]) are closed and on ([0,aL] x {a})U ({0} x [0,a]) open. Then there will be an
interface separating the closed cluster and the open cluster that touch the boundary.
In Figure[[.8] this is the blue path.

Fig. 1.8 After introducing the extra layer of hexagons for boundary conditions, there will be inter-
face that separates the red and blue clusters that touch the boundary.

Antti Kemppainen, Schramm—Loewner evolution, 2017/06/24



1.4 On reading this book 9

We can read the crossing event from the interface. Namely, the left-to-right cross-
ing exists if and only if the interface hits {aL} x [0, a] before [0,aL] x {a}.

Let’s next consider the probability conditionally on the initial segment of the in-
terface. Suppose that the interface is y(z), ¢ € [0,T]. The conditional probability of
an open crossing given the initial segment ¥(s), s € [0,7], is a crossing probability
but now in the complement of ¥[0,7] in the rectangle from the union of {0} x [0,a]
and the left-hand side of y[0,7] to {aL} x [0,a]. It is natural to transform that do-
main also onto the upper half-plane and take the points ¥(¢), (aL,0), (0,a), (aL,a) to
U,,V;,W;, o0, respectively.

We make an assumption that the scaling limit of the interface is conformally
invariant and more specifically, we make a guess that the scaling limit is a process
called SLE(6). Under further assumptions it holds that

. 2 . 2
U =V6B Vi=——+ W =
t \/>17 t ‘/t_Ut7 t th_Ut

where X; = 9,X,. The first equality is the fact that the process is SLE(6) and the two
others represent the Loewner flow of the marked points.

Set Z; = (U, — W;)/(V; —W;), which is a quantity called cross-ratio. That is
equivalent of mapping H with marked points U;,V;,o0, W, onto H with marked
points z,1,00,0. We further map the latter domain using a conformal map of the
form ¢ (z) = C [*w2/3(1—w)~2/3dw onto a equilateral triangle POR. Suppose that
o(W)=P, (V) =Qand ¢. Then §; := ¢(Z,) € PQ.

Based on stochastic calculus we can verify that the process {; is a time change
of a Brownian motion on PQ and thus the crossing probability, which can be re-
formulated as the probability that the process & hits Q before P, can be calculated.
After an argument from stochastics (time-changed Brownian motions are conserved
on average) and some algebra we end up to famous Cardy’s formula

¢(z)—9(0) 3I'(3) : 124

lim £ (pe.N) =

where p. = %, I' is the gamma function and , F] is the hypergeometric function. The
original articles on Cardy’s formula are [2} 4} 9} [11]].

1.4 On reading this book

The next two chapters review background material on Stochastic Calculus and Com-
plex Analysis. The reader familiar with those topics may choose to jump directly to
the main chapters, Chapters 4—6. Those chapters build on the prior chapters and are
easiest read in the order of presentation. Appendices with additional material are
provided in separate documents (see the and cited occasionally here.
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Chapter 2
Introduction to stochastic calculus

In this chapter, we focus on the essential aspects of stochastic calculus, a theory
of integration with respect to Brownian-motion-type processes and their transfor-
mation properties. We take fairly standard approach and the reader can study more
from books dedicated to the subject [2, 15} 16} [7, 18]].

2.1 Brownian motion

Suppose throughout this text that we are given a probability space (2,.%,P) where
£ is a measurable space, .# a c-algebra on Q and P a probability measure on .%.
For more details, consult any book on probability theory such as Durrett [3], see
also Appendix A (which you can find using the instructions of the [preface]).

A stochastic process is a collection of random variable{-]X, indexed by a variable
¢ which we call time and which belongs to an ordered set I. A notation (X; )¢y is used
for a stochastic process. Almost always I = Rx>q or I = Z>¢. Since ¢ is regarded
as time, we call the process in those cases continuous time stochastic process and
discrete time stochastic process, respectively. In this text usually / = R>o.

The mapping ¢ — X, (o) is called the path of (X;),c;. For continuous time pro-
cesses the path regularity properties are often essential in their definitions. The most
important example of a process whose path is continuous, is the Brownian motion.

Definition 2.1. A stochastic process (B;);> is called a (standard one-dimensional)
Brownian motion if By = 0 and

1. By, — By, ,B:, — By,,...,B;, — By, are independent for any n € N and for any 0 <
SI<H<s;H<t<...<s;, <ty

! We use the standard notation X(®), where ® € Q and X () € R, for a (real-valued) random
variable on (Q,.%#,P).

11



12 2 Introduction to stochastic calculus

2. For any s,t > 0, Bs4; — By is normally distributecﬂ with mean 0 and variance ¢.
3. With probability one, ¢ — B; is continuous.

Remark 2.1. We say that the process has independent and stationary increments, if
the properties 1. and 2. hold, respectively.

Brownian motion is a Gaussian process meaning that all finite dimensional dis-
tributions are multivariate Gaussians. From its definition it follows that for any
0<H <Hp<...<t,and any Borel sets A; CR, k=1,2,...,n,

n
P[B, €A, Wk € [[m]]}:/ [T pCi 10t — 1) | dxida. .. dx,
Ap XAy X...XAp k=1

1 _ (xfy)2> _ _
%exp( 5 |, fo =0 and xo = 0.
The “canonical” probability space for Brownian motion is the space of contin-
uous functions C(Rx() with a certain Borel probability measure P and where the
Brownian motion is the coordinate map Br,éa)) = @. It turns out that there exists a

where p(x,y,s) =

probability space with a Brownian motion]|and its distribution in C(R>¢) defines
the ‘canonical” Brownian motion. The paths of a Brownian motion are Holder con-
tinuous: for each y € (0,1) and T > 0, there exists a random variable K > 0 such
that almost surely |B; — Bs| < K|t — s|” for all 5,7 € [0, T} The rough appearance
of a Brownian path is shown by Figure[I.3]

The following theorem shows that the assumption that the increments are normal
is partly redundant in the definition of Brownian motion.

Theorem 2.1. If (X;)cr., is a continuous stochastic process which has independent
and stationary increments, then there exists a standard one-dimensional Brownian
motion (B;)icr., and real numbers o > 0 and B such that X; = oB; + .

We call X; = oB; + Bt a Brownian motion with a linear drift.

Definition 2.2. A filtration on (,.7) is a collection (.%;);cRr., of sub-c-algebras
F, C Z such that foreach 0 < s < t, #; C Z,.

A stochastic process (X;);cr, on (2,.%) is adapted to the filtration (% ),cr, if
for each t > 0, X, is .%#;-measurable.

2 Remember that X is normally distributed with mean y and variance 6> when P[X € A] =

Ja \/ﬁ exp (— (’;”2)2 ) dx for any Borel subset A of R.

3 The Brownian bridge construction of the Brownian motion: Consider a probability space with a
countably infinite sequence of independent standard Gaussian random variables.
Suppose that we have constructed Bl = (Brr2-n)k=0,1p2,.7. Since the law of

B = (Bygyn1)j_g.1a. oni1 is multivariate Gaussian, we can write the conditional law
(Bira-n—1)k=135,. on+1_1 given Bl explicitly as multivariate Gaussian which we can construct
using the given the sequence of standard Gaussians. Continue this iteration ad infinitum. We leave
as an exercise to check that, if B is linearly interpolated to all ¢ € [0, T], then the sequence Bl
converges uniformly almost surely as n — co.

4 Holder continuity of a Brownian motion follows as a side product from the Brownian bridge
construction of the Brownian motion.
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2.1 Brownian motion 13

A filtration can be though as refining information on the probability space and .%;
as the information available at time . For example, the o-algebras generated by a
Brownian motion (B;)er, , i.e. Zf = 0(By, s € [0,1]), form a filtration (FF),cr, E]
We will make the following more restrictive definition of Brownian motion.
Definition 2.3. A process (B;)icr., is called a (standard one-dimensional) Brow-
nian motion with respect to the filtration (F;)icr., if it is adapted to (F;)icr.»
BO =0and
1. B; — By are independent from .%; for any 0 < s < t,
2. B; — B, 0 < s < t, is normally distributed with mean 0 and variance ¢ — s
3. With probability one, ¢ — B; is continuous.

Remark 2.2. The definition is useful for instance when two Brownian motions B(!)
and B are considered on the same probability space. We can weaken (‘%)fGRzo to

(ZE)ser., and therefore Definition [2.3|implies Definition

Let p > 1. Define the p’th variation of a process (X;)er., as

) m(mw)—1

V" ()= lim X, —Xo | 2.1
X ( ) mesh(7)—0 k;() ‘ et tk| 2.1)
where 7 is a partitions of [0,] of the form 7 = {0 =1#) <t <... <t,,(z) =1} and the
limit is in terms of convergence in probabilityE] as mesh(7) = max(fx 1 —#) — 0
We call the first variation (p = 1) as total variation and the second variation (p = 2)
as quadratic variation.

Proposition 2.1. The quadratic variation of a Brownian motion exist and Vé ) (1) =
t.

Proof. Let € >0 and 7 be a partition with mesh(7) < (2t)~' €. Let Ay = (By,,, —
By, )* — (try1 —tx). Then E[A;Ay] = §4E [A] by independence and thus

m(m)— 2
E < Y I(Btk+1 —B,)? —t> =E[(N* = 1)*] Y (tes1 — 1)* < 2mesh(7)z.
k=0 k

Here N is normally distributed with mean zero and variance one and we used the
scaling property of Brownian motion. Hence by Chebyshev’s inequality [3]]

m(mw)—1 2
) mesh(7)z
P[ kgb (By,, — By )" —t 28] §T<£ (2.2)
and the convergence in probability follows. a

3 We use the standard notations (A, B,...) and 6(A;,i € I) for the c-algebra generated by the
random variables A, B, ... and A;, i € I, respectively.

6 Convergence in probability means here that that for each £ > 0 there exist § > 0 such that
PIE® X, ., — X, |? =V (1)| > €] < & when mesh(m) < 8.
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The above proof and the Borel-Cantelli lemma, see e.g. [3l], gives that the total
variation of a Brownian motion is almost surely infinite in the sense that if take the
limit along the sequence of dyadic partitions 7, = {rk27" : k =0,1,2,...,2"} =
{to<t1 <...<tp} of [0,7], then

lim Y [B,,, —By|=rc0 (2.3)

n—
oc’tkenn,kgz"—l

almost surely. Namely, if we denote P[E(r)] the left-hand side of (2.2), then
Y., P[E(m,)] < oo and hence ¥, cx, k<2n—1(By, —B;,)? — t almost surely by the
Borel-Cantelli lemma. Take any @ for which the convergence occurs. Then (2.3) is
implied by the fact that as n — oo

2
Z (Blk+1 ((D) 7Btk(w)) < meSh(ﬂﬂ) Z ‘Bfkﬂ ((D) 7Btk(w)|'
€My k<2 —1 T €My k<2 —1

2.2 Stochastic integration

We define in this section a process X; which can be interpreted as the integral

x(@) = [ 10,0)a8,(0)

The construction is important because of the following reasons: (i) It is tool for gen-
erating new stochastic processes out of Brownian motion. (ii) Coordinate changes
such as f(B;) turn out to have extremely useful representation using the above inte-
gral. (iii) In many applications, dB; models independent and stationary noise.

The integral doesn’t exist as a pathwise Riemann—Stieltjes (or similar) integral
even for a continuous f, because the total variation of the Brownian motion is in-
finite. For instance, for the definition that we use, it holds that fé BydB; # (1/ 2)Bt2
and therefore the usual integration by parts formula can’t hold.

2.2.1 Stochastic integral as L*-extension

In this section (% );cRr., is a filtration and (B),cr.,, is a standard one-dimensional
Brownian motion with respect to (% );cR.-

We need to define the correct set of integrands f for the stochastic integral. In
this subsection, they’ll be the measurable, adapted and square-integrable processes.

Definition 2.4. A stochastic process (X;);cr., is measurable if the mapping (¢, ®) —
X;(w) is $Br x F-measurable.
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2.2 Stochastic integration 15

Definition 2.5. Let 7 > 0. We define .#? to be the set of measurable, adapted pro-
cesses f that satisfy

T 5
E UO f(,) dt} < oo (2.4)

and we call f € £? simple if f can be written in the form

n—1
f(t7 0)) = Z Xk(w)]‘[tk,lk+1)(t) (25)
k=0

where 0 <9 <t <t...<t, <T and X; is a .%; -measurable, square integrable
random variable/[’]

Remark 2.3. Notice that .#2 is a closed subspace of L?(dt x dP).

We would like to define a mapping f +— I[f] which we later denote by

T
11fl(@) = [ £ 0)dB ().

If that notation makes any sense, we need to define / []l[s,t)] = B; — By for any 0 <
s <t < T. Therefore for any f which is of the form it is natural to define by
linearity that

n—1

11f1= ZXk(Bfk+1 —By).

k=0

It turns out that this definition that works for any simple f € .#2 has a unique L*-
continuous extension to the whole .#2. Namely, we first observe that the following
isometry holds.

Proposition 2.2 (It6 isometry for simple processes). For any bounded, simple f €
Z2,

E[I[f]*] =E [/OTf(t, .)2dt] .

Proof. Let’s calculate both sides explicitly for a bounded, simple f € #? of the
form @3). Notice that f* = ¥~ X211, , ) and hence

T n—1
e | [ rerar] = X el -
0 k=0

On the other hand

El[f1*] = Y E [X7 (By,, — By)*] +2 Y E[XeXi(By,., — By)(By,, — By)l.
k k<l

7 The class .#2 could be instead called .#%(T) and then we could set f € .#? if and only if
f € £*(T) for any T > 0. For simplicity, we use the notation % for both classes.
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The facts that f is adapted, and thus X is .%;, -measurable, and that B;, o — By 1s
independent from .%;_ imply that

E [sz (Btk+| _Btk>2] = E[sz} E [(Btk+1 _Btk)z} = E[sz] (tk+l _tk)
E[XkXZ(Bka _Btk)(BtlJrl _Btl)} = E[XkXI(Btk+1 _Btk)]E[B’HI _Bfl] =0

for k < [. The claim follows. O

The simple processes are dense in .#’? by the next result. A sketch of its proof is
given in Appendix B.

Proposition 2.3. For each f € £?, there exist a sequence of bounded, simple f, €
L2 such that

E [/()T(f(tv) 7fn(tv'))2dt - Oa

i.e. f, converges to f in L*(dt x dP).

If f, € £? is a sequence of simple, bounded processes converging to f, then
fu is a Cauchy sequence in L*(dr x dP) and hence by the isometry property I[f;]
is a Cauchy sequence if Lz(dP) and hence it converges. Therefore we can define
I[f] = lim, I[f;]. Notice that this limit doesn’t depend on the choice of f;: if f, and
f! are two such sequences, then f, — f! goes to zero in L?(dt x dP) and hence by
isometry, lim,, I(f,,) = lim, I(f,) almost surely. This is summarized in the following
definition.

Definition 2.6. For any f € .Z2, the stochastic integral (or Ité integral) is defined
to be

[ ras (@) =117](0) = Gimiln)) (o) 6

where the limit is in L?>(P) and f, € .£? is any sequence of bounded, simple pro-
cesses converging to f in L%(dr x dP). The integral is defined almost surely.

Proposition 2.4 (Itd isometry for £2). Forany f € £ E[([] fdB,)*| =E[/] f2dr).

Proposition 2.5. If f, € 2, f € £ and f, — f in L*(dt x dP) then [y f,dB, —
S fdB, in L*(P).

Example 2.1. We’ll show that

! 1 1
/0 B;ng == EB; — 5[

Let 7, be a sequence of partitions of [0,7] such that mesh(mx,) — 0. By the above,

the sequence of processes fn(s, ) = Z,jeﬂn By (@)1, ,,,,)(s) is areasonable choice
for a discretization of the integrand. Since

E [/OZ(BS — fuls, .))st] —E lz/;"“ (B, —B,j)zdsl - Z%(UH — )% >0
7

J
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2.2 Stochastic integration 17

as n — oo, then by Corollary fé BdB; = lim [; f,dB; = lim}; By, (B,J. o B,j).
Now notice that Bf || — B = (By,, — By;)* +2By;(By;,, — B;,) and thus

1 1
ZB,-(B,M —By) = EB’Z B EZ(B’HI —B,)’
J J

and the second term on the right converges in L? to the quadratic variation of Brow-
nian motion which we already showed to be 7.

The following proposition states properties of the stochastic integral which hold
for simple processes and hence continue to hold for any limit of a sequence of simple
processes. We skip further details of the proof.

Proposition 2.6. Let f,g € £?, acRandlet0 < S <U < T. Then

1. f{ fdB, = [ fdB, + [} fdB, 4. E[JT fdB,] =0
2. JST afdB, = afsT fdB; 5. jST fdB, is Fr-measurable
30§ (f+g)dB, = [{ fdB,+ [{ gdB,

2.2.2 Stochastic integral as a process

2.2.2.1 Stochastic integral as a continuous martingale

Based on the results of Section [2.2.1] we try to define a process X; such that X; =
fé fdB; for every t. The problem in defining X; = I[f 1[07,]] is that the for each fixed
t, X; is defined in a set of probability one, say, in £2;, but it is possible that the
probability of the uncountable intersection (), €; is strictly less than 1 or even that
(; £2; is not an event (a measurable set). Therefore we define X; in this way in a
countable set of # and then extend by continuity of £ — X; to other values of ¢ as in
the following theorem. For the definition of a martingale consult Appendix A.

Theorem 2.2 (Stochastic integral is a continuous L>-martingale). For each f €
L2 there exists a continuous square integrable martingale (Xt)ZERzo such that for

eacht, X; = [; f(s,-)dBs almost surely.

Remark 2.4. The process (X;)er., is unique in the sense that if there is another
process (X/) teRs, With the same properties, then almost surely X; = X/ for all 7.

Proof. Fix some T > 0. Take a sequence of simple (and bounded) f,, € .#? such that
fo— fin L2(dr x dP,[0,T] x 2) and define X" = 1[f; 1q,q] which is well-defined
in whole Q. If f, = Y axLy, . ), then for f; <1 <1.4; we have an explicit formula

-1
Xt(n> =a;- (B,—By,)+ Z ar- (By,, —By,). 2.7
k=0
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Clearly ¢ — X; is continuous. To show that it is a martingale, notice first that it is
adapted because all the random variables on the right of (2.7) are .%;-measurable.

Next notice that E[|X,(") ] < oo, because it is a finite sum of integrable random vari-
ables. Finally, for 0 < s <t < T we can assume that s =#; and ¢t =t,, for some / and
m (redefine the partition in f,, again if necessary) and then

m—1

EX"| 7] = EX"|Z] +ELY ar- (By,, — By )| 7] = X"
k=1

because XS(") is .Zs;-measurable and by the properties of conditional expectation (see

Appendix A)

E[ak : (Bfk+1 _Blk)|ys] = E[E[ak ' (Btk+1 _Blk)|‘%k]|ﬁs]
Bl (B, —BIFIF] =0, 28)

Since Xt("> fX,(m) is a martingale, by Doob’s maximal inequality

n m 1 n m 1
P l sup Xt( )_Xt( )’ 2 €‘| S ?EHX; ) —X7(~ )|2] = ?an _meiz(dtde)

t€[0,T]

<273 and

for any & > 0. Choose a subsequence ny such that || f,,, .| — fy, Hiz(dzde) <

use the previous estimate for £ = 27 to get Plsup,c[q 1y x, ") — x| > 2=k <
27k, By the Borel-Cantelli lemma, there exist random variable N which is almost
surely finite and for k > N(®),

sup Xt(”k+l) _Xt<nk) < 271{.
t€[0,7]

Hence the sequence of the continuous processes (Xt<"")) converges almost surely

uniformly to a continuous process (X;). Since for any fixed ¢, lith(”” in L2(P) is
i fdB; then

ot
X, = / fdB,
JO

almost surely. This also shows that (X;) is adapted and square integrable.
Finally the martingale property of (X,(n)), forany0<s<t<T

x" = gx" |7,

Since the random variables XS(”) and Xs(”) converge in L?(P) to X; and X, respec-
tively, then by the properties of conditional expectation (see Appendix A)

X, = E[X,|.Z,].
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2.2 Stochastic integration 19

forany 0 < s <t <T. For the whole R, the claim follows from the above by taking
a countable sequence T " oo and using the uniqueness. a

Remark 2.5. The property that we used in (2.8)) could be reformulated in the follow-
ing way: if (M;);cr, is a martingale and if 0 < s <t <wu and Y is a .%;-measurable
bounded random variable, then E[Y (M, — M,)|.%;] = 0. We say that martingale in-
crements M, — M, are orthogonal to .%;.

Definition 2.7. For any f € .£?, the stochastic integral (or Itd integral) is redefined
to be a continuous version of fé fdBg, which exists by the previous Theorem.
Remark 2.6. The processes (X;);cr, and (Y;)cr, are versions of each other if
P[X, =Y,] =1 for each t.

Definition 2.8. For any process X; = fé fdBy, define the quadratic variation process
as

(X)(0) = /0 (s, 0)2dr.

The process (X) is the quadratic variation in the sense of the equation (2.1). We
postpone the statement of that result. The following result gives a second interpre-
tation of the quadratic variation process.

Theorem 2.3. Let f € £%, X, = [} fdB, and (X); as above. Then X — (X), is a
martingale.
Proof. We leave as an exercise to check this for bounded, simple f € .#>. In the gen-
eral case take a sequence of bounded, simple f, € .#? and define X,("> = fé fndBs.
The claim follows easily from the L!(P) convergence of (X,W)2 — (X)), which
implies the L' (P) convergence of E[(X,(n>)2 — (X)), |.%,] by the properties of con-
ditional expectation (see Appendix A). O
Next we define a stopping time which can be taught as the time when “some event

occurs” so that for each time instant, the question whether this event has already
occurred or not before or at that time is a “measurable question”.

Definition 2.9. A random variable 7 : Q — [0,00] is called a stopping time with
respect to the filtration (% ),cr, if forallz > 0,{w : t1(w) <t} € Z,.

An example of a stopping time is 74 = inf{t € R>¢ : B, € A} where A is a closed
or open set in R.

One way to describe the following result is that by that proposition, the pathwise
interpretation of the It6 integral makes sense: if two integrands have the same paths
up to a stopping time, then the integrals also agree up to that stopping time. For the
proof see Appendix B.

Proposition 2.7. If T is a stopping time and f € £* and g € £? processes such
that f(t,0) = g(t,®) for any (t,®) such that t < T(®), then for almost all ®

[ rasio) = [ an.(o)

forallt < 1(o).
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2.2.2.2 Localization and a general class of integrands

At this point, we have the Itd integral defined for any measurable, adapted process
f such that E[ [ f2d] < o for any T € (0,e0). However, we would like to have a
larger class of processes that includes at least all the continuous processes, such as
f(t,w) = exp(B,(®)*) which is an example of a process that doesn’t belong to .#2.

Definition 2.10. The class .Zl(z)c is defined to be the set of measurable, adapted pro-
cess f such that almost surely

T
[ e <o
JO

forany T € (0,00).

Fix some f € i”lgc Define a stopping time

() = inf{t ER, : /Otf(s,a))zds > n}

It follows from f € %2, that 7, " co almost surely as n — oo.
Let f,(t,0) = f(t,0)1;<z,(0)- Then f, € £? and we can define the Itd integral

Xt(n) = [ f2dBs. Since f,(t,®) = f,,(t,®) for all (¢,®) such that t < (7, A T,,) (@)
and since T, A T,, is a stopping tim¢°| by Proposition [2.7|for almost all ®,

fort < (T, A T) ().

For each fixed o, this is a strong mode of convergence: there is a finite ng(®)
such that Xt(n) (w) = X,(m) (@) for any n,m > no(®). Define now a process (X;);cr.,
on the event {1, o}

X (0) = X" (0)
where n € N is any number satisfying ,(®) > ¢. The complement of the event
{7 /" o} has zero probability and there we can define X; = 0 identically, say.

Definition 2.11. The It integral of f € .Z? _ is defined as

loc

[ raB(@) = x(0) = X ()

where n € N is any number satisfying 7,(®) > 7 and X' () is as above.

For any continuous process (Xl)l@RzO and for any stopping time 7, define a
stopped process (X;);cr., by X" = X;az. The continuity of (X;);cr., guarantees
that X is measurable.

8 The minimum of two stopping times is a stopping time.
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2.3 Itd’s formula 21

Definition 2.12. A continuous process (M;),cr., adapted to (% ),cr., is called lo-
cal martingale if there exist a sequence of stopping times 0 < 71 < 75 < ... such that
P(ty /o) =1 and for each k, M" is a martingale. It is a local square integrable
martingale, if each (M;*),cR. , is a square integrable martingale.

Remark 2.7. The use of stopping times of similar to T,, in Definitions and[2.12]
is called localization of the processes.

The next theorem lists the properties of Itd integral in its most general form. The
theorem follows from the properties of the It integral for .#?-integrands and from
the construction of the integral using localization. See Appendix B for the proof of
the last statement.

Theorem 2.4. For any f € £2,, the processes X; = [} f dBy and X? — (X ), are con-

oc’
tinuous local martingale. Furthermore, (X;);cr., has finite quadratic variation and

almost surely for any t, V)Ez) (1) = (X).

2.3 Ito’s formula

2.3.1 Ité’s formula for a Brownian motion

1t6’s formula is a result of central importance in stochastic calculus. We present first
its version for a Brownian motion. By Itd’s formula, functions of Brownian motion
can be written as sum of a stochastic integral and an integral with respect to dr.

Theorem 2.5 (It6’s formula for a Brownian motion). Let F : R, xR — R be a
continuous function such that F,F’',F" exist and are continuous, where

2

F(t,x)= %—I;(Lx), F'(t,x) = %(t,x) and F" (t,x) = = (t,x).

Then almost surely
t . 1 1 1
F(t,B;) = F(0,B) +/ F(s,Bs)ds+/ F'(s,By)dB; + 5/ F"(s,Bs)ds (2.9)
0 0 0
for any t € R. For the previous equation we will use the shorthand notation
. 1
dF(t,B,) = F(t,B,)dt + F'(¢,B,)dB, + EF”(nB,)dt.

Proof (A sketch). The proof is based on the Taylor expansion of F(¢,x) in both of
its variables. Take a partition 7 of [0,7] and write a telescoping sum

m(m)—1

F(L.B)~F(0.B0)= Y. (Flies1.By.,) ~ Fl.By)).
k=0
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By the mean value theorem
F(tk+1 7Bt/<+1) - F(tkaBtk) = [F(tk+l 7Bl‘k+| ) - F(tkal‘kH )] + [F(tkaBl‘kH) - F(tk’Btk)}

1
:I:F(tk+1’Btk+l) 7F(tk7Blk+1)]+F/(tkﬂBlk)(BIk+l 7Blk)+§F”(tk7nk)(Btk+l 7Btk)2

=:ay =:by, =:Ck

where 7 is a .%;,  -measurable random variable that lies on the interval between
By, and By, . Take a sequence of partitions 7, such that mesh(7,) — 0 as n — co.
The claim is that the sums Y ag, ) b; and Y ¢, will converge to each of the three
integrals in (2.9), respectively. The convergence will be almost sure along suitable
subsequences of ,. For the rest of the proof see Appendix B. ad

Example 2.2. Let F(x) = x?/2 and let (B;),cg . be a one-dimensional Brownian mo-
tion with By = 0, then 3B? = [jB,dB, + 5 J¢ ds by Theorem and hence after
rearranging the terms fé BydB; = %Btz — %t which is in agreement with the result we
obtained by directly applying the definition of It6 integral in Example [2.1]

Remark 2.8. The proof of Theorem uses (i) continuity of 7 — B, and the facts
that (ii) B, and (iii) B,2 —t are martingales. It is possible to use the same proof to
derive the formula E[f(X;)|.%,] = f(X;) + 3 [! E[f(X,)|-%,]du for any s < ¢ and any
adapted process X; satisfying the properties (i)—(iii). If this formula is applied to the
function f(x) = exp(i0x), an argument using the characteristic function very similar
to the proof of Theorem [2.8] shows the next results.

Theorem 2.6 (Lévy’s characterization of Brownian motion). Ler (X;) 1R, be a
continuous local martingale with Xy = 0. If (X,2 —1)ier., is a local martingale, then
(X )ier-, is a standard Brownian motion.

2.3.2 It6’s formula for semimartingales

Henceforth, we’ll write the time parameter of the integrands explicitly. Let’s first
study two stochastic integrals with respect to a common Brownian motion

1 1
Xt:/o fs‘dBA‘7 Yt:/o g‘\'st

where f,g € 92”12

- Their (quadratic) covariation process is defined as

(X,¥), = /0 Fgsds.

Then we notice that it satisfies the relation 4(X,Y), = (X +Y), — (X —Y);. A sim-
ilar relation can be written for the product X;Y; and a sum of the form }; (th g
Xi, )Yy, —Y;). Consequently, X;Y; — (X,Y), is a local martingale and along parti-
tions of [0,7]
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m(m)—1
lim X — X )Y, — 1) =(X,Y 2.10
mesh(7)—0 ];) ( Tyt lk)( Ty 1 lk) < >t ( )
in probability.
Let’s then consider the case of two stochastic integrals with respect to indepen-
dent Brownian motions. If (B(!), B?)) is a standard two-dimensional Brownian mo-

tion and . .
= [ fasl v— [ gan?
0 0

where f,g € ,,?j(z)c, then X;Y; is a local martingale. The covariation process is

(X,Y); = 0 and it satisfies (2.10) together with (X;);cr., and (¥;),cr.,. These state-
ments can be verified in the same manner as Theorem 2.4]

In the most general case, let (B,l),B,2 7...,Btm)) be a standard m-dimensional
Brownian motion. Let

t m t
X,:X0+/ fsds+Z/ ¢ aplh @2.11)
t m. ot
i=tor [ fas+ Y [ o asl
Jo = Jo

where Xy and Y are -%p-measurable random variables, g(k),g(k) € .ﬂlgc and f, f are
measurable, adapted to (F;),cr, and satisfy

t
P[/ fs|dS<°°f0rallt6R+] =1.
0

Then since integrals [ f;ds have (locally) finite total variation, by the above it is
natural to define

¥ [ (9 g _y /’ ) 4 _y /’ () 50 4
<X>tkz,l/0 (gs ) S, <Y>t*kg,] 0 (gs ) S, <X»Y>t*k§,] Ogs &s " ds

which are the quadratic variation and covariation processes also in the sense of (2.1))

and (2.10).

Definition 2.13. We call a process of the form (2.11)) a semimartingale and use a
shorthand notation dX; = fidr +Y;" g,(k) dB,(k>.

Remark 2.9. This is a slight abuse of standard terminology. More generally, semi-
martingale is any process that is sum of an adapted finite variation process and a
local martingale.

Next we present a version of 1td’s formula for semimartingales. An interesting
viewpoint to this result is that the class of semimartingales is closed under forming

new processes F(X,(l), e 7X,(")) from semimartingales (X,<k)),eR20, k=1,2,...,n.
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Theorem 2.7 (It6’s formula for semimartingales). Let 1 <[ <n. Let Xt(j ) be semi-
martingales

k=1

for1< j<nwhere f9) and g% are as above. Assume that g% = 0 identically for
j> 1. Let F : R" — R be continuous function such that dy,F exists and is continuous
forall 1 <i<nand that 8xiij exists and is continuous for all 1 <i,j <I.

ThenY, =F (X,m, ... ,X,(n)) is a semimartingale and almost surely

n

ar =Yy {8ij(X,(1), X Y e +I;18x_/F(X,(1)7 XM gl dBfk)}

j=1

I m , .
Z Z axhx]'F(Xt(l)? s aXt(n))gl(Lk)gt(J’k) dt

for allt € Ry. A compact way to write the expression is dY, = Yi_, (J;F) dX,(j) +
L1 (9F) d (X0, x0)

Remark 2.10. Note that the theorem includes the case when F depends explicitly on
time: let / < n and take X;"’ =t. Theorem [2.5|is a special case of Theorem [2.7

Remark 2.11 (Rules of stochastic calculus). Let Y, = F (Xt(l), .. 7Xt(n)). The reader
can memorize Itd’s formula for ¥; by writing formally Z;.4, = Z; + dZ; for any

semimartingale Z,, taking the Taylor expansion of F' at (X,(l), .. ,X,(">) and using
d*=0, drdB” =0,  dB"dBY = 5;dr.

Example 2.3 (Norm of a Brownian motion). Let (Bl(l), .. ,B,(m)) be m-dimensional

standard Brownian motion, m > 2, started away from the origin and let F (x1,...,Xx,) =
(X, x3)'/2. By Ito’s formula, ¥, = F(BY,...,.B™) satisfies

BYdBY  m—1

dy, = dr.
Y A7

2.4 Further topics in stochastic calculus

2.4.1 When is a semimartingale a local martingale?

The following result is based on the observation that f(; fsds has finite total varia-
tion, where as for every continuous martingale it is infinite. The proof is given in
Appendix B. The result will be extremely useful in conjunction with Itd’s formula.
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Lemma 2.1. Let dX; =Y, gt(k>dBt(k) + fidt be a semimartingale. Then it is a local
martingale if and only if almost surely f; = 0 for almost all t.

Example 2.4. Let F : R — R be smooth, A € R\ {0} and suppose that F(B;)e*’
is a martingale. Then d(F(B,)e™) = F'(B;) e*'dB; + (AF (B;) + L F"(B)) e*'dt by
1t6’s formula. By Lemma it holds that AF (B,) + $F"(B;) = 0 for all 7. This is
possible only if F satisfies AF (x) + 1 F”(x) = 0 for all x. Thus

F(x)=Cjexp (\/ —2)»1) +Cyexp (—\/ —ZM) , when A < 0, and
F(x) = Cysin(V2At) + Cycos(V2A1), when A > 0.

Here C1,C; € R are constants.

2.4.2 Time changes of local martingales and semimartingales

As usual, let (£,.7,P) be a probability space with a filtration (% );cr., and
let (BI)ZGRE() be a standard one-dimensional Brownian motion with respect to
(Ft)1er,- Let’s start this section by making the following definition.

Definition 2.14. If 7 is a stopping time with respect to (J),cR.,, define the stop-
ping time c-algebraas Fr={A e F : An{t <t} € . forallt € Rx}.

