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LE’ITER TO THE EDITOR 

How long are the arms in DLA? 

Harry Kesten 
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA 

Received 20 October 1986 

Abstract. We show that the maximal length of the arms of DLA can grow at most at a rate 
of n2’3 in dimension 2 and at a rate of n2’d in dimension d > 2. Here n denotes the volume 
or mass of the aggregate. 

Much attention has been paid in the last few years to the growth model known as 
diffusion-limited aggregation (DLA) (see for instance the many articles in Stanley and 
Ostrowsky (1986) (in particular Witten (1986) and Meakin (1986))) and the many talks 
at the 1986 Statistical Physics Meeting in Boston. We discuss here only the most 
classical of the DLA models, the Witten-Sander model on the hypercubic lattice z d  
(Witten and Sander 1981). We denote the aggregate of n particles by A,,. A, consists 
only of the origin 0 in zd .  In the Witten-Sander model A,,,, is formed from A,, by 
releasing a particle ‘at infinity’ and letting it perform a (nearest-neighbour) symmetric 
random walk on z d  until it reaches a boundary site of A,,. (A boundary site of A,, is 
a vertex of z d  adjacent to A,,, but not in A,,.) If y is the first boundary site visited by 
the particle, then A,,+, = A,, U { y } ,  i.e. A,,,, is formed by adding y to A,,. We shall give 
a more formal description in remark 3, but first we state our result. 

Theorem. Let 

r,, := max(lx1: x E A,,} 

denote the ‘radius’ of A,,. There exists a constant c d ,  depending only on the dimension 
d, such that 

1 
- n2/3 rn c2 eventually with probability 1 in dimension 2 

and 

I 
- n 2 / d  r f l  cd eventually with probability 1 in dimension d > 2. 

Remark 1 .  Family (1986) has shown that if A,, looks like a cross with needlelike arms 
along the coordinate axes in d = 2 then the length of the arms of A,, should grow at 
the rate n 2 / 3 .  Turkevich (1986) assumed that A,, was diamondlike, which resulted in 
a growth rate of n3l5 for r,, in dimension two. Here we make no a priori assumptions 
on the shape of A,,. It will be seen later that our estimates are quite crude, so that it 
seems quite possible to us that the actual growth rate of r,, is smaller than n2l3 for d = 2. 
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Remark 2. Various people (cf Witten (1986, pp 65,66), Meakin (1986, p 120) and the 
references cited there) have argued that, for large d, r,, should grow at most like nl'(d-l), 
and perhaps for d = 2, 3 ,  4 like n(d+1) ' (d2+ ' ) .  Clearly (2) is a much worse estimate. 

Remark 3. The description of the formation of A,,+1 from A,, was somewhat informal, 
in that we cannot release a particle at infinity. Moreover, for d 2 3 such a particle will 
never hit the boundary of A,. To circumvent these difficulties we take limits of hitting 
probabilities. Let So, SI , . . . be the successive positions of a particle performing a 
nearest-neighbour symmetric random walk on zd (starting at So). Let B be a collection 
of lattice sites and let T =  T(B) be the hitting time of B, i.e. 

T( B) = min{ n 2 0: S,  E B }  

( T( B) = CO if S,, never is in B). The hitting position of B is therefore 
distribution is given by 

The hitting 

HE (x, y := Pr{ sT( E)  = y I SO = y E B. 

It is known (Spitzer 1976, theorem 14.1) that for d = 2 and any finite B 

p B ( y ) : =  ,3Fm y )  exists Y E B  (3  1 

Thus p B  defines an honest probability distribution. For d = 2 we apply this with 
B = aA,, := boundary of A,,. We form A,,+I by adding to A, a site y,+, , where Y , , + ~  is 
chosen according to the distribution pJA,. 

For d a 3  the limit of HB(x,y) for IxI+oo is identically zero (Spitzer 1976, prop. 
25.3). One obtains a non-trivial limit distribution for y by conditioning on { TB <a}, 
the event that B is visited at some time. In fact, for d 2 3  the limit 

exists and satisfies (4) (cf Spitzer (1976, prop. 26.2) when d = 3; the same proof works 
for d > 3 ) .  Again we choose the point ynt l ,  to be added to A,,, according to the 
distribution pJA,. 

In order to prove this, first one derives a uniform upper bound for pLBA,(y) in terms 
of r,, or n, and then one shows how this limits the growth rate as described in (1) and 
(2). We describe some more details in the following steps. Steps (i) and (ii) consider 
d = 2 only, while step (iii) discusses d 2 3. 

Step (i). Take d = 2 and let A,,, and hence aA,, be fixed, and also fix a point y E dA,. 
Then there exists a site zo in A,, which is adjacent to y and a path zo, z1 , . . . , zm of 
vertices of zz in A,, such that (zo- zml 2 Ir,, and zi are adjacent on zz, 0s i < m). 
This is so because A, is connected and has radius r,,. Thus, there exists a path 
zo, zl,. . . , zf in A,, from zo through 0 to some point 2, with lzll = r,,. Then Izo-O( air,, 
or l zo-z f18ir , , ,  so that we can take for zo, . . . , z,,, either the first part of zo, . . . , z, 
(connecting zo to 0) or the whole path zo, . . . , 2,. If the random walk particle starts 
outside A,, and hits dA, first in y, then it actually hits y before it hits the path 
{ z o ,  z1 , . . . , z,} c A,,. Therefore, if we take B = { y ,  zo, z1 , . . . , zm}, then 

PdA"(Y)  PB(Y) .  (6) 
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Technically the hardest part of the proof is to show that, no matter what the path B 
with end-to-end distance a i r ,  is, p B ( y )  cannot be much larger than the hitting 
probability at y = 0, when B is a straight line segment along the negative x axis of 
length f r , .  Specifically, there exists a constant K * ,  such that 

P B ( Y ) <  K*PC(O)  
when 

C ={o, ( - 1 ,  O), ( - 2 ,  o), . . . , ( - i r , , ,  0)). ( 7 )  

pc(0) can be estimated explicitly and ( 6 )  and (7 )  together result in 

for some fixed K .  This estimate holds for all connected sets A, with 0 E A, and radius 
r,, and yEaA,.  