Remark 2.12. If s € R> is a constant and T = s almost surely, then it’s easy to check
that #; = Z,. So the notation .%#; and the concept of stopping time c-algebra is
consistent with the earlier definitions.

In the same way, as .%; can be thought as the information available at time ¢, a
stopping time o-algebra .%; can be thought as the information available at a random
time 7. The main reason to introduce the stopping time c-algebra is time changes
and analysis of martingales under time changes. See Appendix A for the optional
stopping theorem which a result that that extends the martingale property from non-
random time instances to stopping times.

The following theorem is an application of It6’s formula. It is a special case
of more general result that any continuous local martingale is a time-change of a
Brownian motion. The proof of the general result would follow the same lines if we
had established the theory of the stochastic integral with respect to local martingales
and we had corresponding It6’s formula available.

Theorem 2.8. Let (X;),cr., be a local martingale defined by

m t
x=Y [ ePap!
k=170

where g,(k) e

loc*

Let (G’)’ERzo be the set of stopping times
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1.5 T T T T 1.5
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Fig. 2.1 On the left, an instance of Brownian motion (BI)IERzo is plotted with dots and the cor-

responding instance of (X;);cr-, = ((1/2) (B> —1));cr-, With a solid line. On the right, the time
change of (X;);cr., plotted with a solid line and the change of time, which is the inverse of the
map t — (X),, is plotted with dots.

o,=inf{r >0: (X), >r}

where (X), =YY", [5 (ggk))zds is the quadratic variation process as before. Assume
that almost surely (X); — oo as t — oo. Then the process (Y;)icr., defined by Y, =
Xo, is a standard one-dimensional Brownian motion with respect to the filtration

(yG[)IERZO'

Proof. Since (X); — o ast — oo, each o, is almost surely finite. By the continuity
of the mapping ¢ — (X),;, we have that (X)s, =r.

Let M; = exp (16X, + 6(X);/ 2ﬁBy 1t6’s formula (M;);cr.,, is a continuous lo-
cal martingale, see also Example Note that (MI)IGRZO is a complex valued pro-
cess, but this causes no problems: we can apply 1t6’s formula separately for its real
and imaginary parts. The statement that it is a local martingale means that both
its real and imaginary parts are local martingales. Since M”" = M, ¢, is bounded,
(M"),cr., is a martingale. Namely, if 7, is the localizing sequence of (M, );cr.,.
then (M{""*),cg., is a martingale. Hence by boundedness of (M;"),cg., and by
the fact that 7, oo almost surely as n — oo, -

O AT,
E[ M |yr] = Mgrmn
—— ~——
ﬁM,G’ inL! —MP" in L1, as n—oo

and therefore by properties of conditional expected value, see Appendix A,
E[Mtgr|js] = Msdr'

Thus (M;"),ck., is a continuous bounded martingale.
Next we apply the optional stopping theorem for stopping times o; < o, where
0 <s <r, to show that
EMs, | Fs,] = Mo, .
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This implies that for any 0 < s < r and for any 0 € R,

2
E [exp (10(Xo, — Xo,)) | Fo,] = exp (—62(r - s)) .
The right-hand side of this equation is the characteristic function of a normal random
variable with mean 0 and variance » —s. The left-hand side is a conditional version of
characteristic function of X5, — X, . That characteristic function is now constant as a
Z5,-measurable random variable. Therefore the fact that the characteristic function
determines the distribution uniquely shows that X5, — X, is independent from %,
and that X, — X5, is normally distributed with mean 0 and variance r — sﬂ ad

Example 2.5. Let us continue the setup of Example Let (Wt)teRgo be a process
defined by Wy and dW; = Y7 (B /v,)dBY, where ¥, = F(B'" ... .B™). Then

n [(B§k))2
<W>,_k;/0 s =1

By Theorem (Wi)iers, is @ (F)scr.,-Brownian motion.

The next result gives a general form of a time change for semimartingales. The
proof is left as an exercise.

Proposition 2.8. Ler a,(®) be a continuous, positive, adapted process. Define a ran-
dom time change by setting:

S(t,w):/ota,(a))2dr, o (s, ®) = inf{r € R : S(t, ®) > 5}

Let (BS)SGRZO be the process defined by

) o)
By(o) = /0 a,dB, (o).

Then (ES)S€R>O is a standard one-dimensional Brownian motion with respect to
(Fo(s))seRsgr and for any continuous, adapted process v,;(®) the following time-

change formula holds
s B o(s)
./0 Vo(q) 4By = /0 vra,dB,.

9 If Elexp(i6:X)|4] = w(61) is a constant as a function of @ € £, then for any
@-measurable random variable Z, it holds that @y z)(61,62) = E[exp(i6iX + i6,Z)] =
Elexp(i6:Z) E[exp(i60:X)|¥4]] = w(61)¢z(6,) by properties of conditional expected value. Here
9o = E[exp(i0 -Y)], 6 € R" is the characteristic function of a R"-valued random variable Y. Thus
by the uniqueness theorem of the characteristic function, it follows that X and Z are independent
and that the law of X is the unique probability measure on R such that ¢x = y. Since this holds in
particular for any random variable Z = 1, E € ¢, it follows that X is independent from ¢.
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Moreover if X; is a semimartingale dX; = u,dt +v;dB; then the process (XS)SGRZO de-
fined by X; = Xo(s) is a semimartingale with respect to (F o(s))seRrs, and (Es)seRzo
and satisfies

L Ug(s Vols) . =
dx, = T ag4+ gz,
A5(s) o(s)

2.4.3 Stochastic differential equations

We present here the rudiments of stochastic differential equations for single variable.

Let (X;)c(o,r) be an R-valued continuous stochastic process and let (B;),ck., be
a standard one-dimensional Brownian motion. We say that X; satisfies the stochastic
differential equation (SDE)

dX, = F(t,X;)dt + G(t,X;)dB; (2.12)

with initial value Xy = Z if for each ¢ € [0,7]
1 t
X, = z+/ F(s,XS)ds+/ G(s,X,) dB,.
0 0

If the process can be constructed in a given probability space with a given filtration
and Brownian motion, then (X,),E[O,T] is called a strong solution of the SDE.

Theorem 2.9. Let (B;);cr., be one-dimensional Brownian motion and let F : [0,T] x
R —Rand G:[0,T] x R — R be measurable maps. Let Z be R-valued square in-
tegrable random variable which is independent from & (B;,t € R>¢). Suppose that

[F(2,%)| +1G(1,x)] < C(1+|x])
|[F(t,%) = F(t,9)| +G(t,x) = G(t,y)| < D[x—y|.

Then there exist a unique continuous solution (X;);c(o,r) to the stochastic differential
equation 2.12) with initial value Xo = Z with the property that X, is adapted to the

Sfiltration %(B’Z) generated by Z and By, s € [0,t]. Furthermore E {fOT \X,|2dt} < oo,

The proof of the theorem is very similar to the proofs of existence and unique-
ness of solutions of ordinary differential equations and is based on Picard-Lindelof
iteration. We leave the details to the reader.

Example 2.6. Let us continue Examples [2.3]and [2.5] The solution of the SDE

6—1
dX; =dB; + ———dt
1 l+ 2Xt ’

Xo = x is called a Bessel process of dimension 6 € R sent from x. In Examples
and[2.3 we saw that the norm of n-dimensional Brownian motion is a n-dimensional
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Bessel process. We can use Theorem [2.9] with Proposition[2.7]to show that the solu-
tion exists and is unique for all § € R up to the time 7 = inf{r € R>¢ : infico) Xs =
0} which is the hitting time of 0. Using other methods, we could define it beyond
the hitting of O for the parameter values § > 0.

Remark 2.13. In the time-homogeneous case, F(7,x) = F(x) and G(t,x) = G(x),
these solutions X; are called diffusions. From another viewpoint, diffusion defines a
family of processes with one element for each starting point x € R.

2.5 Conformal invariance of two-dimensional Brownian motion

N
|

b1

(a) A sample of complex Brownian motion  (b) Conformal image of the same sample
stopped at its exit time from the disc. under a map taking the disc onto a sector.

Fig. 2.2 Illustration of conformal invariance of Brownian motion. The colors indicate time. We
notice that the appearances of the paths are similar in both pictures except that the time is changed
by a local factor when we move from the first picture to the second one.

As usual complex number z is represented in terms of its real and imaginary parts
as z = x+1y, similarly complex valued function of a complex variable is divided
into its real and imaginary parts as f(z) = u(z) +iv(z). Let U be an open set in the
complex plane C and let zo € U. The starting point of complex analysis is that the
following statements about a function f : U — C are equivalent:

e The function f is holomorphic near zy in the sense that the complex derivative
f'(z) =1limj_0 + (f(z+h) — f(2)) exists and is continuous in a neighborhood of
z0. This is equivalent to that the statement that f has continuous partial deriva-
tives dyf, dyf and satisfies df(z) = 0 in a neighborhood of zp|'°| The complex
derivative f’ satisfies f'(z) = df(z) = dvf(z) = —idy f(2).

10 Define as usual the following partial differential operators @ = 1 (dx —idy) and d = (s +idy).
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e The real and imaginary parts of f satisfies Cauchy—Riemann equations near zo:
o = dyv and dyv = —dyu.

e The function f is (complex) analytic at zo: f(z) = Yo cn(z —z0)" which con-
verges absolutely when |z —zo| < r for some r > 0.

Remember that u and v are harmonic: Au= 0= Av[1]

We conclude the introduction to stochastic calculus by showing that the complex
Brownian motion is conformally invariant (up to a time-change). This justifies more
or less all the time that we invested on the technical steps in this chapter and also
works as motivation for the treatise of conformally invariant scaling limit in later
chapters. Define a complex Brownian motion send from zg € C as

B, =B =z+B" +iB?.

Theorem 2.10. Let U C C be a domain (non-empty connected open set) and let f :
U — C be analytic. Let zg € U and let B; be a complex Brownian motion send from
20 €C. Lett=inf{t >0: B, ¢U}. Let Z; = f(Bg(y)) for 0 <t < S(7) where o(t) =
S7U(t) and S(t) = [§|f'(By)|?ds for 0 <0 < 1. Then Z; is a complex Brownian
motion send from f(zo) and stopped at (7).

Proof. As above write f = u+iv. Define X; = u(B,) and ¥; = v(B;). Since u and v
are harmonic and satisfy the Cauchy—Riemann equations, by 1t6’s formula
1 2
dX; = uy (B,)dB!" + uy (B,)dB
dY, = —uy(B,)dB!" + uy (B,)dB”,
where u; = dyu and up = Byu are the partial derivatives of u. The d¢-terms vanished

by Au =0 = Av. Therefore (X;);cr, and (Y;);cr, are local martingales.
By a direct calculation (X,Y), = 0 and

K= ) = [ B +B)as= [ 17,

Here we used the fact that f'(z) = u;(z) —iua(z). A modification of the proof of
Theorem [2.8| shows that the process exp(i01X; + 62(X),/2) exp(i6:Y; + 63 (Y),/2)
is a local martingale for any 6,60, € R, and consequently, (Xg, );cr, and (Y5, )icr,
are independent Brownian motions. a

2.6 Weak convergence of probability measures

The concept of a scaling limit (such as the scaling limit of the Ising model in Chap-
ter [I)) involves sequence objects defined on different probability spaces or even if

1 By the Cauchy—Riemann equations, iy + ityy = Vyy — Vyy = 0 and similarly for v.
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they could be embedded to the same probability space, there is no hope to find an
embedding easily under which the convergence would be almost sure. Therefore it
is natural to consider so called weak convergence of probability measures. Typically
we consider curves to be elements of the space of continuous functions C(Rxg, C)
and thus we are interested in probability measures on that space.

Let 2 be a metric space (such as the space C(Rx(,C) of continuous complex-
valued functions on R>(). Then every Borel probability measure on .2~ is regular
and any measure is determined by the expected values of continuous bounded func-
tions on 27, see [1]. Let (Qu)nez., be a sequence of Borel probability measures
on 2. The link to our setup is that we consider our random objects as 2 -valued
random variables and their laws are given by Q,, n € Z~¢. The following definition
is a very practical approach to convergence of probability measures.

Definition 2.15. We say that (Qu),cz., converges weakly to a Borel probabil-
ity measure Q on Z if for every continuous bounded f : £ — R it holds that

Qu(f) = Q(f) as n tends to oo)'?"3}

The fact that makes the previous definition useful is that there is a practical way
to verify the precompactness of the sequence (Qp),cz.., -

Definition 2.16. A sequence (Qy)qcz., is said to be tight if for each £ > 0 there
exists a compact set K C 2 such that Q,[K] > 1 — ¢ for all n € Z~.

Theorem 2.11 (Prohorov). If (Qu)nez., is tight, then it is precompact, that is,
every subsequence of (Qn)nez., contains a subsequence that converges weakly.
Conversely, if 2" is separable and complete and if (Qu)nez., is precompact, then
(Qn)n€Z>o is tight.

As a conclusion, a convergent sequence needs to be tight, and establishing tight-
ness is often the first step in showing the weak convergence of probability measures.
For more technical purposes, let us still introduce the following definition.

Definition 2.17. A real-valued random variable X is tight with respect the se-
quence (Qu)nez., if for each € > 0 there exists a compact set M > 0 such that
Qu[|X| <M]>1—¢forallne Zsy.

Let’s still study tightness in space of continuous function C(R>,C). A standard
metric in C(Rx¢,C) is given by

d(f.g)= Y 2% (L Asup{|£(1) —g(r)| : 1 € [0.6]})
k=1

12 The notation Q(f) denotes the expected value of f with respect to the measure Q.

13 There are many equivalent definitions of the weak convergence — by a result named the Port-
manteau theoremA[l]. The above definition is equivalent to any of the followigg statements (i)
limsup Q,(C) < Q(C) for all closed sets C of the space 2, (ii) liminfQ,(U) > Q(U) for all open

sets U of the space t%j , (iil) lim Q, (A) = Q(A) for all continuity sets A of the measure Q. A set A
is a continuity set if Q(dA) = 0.
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and it is easy to see that the associated topology is given by uniform convergence
on compact subsets of Rx¢. Define the modulus of continuity of f on [0,k] as

04 (€) = sup{|f() = f(s)| : t,s € [0,K] s.t. |t —s| < £}

The next result, based on the Arzela—Ascoli theorem, characterizes the precompact
sets in C(Rx,C).

Proposition 2.9. A set o7 C C(R>¢,C) is precompact if and only if

sup |f(0)] < oo (2.13)
fed
and
lim sup wsx(€) =0 (2.14)
£—0 fed ’

forall k € Zy.

Proof. Since C(Rx0,C) is a metric space, &7 is precompact if and only if it is se-
quentially precompactlﬁ Any sequence f, € 7 contains a subsequence converging
uniformly on [0,4] if and only if (Z.13) and (2:14) hold by the Arzela—-Ascoli the-
orem, see [[1], Theorem 7.2. A diagonal argument shows that f, € </ contains a
subsequence converging with respect to the metric d if and only if (2.13) and (2:14)
hold for all k € Z~. a
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Chapter 3
Introduction to conformal mappings

In this chapter we present briefly some result of complex analysis which are useful
for our theory.

3.1 Harmonic functions

We assume that reader is familiar with complex analysis on the level of Rudin’s
book [7]. This chapter is supplemented by Appendix C.

3.1.1 Mean value property and Poisson kernel

A domain is a non-empty, open and connected set. For a set A, A usually denotes its
closure, whereas the meaning of A* depends on the context, but it is often related to
the complex conjugation or a similar symmetry. Some domains that we will consider
are the unit disc D = {z € C : |z] < 1}, the exterior of the unit disc D* = {z € C :
|z| > 1} and the upper half-plane H = {z € C : Imz > 0}.

Let U be a domain in the complex plane. A twice continuously differentiable
function u : U — R is harmonic if Au = 0. A harmonic function u : U — R has
mean-value property in the sense that

71
Y

4 .
u(z) /0 u(z+re'®)do 3.1

forany z € U and r > 0 such that B(0,r) C U. Conversely, if u : U — R is continuous
function satisfying for every z € U and for every 0 < r < ry(z) (where ro(z) >0
can be less than the inradius at z() then u is smooth and harmonic. See, for instance,
5] pp. 210, 218-220.

33
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When the mean value property is applied together with a Mobius transforma-
tion the mean value property can be written for any point in the disc (not just for
the center) as an integral over the boundary of the disc. Namely, if u : B(O,R) — R
is continuous function that is harmonic in B(0,R), then

I S <
= — = BL_y(Re™® 2
u(z) 27r/0 |z—Re19|2u( e'’)do (3.2)

where the quantity Py z)(z,0) = (R? — |z*) /(|z— Re'®|?) is called the Poisson ker-
nel in B(0,R). This quantity extends to discs of the form B(zg,R) in an obvious way
by translation.

Similarly in H, if u : H — R is continuous and bounded and if u is harmonic in
H then u is given in terms of an integral of the Poisson kernel in H as

1 [/~ Imz
wd) = | g (33)
for any z € H.

The harmonic conjugate of u is any harmonic function v such that f = u +iv
is holomorphic. The function v is unique up to an additive constant and it exists at
least locally in each ball contained in the domain. This can be seen from the Poisson
kernel which can be written as P ) (z,0) = Re[(Re’® —z) /(Re'® + z)]. Therefore
if we take the imaginary part of the complex valued kernel (Re'® —z)/(Re® +z),
then the corresponding integral gives the harmonic conjugate in the disc. This can
be summarized by an explicit formula for f in B(0,R) given u

B 1 2”Rei9—|—z
T 2nJo Re®—z

f(z) u(Re®)dO +iC
where C € R is a constant. Globally in a non-simply connected domain, v might be
multivalued.

3.1.2 Schwarz reflection principle

Another consequence of the mean value property is the Schwarz reflection principle:
if f =u+iv is holomorphic in Dy = B(0,r) NH and if lim,,,v(z) =0 as z €
Dy tends to any x € (—r,r), then f has a unique holomorphic extension to B(0, r).
Namely, v(Z) = —v(z) for any z € D_ defines a continuous extension of v to B(0, r)
and this extension satisfies the mean value property in B(0, 7). Hence v is smooth and
harmonic in B(0,7) and it has a harmonic conjugate which is unique if we require
that f = u+ivis in D;. Hence f extends holomorphically to B(0,r) and satisfies

f@)=r(). (3.4)

! Harmonicity is preserved by any holomorphic change of coordinates.

Antti Kemppainen, Schramm—Loewner evolution, 2017/06/24



3.2 Conformal maps 35

More generally, if U C H is a domain and J C RN JU is non-empty set such that
each point x € J satisfies the condition that B(x,r) NH C U for some r > 0 and if
f : U — C is holomorphic function such that limIm f(z) = 0 as z tends to J, then
there exists a unique holomorphic extension of f to U UJUU* and the extension
satisfies (3.4). Here U* is the reflection of U with respect to the real axis.

3.1.3 Harmonicity and complex Brownian motion

Under suitable conditions on the domain U and on the function 4 : U — R harmonic
in U and its boundary values ¢ = h|,y, the function / can be represented using the
complex Brownian motion as /(z) = E*[¢ (B;)] where 7 is the exit time of (B;);cr.,
from U and E? is the expected value with respect to the law of the complex Brownian
motion (B );cr., sent from z. The following result is a result of this type.

Lemma 3.1. Let U be a domain and h : U — R be a bounded continuous function
such that h is harmonic in U. Let P* be the law of a complex Brownian motion
(By)ier., started from z € U and E* be the corresponding expected value. Assume
that T =inf{t € R>o : B, ¢ U} is almost surely finite. Then h(B;pz) is a bounded
continuous martingale and h(z) = E* [h(B)].

Proof. The fact that M, = h(B;;)T) is a local martingale follows from It6’s formula
similarly as in the proof of the conformal invariance of Brownian motion. Since / is
bounded, M; is a bounded continuous martingale and we can use optional stopping
to show that My = E[M]. O

3.2 Conformal maps

Definition 3.1. A map f : U — C is a conformal map if and only if it is holomorphic
and injective. A univalent function is the same as a conformal map. When a map
f:U — U’ is conformal and onto, i.e., f is conformal and f(U) = U’, we state
explicitly the fact that the map is onto.

If f is conformal, locally near zp, we have the absolutely convergent expansion

f(2) = f(z0) + f'(z0)(z—20) + ...

It is necessary that f'(zo) # O based on the expansion, otherwise f wouldn’t be
injective near zo. Thus if we ignore the small correction of order |z — zo|?, locally
the map f translates zo to f(zo), rotates around that point by multiplying by the
complex number (of unit modulus) f’(z0)/|f’(z0)| and scales by the factor |f’(zo)|.
that is, f is locally a combination of translation, rotation and scaling.

If f: U — C is holomorphic and f’(z9) # 0, then it is continuously invertible near
z0 and the inverse is holomorphic, [5] p. 165. Therefore the inverse of a conformal
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map is conformal. However, the fact that f’ # 0 everywhere is not sufficient for f to
be injective globally. For example, consider the map z + z? in the domain C \ {0}.
Its derivative is non-zero everywhere, but it is not injective because z* = (—z).

Example 3.1. The most elementary examples of conformal maps are the Mobius
maps which are the linear fractional transformations and can be interpreted as the
family of conformal self-maps of the Riemann sphere C = C U {}. Recall that the
conformal self-maps of the upper half-plane H = {z € C : Imz > 0} are of the fornﬂ
7+ A<=}, where a,b € R with a # b and A sgn(a — b) > 0, and the conformal maps
from the upper-half plane H onto the unit disc D = {z € C : |z| < 1} are of the form
ZHV%,WheI’eVGT:aDandWGH.

The Riemann mapping theorem establishes existence of conformal maps between
simply connected domains. A domain U C C is simply connected if its complement
€\ U in the Riemann sphere is connected. For example S = {z€ C : 0 <Imz < 1} is
simply connected because the parts Imz < 0 and Imz > 1 can be connected through
infinity. An equivalent definition of simply connectedness is that each closed loop in
U is null-homotopic, that is, each loop can be continuously shrunk to a trivial loop.
See [7]] for more details and for the proof of the next theorem.

Theorem 3.1 (Riemann mapping theorem). Suppose U C C is a simply connected
domain other than C and w € U. Then there exist a unique conformal map f from

U onto D such that f(w) =0 and f(w) > 0.

Remark 3.1. All the other conformal maps from U onto D are obtained by compos-
ing f with a Mobius self-map of the disc.

Remark 3.2. If U C C is a simply connected domain and w ¢ U, then the image U
of U under z + 1/(z—w) is bounded. Therefore U is a subset of C. Consequently,
by the Riemann mapping theorem, if U, U, C C are simply connected domains and
¢ \ Uy contains at least two distinct points for k = 1,2, then there exists a conformal
map from U; onto U, and we say that U; and U, are conformally equivalent.

3.2.1 Continuity up to the boundary

In this section, we follow Ahlfors [1]] and Pommerenke [6]], see also [2].
Let’s first see what type of continuity up to the boundary follows from the fact
that ¢ is a homeomorphism, that is, a continuous map with a continuous inverse.
For that purpose, we define what we mean when we say that a sequence or a
curve tends to the boundary domain. Let U be a non-empty open set, z, € U a
sequence and y: [0,1) — U a curve. Remember that a curve in a topological space
X is a continuous map from an interval of R into X. We say that (z,) or y(¢) tends

2 Or the special cases of this form as a or b tends to infinity so that Aa or Ab~! remains finite,
respectively.
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(@) If f:U — U’ is a homeomorphism and 7(¢) is a curve  (b) Schwarz reflection princi-
that tends to the boundary, then the image f(y(z)) tends to  ple can be applied in those
the boundary. However, it is not always true that f(y(¢)) ex- boundary arcs that are straight
tends continuously to its end point, not even when y extends  line segments and away from
continuously to its end point. other parts of the boundary.

Fig. 3.1 By Theorems and conformal map maps boundary to boundary and extends con-
tinuously and injectively to a piece of boundary which is a straight line segment, an arc of a circle
or an analytic curve.

to the boundary if (z,) or y(t) will stay eventually away from any point in U, more
formally, for each z € U there exist £(z) > 0 and no(z) € N such that |z — z,| > &(z)
for n > ny(z) or there exist £(z) > 0 and 0 < 79(z) < 1 such that |z —y(¢)| > €(z) for
n(z) <t <1

The discs B(z,€(z)) form an open covering of U and for any compact K C U
there is a finite subcover. Hence we see that z, or y(r) will stay eventually away
from any compact K C U in the sense that there exist r9(K) € Nand 0 < 7(K) < 1
such that z, ¢ K for n > ny(K) and y(t) ¢ K for #p(K) <t < 1. After noticing this
the following theorem is almost trivial.

Theorem 3.2. Let U and U’ be non-empty open subsets of C and let f : U — U’ be a
homeomorphism. If (z,) or ¥(t) tends to the boundary of U, then (f(z,)) or f(y(z))
tends to the boundary of U'.

Proof. Let K C U’ be compact. Then by continuity of f~!, the set f~!(K) is com-
pact and there is ng € N and 0 <ty < 1 such that z, ¢ f~'(K) for n > ng and
y(t) & f~1(K) for tg <t < 1. Therefore f(z,) ¢ K for n > ng and f(y(t)) ¢ K for
to <t < 1. The claim follows by taking K to be a closed ball. a

Next we state and prove a theorem based on the Schwarz reflection principle that
gives the continuity of f to the boundary arcs which are straight line segments.

Suppose that the boundary of U contains an open straight line segment c. By
applying rotation and translation, we can assume that c is the interval a < x < b
on the real line. Suppose also that every point on ¢ has an open neighborhood in
C whose intersection with the whole boundary JdU is the same as with the arc c.
By this assumption each point in ¢ is now a center of a disc whose diameter is a
subset of ¢, and which ¢ divides into two half-discs which are either completely
inside or outside of U. Notice that at least one of the half-discs is inside U. Since ¢
is connected, the property, whether one or two half-discs are inside U, is the same in
each point. Therefore we can name these cases as one-sided free arc and two-sided
free arc. See Figure[3.1(b)| where c; and ¢, are one-sided free arcs.
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Theorem 3.3 (Schwarz reflection principle for conformal maps). Let U be a do-
main with one-sided free arc c. Then any conformal onto map f:U — D can be
extended to a holomorphic and injective map on U Uc. The image of ¢ is an arc ¢/
on the unit circle dD. Furthermore, if we apply the same extension to two or more
one-sided free arcs, then the resulting extension is holomorphic and injective.

Proof. Let ¢ be one-sided free arc and x € ¢ and D a half-disc neighborhood of x
which is contained in U. We can assume that the point f~!(0) is not in D by choos-
ing smaller D if necessary. Then log f(z) has single valued branch in D and its real
part tends to 0 as z € D tends to ¢, because by the previous theorem | f(z)| goes to 1.
Therefore by the Schwarz reflection principle (3.4), log f(z) has holomorphic exten-
sion to DU cU Dx where D* is the reflection of D with respect to R. Therefore f(z)
can be extended holomorphically to a disc around z. The extensions in overlapping
disc must coincide and therefore f has holomorphic extension to ¢ and |f(z)| = 1
when z € c. Call the neighborhood of ¢ which lies outside U as U_. Then f is now
definedon UUcUU_.

Clearly the extension is one-to-one if we manage to prove that f(x) # f(x’) for
any x,xX' € ¢, x #x after all in |f| < 1 in U, |f|=1oncand |f| > 1 in U_ and
in addition in U_, f is by construction one-to-one. Assume that for some x,x’ € c,
x#x, f(x) = f(x'). We can assume that f(x) = 1.

Notice that f'(x) # 0 and f'(x') # 0. Otherwise f(z) = co+ cu(z —x)" + ...
around x, say, where n > 2 and ¢, # 0. The interval (1 — &, 1] would have n fold
preimage under f and those paths would meet at angles 27 /n at x or x'. Since n > 2,
at least one of them would intersect with D* which leads to a contradiction. Thus
f'(x) #0and f'(x") # 0 and f is locally holomorphically invertible near x and x’.
A similar argument shows that any neighborhoods of x and x" are intersected by
F~'({1 —¢}) for small € > 0. This leads to a contradiction with the injectivity of f
in U. The last claim follows from the same argument. a

Remark 3.3. The previous theorem has a modification for ¢ which is an arc of a circle
or more generally for ¢ which is an image of line segment under a holomorphic map
(c is called an analytic arc).

A compact set A C C is said to be locally connected if for every € > 0 there is
6 > 0 such that for any two points a,b € A with |a — b| < §, there exist a closed
connected set B with a,b € B C A and diamB < &. For non-bounded closed A C
€, we could adjust this definition and the next theorem by defining metric on the
Riemann sphere C that makes C a compact space. For the proof, see Appendix C.

Theorem 3.4. Let U C C be a bounded domain. A conformal onto map f: 1D — U
extends continuously to DU JD if and only if AU is locally connected.

If f:ID — U is conformal and extends continuously to the boundary, then dU is a
closed curve that can be parametrized as 6 — f(¢'?). On the other hand, any closed
curve is locally connected. Hence f extends continuously to the boundary if and
only if the boundary is a curve. Clearly the extension is injective if and only if 6 —
f(e®) is a simple curve. Hence Theorem implies that f extends to a continuous
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and injective map from D onto U if and only if U is a Jordan domain In fact, the
inverse map is continuous to the boundary in that case. Thus any conformal map
between two Jordan domains extends to a homeomorphism between their closures.

3.2.2 Schwarz—Christoffel mappings

Conformal mappings that map the unit disc or the upper half-plane onto the interior
of a polygon are useful, because they have fairly explicit formulas. If a point p is
mapped to a vertex of the polygon with interior angle a7, the map looks locally like
(z— p)®. The following theorem gives the precise statement.

Theorem 3.5 (Schwarz-Christoffel mapping). Let U be the interior of a polygon
Y with vertices wi,wa, ..., w, and interior angles 0\ T, 00T, . .., 0, . Then any con-
Sformal and onto map f : H — U with f(c0) = wy, is of the form

z n—1
fe=c+e [ TIE-mm 3.5)
k=1

where Cy and C, are constants and wy = f(z), k=1,2,...,n— 1.

Example 3.2. Consider the case n = 3 and o = 1/3 for all k = 1,2,3. Then any
conformal map from H onto an equilateral triangle T such that 0, 1, are mapped

to the vertices of T, is of the form f(z) = C, +C; fz(:*%(c _ 1)*%d§_

Example 3.3. Consider the case n = 4 and oy = 1/2 for all k = 1,2,3,4. Then any
conformal map from H onto a rectangle R such that 0,x, 1, are mapped to the
vertices R, is of the form f(z) = C; +C, [* C_%(C fx)_%((: — 1)_%dC. The value
of x € (0,1) is treated as a parameter and it in one-to-one correspondence with the
aspect ratio of R. In this example and the previous example, the constants Cy,Cs
determine the position, orientation and size of T or R.

3.3 From Area theorem to distortion

In this section we present some classical result on two classes of functions:

Definition 3.2. The class S consists of all holomorphic and univalent functions in D
such that
f@) =z+wm+aw+..., |7 <Ll (3.6)

The class X consists of all holomorphic and univalent functions in D* = {z € C :
|z] > 1} such that

3 A curve is Jordan if it is simple closed curve. A domain is Jordan if it’s boundary is Jordan curve.
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g(z) =z+bo+biz '+ bz i+, 7> 1. 3.7)
Notice that if f € S, then

22)=1/f N =z—ar+(d3—a3)z ' +... (3.8)
belongs to X and g(z) # 0 for all z € D*. Conversely if g belongs to X and g(z) # 0
for all z € D*, then f(z) = 1/g(z™!) = z— boz® + (b} — b1)2> + ... belongs to S.
The area of a bounded domain U, whose boundary is a smooth curve, can be
computed as Area(U) = § [, xdy — ydx = 5 [;, wdw. This is a consequence of
Green’s theorem, a special case of Stokes’ theorem for two dimensions. If g € X
and we apply formula for the area inside 6 — g(re'®), r > 1, we get the formula

Area(C\g(D*)) == (1 - i n|bn|2> .

n=1

The reader can verify the details or see [3]], p. 29, for the proof. The next theorem
follows immediately from the area formula.

Theorem 3.6 (Area theorem). For any g € £, Yo n|b,|* < 1.

If f € S and the coefficients are as in (3.6), then there exists odd functionﬂh es
such that h(z) = \/f(z2) and h(z) = z+ $axz> + ... The function / can be con-
structed as follows: The function ¢ (z) = log(f(z)/z) has single-valued branch in D,
because f(z)/z is holomorphic and doesn’t have zeros in ID. Choose the branch for
instance so that ¢ (0) = 0. Write f(z) = zexp ¢ (z). Then h(z) := zexp(¢(z?)/2) is in
S and satisfies the required properties. Therefore (3.8]) and the Area theorem imply
that for any f € S

jaz| < 2. (3.9)

The result (3.9) is called Bieberbach’s theorem and it is a special case of the follow-
ing famous and hard theorem.

Theorem 3.7 (Bieberbach conjecture — de Branges theorem). For any f € S,
lan] <n,n=2,3,...

Remark 3.4 (A historical remark). In 1923, Charles Loewner was studying the
Bieberbach conjecture in the paper where he introduced the Loewner equation. He
was studying conformal maps from the unit-disc, and therefore he introduced the
Loewner equation in D (for maps f; : D — D;) where it is written as

7+l
PRI

ofi(2) = fl(z)z

for a conformal map f; from D onto a simply connected domain D, C D, 0 € Dy,
normalized by the expansion f;(z) = e 'z+... near 0. The Loewner equation holds,

4 The function £ is odd if h(—z) = —h(z).
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Fig. 3.2 A map f from D into D can be studied by the Loewner equation in D by defining a curve
that first goes from dD to d f(ID) and then follows the boundary of the image domain d f (D).

for instance, when D, = D\ 7((0,¢]) where y: [0,T] — C is a simple curve with
7(0) € dD and y((0,T]) C D. The function ¢ — U, is real and continuous.

Let 0 € D C D be a simply connected domain. By approximation we can al-
ways assume that the boundary of D is a simple curve. By considering a curve ¥(z),
t € [0,T], as in Figure [3.2| which first follows a curve from dID to dD (a line seg-
ment, say) and then follows dD in counterclockwise direction, say, we can use the
Loewner equation to study the conformal map ¢ from ID onto D satisfying ¢ (0) =0,
¢’(0) > 0, because ¢ = fr. Using this approach Charles Loewner was able to show
that for any f € S (which has an expansion of the form (3.6)) |a3| < 3 which is
another special case of the Bieberbach—de Branges theorem.

One of the consequences Bieberbach’s theorem (3.9)) is the following. Let’s use
dist(x,A) to denote the Euclidean distance from a point x to a set A.

Theorem 3.8 (Koebe 1/4 theorem). Let f € S and U = f(D) then

< dist(0,0U) < 1

FN-

Proof. Let f € Sand w ¢ (D). Suppose that the expansion of f is given by (3.6).

Then w # 0 and the map g(z) = Ww_f}a) =z+ (az + %) 7>+ ... is holomorphic and
univalent in ID. The details are left to the reader. Thus by Bieberbach’s theorem (3.9),
1/|w| —|az| < |1/w—az| <2 and consequently, 1/|w| < 4, which gives the lower
bound.

Let d = dist(0,dU). Define a conformal map /4 from D into D by 4(z) = f~!(dz).

Now #'(0) =d/f'(0) = d and by the Schwarz lemma |#'(0)| < 1. O

To apply Bieberbach’s theorem (3.9) to a less restricted class of functions, define
for any f univalent in D and for any w € ID a function

CPER) S (L )
= i =+ (30D g ) 24

We leave as an exercise to verify the expansion. Since h € S, this expansion and
(3:9) imply the following result.
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Proposition 3.1. If f is a conformal map on D and z € D then

/!
f : (&) ool < 4.
f'(z)
The previous result can be integrated (see [3]], p. 32) to give_ Koebe’s theorem,
a result which, for example, tells how f distorts circles 6 +— re'?. The first of the
inequalities tells that 8 — f(re'®) lies between two particular circles centered at

f(0) and the second inequality tells that the length of this curve is bounded from
below and from above by certain constants.

(1-1z*)

Theorem 3.9 (Koebe distortion theorem). If f is a conformal map on D and z € D
then

|f’<o>|(1+*”|'z|)2 < 1f(2) - £(0)] < |f’(0)|(1_|z||z)2
POl < 1@ < Ol

3.4 Conformally invariant tools

Finally, we have collected some definitions and results on the harmonic measure
and the extremal length to this final section of this chapter.

3.4.1 Harmonic measure

The representation of harmonic functions using a Brownian motion was presented in
Section[3.1.3] It is thus meaningful to study more the exit distribution of a Brownian
motion from a domain.

Let U is a simply connected domain in C with a non-empty, locally connected
boundary. Let ¢ : U — D is a conformal and onto map.

Definition 3.3. Let z € U and E C dU a Borel set. Then harmonic measure of E
relative to U seen from z is defined as

_ 1 1—|z?
HM(z,E,U) := HM(w,¢ ' (E),D ::—/ — = de
(Z ) (W (0 ( ) ) ' 0-1(E) \176’9\2
Remark 3.5. The function z — HM(z,E,U) is harmonic in U and tends to one as
z tends to an interior (with respect to dU) point of E and to zero as z tends to
an interior point of U \ E. This observation leads to generalizations of the con-
cept of harmonic measure to non-simply connected domains. For general domains,
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HM(z,E,U) can be defined as supremum over k(z) where & is harmonic with con-
tinuous boundary values f = h|yy such that f <lonE and f =0o0n Q\E.

Remark 3.6. If the boundary is non-simple and we wish to separate the “left-hand
and right-hand sides” of boundary points, we can use the formula HM(w, ¢ ! (E), D)
to do so. In this approach, the points in dID parametrize d£2 and a generalized
boundary point (also called prime end [2| 6]) is an equivalence class of conver-
gent sequences z, tending to the boundary of € such that ¢(z,) converges. Two
sequences z, and w,, are equivalent if ¢(z,) and ¢ (w,) tend to the same limit point
in dD.

Lemma 3.2 (Weak Beurling estimate). There exist constant &« > 0 and C > 0 such
that the following holds: Let D = D\ v[0,1) where y:[0,1) — D be a simple curve
with ¥(0) = 0 and lim, 1 |y(t)| = 1. Let P* be the law of complex Brownian motion
(B;)icr, sent from z € D and let T be its exit time from D. Then for any z € D

P(|Be| = 1] < Clz*

Remark 3.7. The result is called “weak” since the proof doesn’t give the optimal
exponent of = % See for instance [4] for the strong estimate.

Proof. Consider a complex brownian motion sent from w € C with |w| =2 and let
o =inf{r € Ry : |B;| = 1 or 4}. By rotational invariance of the complex Brownian
motion g := P"[B([0, 7]) contains a loop around 0] is independent of w. Now ¢ > 0
follows from a more general fact that the probability that d-dimensional Brownian
motion follows any given continuous path segment with a given precision is positive.

Let p = |z| and define r; = p 2, for any k € Z. If |B;| = 1 then the Brownian
motion B;,0 < ¢ < 7, will hit the circles of radii ry, k € [0,n9(p)] centered at O
where no(p) is the largest integer n such that p 2" < 1. Denote the hitting times of
those circles by T, k € [0,n0(p)]. If for some k € [0,n9(p) — 1], Bt, t > Ty, makes
a loop around 0 before hitting the circles of radii r¢_| or ry, then the Brownian
motion hits dD and |B;| < 1. Apply the strong Markov property of Brownian motion
for Ty, k € [0,n0(p) — 1], to show that P<[|B;| = 1] < (1 — ¢)"(P). Then note that
no(p) > (log(1/p))/(log2) — 1 and hence the claim holds for C = 1/(1 —¢) and

o = (log1/(1-q))/(log2). 0

3.4.2 Extremal length

For a domain U, a rectifiable curve y: [0,1] — U and a non-negative function p :
U — R0, define p-area of U as [;; p(z)*d*z and p-length of y as [,p(z) |dz\E|

5 Remember that a curve is rectifiable, if its arc length is finite, and also that [ d?z denotes the
integral with respect to the Lebesgue area measure and [ |dz| is the integral w.r.t. the arc length
measure.
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Definition 3.4. For a collection of paths I, the extremal length of I is defined as

cup inf{(f,p()ldz])* : yET'}
p Jup(z)2dz
where the supremum is over all non-negative p such that the fraction is well-defined

(i.e., the numerator and the denominator are not equal, when at least one of them is
equal to 0 or o).

EL(I") = (3.10)

Let us list some properties of extremal length with references to their proofs.

e For a rectangle U = (x,x+a) x (y,y+b) and for a path family I" with suffi-
ciently regular curves 7y that connect the two vertical sides of U in U, it holds that
EL(I") = 7, see [4], Example IV.1.1.

e For a annulus U = A(z9,7,R) and for a path family I" with sufficiently regular
curves 7 that connect the two components of dU in U, it holds that EL(I") =
ﬁ log 5;, see [4], Example IV.1.2.

e If U and I' are as above and ¢ : U — C is a conformal map, then EL(¢(I")) =
EL(I"), see [4], Section IV.1, that is, the extremal length is conformal invariant.

e There are many natural monotonicity properties of the extremal length, see [4],
Section IV.3.

e A very important class of I" are the following. Let U be a simply connected
domain that for simplicity is assumed to be a Jordan domain. Take four distinct
boundary points §;, k = 1,2,3,4, in the counterclockwise order and denote the
boundary arcs by &Gy We call (U, &, 8, 83,84) a topological quadrilateral.
Then I is the path family with sufficiently regular curves 7 that connect the ;&
and {384 in U and I'* is the path family with sufficiently regular curves v that
connect the ;&3 and {4&; in U. Then by conformal invariance, we can map these
curve families to a rectangle and we find easily that EL(I") = 1/EL(I"*). This
is called reciprocity of the extremal length of topological quadrilaterals. See also
the equation (1.7) in [4].
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Chapter 4
Loewner equation

This chapter develops in detail the connection of growing hulls and the Loewner
differential equation satisfied by families of conformal maps.

4.1 Conformal maps of the upper half-plane

4.1.1 Hydrodynamically normalized maps and half-plane capacity

We start by defining a basic object of our study. We’ll consider conformal maps from
subsets of the upper half-plane onto the upper half-plane. By the Riemann mapping
theorem that subset needs to be simply connected, which leads to the following

definition.

Fig. 4.1 A hull K is the shaded area in the picture. The hull K is a compact subset of the closed
upper half-plane H such that its complement H \ K is simply connected.

Definition 4.1. A set K C H is called a hull if K is compact and H \ K is simply
connected.

Remark 4.1. An alternative definition of a hull as a subset of the open upper half-
plane can be made in the following way: K C H is a hull if K is bounded, relatively
closed in H and H \ X is simply connected. The two definitions are practically the
same. To move from the former to the latter, one needs just to take the intersection
of the set with the open upper half-plane and to move to the other direction, one
needs to take the closure of the set.

45



46 4 Loewner equation

Lemma 4.1. For any hull K, there exists a unique conformal and onto map gk :
H\ K — H such that
lim (gx(z) —2) =0 4.1)

Z—boo

where the limit holds along any sequence z, € H such that |z,| — oo. Such gk is said
to have hydrodynamic normalization. Near oo, gk has the expansion

2

ex(2) =ztaiz " +az ...

where the coefficients ay, k € N, are real.

Proof. If g : H\ K — D is a conformal onto map, then g(co) € JD is well-defined
since there is a holomorphic extension of z — g(—1/z) to a neighborhood of 0 by
Theorem[3.3] Hence we can compose § with a M6bius map from ID onto H mapping
&(e0) to oo and get this way a conformal map from H\ K onto H mapping o to oo.
By this observation and by the Riemann mapping theorem, there are conformal onto
maps from H = H\ K onto H which map oo to . Pick one of them and call it g. Let
H ={-1/z:z€H} and

fz)=-1/8(-1/2). (4.2)

By Theorem[3.3] f extends holomorphically and injectively to a neighborhood of 0.
Let € > 0 be such that B(0,&) NH C H'. Then f maps (—¢,€) into R. Moreover, if
f=u+iv, then f(0) = du(0) = dyv(0) > 0 because f maps B(0,&) NH into H.
Hence

f(2) =biz+ b +...

near 0 where the coefficients satisfy by > 0 and b; € R. For ¢ this implies that for
large |z]

2

gx)=a1z+ao+aiz " +azt +... (4.3)

where the coefficients satisfy d_; > 0 and d; € R. Now we notice that ¢ satisfies
@1, if and only if 4_; = 1 and dp = 0.

By the remark after the Riemann mapping theorem (Theorem [3.1)), if g : H — H
is a conformal onto map taking oo to oo, then all the other such maps can be written
as ¢ o g where ¢ is a Mdbius self-map of H fixing . The Mdbius self-maps of H
that fix co are of the form z — az+ 8 where o > 0 and 8 € R. Hence for given g
there is a unique choice for ¢ such that gg = ¢ o g has the expansion

2

k() =z+a1z ' farz ...

for z € H\ B(0,R). O

Lemma 4.2. The coefficient a; is non-negative and a; = 0 only if gk is the identity
map.

Proof. Define a harmonic function /4 in H\ K by h(z) = Im(z — gx(z)). Then the
boundary values of h are non-negative: it is zero on R away from K and on dK NH
it is positive. Also A(z) — 0 as |z| — oo. Hence by the minimum principle, % is non-
negative in H \ K. In fact, % is strictly positive unless # = 0 identically and gk is an
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identity map. Now
lim yh(iy) = lim yIm (‘” +0 (|y|_2)) —
y/eo v/t iy
which shows that a; > 0. The strict positivity follows when we notice that
2R (™ ;
a) = ?/ h(Re®)sin6de. (4.4)
0

That formula follows from the previous formula and from the solution of the Dirich-
let problem
Au =0 in{zeM: |z| >R}
u(x) =0 forx e R, |x| >R
u(Re'®) = ¢(0) for 6 € (0,7)

in terms of a Poisson kernel. The proof of the formula (4.4) is left as an exercise. O

Definition 4.2. If K is a hull and g satisfies the hydrodynamic normalization, then
the coefficient of z~! in the expansion of gx is denoted by a;(K). We call a; (K) as
the half-plane capacity (h-capacity) of K.

The half-plane capacity satisfies the following properties:
e Scaling rule: a; (AK) = A%a;(K) because

gik(2) =Agk(A712) =24+ A%a; (K)z !

+...
e Summation rule: a;(KUL) =a;(K)+ai(gx(L)). Let L' = gk (L). Then

1

gxuL(z) =grogk(@) =z+ (a1(K) +a1(L))z ' +...

e Translation invariance: a; (K +x) = a;(K)

gkx(2) =x+gx(z—x)=z+ar(K)z " +...
From the summation rule and from Lemma4.2]it follows that if / C K are hulls then
a;(J) <ai(K) and a;(J) = a1 (K) only if HN (K\J) = 0. We say that half-plane
capacity is increasing. These properties make the half-plane capacity very natural
measure for the size of the hull K (as seen from the point o in the domain H).

Example 4.1 (Half-disc). When K = HN B(xo, R), the corresponding map is

R? R? Ry,

We can verify that this formula defines a map from H \ K to H a direct computation:
namely gx(x) € R when x € R, |x —xo| > R, and for 8 € (0,7), gg(xo + Re'®) =
x0-+2Rcos 6 € R. The half-plane capacity of the half-disc of radius R is a; (K) = R>.
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Example 4.2 (Vertical line segment). When K = [xo,x0 +ih] = {xo +1iy : y € [0, 4]}

2 X +h2
7) =x0+1/(z2—x0) +h2—x0+Z\/1—x0 0

(1 x0+x0+h2 14x0+ +h2+
:x JE— —_——— = - e
0TE 22 82 S

where we used the expansion v/ 1 +x=1+75 — ¢ + . Thus we find that the half-
plane capacity of the vertical line segment of length his ai(K)=h?/2.

The following result on the inverse maps fx of gk can be shown, for instance, by
imitating the proof of Lemma [4.1] The last claim follows from composing gk o fx
which is a conformal self-map in the upper half-plane which has the expansion
24 (@1 (K) +b1(K))z '+ 0(|z|72) = 2+ O(|z| ") as z — . Consequently, gk o fx
is the identity map and a; (K) + b1 (K) = 0.

Lemma 4.3. For any hull K, there exists a unique conformal and onto map fx :
H — H\ K such that

lim (fx(z) —2) =0

700
where the limit holds along any sequence z,, € H such that |z,,| — eo. Such fx is also
said to have hydrodynamic normalization. Near oo, fx has the expansion

fx(2) =z+biz '+ bz 2+

where the coefficients by, k € N, are real. Furthermore, fx = g,}l and by (K) =
—a (K)

We conclude this section by showing that the half-plane capacity is a continuous
function of the hull. For a hull K and € > 0, let K¢ be the e-thickening of K, that is,
K is the smallest hull containing the set HNJ,cx B(z, €).

Lemma 4.4. There are constants C(R) > 0 and o > 0 such that the following holds:
IfK C K¢ C B(z0,R) for some zo € R, then

a1(K) <ay(Kf) <a;(K)+C(R)e*

Proof. The inequality on the left follows from the summation rule and positivity of
the half-plane capacity.

To show the other inequality consider the harmonic functions fig(z) = Im(z —
gk (2)) and hge(z) = Im(z — gge(z)). Notice that they are both non-negative and
bounded by R, and also that they are continuous in H \ K and H \ K¢, respectively.

Let z € HNJKE. Then dist(z,K) = €. Let P? be the law of a complex Brownian
motion send from z and let T be the hitting time of R UK. Then by Lemma
hk(z) = E*[Im B;] and by definition /e (z) = Imz. Write
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|hk (z) — hge (2)| < E*[|ImB; — Imz]]
= E*[|[ImB; —Imz|; 6 < 7|+ E*[|ImB; —Imz|; 0 =1] (4.5)

where is ¢ be the exit time from (H\ K) N B(z, \/E) The first term on the right
of (#.3) is at most RP*[c < 7] and hence by Lemma 3.2] there are constants & > 0
and C > 0 such that the first term is bounded by CR(g/+/€)* = CRe®/2, The second
term is at most /€.

Now since for some constants C(R) > 0 and a, |hg(z) — hge(z)| < C(R)€* on
the boundary of H\ K¢ and hg — hge is a bounded harmonic function on H \ K%, the
maximum principle gives that |hg(z) — hge (z)] < C(R)e* on H \ K. Therefore the
formula (@.4) can be applied to show that |a; (K) — a; (K®)| < C(R)e*. O

4.1.2 Growing families of hulls

Let / be an interval of the form [0,0),[0,7] or [0,7) where T € (0,0). Let y: 1 — H
be curve such that y(0) € R. We can define a family of hulls (K;),c; associated to
¥(t), t € I, in the following way:

e If yis simple (a curve is simple if and only if it is injective) and y(¢) C H, 7 > 0,
then define K; = y([0,¢]) forany t € I.

e If vis not simple let H; be the unbounded connected component of H \ ¥([0,z])
and let K, = H\ H;.

If y is simple both of the above definition would give the same hulls (K;)¢;.

More generally, let (K;);; be a family of hulls parametrized by a real variable
t € I where I is as above. The family of hulls associated to a curve is a good example
of such family. If the family (K ),¢; is growing in the sense that K; C K; for s <t and
if the growth is continuous in the sense that for any € > 0 and for any S € (0,0) such
that [0,S] C I there exist § > 0 such that K, 5 C Kf for any 0 <t < §— 9§, then by
Lemmas and the function ¢ : t — a; (K;) is continuous and non-decreasing.
If we assume that Ky C R and that HN (K, \ K;) # 0 for any 0 < s <t < T, then
¢(0) = 0 and by the summation rule and by the positivity of the half-plane capacity
¢(r) > ¢(s) forany 0 < s <t < T. Hence we can reparameterize the family of hulls
by setting K; = Ky-1(3)- In this parametrization a; (K;) = (9~ 1(2t)) =2t. As a
summary, continuously growing families of hulls can be parametrized by capacity.

Definition 4.3. A family of hulls (K;)c(o,7) is said to be parametrized with the half-
plane capacity if a; (K;) = 2t. A curve y: [0,T) — H is said to be parametrized with
the half-plane capacity if the associated hulls are parametrized with the half-plane
capacity.

For a given family of hulls (K );¢; it is convenient to set

! Remember the notation E[X;A] = [, XdP.
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8t = 8K;-
If (K;) refo,r) 1 parametrized by the capacity then

2t
2z

a(@)=z+—+...

From now on we assume (almost without exceptions) that g; is a conformal map
with this form of an expansion near oo. It is useful to call the parameter ¢ time.

Remark 4.2. The factor 2 is because of historical reasons: using that normalization
the Loewner equation in H will be better compatible with the Loewner equation
in D. The choice, that the half-plane capacity is linear in ¢, is consistent with the
summation rule of the half-plane capacity.

4.2 Loewner chains

4.2.1 Loewner equation holds for simple curves

H\ Kot H\ Kis H
Jt+s
/\ . Gt .{N]t.s\\
7 Ta n =
>~ V\N/
v i ft.s//’
e Jees e

Fig. 4.2 Composition of hydrodynamical conformal maps uses the uniqueness of such maps.
Therefore for instance g;1(z) = &0 & (z) for z € H\ Ky 45 and fi(z) = f; o f(z) for z € H.

Let (K;);e[0,7] be a growing family of hulls parametrized with the half-plane ca-
pacity. The Loewner differential equation describes infinitesimal changes in the con-
formal maps g, as ¢ increases. In its simplest version, the growth need to be local and
consequently the Loewner equation contains one driving term. We will first look at
this statement somewhat heuristically and then formulate and prove the result that
the conformal maps g; associated to a simple curve v satisfy the Loewner equation.

We can write g;¢ as a composition of conformal maps in the following way, see
also Figure[4.2] Let for 7, s such that 7,1 +s € [0, T,

kt,s - mv gt,x = gkt,s'

Antti Kemppainen, Schramm—Loewner evolution, 2017/06/24



4.2 Loewner chains 51

Notice that a(K; ;) = 2s by additivity of the half-plane capacity and that g, =
81,5 0 & by uniqueness of the hydrodynamically normalized conformal maps.

Next we observe that we can apply the Poisson kernel of the upper half-plane to
the inverses of intermediate conformal maps g, ;. For any fx, the function h(z) =
Im(fx(z) —z) is harmonic in H and bounded and non-negative in H. Consequently,
by taking and its harmonic conjugate, it follows that

i) o= [T g @6)

TTJ-— Z_é

Define f, ; = g,j}. Then it holds that ft,s =g;0 fr4s. Lett > 0and 6 > 0. We write

8r16(2) — 81(2) = 8r+5(2) — fr.5 08115 (2)- (C%))

We say that the growth is local, when the support {§ € R : Im f; 5(&) > 0}, tends to
a point, which we denote by W(¢), as 6 — 0 (we will give more precise definition in
the next subsection). Then it follows (@.6) and under suitable conditions that
g satisfies the Loewner differential equation in the upper half-plane H

%
g(z) —W(r)

Here the number 2 in the numerator follows from the choice of the parametrization
so that a; (K, 5) = 26. We interpret that K, is growing locally at the point P(t) =
g '(W(r)) if g, ! extends continuously to W (z).

The following theorem makes the above argument more formal.

d81(z) =

Theorem 4.1. Let T > 0 and let y: [0,T] — C be a simple curve such that y(0) € R
and y((0,T]) C H. Suppose that 7y is parametrized by the capacity. Then

W(t)= lim g/(z) (4.8)

7—Y(t)

exists for any t € [0,T] and t — W (t) is continuous. Here the limit is along any se-
quence z, € H\ y(0,t] converging to y(t). Moreover the hydrodynamically normal-
ized conformal maps (gz)te[O,T] related to 'y satisfy the Loewner differential equation

9,8:1(2) = (4.9)

&(2) =W()
with the initial value gy(z) = z.
Before the proof of this theorem we present three auxiliary results.

Lemma 4.5. Let K be a hull and H =H\ K. If K C B(xo,r), then gx maps H N
B(xo,2r) into B(xo,3r) and sup,cy |8k (z) —z| < 5r.

Proof. We can assume that xo = 0. Otherwise consider the map gx—_,(z) = gx(z+
X()) — X0-
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Let g be the holomorphic extension of ' gx(rz) to D*. Then g € X and by the
Area theorem Y, n]a, (K)|?r~2("+1) < 1 and therefore |a,(K)| < r**'. Hence

lgx (z —z|<Z|an ||Z|"<rZ (r/lz)' = ——<r

for |z| > 2r. And therefore gx (HNB(0,2r)) C B(0,3r).
If ze HNB(0,2r), then |gx(z) —z| < |gx(2)| + 2| < 5r. O

Using the next lemma we can control the length distortion under conformal maps.
This lemma could be used in the proof of the general result Theorem about the
continuity of conformal maps to the boundary. The same principle of proof when
systematized gives estimates for the extremal length (Definition [3.4).

Lemma 4.6. Let ¢ be a conformal map from open set U C C into B(0,R). Let zo € C
and let C(r) =UN{z : |z—z0| = r} for any r > 0. Then

27R

inf {Length < . 4.10)
p<r<f{ gth(¢(C(r)))} Togi/p
Proof. Letl(r) = Length(¢(C(r))). By the Cauchy—Schwarz inequality
or = ([ o) < [l [ e
C(r)
< 27rr/ "(z0+re®)| rde.
- z0-+reif cU ( 0 )
Divide this by r and then integrate over r to find that
/ 172 dr < 27:/ 10/ (2) 2 dudy = 27 Area(9 (U))
0 U
which implies that
1 1 VP
~log — ( inf l(r)2> g/ I1(r)?r~'dr < 27°R%.
2 T p \p<r<yp o
The claim follows by taking square root. a

The next lemma is the application of the Poisson kernel to establish Theorem 4.1}

Lemma 4.7. There exist an absolute constant C > 0 such that the following holds:
IfK C B(xo,r)

a1 (K) <Cra1(K)
z—x0| ~ |z—x0/?

fk(2)—z+
where fx = g,;l
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Proof. We can assume xo = 0. We can also assume that the boundary of K is a
continuous. If not, then take a sequence K,, each having a continuous boundary and
such that fg, — fx uniformly in compact subsets of H.

By Lemmaf.3] fx has near o the expansion

1

k(@) =z—a1z7 +...

Let h(z) = Im(fx(z) — z). Then h is a bounded continuous function in H and har-
monic in H. Hence we can write % using the Poisson kernel of H as

h(z):Iml/:Oéh(é)dé.

T

We can use this formula to derive the harmonic conjugate of /. Notice that 7 = Im fx
on R and therefore

7)=z2+— / —Ime (€)déE. 4.11)

The additive constant in the harmonic conjugate of & was fixed by the expansion
near co.

Clearly Im fx (&) is zero outside a bounded interval / which is defined as the
smallest interval containing {& € R : fx(&) € HNJK}. From this it follows that

fe) ot [t mp(§)as =2 ¥ (5 & ms(az )

n=1

for large enough |z|. Hence a; = L [;Im fx (&) d& and

a1(ZK)’ 717;/,(§lz+ )Ime(é)dél

1 1
<a;(K) sup )fz+; ixel

fx(2)

By Lemma I C (—3r,3r) and hence

6r
= |zf?

(x—2)z

for any |z| > 6randx € I. O

Proof (Proof of Theorem {.1). As usual, denote H, = H \ y(0,7]. Since ¥[0,T] is
bounded, we can define R = sup, (o 7 [¥(t)] < o°.

For each r € [0,T] and r > 0, let S(z,r) be the outermost of all the connected
components of H; N dB(y(t),r) which separate y(r) from e in H;. See Figure
Since by Lemma[d.5] g; maps H; NB(0,2R) into B(0,3R) , we can apply Lemma4.6]
to g, and show that the diameter of g,(S(¢,7)) is at most 62R/+/log(1/r). Since the
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(a) The arc S(z,r) of the circle of radius
r centered at y(r) separates the tip y(¢)
from oo in H; and it is outermost of all
such arcs (in the sense that it separates
all other such arcs from oo in H;). When
y(t) € H and r is small, the end points
of S(z,r) lie on the curve.

(b) When the curve is not simple, the
conformal map doesn’t extend continu-
ously to the tip ¥(¢) when that point is
a double point visible from more than
one side of the curve. The correct solu-
tion for this problem is to define the cor-
responding generalized boundary point

(called prime end) as a nested sequence
of arcs of circles.

Fig. 4.3 Continuity of the conformal map g; at the tip point ¥(r) follows from the fact that an arc
S(t,r) of a small circle is mapped to a set of small diameter.

curves g;(S(¢,r)), r > 0 are disjoint and nested (in the sense that for any 0 < r; < rp,
g:(S(t,r2)) separates g;(S(¢,r1)) from e in H) and their diameters go to zero as
r ™\, 0, there exist W(¢) € R such that

W)} =ver)

r>0

where V (¢,r) is the bounded component of H \ g,(S(¢,7)).

Since y is simple, g;(H; NB(y(t),r')) C V(rt) for small enough r > 0. Namely,
when r < ImY(¢), the end points of S(z,r) are points (1), ¥(t2), for some 0 < 1} <
fy < t. Since the distance from ¥() to y([f1,22]) US(z,r) is positive, then for small
enough ' > 0, S(¢,r) separates H; N B(y(t),r") from e in H,. See Figure
Therefore g, (H, NB(y(t),r')) C V(r) and

W)} =) &(HNB(¥(1),r)).

>0

Hence g (y(t)) = lim,_, () & (z) is well-defined and the first claim follows.

Now for each € > 0 there is 6 > 0 such that for any ¢ € [0,7 — 8] we have
that g, (y(¢,t + 6]) C V(t,€). Denote the conformal map associated to the hull
g:(([t,t 4 8])) by g,5 and let 7(8) = g:(y(t + §)). Since diamV (t,€) < ro(e) =

6mR/+\/log(1/¢€), ¥(6) e HNB(W(t),ro(€)) and therefore by Lemma

Wt +8) = W) = 13,5 (7(5)) —W(1)| < 3ro(e). “.12)

Therefore 7 — W (¢) is continuous.
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Let C > 0 be as in Lemmaf.7] Let t € [0,T), z € H; and choose € > 0 so small
that (C+5)ro(€) < Img(z). If 0 < & < T —¢ is such that g (y(¢,t + 6]) C V(¢,€)
then

|gi+6(2) =W(t)| > [8:(2) =W(t)| — 81,5 0 8:(2) — &(2)| = Cro(e).

Use Lemmafor the map fx = g;_g at point g, 5(z) with r = ro(€) and xo = W ()
to find that '

26 __ 28Cn(e)
8i18(2)=W(O)| = lgirs(@) —W()[*

Since we can take ro(€) N\, 0 as 6 N\ 0, the derivative from the right exists and
satisfies

8i+5(2) —8(2) —

. 88(2) —&i(2) 2
o, z) = lim =
+8(2) = Ji 8 gi(z)—W(r)
Since the right-hand side is continuous in ¢z, actually, d;g;(z) exists and we have
shown that (4.9) holds. a
Example 4.3. Let §(t) = 24/t and let g,(z) = \/z2+ 6(¢)2. Then d,g,(z) = gr%z)'

Thus the driving term of the straight vertical line ¢ — i6(¢), t > 0, is W, = 0 for
all 7.

4.2.1.1 The Loewner equation of the inverse function f; = g, !

It is customary to denote the inverse of g; by f; = g, !. By differentiating the ex-
pression f;(g;(w)) = w on both sides, we arrive to the identity (d;f;)(g:(w)) +
fl(g:(w)) d,g:(w) = 0. Replacing g;(w) by z gives the Loewner equation of f;

2 /
9.fi(z) = ,7;2 (;,3 (4.13)

4.2.2 Solving Loewner equation with a continuous driving term

In this section, we study the solution of Loewner equation with a continuous driv-
ing term and show that there is a growing family of hulls parametrized with the
half-plane capacity. In fact, we will show that there is one-to-one correspondence
between locally growing hulls and the solutions of the Loewner equation with con-
tinuous driving terms.

Let 7 — W; be a given real valued function on [0, 7]. We will investigate whether
there is a family of conformal maps (gf)te[O,T] that satisfy the Loewner equation

2

atgt(Z) = m,

g0(z) =z (4.14)
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4.2.2.1 The solution of Loewner equation is a normalized conformal map

First fix z € H. Then (@.I4) is just an ordinary differential equation (ODE)

2

— 0=2 4.15
.7 0 (4.15)

Zt:

in the parameter 7.

Lemma 4.8. For z € H\ {Wy}, the solution of @13) is unique and exists for all
1 €[0,71N[0,7(z)) where t(z) = inf{t > 0 : liminf, » |z, — W;| = 0}. Furthermore,
for fixed t, the map 7+ z; is continuous at any point z € H\ {Wy} such that t < t(z).

Proof. The mapping { — ﬁ is continuous in ¢ and Lipschitz continuous in ¢ in

the set of points {(¢,&) € [0,7] x H : | —W,| > €} where € > 0. Thus by the theory
of ODEs, there exists a unique solution to (#.13)) and the solution at given time is a
continuous function of the initial condition. a

Now set g(z) 1=z fort € [0,T]N[0,7(z)) and z € H\ {Wp}. We claim that this
defines a conformal map. Define

H={zeH:t(z)>1t}, K={zeH:1(z)<t}.

Then H; is open by continuity of z — g;(z) and similarly K, is closed.

Proposition 4.1. The function g; restricted to Hy is a conformal map onto H. The
set K; is a hull.

Proof. Letz,7' € Hand D,(z,2') = g (z) — & () forany 1 € [0, T]N[0,7(2) A7(2)).
It satisfies the differential equation
2

W) = D) G W )W

which can be integrated as

N o Pyexn [ t 2ds
Di(z,z) = (2 Z)ep< /)(gs(z)—m)(gs(Z’)—Ws))

This show that g, is one-to-one. Furthermore, the complex derivative g/(z) exists

and equals to
. Di(z,7) ( /’ 2ds >
/ 1\%y
z) = lim =exp|l— | —————= |-
&) e PUT D Gale) = w2

This shows that g; is holomorphic. Thus g, : H; — C is a conformal map.
We will show that g;(H;) = H. Note first, that

Img,(z)

o1 SR R — L A
Hme (@) = =2 WP
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and hence Im g, (z) is strictly decreasing and positive, since the previous formula can
be integrated as

Img;(z) = (Imz) exp ( /ot L%(Zid—sWsP>

which holds for any ¢ € [0,7]N[0,7(z)). Therefore g,(H;) C H. Next fix € (0,7
and let w € HL. Define A;(w) as the solution of the backward Loewner equation

2

A

ho(w) = w. (4.16)
Then hg(w), 0 < s <1, is well-defined and lies in the upper half-plane, because
ImAg(w) is strictly increasing. Let z =k, (w). Then then g,(z) = h,—s(w) because s +—
hy—s(w) solves the (forward) Loewner equation with the initial condition 4, (w) = z.
In particular, it holds that g,(z) = w and we have shown that g, (H,) = H.

Next we will show that K; is a hull. Observe first that since g; is conformal and
g(H;) = H, H\ K, = H, is simply connected. As we stated above K; is closed. To
show that K; is bounded let M = sup; o 7] [W;|. The first observation is that for any
z € H with Rez > M, Reg,(z) is strictly increasing since

Re(gs(z)) — W

>0
185(2) = W2

s Regs(z) =2

when Reg,(z) > M. Similarly for any z € H with Rez < —M, Reg,(z) is strictly
decreasing. The second observations is that for any z € H

Im(gs(2)) 2
|gs(z) —=Ws[*> = Im(gs(2))

and hence (Img,(z))? > (Imz)? — 4t > 0, when Imz > 24/z. Therefore

ds Img‘s‘(z) =-2

{ZGH: |Rez| > M or Imz>2ﬁ}CH, 4.17)

and
K < {zeH: [Rez| <Mand Imz <2VT}. 4.18)

Now we have established that g; is a conformal map from H, = H\ K; onto H and
that K; is a hull. Notice then that by using (Re g;(z))? +M? > max{(Reg(z))?,M?} >
(Rez)? and (Img,(z))? > (Imz)? — 4¢, it follows that

=800+ [ =2+ o)

8:(Z2) = 8o(Z —— =2z Z

' 0 gs(z) —Ws

as z — . We can apply Lemma to show that g, has the expansion g (z) =
2+ Y5, ax(t)z~* which converges uniformly for |z| > R where R > 0 satisfies K, C
B(0,R)NH. Hence d,g;(z) = % + ... and consequently, a; (¢) = 2. 0



58 4 Loewner equation

4.2.2.2 Local growth and Loewner chains

The following theorem generalizes Theorem .1 and will give a sufficient and nec-
essary condition to the fact that g, has a continuous driving term. This condition is
called local growth.