We point out that the analogue of (7) for planar Brownian motion (even with 
K *  = 1) is a known inequality for harmonic measures. It is sometimes called the 
Beurling circular projection theorem (cf Ahlfors 1973, theorem 3.6) .  The rather tech- 
nical proof of ( 7 )  which mimicks Beurling’s proof will be given in a separate paper. 

Step (ii). Equation ( 8 )  supplies us with a limit on the growth rate of r,. In fact, 
we claim that with probability 1 there exists a random but finite k,, such that 

for all k s k o , 2 k 4 ~ 4 2 k + l .  ( 9 )  
~ 2 ~ + ~  
J r (  1 )  

r ( 2 k + l ) - r ( 1 ) 4 - + 2 k ’ 2  

Here we have written r ( n )  instead of r, for typographical reasons. Once one has (9) 
it is not too difficult to show that any sequence of positive r, which is increasing and 
satisfies r,,, - r, 4 1 as well as ( 9 )  must also satisfy ( 1 )  with C2 = 28(1+ 5K2’3) .  

Let u l ,  . . . , U, be a path without double points on z2. We say that this path is filled 
in order if each ui eventually belongs to A,, and if n, < n2 < . . . < n,, where ni denotes 
the smallest n for which ui E A,.  To obtain ( 9 )  note that for any vertex x E A, there 
exists a path u1 =0, u 2 , .  . . , U, = x, from 0 to x, in z2 which is contained in A, and 
filled in order (in particular s 6 n). The existence of such a path is easily established 
by induction on n. If we now take n = 2 k + 1 ,  2k  s 1 e 2 k + 1 ,  and x E A2k+l such that 
1x1 = r ( 2 k + 1 ) ,  then the piece of the path leading to this x from its last crossing of the 
circle of radius rf is a path without double points, U,, u,+~, . . . , U,, with the following 
properties: 

(10) r( l )  < lurl s r (1)  + 1 

r ( I )  c luil s r ( 2 k + l )  t 4 i d S  ( 1 1 )  
and 

U,, . . . , U, is filled in order during the time interval [ 1 +  1, 2 k + 1 ] .  ( 1 2 )  
If 

is to occur, then in addition we must have 

~ 2 ~ + ~  
s - t a-+2k12. 

J r ( l )  
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Set 

Then (13) can occur only if there exists a path U,, U,+, , . . . , U,+, which satisfies 
(lo)-(  12) with s replaced by r + m. The number of paths of length m satisfying (10) 
and (11) is at most 

4 r 2 (  rl + 1)4". (16) 

Now fix a path U,, . . . , U,+, with the properties (10) and (11) for k = r + m. We 
shall estimate the probability of (12) for this path. Assume that at time n E [ I  + 1, 2k+'], 
A,-1 already contains U,,. . . , U,, but not yet u,+~. Define 

1 if U,+] is the vertex added to A,,-l to form A, 
I n = { o  otherwise. 

I,, is the indicator function of a successful filling of a new site of the given path in 
order at time n. For (12) to occur it is necessary that 

2 k + 1  

C ~ , , s m .  
1+1 

However, if  we write Pr{I,, = 11.9,,-1} for the conditional probability of {I,, = l}, given 
A,,-l, then (8) tells us that 

Consequently, for Is zk 

and also the expected number of sites ui which are successfully filled up in order 
during [ I +  1,  2k+1] is at most K2k(r(l))-1'2. A direct application of known exponential 
bounds, e.g. using Freedman (1973, theorem 4b) with 

now shows that conditionally on AI 

Pr{( 12) occurs for the given path U,, . . . , U,,,} 6 Pr{( 17) occurs} S ($e )m.  

In view of ( 1 9 ,  (16) and rl S 1 < 2k+*,  it now follows that 

) - r(l) 3 ~ 2 ~ + ~ - + 2 ~ / ~ +  1) Pr{ r(2 k +  ' 1 
J r ( 4  

s Pr((12) occurs for some path U,, . . . , U,+, satisfying (10) and (11)) 

s 4r22kf'(&e)m S 4r22kf ' (~e)2"*.  (18) 

The sum of the right-hand side of (18) over 1 in 2k s 1 < 2k+1 and then over k = 1 , 2 , .  . . 
is finite. This implies (9) by means of the Borel-Cantelli lemma (see Feller 1968, 
lemma VIII.3.1). 
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Step ( i i i ) .  When d 3 3 (8) has to be replaced by 

p d A , , ( y )  S Kn-'+*Id (19) 
for each connected set A,, in z d  of n sites, and y ~ d A , , .  (19) is obtained from the 
identification of p B ( y )  in (5) as 

where e B ( y ) ,  the escape probability of E from y, is the probability that a random walk 
So, S , ,  . . . starting from S o = y  never returns to E (see Spitzer 1976, prop. 26.2). The 
numerator in (20) is clearly G l ,  while Spitzer shows that the denominator equals the 
'capacity' of E. Since the hitting distribution of dA, is the same as that of A, U aA,, 
we find that 

pCLdA,(y) [capacity of (A ,  U dA,)]-' 

from which it is not hard to obtain (19). The proof of ( 2 )  from (19) is similar to 
step (ii). 
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