Theorem 4.2. Let (Kt)tE[O,T] be a growing family of hulls and g; be the associated
conformal maps. Then the following statements are equivalent:

e Forallt €[0,T], a|(K;) =2t and for any € > 0 there is & > 0 such that for each
t € [0,T — 8], there exists a bounded connected set C C H\ K; with diam(C) < €
such that C separates K, | s \ K; from infinity in H\ K.

o There is a continuous W (t), t € [0,T] such that g, is the solution of @.14).

Definition 4.4. A Loewner chain is the solution g; of the Loewner equation with a
continuous driving term.

Remark 4.3. By the previous theorem, any one of the quantities W (¢),K;, g, could
be taken as the most fundamental object. The concept of a Loewner chain covers all
those related quantities.

Example 4.4 (Some examples and counterexamples). See Figure[4.4]for some exam-
ples related to the theorem.

The curves in Figures and [4.4(b)] grow locally and hence they generate a
Loewner chain. The former is a simple curve and already covered by Theorem
While the latter one isn’t simple, it is non-self-crossing and thus satisfies the local
growth conditions. We don’t give the definition of non-self-crossing here formally,
but roughly speaking, if there is a double point on the curve, the curve exits to the
same side as it entered from to the double point.

Figure indicates that the set of the locally growing hull collections is a
strictly bigger class than the locally growing curves. In that example as the capacity
time approaches 7y, the growing hull winds infinitely many times around a disc, and
afterwards it unwinds infinitely many times. Hence it can’t be continuous at #y. For
more information, see [J5].

Finally Figure.4(d)|shows a curve that violates the local growth. A self-crossing
leads to a jump in the Loewner driving term. Although we omit discussing that kind
of processes, considering Loewner driving terms with jumps is also very fruitful.

Proof (Proof of Theorem[4.2). The fact that the first statement implies the second
one is a straightforward generalization of the proof of Theorem[.1} Namely if R > 0
is such that K7 C B(0,R) and #,€,8,C are as in the statement of the theorem, then
diam(g,(C)) < ro(e) = 6mR/+/log1/¢€, because C C B(z,€) for some zy € C and
by Lemmas and there is a circle of radius p € (&,+/€) which is mapped
by g/ to a curve which has length less than ro(€). Since g (C) separates K, 5 =

2:(K, 5 \ K;) from o in H, also the diameter of K, s is less than r(€).
The intersection [, K; ¢ is non-empty because the sets K; ; are compact and any
finite intersection is non-empty. Since the diameter of ;oK s is less than ro(€’)
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—\

(a) A simple curve in H start- (b) A non-simple curve

ing from the boundary which doesn’t have self-
crossings and the increments
¥((z,2 +s]) are always visible
to co in H\ y((0,1]).

(¢) A growing hull, which (d) A curve with a self-
makes infinite number of crossing
turns around a disc

Fig. 4.4 Some examples and counterexamples based on Theorem The growing hulls of (a)-(c)
satisty the “local growth” condition but (d) doesn’t satisfy the condition. However it is possible to
use the Loewner equation for (d), but then the driving term would have a discontinuity at the time
of the self-crossing.

for any € > 0, there exists W () € R such that {W(r)} = ;0 K. Now K, 5 C
B(W(z),ro(€)) and therefore as in (#.12)), the function ¢ — W (r) is continuous. The
Loewner equation now holds by the same argument as in the end of the proof of
Theorem [#.1] We have shown that the first statement implies the second one.

To prove that the second statement implies the first one, define for any 6 > 0, the
oscillation of W by

O(W,8) =sup{|W(t) —W(s)| : 5,6 €[0,T],|s—1t| < &}
By continuity of W, O(W,8) \, 0 as § \, 0. Let r1(8) = ((2v/8)? + O(W,5)?)"/*.
By the inclusion @17), K, 5 = g/ (K,+ s \ K;) C B(W(t),r1(8)). By Lemmas4.5{and

(t),n
there exists an arc of a circle of radius r € (r1(8),+/r1(0))
S=HNJIBW(r),r)

such that the length of C = g; '(S) is less than cR/+/log(1/r1(8)), where R > 0
is such that K7 C B(0,R) and ¢ > 0 is some universal constant. Since S separates
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I?t,,+5 from oo in Hj, C separates K, s \ K; from o in H,. Hence we have existence of
the separating set C with a uniformly small diameter. The claim now follows. a

4.2.2.3 Reverse Loewner equation

Let’s introduce the reverse Loewner equation

2

Il (z) = — hti(z) v

ho(z) =z. (4.19)

The next result was shown in the proof of Proposition §.1]

Lemma 4.9. Let h(z) be the solution of @.19) where (V;),cr. is continuous. Then
the solution is well-defined for all t € Rxo. More over t — Imh(2) is strictly in-
creasing.

The following lemma gives the significance of the reverse flow.

Lemma 4.10. Let (W;),c0.7] be continuous and V; = Wr_, t € [0,T]. Let hy(2) be the
reverse Loewner flow with the driving term (‘Z)tG[O,T] and the f;(z) be the inverse
Loewner flow with the driving term (W;),c(o,r)- Then the functions z — fr(z) are

2+ hr(z) equal.

Proof. We will show that g7 o hr(z) = z for all z € H. )
Fix z € H and let § = hr_;(z) for all ¢ € [0, T]. Then {y = hr(z) and

_ 2 _ 2
ilT—t(Z) - VT,, CI -W .

&

Hence ¢ = g(&) for all £ € [0,T). In particular, z = {7 = g7 (hr(2)). O

4.3 Loewner equations in D and S,

In this subsection, we develop the Loewner theory similar to the theory presented in
Section[4.2] for the unit disc ID and for the strip Sz = {z € C : 0 <Imz < m}. The
reader can skip this section and return here when reaching Section [5.4] where this
theory is used.

4.3.1 Loewner equation in D

Let K C D be a closed set such that the complement D \ K is simply connected and
contains 0. We call it a d-hull (or D-hull). For any d-hull K, there exists a unique
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conformal and onto map gx : D\ K — D satisfying gx(0) = 0 and g% (0) > 0 by
the Riemann mapping theorem. The quantity capp (K) = log gk (0) is called the d-
capacity (or D-capacity) of K. The function ggx can be expanded around z = 0 as

sk (2) = ol z+zckz

where ¢, € C are some K dependent coefficients. In composition of conformal maps
of this form, the d-capacity capp (K) is additive in a way similar to the h-capacity.

Suppose, for simplicity, that the boundary of K is locally connected and thus the
conformal maps we consider extend continuously to the boundary. Let fx = g,}l.
Define a harmonic function 4 on D by h(z) = —Relog(fkx(z)/z) = —log|fk(z)/z]-
Notice that the holomorphic function inside log is non-zero for all z € D and thus
the function 4 is well-defined and harmonic in ID. The boundary values of % are non-
negative and in fact zero outside of the set I = gx (K ND). Since 4 is continuous in
D and harmonic in D, we can use the Poisson kernel of D to write it as

1 w+2z
h(z)—ﬂ/l How)Re 2w, 4.20)

The formula evaluated at z = 0 is the mean value property of / and it implies that

capp (K) = —log f¢(0) = 1(0) = 5 [ () law].

In particular, the d-capacity capp(K) is strictly positive for any non-empty K. The
identity (4.20) can be complemented with its harmonic conjugate to arrive t

f(z) = zexp (;n /Ih(w)wJrZ |dw|> “.21)

w

Suppose that we have a continuously growing chain of d-hulls (K;);cr.,. Call
the parameter ¢ time. Due to the additivity of the d-capacity it is natural to reparam-
eterize so that log g/ (0) is linear in time. Thus we reparameterize so that g/(0) = ¢'.
If the support of the increment of (K; );cr., at time 7 is at W; € dID, then

9,8:(z) = lim 8@ =850 _ 8@~ fis0%()

N0 0 N0 )
W, +&(2)
= —_— 4.22
gl(z)‘/vt _gt(z) ( )

The right sided difference quotient has the same limit, for example, by the continuity
of the right-hand side of (4.22)). The equation is called Loewner equation in .

2 The multiplicative constant in {#21)) is fixed by evaluating both sides of (#20) and its conjugate
at 0.
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The family of hulls (Kl)te[O,T) corresponding to a solution to Loewner equation
in D with a continuous driving term will satisfy a local growth condition analogous
to the one given in Theorem[.2] We call any of such a family a d-Loewner chain.

4.3.2 Loewner equation in the strip Sy

Next we consider the strip Sz = {z € C : 0 < Imz < 7} in the same manner. A
compact set K C S; whose complement in S is simply connected is called s-hull.
For any s-hull K there is a unique conformal and onto map gk : Sz \ K — Sy, such
that lim;_,1..(gk (z) — z) = Fcapg, (K), where the constant capg_(K) is called s-
capacity. The s-capacity is additive in composition of normalized conformal maps.

Suppose that we have a curve yin Sy that generates a family of s-hulls (K;),c[o,7),
in an analogous sense as we have learned earlier. Since 7 — capg_(K;) is non-
negative and strictly increasing, it is possible to reparameterize the curve so that
caps, (K;) = t. With this s-capacity parametrization, the Loewner maps g = gk,
satisfy the Loewner equation in Sy

z)—W,
0:8:(z) = coth %, go(z) =z (4.23)
This equation generalizes to a general family of hulls (K:)c[o,r)- Namely, being a
solution to the Loewner equation is equivalent to local growth of the family of hulls.
We leave as an exercise to verify that the s-capacity is positive and that the Loewner
equation holds under suitable assumptions.
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Chapter 5
Schramm-Loewner evolution

We define the Schramm-Loewner evolutions in this chapter and study their basic
properties.

5.1 Schramm-Loewner evolution and its elementary properties

The Schramm—Loewner evolutions, which first were called stochastic Loewner evo-
lutions (for instance, in Schramm’s original article [11]), were invented by Oded
Schram His groundbreaking innovation in his paper released in 1999 was that
random curves can be described using the Loewner equation with a random driving
term. This enabled him to define Schramm-Loewner evolutions, which in general
are Loewner chains driven by stochastic processes which satisfy a Markov type
property and which locally resemble Brownian motions.

The motivation of studying SLE comes from predictions of theoretical physics.
Given a lattice model of statistical physics with a temperature-like parameter, for
instance, the Ising model, it is believed based on so called Renormalization group
analysis that (under some circumstances) there is a critical value of this parameter
so that which separates two regimes: in the large system limit, inside each of the
regimes the system looks macroscopically the same for all parameter values. We
say that the system renormalizes either to the zero temperature system or the infi-
nite temperature system. In between the regimes there is a critical parameter. The
critical point doesn’t renormalize to either of the above mentioned fixed points in
the large system limit, but it will be third fixed point.

By the renormalization phenomena (i.e. larger systems can be seen as slightly
smaller systems with renormalized parameters through coarse-graining) one expects

! Oded Schramm (1961-2008) was an Israeli-American mathematician, who was a highly influ-
ential researcher in the fields of complex analysis and probability theory and is best known for
inventing SLE and deriving many of its properties (with his co-authors) as well as many other
insightful results around random processes related to statistical physics. He died tragically in a
climbing accident.

63
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(a) SLE(}) (b) SLE(1)
Y
W
(¢) SLE(2) (d) SLE(4)
15
1
L
0.5 W

x/‘ I |
05 i Wﬁ

-1

0 02 04 06 08 1
(e) The standard Brownian motion
sample driving the SLE’s.

Fig. 5.1 Instances of SLE(x), for k = %,1,2,4, which is a stochastic Loewner chain driven by
continuous driving process (i.e., stochastic driving term), which is a standard Brownian motion
(drawn in Figure multiplied by a factor /.

that the fixed points are scale invariant. The predictions based on the Renormaliza-
tion group analysis also yield that the critical systems should be conformally invari-
ant which is a stronger symmetry than scale invariance. In physics, the continuum
theory with conformal symmetry is called Conformal field theory (CFT).

Based on so called Schramm’s principle, which we will go through in Sec-
tion [5.1.1] a random curve with a Markovian property and conformal symmetry
is a Schramm-Loewner evolution (SLE), that is, it is a stochastic Loewner chain
with a Brownian motion as its (stochastic) driving term.
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4
2
(a) SLE(6)
utposd
o, LY
X e ndd 5 m o e 855 e—

(c) SLE(16) (d) SLE(32)

Fig. 5.2 Instances of SLE(k), for k = 6,8, 16,32, driven by the instance of a standard Brownian
motion drawn in Figure|5.1(e)|multiplied by a factor /.

Scale invariant random curves can be either smooth or fractal, but if the large
system limit of a random curve is probabilistically non-trivial, it has to be fractal. If
there are fluctuations on some scale, similar fluctuations are seen in all other scales,
too, by scale invariance. Fractality of SLE’s is well seen in Figures[5.1]and [5.2}

5.1.1 Schramm’s principle

Schramm’s principle is a calculation that characterizes a family of random Loewner
chains that have connection to statistical physics. We present this principle on a
heuristical level, but with some additional definitions and assumptions this could be
made a theorem that states the following.

Schramm’s principle. Schramm—Loewner evolutions are the only random curves
satisfying conformal invariance and the domain Markov property.

We expect those two properties to be satisfied by scaling limits of random interfaces
of statistical physics models at criticality as discussed above in this chapter.
Assume that we are given a collection of probability measures ( [,L(U’a’b)) indexed
by the set of all triplets (U,a,b) where U is any simply connected domain and a # b
are any two boundary points of U. Assume that ,u<U’“’h) is the law of a random curve
7:]0,00) — C (the parametrization is arbitrary) such that y([0,e0)) C U and 7(0) = a,
¥(o0) = b. We assume that the family (u(V:*?)) satisfies the following properties:

1. Let ¢, denote the pushforward defined by ¢.P = P o ¢~!. The family (u(V:?))
satisfies conformal invariance (CI): for all (U, a,b)

¢*“(U,a,b) — u(¢(U)a¢(a)¢(b))
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2. Let (%);er., be the filtration generated by (¥(?));cr.,. The family (uU-ab))
satisfies domain Markov property (DMP): for all (U, a,b), for every (randonﬂ)
t € R>p and for any measurable set B in the space of curves (in what ever way
that space is defined...)

RO 1) ) € B| ) = O TODTOD (y € B,

3. Assume that we can describe the curve y by the Loewner equation in the sense
that there is a u™0=)-almost sure event on which  satisfies Theorem

In Schramm’s principle, we’ll investigate the consequences of these assumptions.

The first observation is that we need to describe only one of the measures in
the family. Then CI fixes the rest of them. Let us choose to work with /.L(Hvov‘”). By
Theorern for each realization of y there is a driving term (W;(7)),cRr., such that
the corresponding conformal maps g; satisfy the Loewner equation. Here we also
make a reparameterization with the half-plane capacityE] Let’s call the stochastic
driving term (W, ),cr.,, as driving process of the random curve .

Fix some ¢ € R>¢. Define §(s) = g;(y(¢t +5)) — W, for all s € R>¢. By CI and the
DMP, 7 is distributed as v and independent of the realization of y| 0,]- The conformal
map associated to the hull $([0,s]) is

85(2) = Grs(z+ W) =Wy = grys08  (+ W) — Wi
Now by differentiating this with respect to s

0:85(2) = (3sgr+5) (g ' (z+Wh))
B 2 _ 2
Cogrn(gT @AW = Wiy 85(2) — (Wi — W)

Hence the driving process of §is Wy = W, ; — W,. Since s distributed as y and is in-
dependent of .7, which is the c-algebra generated by ¥(s), s € [0,7], (W;)scr., is in-
dependent of .%; and it is distributed as (W;),cr.,. Hence the continuous stochastic
process (W;)icr., has independent and stationary increments. Theorem [2.1| shows
that (Wl),€R>O is a Brownian motion with drift. Thus the driving process of a random

curve ¥ distributed according to p ™0 js
W; = VKB, + ot

for some k¥ > 0 and o € R. We will next show that o« = 0.

Notice that by CI, u™9=) js invariant under any scaling z — Az, A > 0, that
is, Y*) defined by y*) (1) = Ay(t/A?) is distributed as y. Defined this way y\*) is
parametrized by capacity as we can verify by using the scaling property of the half-

2 Technically here we should restrict to so called stopping times.

3 By an argument which we leave as an exercise, when CI and DMP are satisfied, the half-plane
capacity of the hull ¥[0,7] will tend to infinity as ¢ tends to infinity. Therefore the reparameterized
curve will be parametrized by the set R>.
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plane capacity. By a calculation similar to the one above, it follows that the driving
process of ) is W,(M i= AW, 32 Since (W,(/l)),eﬂgZO is distributed as (W);cr.,»
the driving process satisfies the Brownian scaling and hence @ = 0 and

‘/Vt:\/EBt-

As a conclusion, we have shown that the families (,u( satisfying CI and the
DMP are those where (™0 is the law of a random curve whose Loewner driving
process is equal to a constant multiple of a one-dimensional Brownian motion.

U,a.b))

5.1.2 Definition of SLE as a stochastic Loewner chain

We wish to define a random Loewner chain. We start by a short comment on the
measurability of such a construction.

It is possible to show that for any compact J C Hi, there exists a constant C such
that the following holds. If (K;),cr., and (K;);er., are two Loewner chains such
that K7 and Kr are subsets of H\ J, then || g7 — &7 ||y < C||W —W .. o.79. For the
proof, see Lemma [@] below.

Thus the mapping from the continuous functions (W;);cr., to the corresponding
Loewner chains (g;);cr., (the solution of {@.14)) is continuous if we use the follow-
ing topologies in these spaces. The topology of the driving functions is given by the
locally uniform convergence, that is, a sequence converges if it converges uniformly
on every compact subinterval of R>(. The topology of the Loewner chains is given
by a form of Carathéodory convergence. More specifically, a sequence of Loewner
chainsﬂ (8n(t,-),Kn(t))ser., converges to (g(t,-),K(t))icr.,, if for any T > 0 and
any compact J C H\ K7, the sequence of functions (#,z) — g,(¢,z) converges uni-
formly to (7,z) — g(z,z) on [0, T] x J.

In particular, the map of the previous paragraph is measurable and hence if we
have a probability space (£2,.7,P) with a continuous stochastic process (W;);cr.
we can define a Loewner chain valued random variable (g);cr., corresponding to
the stochastic driving term (W} );cr.,. We call them a driving process and a stochas-
tic Loewner chain.

Next we define SLE as a stochastic Loewner chain. This is slightly unsatisfactory
since ultimately we aim to define it as a random curve — the point of view which
we took earlier in this chapter. We fix that problem in Theorem [5.2]

Definition 5.1 (Chordal SLE in H). Let k¥ > 0. A chordal Schramm—Loewner
evolution SLE(K) is a stochastic Loewner chain with a driving process (W;)cr.,
equal to a Brownian motion with variance parameter x, that is, W, = 1/kB, where
(B;)ieRr., is a standard one-dimensional Brownian motion.

4 We use here a variant of the notation so that W;, K, g;(z) etc. are replaced by W (¢),K(¢),g(t,z).
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Remark 5.1. We call this kind of SLEs chordal because we expect that they will be
random curves that connect two boundary points, namely, O and o. A radial SLE
would be a random curve connecting a boundary point to an interior point.

Example 5.1 (SLE(0) is trivial). If W; is identically zero, then g,(z) = v/z> + 4t and
the Loewner chain is equal to the vertical line segment # — 124/ as we saw in
Example [d.3] To exclude this trivial example, we make the assumption that x > 0.

5.1.2.1 Elementary properties of SLE

The next theorem captures the elementary consequences of the definition of SLE.
For the review of stopping times, Markov properties etc. consult Chapter [2] and
references therein.

Theorem 5.1. Let (K;)ier., be SLE(k), k >0, and (W;)cr., the corresponding
driving process which is a Brownian motion with respect to a filtration (ft)tesz
SLE(x) satisfies the following properties.

1. Scale invariance: For any A > 0, (/’LKT/AZ)IGRZO £ (Kf)dezO'
2. Conformal Markov property: For any s € R>q, the family of hulls

(I%s,t)leRZO = (gs(Ks+t \Ks) — ‘/VS)IERZO

is independent of F; and (I%S’Z)IGRZO < (Kz)zeRz(y
3. Strong conformal Markov property: For any almost surely finite stopping time T
with respect to (F;)1er., the family of hulls

A~

(Kr,z)zeRzo = (gr(Kr+t \Kzr) — WT)zeREO

is independent of F; and (Ief.t)tERZo < (KI)IGRZ()-

Proof. In the cases|IH3] the hulls and the corresponding conformal maps are

AKt/lzv gS(KS-H\KS) - W, gT(K‘H—t\KT) -W:
/,Lgt/l2 (Z/l)a gAS,t(Z)7 gATJ(Z)v

respectively, where g,,(z) = gs41 0 g; | (z-+W;) — W,. By differentiating these func-
tions with respect to 7, we find that the Loewner chains satisfy the Loewner equa-
tion with the driving processes AW, /A2 Wit — Wy and Wy, — W, respectively. The
claims now follow from the scaling property, the Markov property and the strong
Markov property of Brownian motion. a

We leave as an exercise to verify that SLE is also symmetric under the reflection
with respect to the y-axis, that is, (m(K;))er., = (K:)teRr-,> Where m(z) = —Z.

5 Remember that = denotes equal in distribution.
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5.1.2.2 SLE in a general simply-connected domain

At the moment, we have defined only p(™:0=) Guided by the Schramm’s principle,
we now extend the definition to include u(V?) for a general simply connected
domain with two distinguished boundary points. It is natural and consistent with the
conformal Markov property to use the conformal invariance requirement for doing
this and define SLE(x) in other domains by the conformal image of a SLE(x) in
H. This definition relies on the fact that SLE(x) in H started from Wy = 0 is scale
invariant, see Theorem [5.1}

Definition 5.2 (Chordal SLE in a general simply connected domain). Let (K; ),cr.,
be a chordal SLE(k) and let U be a simply connected domain and a and b two
boundary points of U with a # b. We define (chordal) SLE(k) in a domain U going
from a to b to be the image of (K;);cr., under any conformal onto map ¢ : H — U
with ¢ (0) = a and ¢ (o) = b.

Remark 5.2. The definition is unique only up to a linear time change, because all
the conformal onto maps from H to U with the above properties are of the form
z+ @(Az) where A > 0 is a constant. By the scaling property of SLE, the choice of
this conformal map only affects the time parametrization of the hulls in U. Naturally
we make here the exception that SLE(x) in H from x to o is always parametrized
with the half-plane capacity.

Remark 5.3. If the boundary of U is not locally connected and ¢ doesn’t extend con-
tinuously to the boundary, a and b have to be understood as “generalized boundary
points”, more specifically as prime ends (see references in Remark [3.6).

5.2 Advanced properties of SLE

In this section, we review some properties of SLE. The proofs of most these facts
will be given in the later sections or chapters.

5.2.1 SLE is generated by a curve

At this point SLE(k) is a stochastic Loewner chain. It turns out that it can be defined
as a random curve in the sense of the theorem below.

Definition 5.3. A growing family of hulls (K;);cr., is generated by a curve y if
H\ K; is the unbounded component of H \ y[0,7] for all # € R>o.

For any Loewner chain g;, t € R>o, we try to define the generating curve ¥ as
¥(t) =limg o f; (W (¢) +i€) where f, = g;'. The function ¥, if it exists, is called the
trace of the Loewner chain.
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Theorem 5.2. For each K, the trace 7y exists and is a random curve such that the
hulls (K:)ier., of SLE(K) are generated by 'y almost surely.ﬁ

We will make the assumption that the previous result holds for SLE(x). We will
use that assumption without mentioning it. The result will be proven in Section
using estimates established for f/(z+iW;) in this chapter.

5.2.2 Phases of SLE

The next theorem summarizes the important facts on the random curve y. We will
prove those statements at least partly in this section and we are going to do it in
several stages.

Theorem 5.3. Let the random curve y : [0,50) — H be SLE(K) (in the sense of The-
orem[5.2). Then

For all 0 < x <4, yis simple and y(0,00) NR = 0.
For all 4 < k < 8, yis not simple, in fact, it is not simple on any interval:

Sor any 0 <11 <1y there exists t} < s1 < s3 < tp such that y(s;) = y(s2). (5.1)

However, v is not space-filling: for any z € H, dist(z, y[0,0)) > 0 or equivalently
z & 7]0,00) almost surely.

e Forall x > 8, yis not simple, it satisfies (3.1)), but 7y is space-filling: z € Y[0,00)
almost surely.

Moreover, v is transient in the sense that |Y(t)| — o0 ast — oo.

Remark 5.4. A formulation of transience is that under the law /,L<U7“7b ) (of Schramm’s

principle) the random curve ¥ tends to b as the time tends to its terminal value.

5.2.3 Dimension of SLE

Remember that the Hausdorff dimension d = dim (") of a point set I" C C is such
that the s-dimensional Hausdorff measurem *|I'] is infinite for all s < d and zero
for all s > d, or more definitely, dim (") = inf{s > 0 : '] < oo}.

6 We will prove the theorem only for & # 8. The case k = 8 is a consequence of the results of [9].
7 The s-dimensional Hausdorff measure 7 is defined by

A5 = lim inf{kzl(diam(vk))s :I'c g Vi and diam(V;) < 6}

where the infimum is over all countable covers Vi, k =1,2,...,n, of I satisfying diam(V}) < & for
all k.
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The following result shows that SLE(x)’s are random fractals, which we antici-
pated based on the statistical scale invariance. It also gives a very nice interpretation
for the parameter x.

Theorem 5.4. For k¥ > 0, let I = y[0,00), where 7y is the trace of SLE(K). Then
dimy (') =2A(1+ %)

5.3 Proofs for some of the advanced properties

5.3.1 SLE and Bessel processes

We start the investigation to prove Theorem [5.3]by continuing our review of topics
in stochastic analysis.

5.3.1.1 SLE as a complex Bessel process

Fix z € H with z # 0 for a moment. Let g, be a chordal SLE(x) with a driving process
W, = —v/KB;, where the minus sign is for convenience. Define the processes

Z=g:(z)—Wz7 Zz:Zt/\/E-
By the Loewner equation, these processes have the Itd differentialﬂ

N 2 2/x
07 = 2 vxds,  dz,= %41 as,
Zt Zt

respectively. Therefore (Z;)e(o,z(z))» Where 7(z) is as in the section 4.2.2} could be
called as a §(k)-dimensional complex Bessel process sent from z/+/K where

S(k) =1+ € (1,%).

The standard use of the parameter § in the context of Bessel processes is presented
below in the stochastic differential equation (5.2).

5.3.1.2 Some properties of Bessel processes

In the next proposition we list some properties of (real-valued) Bessel processes.

8 It is convenient to use complex valued Itd processes. It is understood that an equality of the form
dZ(r) = &(r)dr + X7 C(r)dB(t), where (Bi(t))ick., are standard one-dimensional Brownian
motions, means that the real and imaginary part of both of the sides are equal when we consider dt
and dBy(t) to be real.
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Proposition 5.1. Let § € R and let (X;)c(o.r) be a 6-dimensional Bessel process
sent from x > 0, that is, (X;)c(o,r) is the unique solutiorﬂ of
o—1

dX; = dr +dB Xo = 5.2
t 2Xt + ty 0 X ( )

and T € (0,49 is the maximal time such that the solution exists and is positive for
anyt € [0,T). Then

[T <eo]=1ifandonlyifd <2,
[T =oo] =1ifand only if 6 > 2,
[info<;<7X; > 0] = 1 if and only if 6 > 2,

P
P
P
Pllim,,7X; =0] = 1 when § < 2.

1.
2.
3.
4.

Remark 5.5. As we saw in Example 2.3] the Euclidean norm of a d-dimensional
Brownian motion is a d-dimensional Bessel process.

By this proposition when 8 > 2, the Brownian motion of dimension 0 won’t hit
the origin. In the case § =2, the Brownian motion will eventually get arbitrarily
close to zero, but doesn’t hit it in finite time.

Proof. These claim can be proven using the fact that for -dimensional Bessel pro-
cess (X;);e[o,r)- the process M; = X?~% when & # 2 or M, =logX, when § =2 is a
local martingale for t < T. We leave as an exercise to apply It6’s formula to M; to
verify the claim.

Notice also that the Bessel processes are scale invariant so that they satisfy the
Brownian scaling 1, /; = X, forall 2 > 0.

For t < T, notice that X; — B, = x+ ((6 — 1)/2) 3 X, 'ds. Since X, > 0 for all
s € [0,T) it follows that

{XIZBI when 6 > 1 53)

X, <B; whené <1.

For a € (0,x), b € (x,%), ¢ € (0,x) U (x,00), define 7, = inf{[0,T) : X; = ¢} and
using it 7, , = T, A Tp. Define also 7y = lim,_,0 7, and Ty, = lim,_.¢ 7, which exist
since they are decreasing functions of a. By the comparison inequalities (3.3)), we
can show that for any a € [0,x) and b € (x,o0), the stopping time 7, , is finite almost
surely. For example, when 8 > 1, 7, is bounded from above by the almost surely
finite time that the Brownian motion hits 5. The same argument works for § < 1.
Since (Miaz,, )icr., is @ bounded martingale and 7, is an almost surely finite
stopping time, by the optional stopping theorem (see Appendix A and references
therein)
F(x) = F@)P[Xe,, = al + f(B)P[Xs,, = b] (5.4)

9 The existence and uniqueness of the solution follows from Theorem for instance, using the
following trick. For any n € N, replace the drift term by a smooth continuation of the function
that maps x — (6 —1)/(2x), x > 1/n and x — 0, x < 0. The drift term and the approximating drift
term are identical on the interval [1/n,+o0) and thus the solutions agree until the process exits the
interval.
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where f(x) =x2~% when § # 2 and f(x) = —log(x) when § = 2. Writing (54) in
the form

Plty = Tap) =

allows us to make the following conclusions

e When 6 <2, lim,,0 f(a) =0. Thus P[tp = 19] = 1 — f(x)/f(b) > 0. Notice
that 7p = T. Thus for some ¢ > 0, it holds that P[T < ¢] > 0. By scale invariance
of the Bessel process, p = P[T =oo] is independent of x. It follows that p =
P[T = |.#;] onthe event T > t. Taking expected value from both sides it follows
that p = pP[T > ¢]. Since P[T <] > 0 it follows that p = 0.

e When 6 > 2, lim,_,o f(a) = e. Thus P[1y = 7] = 0. It is then possible to argue
that Ty, = 7, tends to o as b — oo, since there is no blow-up by the solution in
finite time by the uniqueness and existence theorem of SDEs. This shows that
T = 19 = oo almost surely.

e When 8 > 2, since limy_,., T, = oo almost surely and lim,_,.. f(b) = 0, it holds
that Pty » < 0] = f(x)/f(27") =x?>"927(8=2" for any n € Z- such that 2" <
x, which is summable over n. Thus by the Borel-Cantelli lemma, inf,cg_, X; > 0
almost surely.

e When 8§ < 2, then choose r, > 1 such that P[t,,, = Ty ,,x] = 27". Then by scale
invariance and the Markov property of the Bessel process,

P[X; > n~"' for some ¢ > T 1,-1]=27"

r;l

for all n € Z~¢ such that n~! r,; 1 < x. Consequently limsup,_,7 X, = 0.

All the claims follow. O

5.3.2 Phase transition from simple to non-simple curve at kK = 4

We will show in this subsection that ¥ is simple for k € (0,4] and non-simple for
K € (4,+00).

Remember that z € K; if and only if 7(z) <, where 7(z) is as in Section [4.2.2]
Notice also that for 0 < x| < x3 or for x; < x; < 0, it holds that W; < g;(x1) < g2(x2)
or g2(x) < gi(x1) < W,, respectively, for all 0 < 7 < t(x;) A T(x;) and consequently,
it holds that 7(x1) < T(xp).

Now we use the fact that the process X; = (g:(x) — W,)/Vk, x € R\ {0}, is a
Bessel process of dimension 6 = 1+ %. Proposition applied to X; shows that
P[7(x) < o0] is equal to 1 when k > 4 and 0 when k € (0,4). This together with the
above monotonicity property of 7(x) implies the following result easily.

Proposition 5.2. For 0 < k < 4, (Uer.,K:) "R = {0} and for k > 4, R C
Urer., Ki almost surely. Equivalently, almost surely t(x) = oo for all x € R\ {0},
when x € (0,4], and t(x) < eo for all x € R, when x > 4
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Based on this result, let’s first show that SLE(x), 0 < x < 4, is simple, based on
this result. Let s > 0 and let x_ and x. be the two images of O under the map g, — W;.
By the previous proposition and by the conformal Markov property, 7(¢) = gs(v(s+
1)) — W, t € R>, intersect the real axis only at 0. In particular it doesn’t intersect
[x_,0)U(0,x.]. Since f; = g; ! is continuous to the boundary by Theorem [3.4{and
the assumed Theorem this implies that

[0, 5] N yls,o0) = {¥(s)} (5.5)

almost surely. In fact this holds almost surely for all s (we can show it first for all
rational s and then by continuity to all s). If r; <, are such that y(z;) = y(2), then
pick #; < s < tp such that y(s) # y(¢1). Then y(t;) = y(t2) contradicts with (5.5).
Thus 7 is simple.

Let’s then show that SLE(x), k > 4, is not simple. Let 0 < 57 < u < sp. Let
X£_ <0 <% be such that the image of y[s;,u] under g, — W, is [£_,%]. Since 7(1)
is finite almost surely, for fixed 7 > 0, by scaling P[7(x) <] — 1 as x > 0 tends to
0. Therefore

P[¥[0,]N (0,x] # 0] = 1

for all # > 0 and x > 0. Hence we can find u < 7, < s, such that g,(y(t2)) — W, €
[£-,0) U (0,%4]. And hence there exists s; < #; < u such that y(¢;) = y(t2) and we
have shown the property (5.1).

As conclusion, we have shown the following result.

Proposition 5.3. When k € (0,4], y is simple almost surely and when x > 4, y is
non-simple almost surely in the sense of Theorem|[5.3)

5.3.3 Transience for x € (0,4]

We will show in this subsection that a chordal SLE(x) curve v is transient when
K € (0,4], in the sense that |y(¢)| — oo as t — oo. In particular, Y[0,e0) = ¥[0,)
when 7 is transient.

Proposition 5.4. When 0 < k < 4, P[dist(y]0,0), [x,x']) > 0] =1 for any 0 <x < x’
orx <x' <0.

Proof. Suppose first that k¥ € (0,4). By symmetry and the scale invariance of
SLE(k), it is enough to show that P(dist(y[0,°),[1,x]) > 0) = 1 for all x > 1. Let
0 < 8 < 1/4 and define o5 = inf{r € R>¢ : dist(y(z),[1,x]) < 6}.

Let’s consider the event 05 < . Let Rgs be the union of the right-hand side
of [0, 05] and [0,1/2] and h(z) be the bounded harmonic function on Hgy = H'\
710, 5] that has boundary value 1 on Rs; and O elsewhere. See Figure|5.3| Then /(z)
can be written as the harmonic measure HM(z, Rg5, Hg, ) as in Deﬁnit By the
conformal invariance of harmonic measure, after applying the conformal map gg;
we see that for y € R+,
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1 z W(TS ga'g(%)

D=

Fig. 5.3 The harmonic function 4 in the proof of Proposition has boundary value 1 in the
shaded boundary arc and O elsewhere on the boundary. The dotted curve is the set of points at
distance 6 from the interval [1,x].

) = (60, (1/2) = Wey)+ 6 (yﬂ)

as y — oo. This can be derived, for instance, by further mapping conformally to the
unit disc and sending g, (iy) to 0. We leave the details to the reader.

On the other hand, we can write the harmonic measure /(iy) as the probability
that a Brownian motion sent from iy exits Hg through Rs;. On this event the Brow-
nian motion has to intersect the vertical line connecting the interval [1,x] to y(0s).
Let x) = Re y(05). Then the probability that a complex Brownian motion sent from
iy will hit the right-hand side of the segment [xg,xo + 18] before hitting the left-hand
side or the real axis is equal to % +0 (}%) as y — oo, This can be derived similarly
as above.

Using the latter harmonic measure as an upper bound for the former one, mul-
tiplying by y and taking the limit y — oo, we conclude that gg4(1/2) — Wsy < 6.
Because the infimum of a Bessel process is positive (Proposition[5.)), there exists a
positive random variable dy such that 65 = e for all € (0, dy). The claim follows
for k € (0,4).

For k¥ =4, it holds that the infimum of a Bessel process with corresponding
dimension (& = 2) is zero. The above argument cannot therefore be used for k¥ = 4.
One can give an argument similar to that given in Section[5.3.4] see also [10]. O

Proposition 5.5. For 0 < k <4,

Y(#)| — o ast — oo,

Proof. First of all |y(#)| — o along some sequence #; — oo, because otherwise y
would be bounded and hence had bounded half-plane capacity.

Let T; be the hitting time of dB(0, 1) by y and let x_ < 0 < x+ be the two images
of 0 under the map g7, — Wr,. Then by Proposition [3;_4] almost surely distance from
the SLE(x) curve §(r) = g7, (y(T1 +1)) —Wr,, t € R, to [—n,—1/n]U[1/n,n]
is positive for all n € N. Hence it will stay at a positive distance from x_ and x
and consequently, there exists a random variable » > 0 such that |y(z)| > r for all
t > Ti. Using this property, scaling and the Borel-Cantelli lemma, we can construct
a sequence of random variables 0 < Ry < Ry < ... such that Ry — oo almost surely
and y doesn’t enter to B(0,R;_1) after hitting dB(0, Ry). O
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5.3.4 Phase transition of distance from a point to y at Kk = 8

In this subsection, we analyze the distance from z to [0, 7(z)) or [0, o).

5.3.4.1 The time evolution of the conformal radius and arg Z;

We first need a conformally covariant@] version of the distance to the boundary. For
any simply connected domain U C C (with U # C) and for any zg € U, let ¥ be the
unique conformal map from U onto I such that ¥(z) = 0 and ¥’ (zg) > 0. Then the
conformal radius of U from 7 is defined as

p(20,U) = ¥'(20) . (5.6)
The conformal radius is proportional to the inradius as shown by the next result.

Lemma 5.1. For any simply connected domain U # C and any 7o € U, it holds that
(1/4)p(z0,U) < dist(z0,9U) < p(z0,U).

Proof. Let ¢ : D — (y'(z0)U) be defined by ¢(z) = ¥'(z0) (¥ ! (z) — z0). Then ¢
is a conformal map, ¢ (0) = 0 and ¢'(0) = 1. Thus (1/4) < ¥/(z0) dist(zo,dU) < 1
by Theorem 3.8 o

We leave as an exercise to verify that the conformal radius of H, = H\ K; from

70 is equal to
2y

 lgi(z0)]
when 7 < 7(z9). The proportionality to the inradius, Lemmal5.1] implies that

p(Z07Ht)

1 —_ . Y . —_
— dist (z ,RU7Y|0, 00 ) < lim < 2dist ( zg,RUY[0,0) | .
st (0 BUTO=) < lim | ot < 2dis (s RUTO )

For any fixed zo € H, let Z, = g,(z0) —W;, t € [0,7(z0)) and let X; and Y, be the

real and imaginary parts of Z,, respectively, and as usual let W; = —/kB;. Then
from the Loewner equation it follows that

2X;
dX; = ————dr++v/kdB, 5.7
t th + Ytz f t ( )
2y
0, 5.8
Lt X[2 + Ytz ( )
X12 — Yt2

(5.9)

10 Conformally covariant here means that the transformation rule under conformal maps is simple.
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The first two equations follow from taking the real and imaginary parts on both sides
and the equation (5.9) by taking derivative of the Loewner equation with respect to
z. Write using (5.8) and (5.9) that 9, log(¥;/|g}(z)|) = —4Y? (X? +¥?) 2 and define

T Y2ds ! (sinargZ;)?
S(t) =4 / § —4 / ds. 5.10
O=2) wzrvar =*h xzemz 10
Then it follow that
2Y,
p(z0,Hr) = ——— = 2yoexp(—S(t)) (5.11)
&7 (z0)]

where yg = Imzg.

Since z — logz is holomorphic, using It6’s formula for the real and imaginary
parts of logZ, gives
dB;

dr
dlogZ = (2—-x/2)=
027 = (2 k/2) 5+ VK

t

and therefore by taking real and imaginary parts we find that

dlog|z)| = (2 x/2) X gy X ap (5.12)
B (X7 +12)? X2 '
2X,Y, Y,
dareZ, = —(2—«x/2)———dr — vV K———=dB;. 5.13
22y ( / )(Xt2+Yt2)2 th2+Yt2 ! ( )

Let now 6, = argZ;. Then we can rewrite the previous equation as

1 . dr . dB;
46, = = (K — 4)5in(26,) ——— — V/Ksin(6;) —mmml— .
t 2( )Sll’l( t)Xt2+Yt2 fsln( t) Xt2+Y12

5.3.4.2 A time change

Define a time change using the definitions (5.10) and o (s) = S~!(s) in Proposi-
tion We use the definition 8y = 285, since it corresponds to the coordinate
change from H to D. After the time-changed quantities obey the time evolution

. —4 ? .
dé, = K2 cot (i) ds + v/kdB, (5.14)
p(z0,Hg(s)) = 2y0e " (5.15)

The solution to this stochastic differential equation exists and is unique until the
exist time from the interval (0,27)

= sup{s € R>¢ : 6, € (0,27) for all u € [0,s]} (5.16)
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which is a stopping time. By comparing to Bessel processes, we know that if 7 is
finite, then lim,_, ; 6; exists and belongs to {0,27}. Since 6; € (0, x) for all z < 7(zp),
this implies that S(¢) < 7 for all r < T(zo) and

S(t(z0)) := lim S(r) < £. (5.17)

1—=7(z0)

We will later show that equality will indeed hold in this inequality for SLE(x).
Furthermore, we can compare és to Bessel processes when és ~0or és ~ 2T.
Namely, then cot(6,/2) is close to 2/, or 2/(2m — ), respectively. The corre-
sponding Bessel process has dimension d such that § = (3x — 8)/x. This implies
that 7 is almost surely finite for k¥ < 8 and almost surely infinite for k¥ > 8. The next
result follows from this observation, the equation (5.11)) and the equation (5.17).

Proposition 5.6. When x < 8, for any z € H, almost surely dist(z,7[0,7(z))) > 0.

5.3.5 Phase transition of ©(z) at xk = 4

We will investigate in this subsection whether 7(z) is finite or infinite, that is,
whether or not z belongs to U;cg. , K-

Proposition 5.7. When x > 4, for any z € H, 7(z) < oo almost surely.

Proof. Let Z; = g;(z) —W;, z € H. Since argZ; € (0,7) for all ¢ < 7(z), Z; can exit
the set Bx = {z € H : |z| < R} only through {0} U{z € H : |z| = R}.

Let o be the exit time of (Z);cr., from B,. Then always og < 7(z). We claim
that for all k, og < o almost surely. To see this let X; = ReZ; and write

2X,dt
dX, = VKB, + . (5.18)
|Zi]
For each k € Z>( and R > 0, let Ey g be the event that min;c(; x4.1) Br < Bx+1 —Ror
maxte[k’kH]B, > Biy1 +R. On the event Ey g, denote by 1 z the maximal s such
that |B; — By11| = R. It is fairly easy to see, for instance, by the fact that the time
reversal of Brownian motion is a Brownian motion, that

P {Bnkx —Bjp1 =miR, mpXy, . > 0|Ek,R]
—p {Bm_R — By = miR| Ek,R} p {mzxnm >0 E,ﬂ

1
=P [mzxm >0 Ek,R} (5.19)

for all m;,my = +1. Therefore

Eir (5.20)

P [ Bnk,R _Bk+1 = _R7 Xﬂk.R Z 0 1
2.

or By, g = Biv1 = +R, Xy, , < 0
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Also it is easy (by the same argument) to see that P[E} g] = P[E] g] > 0 for all k and
R. Notice that the events Ey g, k € Z>o, are independent and Y7 P[Exg] = o,
and thus by the second Borel-Cantelli lemma, see [2]], P[,—o Ur—, Exg] = 1.

We claim that the conditional probability of og < k+1 given Eyr is at least
1/2.1f 7(z) < k+ 1, then always og < k+ 1. Suppose therefore that 7(z) > k+ 1.
If either one of the events on the left of (separated by or) occurs, then by
G.18), Xt 1] > [ X1 — Xy x| > [Bir1 — By | = R and it follows that og— <k+ 1.
Therefore we have shown that 6 < oo almost surely.

Next notice that Z,1_4/ * is a local martingale, in the sense that its real and imagi-
nary parts are local martingalesE] We leave as an exercise to apply Itd’s formula to
verify this. Let & = 1 —4/x and v = ¢™1=®)/2 Then h(z) = Im(vz®) is a positive
function on H\ {0} and 4(Z) is a real-valued local martingale. It is straightforward
to check that there exists a constant ¢ € (0,1) such that c|z|]* < h(z) < |z|* for all
z€eH.

If we apply the optional stopping theorem to the bounded martingale /(Ziroy)
and the stopping time O, which is almost surely finite, then

h(z) = E[h(Zs)| or < T(2)] P[oR < T(2)] (5.21)
Therefore o o
¢ ('ﬁ) <Plog<t(z)] <c™! (';') (5.22)

a
Thus P[7(z) <] > 1—Plog < 7(z)] > 1 — ¢! (%l) and since R > |z| is arbitrary,
it follows that P[7(z) < o] = 1. O

Proposition 5.8. When x € (0,4], for any z € H, 1(z) = o almost surely .

Proof. The claim follows from Proposition 5.6 since K; = ¥[0,1]. O

5.3.6 One-point function of SLE (k)

5.3.6.1 The behavior of 6; as r tends to 7(z)

Lemma 5.2 (limargZ, for simple, transient y). Let z € H and y be a simple curve in
H such that y(0) € H, y(0,00) C H, z ¢ 7(0,0) and limy—,e. |¥(t)| = oo. Let (g )R-
be the Loewner chain corresponding to y with the driving term (W;)icr.,. Then
lim; .. arg(g,(z) —W;) € {0,2x}. B

Proof. Let r = |z| and R > r. By the assumptions, there exists s € R>( such that
|y(z)] > R for all ¢ > 5. By symmetry, we can suppose that z is to the right of ¥[0, s]
in the sense that z can be connected by a path in (H\ [0, s]) N B(0,r) to the “right

1 Here and below z% is defined as %127 where the branch of log is such that Imlogz € [0, 7] for
z€H.
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side” of 7]0,s]. Notice that then z is to the right of ¥[0,#] in the same sense for all
t>s.

Denote by L, the union of R and the “left side” of [0, ¢]. We can write using the
harmonic measure arg(g,(z) —W;) = tHM(z,L;,H \ 7(0,7]) (recall Definition
and remarks after it). By the weak Beurling estimate of the harmonic measure, 0 <
arg(g,(z) —W;) < C(r/R)* with some universal constants C > 0 and o > 0. The
claim follows by taking R to co.

The proof of the statement, that arg(g;(z) — W;) tends to 7, when z is to the left
of [0, s], can be done completely symmetrically. O

Lemma 5.3 (limargZ, when point is swallowed and not hit). Ler z € H and
(Ki)icr-, be a Loewner chain generated by a curve . Suppose that T(z) < o and
dist(z, 7[0,7(z)]) > 0. Then lim,_, .y arg(g; (z) — W;) € {0,2x}.

Proof. The proof is very similar to the proof of Lemma[5.2] When z is to the right of
[0, 7(2)], then the harmonic measure of the union of R.( and the left-hand side of
7[0,¢] tends to zero as ¢ tends to T(z). Similarly when z is to the left of ¥[0,7(z)]. O

If we combine Lemmas([5.2and[5.3| with Propositions[5.3] [5.5] [5.6|and[5.7] we see
that the inequality (5.17)) is actually equality for SLE(k). Namely, we can deduce in

the following way.

e When x € (0,4], vis simple, transient and avoids the point z almost surely. Thus
by Lemma|[5.2] lim;_,.. 6; € {0, 7} and consequently S(e0) = % < oo,

e When « € (4,8), similarly using Lemmait follows that lim,_, () 6; € {0, 7}
and consequently S(7(z)) = T < oo.

e When k € [8,0), T(z) < o0 and 7 = oo. If it would happen that S(7(z)) < oo, then
by Lemma lim,_,;(;) 6, € {0, 7} and therefore £ < §(7(z)) < co, which would
lead to a contradiction. Consequently, £ = S(7(z)) = oo.

We have shown the next result. The notion (U),, is used for the connected compo-
nent of zg in U.

Proposition 5.9. For all k, it holds that p(zo, (H \ 7(0,0)),,) = 2yoe™* where % is
as in (5.16).

5.3.6.2 One-point function

Let’s continue the calculation of Section using Proposition Write zo =
rexp(ifp/2), r > 0. Define a function, which doesn’t depend on r > 0,

A

F(8o.u) = P [ p(z0, (H\ 7(0,%0))z) < 2y0e™"] = P[t > ul.
Its conditional version given Fy = Zs(s)» can be written in the form

P[t>ul|F] =F(B,u—s) (5.23)
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by the conformal Markov property of SLE(x).
The left-hand side of (5.23) is by construction a martingale and therefore F sat-
isfies, provided F is smooth
JF
o

by Itd’s formula, where L is the second order differential operator

LF (5.24)

Kk d> k-4 X )
—— cot= —.
2 0x2 2 2 dx
The function F satisfies the boundary conditions

F(x,00=1, 0<x<2m and F(0,u) =0=F(Q2m,u), u>0. (5.295)

In a suitable function space L is a self-adjoint operator. Moreover, there exists a
eigenbasis (fi)ren of L such that Lfy = A fy, 0 <A1 < Ay < ... and for each k, f
has k — 1 zeros on the interval (0,27). It is straightforward to check that

f(x) =sin (%)ﬁ

satisfies Lf = A f ifandonly if AL =1—§, B = % — 1. Since this eigenfunction is
positive and thus doesn’t have any zeros, it must be the eigenfunction with the small-
est eigenvalue. Consequently, by an argument that we will skip, since the boundary
values (5.25) are non-negative, it is possible to prove the following version of the
maximum principle: there exists a constant C > 0 such that

C_lf(x)e_l” < F(x,u) < Cf(x)e_}““

forall x € [0,27] and u > 1.
This shows that for all zo € H and r € (0,Imzy), it holds that

A
S — r .
P |]0,00) N B(zo,7) # V)} = () sin (argzO)B (5.26)
Imzg
where A < B means that there exist positive constants ¢; and ¢; such that c;B <A <
caB. We call the right-hand side of (5.26)) the one-point function of SLE(k).

5.3.6.3 An upper bound for the dimension of SLE

For a non-empty bounded Borel set K C C, let N be the number of sets of the form
[(j— Ve, je] x [(k— 1)g,ke], where (j,k) € Z?, that intersect the set K. We define
the upper and lower box-counting dimensions (or Minkowski dimensions) as
logN, logN,
dimg;(K) = limsup —~=—¢,  dimy(K) = liminf ~>—¢,

o log 5 - eNO  log 5
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respectively. If the upper and lower limits are equal, then limg o(log Ne)/(log é)
exists and is equal to the box-counting dimension dimy (K) = dimy;(K) = dimpy (K)
of K. It always holds that the (upper and lower) box-counting dimension is not less
than the Hausdorff dimension of K. Hence any upper bound for the box-counting
dimension is an upper bound for the Hausdorff dimension.

Consider now SLE(k), 0 < k < 8, curve ¥. By (5.26)), for some C >0 and 1 > 0,
the left-hand side of is bounded from above by C (g )* for all zo € H and
r > 0.1If y[0,0) intersects the box R := [(j—1)27",j27"] x [(k—1)27",k27"],
thendist ((j— %) 27" +i (k— 1) 27", 7[0,00)) < 27"~1/2. Hence

ENy.o= Y P[y0,0)NRj#0] <C27%2 Y (k—1/2)7*

=2 <" =2 <"
0<k<2" 0<k<2"
< C/2(2—l)n

where C’ is a constant that depends only on C and A.
By Chebyshev inequality, for each 6 > 0

=) Non > 2(271+5)n:| < Clzfﬁn.

Since these probabilities are summable over n, by Borel-Cantelli lemma there
exist a random variable no(8) such that N, -» < 22=2+9)" for n > ny(8). Thus
limsup,,_,.,(logN>-x)/(nlog2) <2 —A + 4. Since 6 > 0 is arbitrary and € — N
is non-decreasing, it follows that limsupg\ (logNe)/(log 1) <2 -1 and therefore
the upper box-counting dimension is at most 2 — A. Thus we have shown

dimyg(([~1,1] % [0,1]) N7[0,2)) < 1+ . (5.27)

which implies that dim s ([0,e0)) < 1+ §. Remember that almost surely ¥[0,) =
H and thus dim s (y[0,)) = 2, when k > 8.

5.4 Variants of SLE

In this section, we will go through some variants of SLE. Besides the chordal
SLE(k), the most important variants of SLE are the radial SLE(k), the dipolar
SLE[k, o] and (chordal) SLE(k,p). We will also remind about the Loewner equa-
tions for the inverse maps f; = g; I and the time-reversed maps h, = gr_,;, because
they are needed in later sections.
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5.4.1 Radial SLE (k)

Definition 5.4. Radial SLE(k) in (D, 1,0) is a stochastic d-Loewner chain (K; );cr..,

driven by the process W, = exp(iy/kB;) where (B;);ck., is a standard one-dimensional
Brownian motion.

Remark 5.6. As we commented in Remark the H-capacity parametrization is
consistent with the d-capacity parametrization in the sense that choral and radial
SLE(k)’s look the same locally. We leave this argument as an exercise.

Definition 5.5. Let (U, a,w) be a triplet where U is a simply connected domain, a its
boundary point and w its interior point. Radial SLE(K) in (U,a,w) is defined as the
conformal image of radial SLE in the domain (ID, 1,0) under the (unique) conformal
map that takes (D, 1,0) to (U,a,w).

Remark 5.7. For fixed k > 0, the family of laws of radial SLE(x) in (U,a,w), where
(U,a,w) runs over all simply connected domains U # C as well as all a € JU
and w € U, satisfies a version of Schramm’s principle for a domain with a marked
boundary point and a marked interior point. Namely, in this version Schramm’s
principle, the family (,u(U ’“*W)) of laws of random curves satisfies

° [,L(U*“=W) is supported on curves y(¢) starting at a and tending to w as t — oo. The
curve 7 is well-described by the Loewner equation of D.

e Conformal invariance (CI): ¢, u (V") = ((9(U).9(a).0(w))

e Domain Markov property (DMP): for any measurable set B in the space of
curves, H(U,w)m[m) € B| %= uW\0Mr0w) [y e B].

Unlike in the chordal case, from the point of view of Schramm’s principle, here it
would be reasonable to include a linear drift to the Brownian motion and extend the
definition of radial SLE to two parameter family. It would be interpreted as chirality
of the random curve as the non-zero drift would give the curve tendency to swirl
around the marked interior point to the direction specified by the sign of the drift.

5.4.2 Dipolar SLE [k, o]

Definition 5.6. Dipolar SLE[k, 0] in (Sg,0,+ec,—o0) is a stochastic s-Loewner
chain (K;),cr., driven by the process W; = /kB; + at where (B;)cRr., is a standard
one-dimensional Brownian motion.

Definition 5.7. Let (U,a,b,c) be a quadruplet where U is a simply connected do-
main and a,b,c its distinct boundary points in counterclockwise order. Dipolar
SLE[k, o] in (U,a,b,c) is defined as the conformal image of dipolar SLE[k, ct]
of the domain (Sy,0,+c0, —c) under the (unique) conformal map that takes the
quadruplet (Sy,0, 400, —c0) to (U,a,b,c).
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(1)
; gt
S

Co W G W,
o < ) Uy
S.ﬁ/ ( S) Gs
~ T
W W,

Fig. 5.4 Coordinate transform of a SLE-type process from H to S,

Remark 5.8. For fixed x > 0 and o € R, the family of laws of dipolar SLE[k, ct]
in (U,a,b,c), where (U,a,b,c) runs over all simply connected domains U # C as
well as all a,b, ¢ € JU, satisfies a version of Schramm’s principle for a domain with
distinct marked boundary points. Namely, in this version Schramm’s principle, the
family (u(V:@b:€)) of laws of random curves satisfies

o 1Ua¥) js supported on curves 7¥(¢) starting at a and tending to the boundary arc
between b and ¢ as t — co. The curve ¥ is well-described by the Loewner equation
of Sy.

e Conformal invariance (CI): ¢, u(V-a0¢) = (9(U).0(a).0(b).9(c))

e Domain Markov property (DMP): for any measurable set B in the space of
curves, “(U,ayb,dm[t.m) €B|.Z]= p A0 7(1).b.c) [y € B].

5.4.3 Coordinate changes and SLE (x,p)

5.4.3.1 Coordinate transform of SLE(x) from H to S

Let’s consider SLE(x) on H and a conformal transformation from H onto the strip
Sz ={z€C:0<Imz< x} Let ¢ < 0. The unique conformal map yp from with
v0(0) =0, yo(c) = —eo and yp(eo) = oo is given by Yo(z) = log(z—c) —log|c|.
The point ¢ evolves under the SLE(k) flow as C, = g,(¢). Let y;(z) =log(z—C;) +
6(r) where §(¢) is a constant such that the map

S =vogoy,' (5.28)

satisfies the normalization introduced in Section [4.3.2] After a calculation we find
that — 1 log g} (c) —log|c|. Consequently, the s-capacity S(t) of the s-hull y(K;) can
be written as

1  du
s =L ogg(o = [
( ) 2 Oggt(c) 0 (vvt 7Ct)2

and the driving term transforms to
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W, = log(W; — C,) +S(t) —log|c| € R C dS;.

85

Define a time-change ¢ = S~! and set g, = 8o(s) and W, = WC,(s). A straightfor-
ward calculation shows that g; satisfies the Loewner equation (.23)) of the strip Sy.
If the driving term in the upper half-plane is a Brownian motion then the driving
term of the strip is a Brownian motion with a drift. See Table [5.1] for more details.

H Sz
L - z—s+o(l), z— —eo
Normalization D=z+E+. 200 (§()= ’
&(2) 2 (2 z4s+o(l), z— oo
Loewner equation 0,8(2) = —2 0585(z) = coth &)W
q 18t\2) = w)-W, 58s\2) =
Driving term W eR W, €R
Chordal SLE(x) W, = VxB; W = VKB + ap(K)s
p
dW; = vkdB; + dr
SLE(k,p) and h=Vds, W, —C W= Kb+ a
Dipolar SLE[k, o] 2 i s TS
dG; = dr
G-=W
Relations between parameters a=p+3-1%, ap(k)=3-%

Table 5.1 A comparison between SLE in H and in S;. For clarity we use separate notations for

quantities in H and in Sz.

5.4.3.2 SLE(xk,p) and coordinate transform of dipolar SLE[x, |

Definition 5.8. Let k >0 and p € R. Let wy, co € R with wo # ¢ and let (Wi, G )¢ (0,7(c,))

be the solution to the system of stochastic differential equations

dw; = \/EdB, +

dCt =

p
dr

W, -G

2 b

dt

G—-W

Wo = wo
C():C()

(5.29)

which exists for # € [0, 7(co)) where T(co) = sup{t € R> : infyepg ) [W; —C;| > 0}.

Then the Loewner chain (g;, K)o,z

called SLE(k,p).

€0

y) with the driving process (W:);e(0,z(cy)) 18

Remark 5.9. The chordal SLE(k) is a special case SLE(k,0) of this definition.

Remark 5.10. It is possible to construct SLE(k, p) using a Bessel process. This con-
struction is especially useful when we want to consider the process beyond 7(cy),
which we don’t do in this text, but we’ll give this construction here. Let wg,co € R
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with wy # ¢ and let 1 = sgn(wg — ¢p). Let D; be the Bessel process (with an un-
usual time-parametrization)

2
th:p+
D,

t

dl—l-\/EdBt, Dy = |W0—Co|.

Define
t du
C[:C()*Zn —_—, ‘/VI:CI+T’DI
0 Du

Then they satisfy (5.29) with B, = nB;.

Definition 5.9. Let (U,a,b,c) be a quadruplet where U is a simply connected do-
main and a,b,c its distinct boundary points in counterclockwise order. SLE(x,p)
in (U,a,b,c) is defined as the conformal image of SLE(k,p) of the domain
(H., 0,00, —1) under the (unique) conformal map that takes (H,0,e, —1) to (U,a,b,c).

The above coordinate change calculation shows the following result, which is
also in the last row of Table[3.11

Lemma 5.4. When a = p +3 — %, the dipolar SLE[x, &) and SLE(k,p) in the do-
main (U,a,b,c) considered up to time of disconnection are equal (up to a time
change) in distribution.

5.4.4 Special parameters values of SLE (k,p)

5.4.4.1 SLE(x,(x—6)/2) is symmetric
Denote the reflection with respect to the y-axis by

Then m is an antiholomorphic map from C onto itself. Since the process Wy = v/kB;
is invariant under Wy — —W,, SLE(k, (k — 6)/2) on Sy is invariant under m and
for fixed K > 0, it is the unique SLE(x, p) process with this property. We say that
SLE(x,(x —6)/2) on Sy is symmetric.

Suppose that we know that some discrete random curve arising from statistical
physics converges to SLE(x) as the mesh goes to zero. For example, suppose we
know that the interface of Ising model with boundary conditions changing at two
marked points (boundary conditions are 4 spins on one arc and — spins on the other
arc) converges to SLE(3). Can we conclude something about the scaling limit for
other boundary conditions? If we consider the Ising model with three marked points
a,b,c € dU (in counterclockwise order), instead, and boundary conditions are set
to be — on the arc ab, + on the arc ca and free on the arc bc, then by Schramm’s
principle we expect that the scaling limit of the interface starting from the point a
should be SLE(3, p) process. And since the law of that interface is invariant under
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flipping all the spins ¢ — —o0, the scaling limit should be symmetric on S; and
hence it should be SLE(3,—-3/2).

5.4.4.2 SLE(6) satisfies locality

Consider following map
v=mo¢p lomo¢ (5.31)

where m is as in (5.30). Under those maps SLE(k) is transformed as

(H,k=6,p0=0) % (Sp,k=6,00=0) ™ (Sg,x = 6,0 = 0)
-1
S (H,k=6,p=0)" (H,k=6,p=0).

On the other hand v is a holomorphic and bijective self map of H with y(0) =0,
y(e0) = oo and Y(c) = |c|. Hence y(z) = Z‘i—‘zc Therefore SLE(6) has the following
locality property: the image of SLE(6) under any conformal self-map of H is again
(a time-change of) SLE(6). If y : H — H is this M§bius map, then we consider the
first process until it disconnects y~! (o) from oo and the second one until it discon-
nects Y(oo) from eo. Actually SLE(6) has even stronger locality property because
SLE(6) sent from 0 is invariant up to a time-change under any conformal transfor-
mation defined in a neighborhood of 0 such that it maps a neighborhood of 0 in R
into R.

5.4.4.3 SLE(x, k — 6) is target independent

For other values of k, the argument of the section |5.4.4.2| gives that if (K,),E[OJ(L.))
is a chordal SLE(k) stopped at the time 7(c) then (W(K:))c[o,z(c)) is @ time-change

of the SLE(k, Kk — 6) process stopped at the time when the process disconnects |c|
from eo. Namely, under the map y of the form (5.31)) the processes are transformed
in the following way:

(H,k,p=0) % (Sp,k,00=3—Kk/2) ™ (Sx, Kk, 00 = /2 —3)

-1
0 Mxp=k—6)" (H Kkp=k—6).

5.5 Moments of the derivative of the Loewner map of SLE(x)

We will present in this section the auxiliary results needed for the proof of Theo-

rem[3.2
Continue the setup of Lemma and set y(z) = hy(z+ Wy ) — Wr. Then by a
straightforward calculation, %, satisfies the reverse Loewner equation with a driving
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term V; = Wr_, — W;. This observation leads to the following “symmetry” of the
chordal SLE(k).

Lemma 5.5. Let Iy (z) be the solution of @19) for V, = \/kB, and let f;(z) be the
solution of (@13) for W; = \/kB;. Then for any t € R>, the functions z — f;(z+
W;) — W, and 7~ h(z) have the same distribution. In particular, f/(z+W,;) has the
same distribution as h,(z).

Remark 5.11. This result holds only for a single time instant. It is not true that the
joint law of (f;(z+W:) — W)scr.,. is the same as the joint law of (/(2))ier.,-

It is useful to define

fi(@) = filz+W). (5.32)

The goal of this section is to have good bounds for | (iy)|, t € [0,1],y € (0, 1]. The
proof of the theorem will be given in Section [6.2]below. We follow here [8, [10].

Let’s deal with the forward and reverse Schramm-Loewner evolution at the same
time by fixing v = £1 and letting /(z) be the solution of the equation

2

oh(2) =v——
t t(Z) vht(Z)*VVI7

ho(z) =z

where W, = —/kB;. For fixed zo = xo +iyo € H, let Z, = h;(z0) — W; and let X; and
Y; be the real and imaginary parts of Z;, respectively. Let’s list some useful formulas

X Y,
dX, =2v—5——dt KkdB;, oY, = -2v——,
X217, +V/xdB, 11y X2 112
X212 |11 (z0)] I (z0)] Y7
o\ = —2V|H(z0)| ——L—, o =4v—-L ! )
i A7 (20) | t(Zo)I(thJrYtz)z Y, Y, X702
XY, Y,
darth = (K—4V)ﬁdl - \/Eﬁtdetv
1 X? —
dlog|Z,| = 2(1( 4v)———— e ) dt—&-f ch
. . (K74V)X12 7 thz Xr
dsinargZ, = (sinargZ, t —vVK———dB
g4t ( g t) (Xt2+Y1f2)2 th2+K2 4

They are mostly familiar from Section[5.3]and we leave as an exercise to verify these
formulas using It6’s formula. Now we fix v = —1. Then all the processes above are
well-defined for all # € R>o.

Let p,q,r € R and define M; = |hj(z0)|? ¥* (sinargZ,)>". By Ito’s formula,

AP PG )
R D Y S 7 (X,2 +Y72)?

X2

KX?
+r(2r+ 1)()(,2+t1/,2)2> 2rf MtdBt (5.33)
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Therefore M; is a local martingale if and only if g = p — gr, and r> — (1 + %) r+
2 p = 0. In that case (5.33) simplifies to

Xi
dM; = —2rv/x ——— M, dB;.
t \/7X[2 + le t t
Next we define a time change that simplifies the above formula. Let
t du
St)= | =— o(s)=5" 5.34
0=/ w7 oW=5"0 (5.34)
and .Z, = Zo(s) and use Proposition Then

P /o(s) dB,
o X272

is a standard one-dimensional Brownian motion with respect to the filtration (ﬁ s)seR>0~
Denote the time-changed processes by

Zs = Za(s)a Ys = Xc(s)7 Yy = Yo‘(s)7 hs(z0) = hc(s) (20)-

Notice that the equations

o7, =27, aSlﬁi(}o)l _ 74\’32(}0)\ (sinargZ,)2
Y Yy
hold and therefore
¥y = yoe™ (5.35)
| (20)| = exp <2s —4 /0 S(sinargzu)zdu> : (5.36)

Hence (5.35) shows that the time change (5.34) is such that ¥; is deterministically
exponentially increasing. The equation (5.36) implies that

-2 |h;+sl (ZO)| < 625,
|7(z0)]

Observe also that ¥; < y/y3+ 4t This shows that yoeX < 4 /y3+40(s) and hence

O(s) — o as s — oo,
Under this time-change, the local martingale M, = Mg satisfies

(5.37)

A~

dM; = —2r+/x (cosarg Z,) M, dB.

It is not hard to show that (M) scR-, 1S a martingale.
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Lemma 5.6. Let Ny be a constant and let (N,),GRZO be a local martingale with
t
N.=No+ [ ANGB,.
0
If for every t > O there is a constant c(t) such that |Ag| < c(¢) for all s € [0,1], then

N, is a martingale.

Proof. Let M; = N, — No. Then M, = [(A;M; + A;No)dB;. Let n € N and define

=inf{t € Rsg : (M), = n}. Then M;sr is an Itd integral with a .#? integrand.
Define f(t) = E[M? ;]. By the Ito isometry, f(¢) = E[fy(AsM; + A;No)? Ls<7ds].
Therefore for any ¢ € [0,1]

F() < 2e(t)2 N +2¢(1) /f )ds < &(1 /f (538)

where &(t) = 2c(t)?>max{1,N2}. This implies that f( ) < exp(2&(¢)t’) because no
¢ € [0,7] can be the smallest s such that f(s) > exp(2é(¢)s) by (5.38). Therefore

E[(N)inr] = E[(M)inr] = £ (1) < exp(2&(1)1)

Taking n — o we get by the monotone convergence theorem that E[(N),] < exp(2¢(¢)t).
This shows that the integrand A;N; is in . 2 and hence by the construction of the Itd
integral, N; is a martingale. a

The next theorem is the main result of this section.

Theorem 5.5. Let (p,r) € R? be a solution of the equation r* — (1 + %) r+ %p =0.
Then

[}

1, = |i(20)|P V¢ 2 (sinargZ,) =%
-2
") (yo> '
2ol

—2r
P ly(a] > 2] < e 08 (20

|20l

is a martingale and

Nl

E [m;(ZO)IP(sinargZS)*Zr] — o 2(p-

Furthermore, if r > 0 and p > 0, then

Proof. We have already shown the first claim. For the second one notice that M, =

o 2 (p=57) I, (z0)|7 (sinarg Z;)~%". If r > 0, then (sinarg Z;) =% > 1 and the last
claim follows from the Chebyshev inequality. a

Corollary 5.1. Let f; be defined as in (5.32)) for SLE(x). For every 0 < r < 1 +4/x,
there is a constant ¢ = c(k,r) < oo such that forall 0 <t <1,0<yp <1, 0 <1 <

-1
Yo >
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—2r

Plf(zo)| = A] <cA™? (é‘;) 8(v0, 7). (5.39)
Here p=5% ((1+ %)rfrz) >0and
APEET when p—5r>0
1
(o, A) = 1+}<0ng when p—5r=0.
ygijr when p—5r <0

Proof. Since f; and h, have the same distribution, it is enough to show (5.39) when
f} is replaced by h,. Notice first that ¥; < y/y3 44t < /5. Therefore

Pllh(z0)| > 4] <P [ sup | (z0)| > x}

0<s<T

where T = (log(v/5/y0)) /2. Next notice that by 5:37). |, ,(z0)| < ' |l (z0)| and
therefore

7]
P[sup | ( Z()|>),:| Z [|h' (z0)| > e ?A]

0<s<T

, | (z0)| < € and therefore

. 7] )
P[ sup |h(z0)] > l] < Yy P [ (z0)] > e 2]
oot j=Tlog(A)/2-1]

o IT] —2r
) S ) s () soua
20| j=[log(1)/2-1] [0

Here we use that Y7 B% < B"/(1 — ) when 0 < B < 1 and similar bounds for
B=1landp > I. O

Next we apply the previous result and optimize over the parameters for fixed .
Let’s parametrize p in terms of ras p(r) = £ ((1+ %) r — r?) and study the quantity

ef(342))

Notice that o(r) is maximized by ro = 1/4+2/k and a(ro) = k(§ +2)> = & +
1+2 >2and a(rg) =2 only if k = 8.

Let x # 8 and setpo = p(rop). Then py > kry/2 if k¥ < 8 and py < kry/2 if k¥ > 8.
Let6 € (0,1— W) Letz € [0,1] and n € N. By the estimate (5.39) for r = ry

and p = pg, we have that for large enough n

a(r) =2p(r) -

| A
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P Uﬁ/(lzfn)’ > 2}1(179)} < czfpg(lfe)nS (27n)2n(179))

2—(1-6)(po—510)"  when Kk < 8

_ szpo(lfe)n > .
2~ (Po=3ro)n when K > 8

< 62—(1—9)(2170—%%)" —_ C2—(2+8)n

for some € > 0. Let 25, = {k272" : k € [0,2?"]} which is the dyadic partitioning
of [0, 1] into intervals of length 2~2". Then

Y Y P =200 e

neNte 2,
and hence the Borel-Cantelli lemma implies the following result.

Proposition 5.10. Let f; be defined as in (5.32) for SLE(x). For each k # 8 there
exists 0y(x) > 0 such that the following holds: For any 6 € (0,600(x)), there exists
a random variable C such that C < o almost surely and

|f(i27m)] < c2n(=9) (5.40)
foranyt € Dy, and for any n € N.

Remark 5.12. By the above, we can choose 6y(k) = (£ + % —1)/(E£+ L +1).

K
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Chapter 6
Regularity and convergence of random curves

In this chapter, we study regularity properties curves in the capacity parametrization
and their convergence with respect to the uniform norm on compact time intervals.
Sometimes the term strong convergence is used for the convergence under the uni-
form norm and either given or unspecified parametrization.

When we consider random curves, we are interested, in probability theoretic
sense, in so called weak convergence of probability measures or equivalently con-
vergence of random curves in distribution with respect to the above topology. Before
that subject, we aim to prove Theorem[5.2]in Section Section [6.1]can be seen as
an introduction to Sections[6.2]and

6.1 Continuity properties of the Loewner chains

In this section we will switch to the following notation for Loewner chains.

W(t)7 Y(t)5 g(t7z)7 etc' and ‘/Ilﬂ(t)7 ’)/n(t>7 gﬂ(t’z)5 etc' (6‘1)

This allows us to denote, for instance, a sequence of driving terms by (Wy(?)):(0,7;)-
Let us also use the notation

F(t,y) = f(t,W(t) +1y). (6.2)

The path y — F(z,y), y > 0 is the shortest path in a conformal sense between the
point o and the “tip” of K;, that is, the points limy_... F(¢,y) and lim,_,o F(,y).

The variable ¢ takes values in [0,T) for W(r),¥(t),g(t,z), etc. and in [0,T;,) for
W (2), % (2),8n(2,2), etc. The variables T and T, can be finite or infinite. Since we
often consider uniform convergence in compact sets of the time variable we often
restrict to 7 € [0, 7’] and consider any T’ which is finite and less than T or T,,.

We study in this section the dependencies of modes of convergence for Loewner
chains, Loewner curves and Loewner driving terms. The most important motiva-
tion for this is to clarify the relations of different aspects of Loewner chains. In a

93



94 6 Regularity and convergence of random curves

later section, that insight is used when studying an example case of a random curve
converging to SLE(k).

6.1.1 Carathéodory kernel convergence

Let us first define what is meant by the convergence of sequences of Loewner chains
or simply connected domains.

For a given point zg and a sequence of simply connected domains (£2,),¢z., such
that z9 € ©,, # C, define conformal and onto maps ¢, : D — €, such that ¢,,(0) = zo
and ¢,,(0) > 0.

Definition 6.1. We say that (2,),cz._, converges in the Carathéodory sense if the
sequence (¢, ),e7., converges uniformly on compact subsets of ID.

Remark 6.1. Either lim,, ¢,, = const. = wy or lim, ¢, is a conformal map.

Definition 6.2. We say that ((K,()),c[o,77))nez., converges in the Carathéodory
sense if for each compact G C H, the sequence (f,)nez., converges uniformly on
[0,T"] x G.

The Carathéodory convergence is convenient since it depends on conformal
maps, which we can estimate in many ways. The next theorem makes the defini-
tion more concrete by giving an equivalent geometric description. See [10] for the
proof.

Theorem 6.1 (Carathéodory kernel theorem). The locally uniform convergence
of (@n)nez., is equivalent to the kernel convergence of U, — U as n — o with
respect to wy in the sense that

o cither U = {wy} or U is a domain # C with wy € U such that every w € U has a
neighborhood that lies in U, for large enough n,
e for eachw € AU there exists a sequence wy, € AU, such that w, — w as n — .

6.1.2 Continuity properties of the mappings W — fand W — g

We first present auxiliary lemmas.

Lemma 6.1. For each 8 > 0 and T > 0 there exists a constant C(T, ) such that the
following holds. Let Iy (t,z), k = 1,2 be the solutions of {.19) with the continuous
driving terms (Wi(t));cp0,1), k = 1,2, respectively. Then they satisfy

I (T.21) — (T 2)| < C(T, 8)(|[Wi —Wa)

w,j0,7] T 121 — 22]) (6.3)

for any 71,z such that Tmz; > & > 0.
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Proof. Fix 6 >0, T >0 and z € H, k = 1,2, such that Imz;z > 8, k = 1,2.
Let hi(t,z), k = 1,2 be the solutions of (@.19) with the continuous driving terms
(Wi(?))sefo,r]> which we also consider to be fixed. Write y(t) = h(t,21) — ha(t,22).

Then
ay(t) =C(t) (w(t) —D(1))
(t,z

where (1) =2/((h (¢, Zl) ( ))(ha(t,22) = Wa(2))) and D(2) = Wi (2) — Wa(s).
We can write d, ( (t)) =—C(t)e 190 4 D(¢) using an integrating
factor. Hence

T 1 't
p(6) = B8 y(0) — [ et s D(u)au
0
We find using |ef5 Sls)ds| < eJo1S($)1ds that
1 4 u
Jelt X8 D) < [IDlfjor) [ 1€} IS0 i
' 0

= ID||es jo,1) ( J51g(s)ds _ )

By the Cauchy—Schwarz inequality

[1ewlas < vin

where I, = ] ﬁ On the other hand

2ds
[y (,2) — Wi (1)]?

JlogIm /iy (1,2) =

and therefore

Im Ay (2,21 v +4t

I, =log <log

Here we used the upper bound 9, Im/(¢,2;) < 2(Im /Ay (¢,2¢)) ! to derive an upper
bound for Im A (¢, z; ).
Thus easily from the bounds above, we establish the bound

Vo2 +at V82 44t
vl < —5— WO+ | —5— 1| IPlejor-

This gives the claim. ad
A similar result for the forward Loewner equation is the following.

Lemma 6.2. For each 8 > 0 and T > 0 there exists a constant C(T, ) such that the
Jollowing holds. Let g (t,z), k = 1,2 be the solutions of the Loewner equation ([@.14))
with the continuous driving terms (Wi(t)),c0,r), k = 1,2, respectively. Then they
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satisfy

lg1(T,21) — 82(T,22)| < C(T,8)([[W1 = Waleo 0,1) + |21 — 22]) (6.4)
Sor any z1,z2 such that Tm g (T,z;) > 6 > 0.

Proof. The proof is similar to the proof of Lemma 6.1} The only difference is that
we replace (1) by y(t) = g1(t,21) — g2(t,21) and £(1) by £(1) = =2/((81(2,21) —
Wi (1)) (g2(t,22) — Wa(t))). Then I is given as and bounded by I, = [§2|gx(s,z) —

-2 Imzy Imz +
Wi (s)|*ds < log Tt a) <108 T e where at = max{a,0}. O

The following results establish continuous dependency of solutions of Loewner
equations on the driving term (i.e. continuity of the mappings W — f and W — g).

Proposition 6.1. The mapping W — f is continuous with respect to the convergence
in the Carathéodory sense. More specifically, for any compact G C H, there exists a
constant C > 0 such that if fi, k = 1,2, are two (inverse) Loewner chains, then

11 = olleo,jo,11x6 < ClIW1 = W2l 0,17 (6.5)

Proof. The claim follows directly from Lemma[6.1]and from the fact that A and fj
are related a time reversal, see Lemma[4.10} O

A similar result for the (direct) Loewner maps is the following.

Proposition 6.2. Let Ky be a hull and G C H\ Ky be a compact set. Then there
exists a constant C > 0 such that if if gy, k = 1,2, are two Loewner chains such that
Ki(T) C Ko for k= 1,2, then

g1 — 82lls 0,7)x6 < ClIW1 — Wal|oo 0,77 (6.6)

Proof. The claim follows directly from Lemma[6.2] O

6.1.3 Continuity properties of the mapping v — g

The mapping from (¥(t));c(o,77] to g(T",-) is continuous by Theorem with re-
spect to the convergence in the Carathéodory sense. It is easy to extend this to
continuity of the mapping (¥())cj0,r] t© (8(t,*))icpo,r7] the convergence in the
Carathéodory sense. For example, this can be using an compactness argument in
the following way.

Make a counter assumption that there are ¥, };, t, € [0,7’] and z,, € G, where G
is a compact set as in Deﬁnition such that ¥, converges to ¥ uniformly on [0, 7”]
but liminf, |g,(tn,z,) — g(tx,2,)| =: € > 0. Using compactness we can suppose that
t, and z, converge to ¢ € [0,T'] and z, respectively, as n — oo and then again by
Theorem [6.1] g, (4, ) converges to g(z,-) and g(t,,-) converges to g(r,-) as n — co.
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Therefore 1im,, |g,(t4,21) — &(fn,22)| = O (along a subsequence), which leads to a
contradiction.

Proposition 6.3. The mapping Yy — g is continuous with respect to the convergence
in the Carathéodory sense.

The next corollary follows when this proposition is combined with the continu-
ous dependency of the solution of the Loewner equation on the driving term.

Corollary 6.1. Suppose that v, is a sequence of curves and W, are their driving
terms. If 7y, tends to 'y and W, tends to W uniformly on [0,T] as n tends to oo, then y
is driven by W, that is, the Loewner chain g of ¥ satisfies the Loewner equation with
the driving term W.

6.1.4 Continuity properties of the mapping v — W

Below we will study the continuity properties of the mapping (¥(t))ieo,r) —
(W)relo,r)-

Theorem 6.2. Let X C C([0,T),C) be the set of curves in the upper half-plane
that generate a Loewner chain. The mapping (Y(t)),cjo,r) = (W:)iejo,) from X to
C([0,T),R) is continuous. However, it is not uniformly continuous.

Proof. Both the domain and the range of the map (¥(¢)),cjo,r) = (Wi);eo,r) are
metrizable topological spaces. Hence it is sufficient to consider 7’ € (0,7T) and a
sequence ¥, that converges to ¥ in the uniform norm on [0, 7] and to establish that
the corresponding driving terms W, of 7, converge to a limit W in the uniform norm
on [0,7'] and that 7y is driven by W.

Since ¥, tends to 7, the family 7, is equicontinuous on [0,7”]. By the same ar-
gument as in the proof of Theorem (specifically the proof that the first state-
ment implies the second one) the family W, is equicontinuous on [0,7"]. It is also
uniformly bounded and we can apply Arzela—Ascoli theorem to find a converging
subsequence W,,. Denote its limit by W. By taking a sequence 7, that increases to
T, we can suppose that W, converges to W uniformly on any [0,7'] C [0,7). By
Corollary [6.1] y is driven by W.

To prove the first claim, we need to show that W,, converges to W. Assume the
contrary and suppose that there is a subsequence of W, that stays at a positive dis-
tance away from W in the uniform norm on [0,7"], for some 7’ € (0,T). By the
same argument as above we can find a subsequence of that sequence such that it
converges to some Wj. By Corollary Y is driven by W; which leads to a con-
tradiction since W; # W by the assumption we made. Thus we have shown the first
claim.

11t is possible to give a more quantitative estimates for this convergence using the harmonic mea-
sure.
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To prove the second claim let %, be the broken line 0, i, i+ 1/n, (1/2)i+ 1/n
parametrized with the half-plane capacity and let §,(¢) = —7,(¢), i.e., the reflection
with respect to the y-axis. Let the corresponding driving terms be W, and W,,. Let
then by a simple argument using, say, harmonic measure there exists ¢ > 0 and 7’
such that the capacity of 7, and ¥, is greater than 77 and W,,(T”) > ¢ and W, (T') <
—c. Hence [|%, — Fulloo,jo.7] = 2/n and [[Wy, = Wy [[w 0,77 > 2¢. This shows that the
map (¥(t))sefo,r) = (Wi)rejo,r) is not uniformly continuous. O

Remark 6.2. To get uniform continuity, we need to improve the topology of curves,
say, by keeping track of the harmonic measures of the left-hand and right-hand sides
of RU70,7]. We don’t try to formulate the topology here, but we wanted to mention
that it can be done in principle.

6.1.5 Continuity properties of the mapping W — vy

Lemma 6.3. The mapping (W:)c(o,r) = (Y(t))ic(o,) is not continuous.

For the proof see Figure [6.1] (See also [8], Example 4.49 where the example
is originally from.) where an example of a sequence of curves is given such that
their driving terms converge uniformly to a constanﬂ while the sequence of curves
doesn’t have any subsequence that would converge. A similar example of an ob-
struction to the convergence of 7, is related to the tip being hidden from infinity
during a non-trivial interval. Consider a path ¥, of Figure[6.2] Then it is quite stan-
dard using, say, harmonic measure, to notice that W,, converges to some W while ¥,
doesn’t converge uniformly in the capacity parametrization.

Based on the observation of the previous lemma, we need to consider more re-
strictive class of curves. Denote by F the function

F(t,y) = f(t,W; +i). (6.7)

Forany 7" € R+, 8y > 0 and any function A : (0, §] — R>0 such that lim,_,o A (y) =
0, define

W drives a curve ¥ and

@@AT’ = WEC([O,TD : .
T { I (1,y) = ()] < A(y) for all (1,y) € [0,7] x (0, &)
By Theorem below, the uniform convergence of the mappings ¢ — F(y) as y
tends to zero is sufficient and necessary for the Loewner chain to be driven by a
curve.

Lemma 6.4. For each T', 8 there exists C(T',8) such that the following holds. If
Wi, W, € &), 17 5, for some A : [0,00] — R, then

2 Remember that constant driving term corresponds to the trivial Loewner chain, which is a straight
vertical line segment.
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Fig. 6.1 The proof of Lemma by a picture: consider a sequence of curves ¥, which all are

broken lines. The corners of ¥, lie on three lines Rez = 7%70, % which are the three dashed lines

in the picture. On Rez = :I:%, the corners are at height Imz = %7 %, %, ... and on Rez = 0, they
are at height Imz =0, ﬁ, 43—", %, %, 23—’1 ... These points are connected by line segments in the or-

der indicated in the picture (Rez =0, —%,0, %,0, —%, ... and the height is ordered on each line).

The tip of the curve at time ¢ is indicated by the circle in the picture. The value of W, (¢) is be-
tween the images of the triangles zjefi, Zrigne under g(,-). Concentrate on the rightmost triangle
Zright- Let L be the broken line —ﬁ,aen,zrigm. The value of g(t, ziight) = gk, (Zrignt) increases if we
add to K; the path L and all the points disconnected from infinity as a consequence. In a similar
manner, removing “matter” from the right-hand side of L increases gx (zrigh[). Therefore W, is at
most gz (Zright), Which can be estimated using the explicit Loewner map of the vertical slit to be
at most C max{zl/ A1/ 2 n~'} where C > 0 is some constant. By symmetry we have shown that
[W,o(1)| < Cmax{t'/*n=1/2 n~1}. We leave as an exercise to verify the fact that 7, doesn’t contain
any subsequence that would converge uniformly on any [0,7], T > 0

Fig. 6.2 The solid horizontal line in the bottom of the picture is the real axis and the solid broken
line is 7,. Suppose that the vertices are 79, z1,...,zg and that the other vertices are fixed except that
z4 and z7 converge towards z; as n — oo (along the dashed lines).

1% = Walleejo. 71 < C(T", 8) W1 = Wal|eo 0,77 +2A(8). (6.8)
Proof. Write using the triangle inequality that
1) =@ <|F(,8) = @, 8)[+|Fi(t,8) = n ()| + [F(1,8) = n(1)]. (6.9)

By the assumption, when ¢ € [0,T’], the second and third terms on the right-hand
side are bounded by A(8). Notice that Fi(¢,8) = fi(t,z:(¢)) where zx(t) = Wi (¢) +
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i8. Hence by Lemmal6.1|there exists an explicit constant C(7”, 8) such that the first
term on the right-hand side of the above inequality is bounded by C(77,68)||W; —
Wallo fo.77)- 0

Proposition 6.4. Let & C C([0,T)) be a collection of driving terms of curves such
that for each T € (0,T') there exists & and A as above such that any W € &
when restricted to the time interval [0,T") belongs to &) 1,5, Then the mapping
(W(0))scjo,ry = (Y(t))iclo,r) is uniformly continuous in & with respect to the topol-
ogy of local uniform convergence for (W(t));ejo,ry and (¥(t)):efo,r)-

Proof. LetT" € (0,T) and let A and & be such that any W € & belongs to &} 1 5, -

Let € > 0. Take &) € (0, 8] such that 44 (8;) < €. Then take 6 = €/(2C(T’,61))
where C(T’,6;) is as in Lemma Now by Lemma |71 — %lles 0,77 < € for
any Wi, W, € & such that ||W, — W, 00,77 < 0. a

6.1.5.1 The modulus of continuity for y driven by W € &} 1 5,

Using the extending the idea of Lemma [6.4] it is possible to prove the following
result on the modulus of continuity of the curve driving a Loewner chain. The proof
is written in Appendix D.

Theorem 6.3. For any T', 8y, A as above and any function y : (0,1] — (0,0) such
that limg_,y w(8) = O, there exists ¢ such that limg_,o ¢ (6) = 0 and the following
holds. If W € &), 1.5, and |W (t) =W (s)| < (|t —s|), then y satisfies

[7(6) = ¥(s)] < 9(lt —sl)- (6.10)

6.2 Continuity of SLE(x)

6.2.1 Existence of the trace for Loewner chains

The following lemma shows that a Loewner chain is tame at certain time instances,
in the sense that lim, o F; (y) exists.

Lemma 6.5. Let zo € H\ {Wo}, 0 < r < |z0 — Wy| and B = B(zo,r) NH. Suppose
t > 0 is such that K; N\ B is non-empty and K;N B is empty for each s € [0,t). Suppose
also that B \ K; is non-empty, that is, B is hit, but not swallowed by K;. Then there
exists 21 € dB such that K, NB = {z; } and moreover, z; = limy_,o F; ().

Proof. Let 70,1, B and ¢ be as stated above. Then by the assumptions (dK;) N B # 0.
Let z; € (dK;) N B. By the Carathéodory kernel convergence theorem there exists
wy € dKj, such that s, increases to ¢ and w, tends to z; as n — oo. Since w, € C\ B
for all n, it follows that z; € dB. Hence (K; NB) C dB.
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Since the line segment from z; to zg lies in H; except the endpoint z1, the end point
Z] 18 accessible see [I10] Section 2, Exercise 5, and thus there exists x € R such that
zi = limy¢ f;(x +1y). From the facts that sup{|z—W, 5| : z€ g,_s(K:\K;_5)} =
o(1) as & — 0, see Theorem and that s — W, is continuous, it follows that
x =W O

Let H C H. Denote by d;H the set points, which have the property that every
neighborhood (in C) of the point intersects both H and H \ H. In other words, d; H
is the boundary of H in H.

Remember that (K:)c(o,r) is generated by a curve y: [0,7) — C, if H; is the
unbounded component of H \ ]0,¢]. The next result is a basic tool to verify that a
Loewner chain is generated by a curve.

Theorem 6.4. If t — F,(y) converges to some Y uniformly on compact subsets of
[0,T) as 'y > 0 tends to O, then v is a continuous curve and (K;)c(o,r) is generated

by ¥. Furthermore for each t € [0,T), the map 7 — f;(z) extends continuously to H.

Proof. For each fixed y > 0, the map 7 — F;(y) is continuous by Lemma Hence
the uniform convergence of Fi(y) — y(t) as y — 0 on compact subsets of [0,7)
implies that y: [0,7) — C is continuous.

It remains to show that for each 7 € [0,T), H, is the unbounded component of
H\ (7[0,7]). Since ¥(s) € d+H, it follows that ¥[0,7] C Use[o,) 9+ Hs. Hence it is
sufficient to show that d H; C ¥[0,z].

Let zo € 04 H;. If 29 = Wy, then clearly z € ¥[0,t]. Suppose then that zy # Wy and
take any € € (0, |zo — Wp|). Let

e = inf{s € Rog : KsNB(zo,€) # o}.

Then 0 <t < t. Since zo € d1H,, the set HNB(zp,€) \ K;, is non-empty. By
Lemma |zo — 7(#¢)| = €. Therefore zg = limg_, ¥(z¢) and consequently zp €
7[0,¢) = 7[0,z]. Thus d+H; C y[0,¢] as was claimed. The set H; is therefore the
unbounded component of H \ y[0,¢] and since dH; is locally connected f; extends
continuously to H as claimed. ad

Let’s formulate the following corollary to stress the importance of the result.

Corollary 6.2. A Loewner chain (K;) refo,7) is generated by a curve if and only if for
each T' € [0,T), there exists a function A : (0,1] — Rxg such that limy_,oA(y) =0
and

|Fi(y1) = F(y2)] < A(y) (6.11)

Jorally € (0,1], y1,y2 € (0,y] and £ € [0,T"].

3 A boundary point is accessible, if there is a Jordan arc in the domain ending at that point. If we
apply a conformal map from the domain onto I, say, then the image of that arc is continuous up
to the boundary. Consequently, the accessible point is always a limit of a image of a Jordan arc in
D under a conformal map from D onto the domain. The radial limit of the conformal map at the
same boundary point of D follows from Corollary 2.17 of [10].
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6.2.2 Auxiliary results on conformal maps
The next result is a version of Koebe distortion theorem in H. The proof, which is
straightforward, is given in Appendix D.

Lemma 6.6 (Koebe distortion in H). There exists a constant C such that for any
y>0,s€ [%,2], x € R and any conformal map f:H — C,

CHf ()l < If (isy)| < €I (iy)] (6.12)
CH1+22) 7 ()] < I (D) < CL+22) /(i) (6.13)
The next result is based on the Loewner equation and thus the proof is given here.

Lemma 6.7. There exists a constant C such that for any solution f; of the Loewner
equation for the inverse Loewner map and for any x+iy € H, t € R>q and s € [0,y?]

CH A (x+iy)| S |f (x+1y)| < CIf (x+iy)] (6.14)
| frrs (e +iy) = fi(x+1y)| < Cy|ff (x +iy)]. (6.15)

Proof. By differentiating the Loewner equation and using the triangle inequality
and the inequality |x+ iy — W;| >y, it follows that

2 )| 2t i)l
——.
y

|(9,f,’(x—|-iy)| <

To estimate |f/’(z)|, for fixed z=x+1iy € H, let ¢ (&) = x+iy%. Then ¢ is a
Mobius map from D onto H and it has expansion ¢ () =x+iy(14+2Y 7 (—=1)"").
Thus ¢(0) =z, ¢'(0) = —2iy and ¢”(0) = 4iy.

The function (f; 0 ¢ (&) — f:(2))/(f!(z)¢’'(0)) has expansion

MO0+ @00 2
T (T IO R

around ¢ 0. Using (59),itfollows that [ £(2) 16/ () < £/ (2)/ (16" (0)|+4]¢" (0)
and thus [f"(z)| < 6|f/(z)|y~!. Combining this with the above estimate gives
|0, f (x+iy)| < 14|f! (x+1iy)|y~2. Thus |9, log f/(x+iy)| < 14y~2 and hence

14 Ly < 14
_y7 < &t10g|ft/('x+1y)| = y7

where we used the inequality —|z| < Rez < |z|.

By integrating this inequality with respect to ¢, we get the first claim easily. The
second claim is derived from the first one by plugging it in to the Loewner equation,
which is then integrated with respect to . This gives an upper bound which is pro-
portional to [/ (x+iy)|] < |ff (x+iy)[y. O
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6.2.3 Proof of Theorem

Definition 6.3. An increasing, continuous function y : [0,00) — (0, 00) is said to be

log y(x)

fogr~ — 0 or equivalently if limy e x My (x) =0

a subpower function if limy_,.
for all u > 0.

Remark 6.3. One way to write this is y/(x) = e°1°2%)_If y; and v, are subpower
functions also Y1 y», y1 + ¥, and y(x) = y;(x?), p > 0, are subpower functions.

Proof (Proof of Theorem[5.2). By Theorem it is enough to prove that the func-
tions ¢ — f; (W, +1iy) converges uniformly as y tends to 0.

Our goal is to prove this based on the following bounds: As we saw above for
each k # 8, there exist a constant 6 > 0 and a random variable C which is almost

surely finite such that
fl(i27m| < c2"1-9) (6.16)
t

forallt € 2, and for any n € N. Remember also that since (W;),cr., is a Brownian
motion, there is an almost surely finite random variable C such that

Wiy — W] < Cy/slog(1/s) 6.17)

for any ¢,s € [0, 1]. Fix a realization of the driving process and the Loewner chain
such that the bounds (6.16)) and hold for some finite C and C.
Lett € ]0,1],y € (0,1). Take n € N and #y € 2, such that

27 <y <2 10 <t<ty+272",

that is, n = [log,(1/y)] and #y = [£2%"|272". By (6.16), and Lemmas|6.6|and
it follows that

\FL )l = 1/, (W +iy)| < clfy, (W +iy)]
3
W, —W, |2 ]
yz') 1 (Wi i)
0

< en’2"170) <301y (1y) (6.18)

<clﬁg(Wt+iyo)l<c(1+

for some subpower function y. Here c is a generic constant that might change from
line to line .

Let’s integrate the bound (6.18). For any 0 < y; < y» <y < 1, by the triangle
inequality and a change of integration variable

i) = o)l < [ 177Gl du < [ ® 10 /) du =201 /)

y
Vi 0

where ¥(x) = fol u® =My (x/u)du. Tt is not difficult to check that ¥ is a subpower
function. Hence y(t) = lim,~ o f;(iy) exists and satisfies
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[Y(1) = fiiy)| <y°w(1/y). (6.19)
Now by Theorem ¥ continuous and generates (K;);ck..,- 0

It turns out that the following more quantitative result holds. The proof is given
in Appendix D.

Proposition 6.5. For each x # 8, there exist a constant Qg > 0 such that t — y(t) is
Holder continuous for any exponent @ < 0y

Remark 6.4. We can choose o = 6y/2 where 6 is as in Remark

6.3 Convergence of interfaces in the site percolation model

In this section, we apply the ideas of Section to the convergence of random
curves to SLEs in a specific example case of the site percolation model on triangular
lattice. Most of the proofs are based on estimates established for this discrete model.

6.3.1 Definition of the site percolation model

A graph Gis apair G = (V,E) where V is afinite setand E C {{v,w} CV : v#£w}.
An element v € V is called a vertex or a site and an element e € E is called an edge
or a link. Two vertices connected by an edge are said to be neighbors on the graph,
and the number of neighbors is called the degree of the vertex. All the graphs we
are going to consider are planar, that is, they come together with an embedding to
the plane so that the vertices are distinct points and edges are represented by simple
paths which connect the vertices and which are pair-wise disjoint.

The complement (as a planar point set) of the embedded graph consist of a finite
number of components, that we can interpret as polygons whose edges and vertices
are edges and vertices of the graph. (The face of) Such a polygon is said to be a face
of the graph. The centers (or otherwise chosen points, one for each face) of the faces
form a finite set V*. The set E* is defined to be edges that connect two centers v, w
of faces if and only if the faces are adjacent, i.e., the distinct faces share at least one
edge. The graph G* = (V* E*) is called the dual graph of G. We can arrange so that
there is one-to-one correspondence between edges E and dual edges E* by saying
that e € E and f € E* are dual to each other if and only they crossIn this case we
define ¢* := f.

Let us extend the notion of graphs so that we allow V to be an infinite set. An
approach is to take G = (V, E) to be a pair (together with an embedding to the plane)

4 A careful reader can notice that E* defined in the latter way, which is more general, doesn’t
necessarily define a (simple) graph, but a multigraph where a pair of vertices can be linked by
several edges and where the endpoints of an edge don’t need to be distinct vertices.
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such that the restriction of V to any bounded region is finite and all vertices have
finite degree. An important class of infinite graphs are the lattices. We define a lattice
to be an infinite graph such that its faces are translates of each other and they cover
the plane, or more generally, its faces tile the plane and the tiling is formed from
translates of a finite pattern of polygons. Examples are the square Z2, triangular Ly;
and hexagonal Ly lattices which are formed from regular squares, triangles and
hexagons, respectively.

Let G = (V,E) be a finite of infinite graph. We always think that G is either a
lattice or a subgraph of lattice. Let p € [0, 1] be a parameter and consider a family of
random variables, one for each site of G, taking values in the set {open, closed}. We
say that a site v € V is open or closed depending on the value that random variable
takes. To define the law precisely, it is assumed that

P[v is open] = p, Plvisclosed =1—p (6.20)

for each v € V and that the random variables are independent. A probability space
with the percolation model can be constructed as a product space {open,closed}”
with a product measure of laws of Bernoulli random variables.

The model is called the site percolation on G. The closed sites model a random
media and the open sites form cavities through which a fluid can flow. Fundamen-
tal questions in the percolation model are therefore connectivity properties of the
subgraph of open sites. For small values of p, we expect that it is rare to see large
clusters of open sites and that for large p, in an infinite graph, almost surely there
exists an open infinite cluster.

If we want to stress the dependency of the model from the parameter, we denote
the probability measure as P,.

6.3.1.1 The percolation exploration process

We wish to define a process that explores a part of a percolation configuration. This
process will be a simple path on the hexagonal lattice that keeps open sites of the
triangular lattice on its left, say, and closed sites on its right.

Let us first define a type of domain on which we will define the exploration. For
later purposes, let’s introduce a lattice mesh 6 > 0. Suppose that Q5 is a simply
connected domain such that Qs # 0 is a path on the lattice §LLyex. Let V be the
set of sites on 8Ly; that lie inside 25 and let V| be the set of those v € V such
that the hexagon corresponding to v has at least one common edge with dQg. Let
V =V \ Vi. The set V is now the one where we are going to put the percolation
configuration. So if we want that V is a given shape, say, a rhombic domain V =
SR(v,[a8~1],[p67"]), then for Q5 we need to add a layer of hexagons around V.

Suppose now that we have defined a percolation configuration on V. The set V; is
connected and we can interpret it as a unique non-self-crossing closed path 7 (with
counterclockwise orientation) on the triangular lattice. Let a and b be two distinct
points on the hexagonal lattice such that at a and b, exactly one of the three edges
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of Lyex belongs to d Qg or that property holds and the property that Qg is a simply
connected domain remains valid if a suitable edge is added to a and b or one of
them. Then at @ and b, of the three neighboring hexagons, two have centers in V;
(and correspond to the above mentioned edge) and third in either V| or V. We say
that a and b are points on the boundary of V.

To define the exploration process, pick for both a and b one of the neighboring
edges that cross 7 and denote the two halves of 7 as ab and baE] The exploration
process is the unique simple path from a to b on the hexagonal lattice such that all
the hexagons on its right are closed and all on its left are open in the way that ab is
considered to be closed and ba open when defining the process.

6.3.1.2 Percolation interface and its scaling limit

Definition 6.4. For a domain  and its distinct boundary points a and b and an ap-
proximating sequence (2g,as,bs)s, where & > 0 runs over a set of points accumu-
lating to 0, we define ,u(gg’a’b) to be the probability law of the percolation interface y
in Qg starting at ag and ending at bs. The scaling limit of the percolation interface
is /.L(Q ab) — limg_, ,u((s'Q’a’b) where the mode of convergence is specified soon.
Remark 6.5. Let us collect the approximating sequence (Q5,as,bs)s to a family 2
of triplets (U,a,b) and let’s assume that the parameter & is implicitly given (it is the
length of any edge (line segment) in d€25). Let’s also collect u ég’a’b) to a family .#
of probability measures.

In what follows, we mostly don’t explicitly refer 9 or .4 before Theorem
In practice, the statements hold for any collection of domain triplets (2,a,b) and
they don’t need to form an approximating sequence. Hence we drop the notation
for the lattice mesh 6 > 0 and think that any (U, a,b) € 2 is a discrete domain. We
also use notation U € .# without superscripts or even just the standard notation for
probability P.

Remark 6.6. We will use the topology of a uniform convergence of continuous func-
tions for curves parametrized with the capacity. The mode of convergence of (gen-
eralized, curve-valued) random variables is specified in the next section.

6.3.2 A probability bound on crossings by multiple open
percolation paths

In this section, we aim to establish bounds on multiple crossings of open paths in
percolation.

3 It is natural to select the edge that belongs to dQ; if that exists. If it doesn’t exist, we can always
add such an edge to Qg without disturbing any of the required properties.
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6.3.2.1 Increasing events and the FKG inequality

There is a natural ordering among percolation configurations, namely, a configura-
tion (@y)yey is greater that a configuration (®,),ey if and only if for each x € V,
@, > .. This order relation is denoted by >. A random variable that respects the or-
der > is said to be increasing, that is, for an increasing random variable X : 2 — R,
it holds that X ((ey)rev) > X ((@))xey) for any configurations (@, )cey > (@O))xev.
An event said to be increasing if and only if its indicator function is an increasing
random variable.

The following result shows that increasing events are positively correlated. One
way to formulate this is that if A,B are increasing events in a percolation model,
then P[A | B] > PIA]. For the proof of the theorem, see for instance [3]] or [4]].

Theorem 6.5 (Fortuin-Kasteleyn-Ginibre (FKG) inequality). For increasing, non-
negative random variables X,Y in a percolation model, it holds that E[XY] >
E[X]E[Y]. In particular, this holds for indicator functions of increasing events.

6.3.2.2 Critical point and RSW estimates

There are many (equivalent) ways to characterize the critical parameter p = p. of
the site percolation model on a given lattice. We will choose the following definition
which is suitable for our needs.

Let ey =1 and e; = ¢™/3 which are unit vectors that generate the triangular
lattice L. Consider rhombi

R(v,a,b) ={v+sei+tey : s€[0,a],z €[0,b]}, (6.21)

where v € V(Ly;) is the lower left corner and a,b € Z~ are the side lengths of the
rhombus. In any percolation configuration on R(v,a,b), either there is an open path
from left to right in R(v,a,b) or a closed path from top to bottom. We set p. = 1/2,
since satisfies the following crossing property. At p = p., by symmetry

1
P{[left to right crossing in R(v,a,a)] = 5 (6.22)

Notice that the equality holds for all a. In particular, we see that the crossing
probability remains bounded away from O and 1 as a tends to . For subcritical p,
that is p < p., the crossing probability would tend to zero and for supercritical p,
that is p > p,, it would tend to oneE]

Define also a triangle T'(v,a) = {v+sej +tes : 5,t € Z>o,s+t < a} and a trape-
zoid R(v,a,b) = R(v,a,b) UT (v+aey,b). Let’s call the bottom of T'(v+aey,b) the
bottom-right side of the trapezoid R(v,a,b). Denote by

6 For the proof see [3]. The fact is based on so called sharp threshold phenomenon by which for
all p the crossing probability is either close to zero or close to one or the its derivative with respect
to p is large.
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SR(R) or Sr(R)
the event of left-right crossing of a rhombus R or trapezoid R and by
SLr(R)

the event of a crossing from the left side to the bottom-right of the trapezoid R.
The Russo—Seymour—Welsh estimates (RSW) allow us to extend the equation (6.22))
as inequalities for other rhombi R(v,a,b), a # b, and other shapes.

Lemma 6.8. For a,b € Z~q such that b < a, the following inequalities hold

o When p > pe, Pp[SL8r(R(v,a,b))] > $P,[ABr(R(v,a,D))]
e Forall p, P,[AR(R(v,a,b))] > Pp[yL—BR(R(vvavk))]z
o When p > pe, Pp[ALRr(R(v,2a,b))] > 3P [ARr(R(v,a,b))]?

Consequently, P,[ A1 r(R(v,2a,D))] > 3%Pp [AR(R(v,a,b))]* when p > p..

Proof. Notice first that the probabilities of the crossing events we consider are in-
dependent of v and their values remain invariant under lattice rotations.

The argument for the first claim is similar to one given in [[14]. It is the main
observation of the present proof. Namely, if the event .71 g (R(v,a,b)) occurs, we
can find the topmost simple open path 7 in the percolation configuration crossing
the rhombus R(v,a,b). It is illustrated as the dark blue path in Figure It turns
out that such path can be found so that we have to “reveal” only the site above and
on the path, for details see [14]]. Consequently, conditionally on 7, the configuration
restricted to the sites below 7 has still the percolation distribution. Consider the
mirror image R’ of R(v,a,b) with respect to the right side of R(v,a,b) and the mirror
image 7’ of . See Figure In the kite shaped domain formed by the union
of R(v,a,b) and R’ on the sites below the path concatenated from & and 7/, by
symmetry, the probability of an open path from sites next to 7 to the lower left
side of R’ (the solid line in Figure is at least % The occurrence of this event
together with existence of 7 implies that .% r(R(v,a,b)) occurs. Summing over
the paths 7 gives the claim.

The second claim follows from the FKG inequality, when we consider the events
Z1.Br(R(v,a,b)) and the similar crossing event from bottom left to right side of
R(v,a,b). See also Figure

The third claim follows also from the FKG inequality. Namely, if we put two
trapezoid so that they partially overlap as in Figure and form an equilateral
rhombus in the middle, then by FKG inequality the joint occurrence of open cross-
ings from left to right in both trapezoids and from bottom to top in the rhombus
has probability at least the product of the probabilities of the three events. Thus the
claim follows.

The last claim follows by combining all the other inequalities. a

The previous bounds will give us easily the following bounds.
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(a) Arrowhead-shaped do- (b) Two open crossings (c) Two congruent trapezoids are
main obtained from two in the trapezoid from a  superimposed so that the intersec-
rhombi symmetric to each  side to a bottom corner tion is a equilateral thombus. The
other and the correspond- implies the left to right open crossings of these three shapes
ing mirrored paths. By crossing event. implies the open crossing of the re-
symmetry, the probability sulting long rhombus.

of a crossing from dark blue

path to the solid black line

within the domain is at least

Lfor p > p.

Fig. 6.3 The proof of Lemmais based on ideas presented in these figures.

Corollary 6.3 (Crossing probability of long rhombi or rectangles). For any p >
1, there exists € € (0, 1) such that for every n € Z~q

€ <Pp [ALr(R(v,[pn],n))] < 1—e.
Similar bound holds for rectangles.

Proof. The upper bound follows from the fact that P, [#1.r(R(v,[pn],n))] is
bounded from above by P, [ r(R(v,n,n))] =1/2.

The lower bound follow from P, [#1r (R(v,2*n,n))] > 327%P,, [ A r (R(v,n,n))]*
and P, [A1LRr(R(v,n,n))] =1/2. O

Together with the FKG inequality this implies the following bound. Consider an
annulus A = A(zo,r,R). We say that a path & crossesﬂA if 7 intersects both of the
connected components of C\ A. Denote the crossing event of A(zo, 7, R) by an open
percolation path as .#(A(zo,7,R)). Similarly define a discrete annulus A(v,n,m) as
the set of sites whose distance on the lattice to v is not less than n or greater than
m. Notice that A(v,n,m) is the set between two concentric hexagonal boundary arcs
of side lengths n and m lattice steps. Let .#(A(v,n,m)) be the crossing event of
A(v,n,m), that is, the event that there is an open path connecting the two boundary
arcs.

Corollary 6.4. (Crossing of discrete annuli) For any m € Z~y, there exists € € (0, 1)
such that for every n € Zg

€ <P, [AA(v,n,mn))] <1—¢.

7 Such a curve is called a crossing and a crossing that doesn’t contain a proper subcrossing is called
a minimal crossing.
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Fig. 6.4 Construction of a non-trial cycle in an annulus from six “left-to-right” crossing in rhombi.

Proof. For the lower bound, superimpose the annulus with a (long) rhombus, whose
ends lie fully in the complement of the annulus, one inside and one outside. The
bound follows from Corollary [6.3]

For the upper bound, notice that at p. we can flip the state of each site (“open”
between “closed”). Notice also that either there is a closed crossing of the annulus
or an open path, which forms a loop that is non-contractible in the annulus. Next
we construct such a non-trivial loop from open crossings of six thombi by arranging
them as in Figure The joint occurrence of those crossing events is bounded
from below by the product of their probabilities by the FKG inequality. Thus the
upper bound of the claim follows. a

Let’s call A(z1,r1,R1) a subannulus of A(zo,r,R) if A(z1,r1,R1) C A(z0,7,R) and
A(z1,r1,R1) separates the connected components of C\ A(zo,r,R).

Corollary 6.5. (Crossing of annuli) There exist constant K| and A; > 0 such that
foranyzo € Cand 1 <r <R,

A
P [ A Ao R < Ki ()
Proof. We will establish the bound when R/r > 2. For the complementary range the
bound follows easily by choosing K; > 241 which we can always do.

Since r > 1, there exists a lattice site v within the distance r from zy thus
A(v,2r,R/2) is a subannulus of A(zg,,R). Here we used R/r > 2. Denote by B(v,n)
the discrete ball of radius r, i.e., the filled hexagon centered at v with sides on the
lattices with length n. Let ny = [4r/+/3] and k be the maximal integer such that
2K(ng+1) =2 <R/2, thatis, k= [log,((R+4)/(no+1))| — 1. Then since B(v,n) C
B(v,n) < B(v, [2—\/’%1) the discrete annuli A; := A(v,2/ (ng+1) — 2,2/ (ng + 1) — 1),

8 A small calculation shows that the long side of the rhombi has length (2m — 1)n and the short
side (m—1)n.
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j=0,1,... k, are subannuli of A(zp,r,R) and they are disjoint. By independence of
percolation in disjoint sets,

k k
Ppc [y(A(ZO’ r’R))] < Ppc[ﬂ LSﬂ(ij)] = H Ppr [y(AJ)] < (1 - g)kJrl . (623)
j=0 Jj=0

Notice g+ 1 < 4r/v/3+2 < 5rand k+1 >log, ((R+4)/(no+1)) > log,(R/(5r)).

1"gl]Ts r 7\ 41
(1—g)ft! <o moer los5thoei) _ g (E)

where A; = log, 1 and K; = exp((log, 1) (log5)) O

6.3.2.3 BK inequality and multiple crossings of quadrilaterals and annuli

Let A and B two events in a percolation model. We will denote by ALIB the event
that A and B both occur and they occur disjointly. We define it so that @ € ALIB
if and only if there exist disjoint sets F' and G of sites (which might depend on )
such that knowledge of ® restricted to F implies that @ € A and knowledge of ®
restricted to G implies that @ € B. For more details see [4]], Section 4.3.

We will use below the following inequality. We omit the proof which can be
found in [3] or [4].

Theorem 6.6 (van den Berg—Kesten (BK) inequality). For increasing events A, B
in a percolation model, it holds that P[ATIB] < P[A]P[B.

Remark 6.7. For all events A, B, it holds that ALIB C AN B. It is natural to interpret
the BK inequality as a counterpart for the FKG inequality.

Proposition 6.6. (Disjoint open crossings of annuli) For each C > 1 and € > 0 there
exists ny € Z~q such that
P[yn(A(ZOar’R))] <€ (6.24)

foralln>ny, zo € C, r,R € Ry such that R/r > C. Consequently, there exist non-
negative constants A, and K, such that A, tends to infinity as n tends to infinity and
foreveryn, zo € Cand 0 <r <R,

P [%(A(z0,1R))] < Ky (%)“".

Remark 6.8. We can choose A, to be non-decreasing and by this result A, > 0 for
all n > ng for some n,, € Z~o.

Proof. The claim follows easily from Theorem [6.6 and Corollary [6.5 when r > 1.
For r < 1, we need to notice that for n > 10, say, P[-#,(A(zo,7,R))] = 0. O



112 6 Regularity and convergence of random curves

6.3.3 Distortion estimates of annuli

Throughout this subsection U is a simply connected domain and ¢ : D — U is a con-
formal map. We study how annuli are distorted under conformal maps. We claim that
the conformal image of an annulus has a subannulus (here we naturally extend the
concept of a subannulus slightly) such that their conformal moduli, i.e., logarithms
of ratios of the radii, are proportional. First we study annuli fully contained in the
domain.

Lemma 6.9 (Distortion of annuli contained in D). For any p’ > 1 sufficiently
large, there exists p > 1 such that the following holds. Suppose U and ¢ are as
above and that A = A(zg,r,R) CD with R/r > p and R < %(1 — |z0|). Then there
exists an annulus A" = A(z,,r’,R") with R' [r' > p’ such that A" C ¢(A) and A’ sep-
arates the components of ¢(A) in C. Furthermore the dependency of p and p' can
be made linear:

Proof. Let A = A(zo,r,R) be such that [z0| < 1and 0 < p~ 'R < r <R < (1 —z9).
Let y be a Mobius selfmap of I that sends zo to 0. As usual, the map y can be
explicitly written and one can verify that |y(zo + 7¢!)| = #/|1 — |z0|> — Zo 7¢!| and
thus - .
7 » 7
= < |y(zo+7e?)| <
31 T w( )| N

(6.25)

for all 7 € (0,1 — |zp|). This shows that there exists an annulus A; = A;(0,r1,R})
such that A} C Ww(A) and Ry /r; = (1/3)(R/7).

When R < (1—|z9)/2, by the right-hand side of (6:23), we can choose Ry < . A
similar argument to the above one using the Koebe distortion theorem, Theorem|[3.9]
shows that ¢ o y~! distorts the two boundary components of A proportionally. Con-
sequently we can find A’ = A’(¢(0),#,R’) such that A’ C ¢ (A) separates the bound-
ary components of ¢(A) and r'/R' = const.(R;/r1) where the universal constant
comes from the Koebe distortion theorem. O

Next we will apply extremal length (see also Section [3.4.2)) to show a distortion
estimate for annuli intersecting the boundary.

Lemma 6.10 (Distortion of annuli not fully contained in D). For any p’ > 1 suffi-
ciently large, there exists p > 1 such that the following holds. Suppose U and ¢ are
as above and that A = A(zo,r,R) with R/r > p is such that 1 — |z0| < r and R < 1
(that is, D crosses A). Then there exists an annulus A" = A(zg, r',R") with R' /¥’ > p’
such that there exists a connected component O of U NA’ such that O C $(AND)
and O separates the components of $((dA)ND) in U.

Proof. The proof is based on the extremal length. The extremal length of the curve
family connecting the components of (dA)ND in AND is at least the extremal length
of the curve family connecting the boundary components of A in A. The latter one
is equal to 5-1og(R/r).
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Let Q = ¢(AND). Then Q is a topological quadrilateral which then has four
“marked” sides S1,S2,53,54. Suppose that S; US3 = ¢((dA) ND). Let d; be the
Euclidian distance inside Q from S to S3.

Let y; be a path connecting S, and S4 in Q whose length is (strictly) less than
2d,. Let z;, to be its mid point (with respect to its length). Then y; C B(zo,d}).

Let y be a path connecting S; and S3 in Q whose diameter is d. Calculate a lower
bound for the extremal length of the curve family connecting S; to S3 in Q by using
a metric p equal to 1 in a d;-neighborhood of y. Then the p-length of any curve
connecting S; to S3 in Q is at least d; and the p-area of Q is at most (d + 2d1)2.
Consequently the extremal length of the curve family is at least d7 /(d + 2d; )*. By
the reciprocity of the complementary extremal lengths in a topological quadrilateral,
it holds now that 2 5

i T .. -2
(d+2d;)? = log(R/r) "o (6.26)

Thus the diameter of v satisfies d > (m — 2)d;. In particular, either for S; or Ss, it
holds that any path from 7; to that arc has to have diameter at least (d —d;)/2 >
((m—3)/2)d;. Otherwise we could construct a path connecting S; or S3 that has
diameter less than d. Therefore y has to intersect the complement of B(zg, ((m —
3)/2)dy).

Thus we have shown that any path connecting S; to S3 in Q has to make at least
one crossing of A" = A’(z(,d1,((m—3)/2)d;). Let ¥ now be the path that makes
the minimal number of such crossings’| Then each connected component of U NA’,
whose closure contains a minimal subcrossing of ¥, separates S and S3 in U. Choose
any one them and denote it by O. Then O has the claimed properties. O

The same proof can be used for the following result. Let ¢ : H — U be a confor-
mal, onto map.

Lemma 6.11 (Distortion of annuli not fully contained in H). For any p’ > 1 suffi-
ciently large, there exists p > 1 such that the following holds. Suppose U and ¢ are
as above and that A = A(zo,r,R) with R/r > p is such that |Imzo| < r and R > 0
(that is, OH crosses A). Then there exists an annulus A' = A(zy,r',R") with R’ /¥’ > p’
such that there exists a connected component O of UNA’ such that O C ¢(ANH)
and O separates the components of §((dA) NH) in U.

Let us now use Lemmas [6.9] and [6.10] to estimate the probability of the n-arms
event in an annulus A = A(zp,7,R) by open paths of the percolation configuration
transformed to I conformally. We call a path x; € D, k € [0,n], an open crossing
of A in D if ¢(x;) € Q are open sites of the triangular lattice of the percolation
configuration in €, they form a lattice path (that is, |@ (xg+1) — @ (x¢)| = 6 where &
is the lattice mesh) and |xp — zo| < r and |x, — zo| > R. If there are n disjoint open
crossings of A we say that (monochromatic) n-arms event occurs in A. Let C > 1
and define m = | (log(R/r))/(logC)] and annuli

9 The minimum number of crossings is finite since there are even smooth crossings such as any
“radial” path t — ¢ (z0 +1€'%), ¢ € (r,R) and 6 € R.
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k—2 gL N it I
Ar=A(20,C""3r,C"" 3r], Aj=A(z0,C31C3r),

for k € [1,m] and j € [1,3m].

Let D; be the infimum of diam(¢(7y)) where ¥ C D is a simple curve (which
is open or close) that separates the components of C \A j- Similarly let L; be the
infimum of diam(y) where ¥ C I is a simple curve that connects the components of
C\A j- Then by a simple argument shows that D; > §; otherwise there couldn’t be
n > 2 open crossings of A;. An argument using the extremal length similar to the
proof of Lemma @], shows that for any M > 0, there is Cy such that if C > Cp,
then L;/D; > M. Choose M = 10, say, and notice that this implies that ¢ (D NA i)
contains a path of neighboring hexagons that separate the components of ¢ (D \ A i)
Consequently, the crossing events in A for different k € [1,m] are independent.
Thus P[.7,”(4)] <1 P[-7, (Ax))-

By Lemmas and there exists a constant C’ > 0 such that we can se-
lect annuli A} = A(z),r,,C'r}) such that A} is a subannulus of ¢(Ay). Let € > 0.
Apply Proposition [6.6] and in particular the inequality (6.24) to select ng such that
P[.#P(A,)] < € for all n > ny. Then P72 (A)] < &™.

Proposition 6.7 (Probability bound on multiple open crossings in D). There exist
non-negative constants A, and K, such that A,, tends to infinity as n tends to infinity
and for everyn, 7o € Cand 0 < r <R,

p [YnD(A(zO,r,R))} <K, (%)A".

6.3.4 Analysis of tortuosity

6.3.4.1 Tortuosity and the connection to Holder continuity

We follow here Aizenman’s and Burchard’s seminal paper [1]. Let’s make the fol-
lowing definition for a curve ¥ : [0, 1] — C. Define [y] to be the equivalence class
of all reparameterizations of }/m Define M(y,1) to be the minimum number of seg-
ments of y with diameters less or equal to / that are needed to cover ¥, which is a
reparameterization invariant. A bound of the form

M(y,1) < —— (6.27)

where 1 : (0,1] — (0, 1] is a non-degreasing function, a tortuosity bound.

The following lemma establishes in one direction the connection between tortu-
osity bounds and Holder continuity. For the other direction, see [[L]. The proof of
this lemma is given in Appendix D.

10 That is, define [y] = {yo ¢ : ¢ : [0,1] — [0, 1] increasing homeomorphism}.
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Lemma 6.12. If vy satisfies (6.27)), then it can be parametrized so that the parametriza-

tion ¥ € [y] satisfies 7} (|7(¢) — ¥(s)|) < |t — s| where 7} (y) = %.

Remark 6.9. If n(y) = Cy®, then for each € > 0 there exists a constant C¢ such that
- - = I
[7(1) = V()] < Celt —s|a*.

Definition 6.5. Suppose that € > 0, ro > 0 and k € Z~(. We say that y has (g, rg,k)-
tempered crossing property if for all r € (0, ry) it holds that y doesn’t cross k or more
times any annulus of the form A = A(zo, 7' €, 7).

Define N(7,l) to be the minimal number of sets of diameter less or equal to [
needed to cover Y. Then obviously N(v,l) < M(y,l). The following result gives a
complementary inequality.

Lemma 6.13. If v has the (&,ry,k)-tempered crossing property, then for any | €
(077'0), M(%ZI) < kN(’YJIJrs)’

Proof. Cover 7y by segments of diameter less than 2/ recursively by choosing points
X0,X1,-..,%, S0 that x| is the first point after x; that lies on the boundary of B(x,!)
and xp and x,, are the endpoints of . Then M(7y,2l) < n.

Cover also y with N(y,1'*€) balls of diameter /'*€. Let B = B(z9,!*€/2) be one
of those balls. Then since y doesn’t make k or more crossings of A(zo, (1/2)'1€,1/2),
it holds that at most k of the points xg,x1,...,Xx, can be contained in B. Therefore
the claim follows. a

If the diameter of ¥ is at most R, then it can be covered with [Rv/2/[]? squares
of diameter /. Therefore
N(y,l) <3R*? (6.28)

forall € (0,R). Therefore the following result holds by Lemmas and and
the remark after Lemmal6.12]

Proposition 6.8. Let € > 0. If v is bounded, explicitly, Yy C B(zo,R), and has (€, ro,k)-
tempered crossing property for some ry > 0 and k € Z~, then for all | € (0,r) it
holds that

M(y,1) < CkR*>172(1+8), (6.29)

Here C is an absolute constant.

Here is an interesting corollary, which we don’t directly use, but which clarifies
the role of tortuosity bounds.

Corollary 6.6. Let € > 0. If v is bounded, explicitly, ¥ C B(zo,R), and has (&,ro,k)-
tempered crossing property for some ry > 0 and k € Z~, then for each o €
(0,1/(242¢)), v can be parametrized as 7y : [0,1] — C such that for all s,t € [0,1]

17(1) — 7(s)| < Clr —s]*. (6.30)

Here C doesn’t depend directly on ¥, but can depend on €,ro,k,R and «.
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6.3.4.2 The percolation interface satisfies a tortuosity bound

Define 7 to be the percolation interface in a discrete domain (U, a,b) at criticality,
that is, when p = p,. Let ¢ : D — U be a conformal, onto map such that ¢(—1) =a
and ¢ (+1) = b. Define = ¢! oy. That is, y is the interface on the original domain
and 7 is its conformal image on the unit disc.

Proposition 6.9. There exists universal constants K, and A, for each n such that
A, — o as n — oo and the following holds. Let ¥ be as above and zy € D and
0<r<R<]1. Then

P[§ makes n crossings of A(zo,1,R)] < K, (%)A” . (6.31)
Proof. We may assume that R/r is sufficiently large that we can apply Lemma
and Lemmabelow. Namely, for R/r < M, we can arrange so that the inequal-
ity holds by choosing K,, larger than M4~

Letd = 1 — |zp|. One of the following occurs: (i) d < r, (ii) d € [r,R] or (iii) d > R.
In the cases (i) and (iii), set r; = r and R; = R. In the case (ii), set r; = v/rR and
Ry =R,ifd < \/rR, and r; = r and R; = v/rR, otherwise. Then r < r; < R; <R,
ri/Ri < +/r/R and eitherd < rjord > R;.

Let us then consider the crossing events of §. Suppose first that d < r; and ¥
makes exactly n crossings of A} := A(zo, 71, R ). Then there are at least either |n/2|
disjoint open crossing or |n/2| disjoint closed crossing, which are in addition dis-
joint from the boundary. We can suppose that they are open. Since the crossing are
disjoint from the boundary we can change the state of the boundary sites, and we
may as well suppose that all the boundary sites of U are closed. Then the crossings
are automatically disjoint from the boundary. This leaves the probability unchanged.
Thus

P[ makes n crossings of A(zg,r,R)] < P[|n/2| open crossings of A} N D).

The same upper bound holds easily also when d > R;; we don’t have to worry about
the boundary in that case.

Next we apply the conformal transformation ¢. When d < ry, by Lemma [6.10]
we can find z3, r, and R, such that Ry /r, > const.(Ry/r1) and A := A(z2,r2,Rp) is
such that there exists a connected component O of U N A, such that O C ¢(AND)
and O separates the components of ¢((dA) ND) in U. It follows that if there are at
least |n/2| open crossings of A; NI, then there are at least |n/2] open crossings of
As. We can remove all the closed boundary sites in A, and we get an upper bound
by using the probability of at least |n/2| open crossings in the whole A, (without
any boundary sites).

On the other hand, if d > R; apply Lemma to show that there exists z3, 3
and R3 such that R3/r3 > const.(Ry/r) and A3 := A(z3,73,R3) is a subannulus of
¢ (A(zo0,71,R1)). It follows that if there are at least |n/2| open crossings of A; N D,
then there are at least |n/2| open crossings of As.
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The claim follows now from Proposition [6.6] O

Proposition 6.10. Let € > 0 and k € Z~¢ such that 15 Ay > 2. Then there exists a
random variable ro > 0 such that ¥ has (&, ry,k)-tempered crossing property. Fur-
thermore, Plry < r] < Cre&—2048) with some constant C.

Proof. Let € > 0 and k € Z~( be as in the statement of the proposition and let
I =([~1,1]N27"(Z+ 3))* for any n € Z-.

For any r > 0, let
1
ny = Llogz MJ -

Notice that holds that 273 < p1+€ <272 For any z € D, we can choose z; €
1,,, such that |z9 —z; | < 27"—'/2. Thus for any z such that | —z;| > 2", it holds that
|z —z0| > r'*€. Similarly, |z —zo| < r for any z such that |z —z;| < %Z*ﬁ and for

small enough r. Consequently, A(z1,27", %2_1%) is a subannulus of A(zo, '€, r)
for small enough r.
Therefore if we set

A 27" (1/16 27n/(l+g) tai
nzsup{nez>0 (z1,27",(1/16) ) contains

k-fold crossing for some z; € I,

then for any r such that 7'*¢ < 2713 it holds that A(zo,7'™¢,r) doesn’t contain
k-fold crossings for any zo € C. Then 1 is almost surely finite and has exponential
tails, since

P[n > n] Z Z PlA(z1,27,(1/16)2~ l+£) contains k-fold crossing]

l=nz1€l]

< Cl Z 2 1+£ C 2( 1+e A)n

when mAk > 2. This implies the claim. a

6.3.5 Regularity of the percolation interface in the capacity
parametrization and existence of subsequent scaling limits

6.3.5.1 The speed of approach to the tip

Consider the simple curves in ID; more specifically, consider the collection

(6.32)

¥(0) = —1, v is simple,
{'}’GC(R>0,C) : +1}

y(t) € D forallz >0 and lim y(t) =
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Remember that for a curve ¥ in the set (6.32)), the standard way to transform ¥ to H
is to define y(z) =i(z+1)/(1 —z) and Yy = yo¥y.
In this subsection, we study the following event.

Definition 6.6. Fix a (small) constant p > 0 and set B, = y~!(H\ B(0, %) Define

a subset E(r,R) of the set (6.32) such that there exists s, € Rx( such that s < ¢ and
the following statements are satisfied

e diam(7]s,t]) > R and
e there exists a crosscut C in the domain D\ y(0, s] such that diam(C) < r and C
separates ¥(s,?] from B in D\ ¥(0,s].

Remark 6.10. The set E’p is the intersection of the unit disc and a closed ball of

radius 2p /(1 — p?). It is easy to verify that B(1, prp) C B, C B(1, %) We skip

the details of this M6bius function calculation.

Remark 6.11. In fact, if y € E(r,R), we can choose a pair (s,#) such that y(s) is one
of the endpoints of C and |y(¢) — y(s)| > R/2. This follows from the next lemma, by
which y(u) € C for some u € [0,7] and then we can choose s to be maximal such u.

Lemma 6.14. Let R > 2r and r < min{2,p}. Then CNY[0,t] # 0.

Proof. Assume the opposite, that is, that {x;,x,} := C\ C is a subset of JD.

Write D\ C = D; UD, where Dy are the connected components. such that
Length(dD; NdD) < 7 and Length(dD; NID) = 27 — Length(dD; N ID) > 7.
Notice then that C C B(x,r) and thus D; C B(x1,r).

Since B(1,p)NC =0, it follows that B(1,p) N is a subset of either D; or D,. If
(B(1,p)ND) C Dy, then p < r, which is a contradiction. Therefore (B(1,p)ND) C
D;. Since y[0,1]NC = 0, y[0,¢] is in a similar manner a subset of either D; or Ds.
Since C separates y]0,7] and B(1,p) in D, y[0,¢] C D;.

Therefore diam(y{0,#]) < 2r. This is a contradiction and the claim follows. O

The following result connects the above annulus-crossing-type event E(r,R) (we
will clarify this later) to the speed of convergence of radial limit of a conformal map
towards the tip of Y.

Proposition 6.11. There exists a constant K > 0 and an increasing function U :
[0,1] = Rxo such that limy_ou(r) = 0 and that the following holds. Let r <
min{2,p}, R > 2r and Y be in (6:32). Assume that y(0,t] C D\ Byp. If ¥ is not
in E(r,R), then
sup |yu(t) = F(1,y)| <Kp°R. (6.33)
ye(O,u(r)]

Remark 6.12. To apply the result, let » = R'*¢ for some &€ > 0 and let yy = u(r).
Then Kp 2R = Kp~2rTe = Kp~2 (u*‘(yo))ﬁle =: A(yo). Thus we can write

(6.33)) in the form

sup |ya(t) — F(t,y)] < A(yo). (6.34)
¥€(0.y0]
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Proof. Let 1(r) = exp <—2r—’§2).Fixt €RspandletCy = {y o fi,(W, +yel®) : 0 ¢

(0,7)} and z, = Yy~ Lo f{(W, +iy).

By Lemma for each r > 0, there exists y, € [u(r),/u(r)] such that C,, has
diameter less than r. Then by the assumption that v ¢ E(r,R), the path with least
diameter from z,, to () has diameter at most r+ R < 2R. By the Gehring-Hayman
theorem, see [[10], the diameter of J := w~ ' o f,({W; +iy : y € (0,y0]}) is less than
KR, where K is an absolute constant.

Next notice that dist(D\ Byp,Bp) > p and thus J C D\ B,. It is easy to verify
that |y’ (z)| = 2/|1 —z|? and thus § < |y/(z)| < 2(1+ %)2 < piz. Consequently, the
diameter of the set W(J) = f,({W, +iy : y € (0,y]}) is at most K p~2R. Hence
holds. O

The following definition enables the use of crossing probability bounds to estab-
lish a bound for the speed of convergence of the radial limit to the tip.

Definition 6.7. For & > 0, rp, p > 0, we say that the path § has the (&,rg,p)-
tempered 6-fold crossing property if for any R < ro, we cannot find for any pair
(r,R) = (R'"%,R), parameters s, so that the property of Deﬁnitionwould hold.

Theorem 6.7. For the site percolation interface ¥ (transformed to D) for any & > 0,
there exists a tight random variable ry such that ¥ has the (€,ro, p)-tempered 6-fold
crossing property.

Proof. Let r > 0 and R > 12r. Let o} be defined by 6y = 0 and recursively by
Oi+1 = sup{t > oy : diam(o[0o,t]) < R/4}. Then there exists finite random N such
that oy _| < oo, but oy =co. Let J;, = ’J/[kal,Gk], k=1,2,3,...,NandletJ, k>N,
be a partition of dD into arcs of diameter at most R/4 — the number of such arcs can
be chosen to be at most a constant times 1/R. Observe that if the curve is divided
into pieces that have diameter at most R/4 — €, € > 0, then none of these pieces
can contain more than one of the (o). Therefore N < infe-oM(y,R/4—¢€) <
M(y,R/8) where M is as in Section By Propositions [6.8 and [6.10] N is a
tight random variable, which we will use below.

Define also stopping times 7 = inf{t € [op_1,0%] : dist;(y(z),J;) < r}. for
k€ [1,N] and j € [1,k—1] or j > N. Here dist;(y(r),A) is the infimum of the
numbers / such that y(¢) can be connected to the set A by a path of diameter less
than [ in D\ y(0,7].

Suppose that the event E(r,R) occurs. Take any C,s,f as in the definition of
E(r,R).

Let j,k be such that the end points of C are on J; and Ji. Notice that j # k
and j,k can’t both be larger than N and hence we can suppose that k € [1,N] and
j€[l,k—1]or j > N. Also notice that dist(J;,Jx) < r and hence 7; is finite.

Let C be a path of diameter less than 2r in D\ 7(0, 7; ] connecting ¥(7;x) to J;.
We claim that C disconnects ¥(¢) from +1 in D\ y(0,7; ] and that |y(t) — y(t; )| >
R/2.

Let J; and J; be the subpaths of J; and Ji, respectively, that connect an endpoint
of C to an endpoint of C. Let I be the concatenation of C, fj, C and Ji which closes
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to a loop. Then the points disconnected by C from +1 in D\ (0, s] but not by C in
D\ 7(0,7; 4], form a subset of (closure of) interior of I".

Since I is contained in B(y(s),R/4+3r) and |y(¢) — y(s)| > R, y(¢) is not in
the closure of the interior of I". Consequently ¥(¢) is disconnected by C from +1 in
D\ ¥(0, 7j ). In addition, by triangle inequality, |y(t) — ¥(tjx)| > R— (R/4+3r) >
R/2.

LetAjx = A(Y(7j),2r,R/r), Ajx = (Ajx N (D\ ¥(0,7;4])) and

connected component of z in A k1S disconnected}

Vik = {Z €A from +1 by Cin D\ y(0,7; 4]

Notice that each component of V; ; has percolation boundary sites of only one type,
either they are all open or all closed. Then on the event E(r,R), when C,C, j, k are as
above, then ¥(u), u > T; k» crosses the annulus A ; using the set V; ;. As usual, this
implies an open or closed percolation path crossing of A;; in a component of V; ,
whose boundary sites have the opposite state. By the RSW estimate of Corollary[6.5]
using similarly Lemma [6.9]and Lemma [6.10] as in the proof of Proposition [6.9] we
can show that

A
P[Hl‘ > Tjk St ’}/(TL]{J} Ccrosses Aj,k in Vj,k ] <K (%) : .

By Proposition and Proposition [6.10} summing over pairs (j,k) we find that

A
PIE(r,R)] < const. (ReAkz(Hs) + R401+e) (%) ')

If we choose r = cR'+¢, & € (0, 4l+e) ), then P[E(cR'*¢ R)] < CR* for some & > 0.

A
If we set R = 27" and sum over n, we see that by tl}e Borel-Cantelli lemma, there
exists a random variable ry > 0 such that § ¢ E(R'*€ R) for R € (0,rp). 0

6.3.5.2 Regularity of the driving process

Let’s start by recalling some facts from the proof of Proposition Notice firs that
all ¥ in the set once mapped to H conformally such that +1 is mapped on
oo are eligible for description as Loewner chains. Therefore the conclusions in the
proof of Proposition 1] apply to them.
Consider a simple curve y of H of the Loewner type parametrized by the capacity.
Let 0 <s <t and define
(1) = 8s(v(1))

Then by the proof of Proposition§.1]

max Im ¥ (1) <24/t —s], max |Re ¥ (1) — Wy| < max |W,, — W|.
u€ls,r| u€l(s,t] u€ls,r|
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Therefore if y;(u) exits the rectangle [Wy — L, W, + L] x [0,24/]f — s|] from the sides
Rez = Wy £ L, then max,e (s |W, — W,| > L. Also a kind of a converse is true as
shown next.

Lemma 6.15. %supue[m] (W (u) =W (s)| —2+/|s —t| < sup,c(s [Re Fs(u) =W (s)| <
SUPyels,1) |W(u) - W(S)I

Proof. The upper bound follows from the above considerations.

For the lower bound, assume without loss of generality that s = 0 and W (0) = 0.
Then if M = |[Re Y|« o, and R = \/M? 4 (2+/7)2, then ¥[0,7] C B(0,R). Conse-
quently W, € [g,(—R),g.(R)] by monotonicity of Loewner maps on the boundary.
Next notice that g, (R) < ¢(R) and g, (—R) > ¢(—R) where ¢(z) = z+R?z~". Thus
—2R < gu(—R) < W, < gu(R) < 2R and hence 3|W,| <R < M+2/1. 0

Proposition 6.12. For percolation interface 9, it holds that for each o < % there
exists a random variable Cy, such that |W(t) — W (s)| < Cq |t —s|* for t,s € [0,T).
Furthermore, Cy, is a tight random variable.

Proof. Let us first show that there are constants K and € such that

L
<Kexp| —¢€ . (6.35)
( Vis—1] )

If sup,c(y ) [W () = W(s)| = L, then by Lemma [6.15]sup,c,,; | Re %(u) — W(s)| >
L _2,/]s—1]. On the other hand, SUpcfs  Im ¥ (u) < 24/|s —1| always by @.I8).
Choose p’ > 0 such that when R/r > p’ then the right-hand side of the inequality
in Corollar is less than e~!. Then choose p > 0 such that p and p’ are as
in Lemma Let Cy = [xg,x¢ +12+/|s —t]] where x; = 2pk+/|s —t|. By above
if sup,cf, [W(u) —W(s)| > L, then ¥%(u), u € [s,], hits either all C1,Cs,...,Cp
orall C_;,C_s,...,C_,, where m = |L/(2p+/|s—1t|)]. When L/\/|s —¢| is large
enough, then m > L/(4p+/|s —t|). Thus P[sup,, ) [W (1) —W(s)| > L] < 2e™" by
Corollary [6.5|and Lemma[6.T1] and (6.33) follows for some constant £ > 0.
Choose any a € (0,1/2) and set 6, = T2 " and L, = 2~*" for n € Z~. Then

P [ sup |W (u) =W (s)| > L

u€l[s,t]

P sup [W(u) —W((k—1)6,)| > L, for some k € [1,2"]
u€[(k—1)8,,ko,)
4 1
<2"Ke —2<z“>") : 6.36
ko -

Since the upper bound is summable over n, by the Borel-Cantelli lemma, there
exists a random variable N such that for all n > N and for all k € [1,2"] it holds that

sup W (u) —W((k—1)5,)| < L. (6.37)
ue[(k—1)8,,k8)
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Thus if 8,41 < |u —v| < &y, then by the triangle inequality, |W (1) — W (v)| < 3L, =
3(27M)% < 22T =%y —y|*, Thus [W(u) — W (v)| < 22+H4T =% u—v|* for all u,v €
[0,T] such that |u—v| < Oy.
Notice also that sup,c(o 71 |W ()| < 2N Ly which is finite. Thus the first claim of
the proposition follows.
For the second claim, use to give uniform estimates for P[N > n] as n — .
O

6.3.5.3 Tightness of the capacity parametrized random curves

Remember that ¥ was the percolation interface transformed to . Let i be ¢ (),
where ¢(z) = i%—fi, reparameterized with capacity.

Remember also that a metric on C(Rx¢,C) is given by

=

d(ri,72) = Y. 27" (A 171 — 1alljom,e0)

n=1

Theorem 6.8. Let 7 be a collection of quadruplets (U,a,b,8) and let .# be the
collection of all probability laws Wy 4p.5) of Ya, where (U,a,b,6) runs over all
quadruplets in 9 and Yy is the percolation interface in (U,a,b) with lattice mesh
6 > 0. Then the collection . is tight.

Proof. Let € > 0. We will find a relatively compact set E such that iy 45, 5)[E] >
1—e.

Let n € Z~o. We will first consider y1(7), t € [0,n], and its driving term W (¢),
t € [0,n]. By Proposition for any & > 0, there exists a random variable G, o
such that |W () — W (s)| < Cp,q |t — s|* for all s,¢ € [0,n]. Notice also that W (0) = 0.
Choose my,; > 0 such that iy o 5)[Cra < mn1] > 1—€27"" forall (U,a,b,8) €
A . Then Wy 45 5)[Cra < mp foralln] >1—g¥y 271 >1—g271,

Let f: (¢t,z) — H be the inverse (for fixed ¢) of the Loewner map g : (¢,z) — H
as usual and F(z,y) = f(¢t,W(¢) +1iy). By Proposition and Theorem[6.7] there
exists a function i : R>9 — R and a random variable C, such that lim,_,o (y) =
0 and |F(t,y) — yu(t)| < Cuuu(y) for all y € R-g and ¢ € [0,n]. Choose mj,» such
that Ly q.p.5) [Cy <myp] >1—€27""!forall (U,a,b,8) € .. Then it holds that
KU .ab,5) [Co <mypforalln] >1—eyr 271 >1—g271

Let E be the event that Yy satisfies Cy o < mjp, 1 and ¢, < my > for all n. By above,
U a.b,5) [E] > 1 — €. The claim of the theorem follows if we manage to show that
E is relatively compact.

Let ¥, be a sequence in E. Since W, are all a-Holder continuous with the Holder
norm bounded by 1,1, we can extract a converging subsequence Wy, by the Arzela—
Ascoli theorem. Furthermore, by a standard diagonal argument we can suppose that
Wy, converges uniformly on each [0,n]. In particular, W, is a Cauchy sequence on
each [0,n].
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Let & > 0. Let 6 > 0 and ng € Z~¢ be such that A(d) < & and 27" < &, where
A(8) is as in Lemma[6.4] By passing to a subsequence, we can suppose that for any
i, j > ng and n < ng it holds that [[Wy, — Wy, [[j0,4..- < (C(n, 5))~'& where C(n, §) is
as in Lemma[6.4] By Lemma[6.4]

1% = Vi oo j0.0) < C (1, 8)[[Wey = Wi [[0,] 00 +22.(8).

Therefore

1o
Ay W) S 270+ ) 27(C(1, 8) Wiy — Wi [l j0.1) 0 +24(8)) < 42

n=1

Hence 7; is a Cauchy sequence and converges in C(R>p,C) which is a complete
metric space. Thus E is a relatively compact set. The claim follows. a

6.3.6 Cardy—Smirnov formula of a crossing probability

In this section, we present the full argument showing the convergence of the perco-
lation interface 7y, to a SLE(6) random curve y. We use Smirnov’s very readable
original papers [[11}112] and Beffara’s equally excellent note [2] on the convergence
of so called discrete martingale observables of the site percolation model. We take
the liberty to omit some details, but we will state explicitly when we do so. We are
careful in particular on the mode of convergence of the observable which is needed
in passing to the limit with a martingale property.

6.3.6.1 Introduction: boundary value problems and martingales

We have already developed the theory of regularity of random curves, which ensures
the convergence of the random curves along subsequences by a compactness argu-
ment. The convergence of the entire sequence is thus equivalent to the uniqueness
of the limit. Hence to complete the approach we need for each ¢ € R>, a random
variable

y—=X(t,2,7)

where z € C is a free variable which we can vary, such that X (¢,z; y) depends non-
trivially on z and ¥[0,¢] and its law can be efficiently written and analyzed. Not
surprisingly, if you compare this approach to that of the characteristic function of a
real-valued random variable, this is sufficient for characterizing the law of 7.

In many cases including the case of the percolation interface, the observable
X (t,z; ¥) can be written as a solution of a boundary value problem as X (7,z;y) =
h(z) where h is defined in the following way. First of all, A is the scaling limit
h=limg _,oHs, of adiscrete observable Hg,, which solves a corresponding discrete
boundary value problem and is a natural percolation quantity, namely, a crossing
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probability. Secondly, the continuum boundary value problem solved by % can be
formulated in the following way. Denote by U; the connected component containing
a neighborhood of the arc bc in U \ 7(0,¢] and by a; the point ¥(¢). The continuum
boundary value problem for percolation is the following

Ah=0 ,inU;

)
6.38
=0 ,in bc ( )

h
d,h=0 ,in (a;b)U(ca;)

where d, is the directional derivative in direction u = (7/ v)% v where V is the out-
ward normal and T is the tangent of dU, at the boundary point; the boundary is
oriented from g, to bc on both arcs ;b and ca; and the third root is defined such that
(eie)% = ¢ when 6§ € (—m, 7).

An essential property of X(z,z; ¥) that we need below, is that it satisfies a mar-
tingale property. For the discrete observable X, (1,(¢),z) = Hs, (z), as we shall see,
it holds that

En[Xn(7a(2),2) | 5] = Xu(T(5),2) (6.39)

where 7,(¢) is the least discrete time such that the path ¥y has capacity greater or
equal to ¢.

Let’s extend the martingale property to the scaling limit of the observable. For
that we need some assumptions on the mode of its convergence. Let E be an event
such that

Pu[E]>1—¢ (6.40)

for all n > ng and suppose that on the event E it holds that

sup |X,1(Tn(l),zn;')/)7X(t,Z; Y)| <E& (641)
yéesupp(Py)NE

for all n > ny. We can furthermore set E, = supp(P,) NE and then holds
when E is replaced by E,,.

Let u € [s,0) and f be a continuous, bounded .%;-measurable random variable.
By scaling we may assume that | f| < 1, |X,,| <l and |X| < 1. Then

/Xn(rn(u),z)fdPn = /llEan('cn(u),z)fdP,, + error
= / 1g, X (u,z) fdP, +error = /X(u,z)fdP,, -+ error
- / X(u,2) fdP +error. (6.42)
On each line, the error is at most of the order € (bounded from above by a universal

constant times €). The first and third equality uses (6.40). The second one uses
(6-4T) and the fourth one follows from the convergence of P, to P in the sense of
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weak convergence of probability measures. The martingale property (6.39) is by
definition equivalent to the fact that

/ X, (%(1),2) fdPy = / Xo((s),2) £ dP, (6.43)

holds for all continuous, bounded .%;-measurable random variables /4. Using the
estimate (6.42) for both u = ¢ and u = s, we find that

‘/X(t,z)fdP—/X(s,z)fdP‘ < CIf ||€ (6.44)

holds for all continuous, bounded .%;-measurable random variables f. Here C is a
absolute constant. Since € is arbitrary it holds that,

E[X(t,2)| %] = X (s,2). (6.45)

That is, X (¢,z) as a stochastic process is a martingale.
In next subsections, we define the observable more carefully and establish most
important properties, namely, the martingale property (6.39) and the uniform con-

vergence (6.41).

6.3.6.2 The discretization of the domain

We aim to define a curve ¥ in a domain U from a boundary point a to another
boundary point b. We need further third boundary point ¢ and a point z in U to
characterize the law of y. We proceed in the following steps:

e Let Ly be the triangular lattice and Ly be its dual, the hexagonal lattice. Let

T — oi27/3

e Let U be any bounded simply connected domain and a, b its distinct boundary
points.

e Choose a sequence (Us, ,as,,bs,) where &, is the lattice mesh tending to 0 as
n tends to o and Us, a bounded, simply connected domain such that dUs, is a
lattice path on 8, Lpex and as,, ban) its boundary points which are assumed to be
sites on 0, Liex.

e Map next (U, a,b) conformally onto (H,0, ).

e Pick —/ € Rg and m € HUR~(. Then map back to U using the inverse of the
conformal map. Denote the image of —/ by ¢ and m by z.

e Choose cg, in the arc bs ag, and zg, in the union of the arc ag bs, and U, such
that they are sites on &, Liex.

e Let ¢5, and ¢ be the conformal and onto maps from (D, 1, 7, 72) onto the domains
(Us, . as, bs,,cs,) and (U,a,b,c), respectively. Those maps are unique. Next we
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Fig. 6.5 The microscopic details of discrete domain. Notice that we arrange so that @ and b are
boundary points — this is needed, if we want the interface to be well-described by a chordal
Loewner chain. The points ¢, z or x are interior points, but ¢ and z, when z = x, are points “next to
the boundary.”

make a critical assumption that (Us, ,as, ,bs,,cs,) converges to (U,a,b,c) in the
Carathéodory sense, that is, ¢ = lim,, . ¢5,. Assume also that z = lim,, . 25,

o Let Vs, and V; 5 be as in Section [6.3.1.1} Then Vj, is the set of sites where we
consider the percolation configuration and V; s is the set of boundary sites where
we apply the chosen boundary conditions.

Let us shorten the notation by dropping 7 from §,.

6.3.6.3 The crossing event of Cardy—Smirnov formula

LetU,a,b,c,z,Us and ag,bg,cs,zs be as above. Assume first that zg is a vertex of
a hexagon in Vj.

Definition 6.8. Define an event E, 5(z5) that there exists a simple open path on Vj
that separates as and z5 from bg and cs5. More specifically, this means that there
exists a simple path & = (xg,x1,...,Xn,%,+1) such that (i) xi,...,x, are in V5 and
their state is open, (ii) xo and x; are in V; 5, the edge {xo,x|} crosses the arc asbs
and the edge {x,,x,+1} crosses the arc cgag, and (iii) the union of the hexagons with
centers xo, X1, . .. ,Xu,Xpt1 disconnects zg from bgcs in Us. Define similarly Ej, 5(z)
and E, 5(z) by cyclically permuting the points a;,bs,c;.

Define H, 5(zs) as the probability of the event E, 5(z5) and similarly Hj, 5(z5)
and H,5(z5). Then H,5 = 0 on the boundary arc bscs and as we shall see
Ha,5 ((15) ~ 1.

Suppose that the set of z5’s that we have defined H, s is denoted by W. When
zs is a vertex of some hexagon whose center is in V; 5 and none whose center is in
Vs, define H, 5(z5) to be equal to the value of H, s at the neighboring site in W,
if an edge like that exists (there is at most one). If the edge doesn’t exists, fix an
arbitrary rule (which can depend for instance on the local shape of the boundary)
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for calculating the value as a convex combination of the values of H, s on the sites
of W in the hexagon of zg5. Threat zg in this case as a generalized boundary point
(as a limit of a sequence of interior points in a topology that separates the different
sides of the boundary). As a consequence H,, 5 is now defined on all vertices of the
hexagons whose centers are in V5 UV} s and we are in good shape to define it in all
points of Us as we will do in the next subsection.

Define functions

Hs=H,5+tH, 5+ T H,s, Ss=Hys+Hps+Hs. (6.46)

Suppose now that z is on the boundary arc agbg (similar statement holds for cgag).
Then H, 5(z) is equal to the probability that in V5 there exists an open path from the
arc cgags to the arc zbs. The next lemma follows since for instance, on agbs, E, 5(z)
and E,, 5(z) are almost complementary events.

6.3.6.4 A continuous extension of a discrete function

Use the following (one of many) construction that extends a function f defined on
a set of sites of a simply connected subgraph of a planar lattice to the closed set of
points consisting of the union of the closed faces of the graph. For a neighboring
pair of sites x, y, extend f on the edge (line segment) between them linearly, that is,
Fflax+(1—=1)y) =t f(x)+ (1 —1) f(y) forany ¢ € [0, 1]. After this step, f is defined
on all edges of the graph and thus on the boundary of any face of the graph.

Extend f inside each of the faces using only the values on the boundary of that
face. Explicitly, we can use the harmonic extension of f inside each face. A property
of the chosen extension is that | f(x) — f(y)| is maximized over a face when x and y
are sites of the lattice. Since the diameter of a hexagon in 6Ly is equal to 26/ V3,
we get the following lemma.

Lemma 6.16. For any r > 0 and zo € C,

sup  [f(y)—f(x)| < max I£(v) = f(w)].
x,yEB(20,7) wWEV (8Lnex )NB(20,r+28//3)

6.3.6.5 Equicontinuity of discrete observables and uniform convergence

Next we will establish the convergence of H, 5,Hs,Ss, ... as 0 tends to 0. First we
will establish equicontinuity. For a domain (U, a,b,c) and z € U, define

d,ap.c)(z) = max{dist(z,AB),dist(z, BC),dist(z,CA) }. (6.47)

Lemma 6.17. Let O < r < Rand 0 <m < 1(')—0. For any € > 0, there exists N1 > 0
such that the following holds. If (U, a,b,c; 8) is a discrete domain such that 6 < mr,
diam(U) < R and inf{d(y 4 ¢)(z) : 2€ U} >, and ¢ : D — U a conformal and
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onto map such that §(1) = a, ¢(t) = b and ¢(7%) = c, then

|[Hy50¢(z) —Hys500(w)| <e (6.48)
forall z,w € D such that |z—w| < 1.

Proof. Let € > 0 be much smaller than r and let 0 < 1 < % be such that

2R /~/log(1/7m) < &.

Then by Lemma it holds that Length[¢ (DN dB(z,r))] < & for some p € [1, 1].
Denote ¢(DNIB(z,p)) by C. Let z9 € C. Then C C B(zo, €).

It is sufficient to establish that when & > 8, there are universal constants K and
A such that

=\ A
|HA,50¢(Z)_HA,60¢(W)|SK(i) : (6.49)

Namely, if & is chosen to be less than r(g/K)'/4 and § < &, the claim follows
directly. On the other hand, if 6 > &, then C is fully contained in the union of at
most three neighboring hexagons (meeting at a common vertex). In that case, there
are two options: either C is a closed loop and ¢(z) and ¢ (w) are in its interior or C
is an open path with endpoints on the boundary of the domain (and on boundaries
of hexagons) and ¢(z) and ¢(w) are contained in the interior of the concatenation
of C and the shortest path along the hexagonal boundaries connecting the endpoints.
In both cases, it follows that ¢ (z) and ¢ (w) are in the union of those three hexagons
mentioned above. Consequently, C can be replaced by a lattice path with identical
properties, except that its length is of the order §. If holds for z and w replaced
by (points mapped to) vertices of the hexagonal lattice (of mesh size §) and & by &
on its right, then using harmonic extension property, the claim follows for the case
8 > &. The bound (6.49) follows in this case in the same way as we will show it
below for the other case. We leave filling the full details for the case § > & to the
reader.

Since d(y 4,p,¢)(20) > r, we can assume that either dist(zo,AB) > r or dist(zo, BC) >
r. The case dist(z9,CA) > r is symmetric to the former one.

Suppose that dist(zo,AB) > r. Then in the annulus A(zo,&,7) there is a closed
non-trivial loop in the full-plane percolation configuration with high probability.
This closed path disconnects ¢(z) and ¢ (w) from AB. Consequently on that event,
either E4 5(¢(z)) and E4 5(¢(w)) both occur or they both fail to occur. Thus the
bound (6.49) follows from the RSW estimate for open crossings in annuli.

Suppose next that dist(zg, BC) > r. There is an open non-trivial loop in A(zg, &, r)
with high probability and thus similarly as above, (6.49) follows. O

The very same proof gives the following lemma which is a key lemma for veri-
fying the boundary conditions of H, 5, Hs and Ss.

Lemma 6.18. For each r,R,m as in the previous lemma, there exists a constant C
such that the following holds. Let (U,a,b,c;0) be as in the previous lemma. Then
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0<H,s500(z) < C(log%)’l/zforallz € D such that |z| > 1 — € and argz € (27 /3 —
€,4n/3+¢€)and 1 —C(log%)’l/2 <H,s50¢(z) <1forallz€Dsuchthat|z] >1—¢
and argz € (—g,+¢€).

This implies the next result.

Lemma 6.19. On the boundary, Ss = 1+ o(1) uniformly as & — 0. Values of Hg at
boundary points are at most at the distance o(1) from the boundary of equilateral
triangle (1,7, ’62) and the values are in the same order as the boundary points and
include the three vertices of the triangle.

Remark 6.13. Define the set of points Wy such that ¢s(z) is a boundary point of the
union of the hexagons with centers in Vg for any z € Ws. Then for z € Wy, |z| =
1+ o(1) uniformly as 8 — 0, for consecutive points, |zx+1 — zx| = 0(1) and Hy is
monotonic on the boundary in the following sense: if zx, k = 1,2,...,n corresponds
to asbs, then H, 5 0 ¢5(zx) is monotonic decreasing and Hj, 5 o ¢5(zx) is monotonic
increasing for k = 1,2,..., n. Similarly for the other boundary arcs.

Finally, the next theorem gives the convergence of the observables.

Theorem 6.9. Let R > 0. Let (U,a,b,c) is a bounded domain and (Ug,ag,bg,cs;0)
is a discrete domain such that U,Us C B(O,R) If (Us,,as,,bs,,cs,) converges to
(U,a,b,c) and ¢, : D — U are the corresponding conformal and onto maps (such
that ¢,(1) = ag,, ou(7) = bs, and ¢,(*) =, ), then H, 5, o $, converges uniformly
on D to h, which is equal to (2Re ®(z) +1)/3.

Proof. Let (U,a,b,c) is a bounded domain U C B(0,R). Then there is r € (0,R)
such that diam(U) < R and inf{d(y 4 ..)(z) : z€ U} > r. Therefore for a sequence
(Us,,as,,bs,,cs,) of discrete domains such that Us, C B(0,R) it holds for n large
enough that inf{d(y, s b5 c5)(@) 12 € Us,} >r.

By Lemma the sequence H,, 5, © ¢, is an equicontinuous family of functions
on the compact set D and it is also uniformly bounded as 0 < H, s < 1. Thus by
Arzela—Ascoli theorem, there exists a subsequence H,, 80, © @p, such that it converges

to a continuous function 4, uniformly on ID. By the same argument, we can suppose
that Hbﬁnk o ¢y, and HC76nk o ¢, converge uniformly to continuous functions /; and
he, respectively.

By Lemma [6.18} /,(1) = 1 and h,(e!®) = 0, 6 € [27/3,47/3]. Moreover s =
limyseo S5, and h=1limy_o Hs, satisfy s=1ondD and 6 — h(e'?), 8 € [0,2x], is
closed loop whose trace is the equilateral triangle (1,7, 172) and which winds around
the origin once in the counterclockwise direction.

By the argument presented in Beffara’s note [2], the functions s and 4 are holo-
morphic in D. Consequently, s = 1 everywhere and # is the conformal map from D
onto the equilateral triangle (1,7,7%) such that 4(t¥) = ¥ for k = 0,1,2. We skip
presenting that argument by Smirnov, instead we emphasize the importance of that
combinatorial result which implies that S§ and Hg are approximately holomorphic.
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We deduce that 4 = ®. Therefore from h, + hy + he = 1 and by + Thy + T2h, = P.
Thus Re @ = hy — 3 (hy+hc) = 3(3h,— 1) or equivalently h, = $(2Re @+ 1). Thus
the limit is independent of the choice of subsequence. Consequently, lim,, . H, 5, =
12Re®+1). 0

Corollary 6.7. The convergence is uniform over domains in the following sense.
Let C be a crosscut in D connecting the arc 17 to the arc 721, Ve is the connected
component of D\ C that contains the arc T t>. Then for any converging sequence of
discrete domains (Uy, a,,by,cy; 0,) for any sequence of curves %, such that v, C Ve,
Y. converges in the Carathéodory sense and ¢, 0%, is a lattice path, the sequence
H, s, © O converges uniformly on I to h, which is equal to (2Re ®(z) +1)/3 and
the rate of convergence (as a function of 8,) is uniform over all sequences ¥,.

6.3.7 The characterization of the percolation interface scaling limit

Theorem 6.10. Let p, be the law of the percolation interface in (Us,,as,,bs,) and
¢ be a conformal map from (U, ,as,,bs,) onto (H,0,00) and assume that ¢, L,
converges in the weak sense to |L in the topology described in Theorem[6.8] Then 1
is the law of SLE(6) in H.

Remark 6.14. Together with Theorem [6.8] this shows that any sequence of laws L,
of the percolation interface in (Us, ,as,,bs,) converges to the law of SLE(6).

Proof. Take any subsequence of laws of percolation interfaces that converges in the
sense of Theorem[6.8]

Let /4 be the scaling limit of the discrete observable transformed to the upper
half-plane with @ = 1, b = o0 and ¢ = 0. Then /iy = 0 on R and izA(l) =1and on
(0,1) and (1,) it satisfies the correct Neumann-type boundary condition (deriva-
tive to the direction of the tangent rotated by £7/6 vanishes). Then we can write
the martingale observable X (¢,z) as

X(t,2) = hy (‘M) . (6.50)

By the discussion in Section |6.3.6.1} (X(#,x))/cr., is a martingale for any subse-
quent scaling limit of percolation laws.

It is easy to verify based on Example [3.2]that the observable can be written in the
form

ha(z) =L Re [—iTZ/OZ(C—l)gcgdC} (6.51)

Here the branches of the integrand are chosen so that for § > 1 it is real and positive
and then extended continuously to H\ {0, 1}. The constant L is positive and we omit
here it’s value, which can be written explicitly.

Let A € R.. Expand for parameters z = [, c = —A[, where [ > 0, the expression
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g(@)—g(c) 10+ +F(1+5)+...

W, — g:(c) IA+W,+ 21+
1+ w1
l(lli W(W,2+(/11)2t)+...) (6.52)

in powers of /, as [ — oo. Write ®(z) = [3({ — 1)_% C_% d{. Notice then that for
x> 1,itholds that Re[—it>d’ (x)] # 0 and @ (x) /D' (x) = —3 ﬁ If we combine
these with (6.30), (6.52) and (6.31)), we get after an easy calculation that

T+A\ W, [(1—=A%\ W2 —6t
X(th)C1+C2<< 22 ) (W)tlz

; ) +0(173)  (6.53)
where C; = Re[—it>®(1+17!)] and C; = Re[-it>®'(14+171)].

Since H,(z) as a process in the time variable ¢ is a martingale, we deduce from
(6-53) that the processes W, and W, — 6¢ are martingales. From Lévy’s martingale
characterization theorem (Theorem we deduce that W, = v/6B, for some stan-
dard Brownian motion (B;);cRr.,- O
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Beurling estimate (weak), 43|
Bieberbach’s theorem, [40)]
box-counting dimension, [82]
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norm of, 24
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s-capacity,
Carathéodory convergence,
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Cauchy—Riemann equations, [30]
central limit theorem (CLT),[4]
class X,[39]
class S,[39]
Conformal field theory (CFT),[64]
conformal invariance (CI), @
of complex Brownian motion,
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conformal map, [1] [33]
conformal Markov property, [f]

conformal radius, [76]
convergence in probability, [[3]
convergence in the Carathéodory sense, [04]
convergence of probability measures

weak convergence, [31]
covariation process (quadratic), 22]

critical parameter, [7} [63] [L07]
crossing, [T08} [T09]

minimal, [I09]
crossing probability, [[07} [T09]

diffusion, 29]

discrete observable, [123]

disjoint occurrence, [T11]

domain, 33|

domain Markov property (DMP), [63] [66] B3]
domain wall, see interface

driving process, [67]

edge, see graph, definition
exploration process, [T06]
extremal length, [#4]

face (of a planar graph), [T04]

filtration, [12]

finite dimensional distribution, [T2]

Fortuin-Kasteleyn-Ginibre (FKG) inequality,
o7

generated by a curve,
graph
definition, [T04]
dual,[T04]
planar, [T04]
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definition, 7]

parametrization with, 49]
harmonic conjugate, [34]
harmonic function, 33|
harmonic measure, [42]
Hausdorff dimension,
holomorphic function, 29
hull, 43

d-hull, [60]

s-hull, [62]

increasing
event,[107]
random variable, [T07]
independent and stationary increments, [66]
interface, 4 3]
Ising model, [
1td integral, see stochastic integral
1t6 isometry, [T3]
1t6’s formula, 21]

kernel convergence of a sequence of domains,
Koebe 1/4 theorem,
Koebe distortion theorem, {2]

lattice, [T03]

lattice model, [63]
link, see graph, definition
local growth, [58} [62]
localization, 21]
locally connected set, [38]
Loewner chain, [5§]
d-Loewner chain,
stochastic, [67]
Loewner equation
in the strip S, [62]
in the unit disc D, 0} [61]
in the upper half-plane H, [51]

of f;.53
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Mébius mapping, 36} 46|
measurable process,lE

observable, [123]
Oded Schramm, [63]
one-point function of SLE(k),

Poisson kernel, [34]
pushforward,

quadratic variation, [T3]
of a stochastic integral, [T9] [21]
of Brownian motion, [T3]
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random walk
symmetric simple, [3]
Riemann mapping theorem, [36]
Riemann sphere, 36]
Russo—Seymour—Welsh estimates (RSW),@

scale invariance, [64]
scaling limit, 2] 3] 3} [106]
Schramm’s pr1n01ple [61[641 (63} 691 @ [&4
Schramm-Loewner evolution, [2][63] [63]
conformal Markov property of, [68]
dipolar, [83]
radial,@
reflection symmetry of, [68]
scale invariance, [68]
SLE(x,p),
strong conformal Markov property of, [68]
Schwarz reflection principle, [34]
Schwarz-Christoffel mapping, 39|
semimartingale, 23]
simple process, [[3]
simply connected domain, 3]
site, see graph, definition
site percolation, [¢] [T03]
statistical physics, [63][63]
stochastic calculus, [TT} 24
stochastic differential equation (SDE), @
stochastic integral
definition, [T6] [T9]
elementary properties, [[7]
stochastic Loewner evolution, [63]
stochastic process, 3]
stopping time, [T9]
stopping time c-algebra, 23]
strip Sz, [60]

strong convergence of random curves, [03]

tempered 6-fold crossing property, [[19]
tempered crossing propeny,rﬂ_'Sl
tight

random variable, 31|

sequence of measures, [31]
time (variable of a stochastic process),E]
time change, 23]
topological quadrilateral, @

tortuosity, [TT4]
trace,

unit disc, D, 33|

unit disc, exterior of, D*,
univalent function, [33]
upper half-plane, H, 33|

van den Berg—Kesten (BK) inequality, [TT]]
variation of a process ( p’th),@
vertex, see graph, definition
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