Physica A 168 (1990) 529-535 North-Holland

UPPER BOUNDS FOR THE GROWTH RATE OF DLA

Harry KESTEN¹

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

We show that the maximal length of the arms in DLA can grow at most at a rate $n^{2/(d+1)}$, where *n* denotes the volume or mass of the aggregate, and *d* is the dimension. (A logarithmic correction factor is needed if d = 3). We also give a lower bound for the number of sites in a sphere which are eventually occupied by the aggregate.

1. Statement of results

We consider the standard DLA model of Witten and Sander [1]. A_1 consists of the orign of \mathbb{Z}^d . At time *n*, the aggregate A_n is a connected set in \mathbb{Z}^d , consisting of *n* sites and containing the origin. $A_{n+1} = A_n \cup \{y_n\}$ with the new point y_n a point of ∂A_n , where ∂A_n , the boundary of A_n , consists of the sites of \mathbb{Z}^d which are adjacent to A_n but not in A_n . y_n is chosen according to the harmonic measure on ∂A_n , i.e., y_n has the distribution of the first hitting place of ∂A_n by a simple random walk "starting at ∞ " and conditioned to hit ∂A_n at some time (see Kesten [2] for more details). We define the radius of A_n as

$$r(n):=\max\{|x|:x\in A_n\}$$

(|x| is the Euclidean norm of x). We show the following upper bound for r(n).

Theorem 1. There exist constants C(d) such that with probability 1

$$r(n) \le C(d) n^{2/(d+1)}$$
 eventually if $d \ge 2$ but $d \ne 3$, (1)

$$r(n) \le C(3) \left(n \log n \right)^{1/2} \quad \text{eventually if } d = 3.$$
(2)

It is useful to express this result somewhat differently. Let

T(r) = number of cells in the aggregate

at the first time its radius reaches r.

¹ Research supported by the NSF through a grant to Cornell University.

0378-4371/90/\$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

Then (1) is equivalent to

$$T(r) \ge C^* r^{(d+1)/2} \quad \text{eventually} \tag{3}$$

for some constant $C^* > 0$. If there exists a fractal dimension \overline{d} such that

$$\lim_{r\to\infty}\frac{\log T(r)}{\log r}=\bar{d}\;,$$

then (3) (and hence also (1)) imply

$$\bar{d} \ge \frac{1}{2}(d+1) \,. \tag{4}$$

As another measure of the density of A one may consider

$$N(r)$$
: = number of cells in the ball $\{x: |x| \le r\}$ which are occupied
by the aggregate A eventually.

It is reasonable to conjecture that there exists an exponent \bar{e} such that

$$\lim_{r\to\infty}\frac{\log N(r)}{\log r}=\bar{e}\;.$$

Clearly

$$N(r) \ge T(r) \quad \text{and} \quad \bar{e} \ge \bar{d}$$
 (5)

(provided the exponents \overline{d} and \overline{e} exist). As far as we know no clear distinction has been made between \overline{d} and \overline{e} in the literature so far.

Theorem 2. There exist constants C(d) such that w.p. 1

 $N(r) \ge C(d)r^{d-1}$ for infinitely many r.

Corollary. If \bar{e} exists, then $\bar{e} \ge d - 1$.

Remarks. (i) For d = 2, (1) was proved already by Kesten [2, 3], while for $d \ge 3$, (1) and (2) improve refs. [2, 3]. Lawler [4] will contain a proof of $r(n) \le C(3) n^{1/2} (\log n)^{1/4}$ eventually for d = 3. This slightly improves (2). Here we only consider (1), or rather (3), for $d \ge 4$. Only a slight modification of our argument is needed to prove (2).

530

(ii) A number of non-rigorous arguments have been given to bound \bar{d} or \bar{e} . Ball and Witten [5] argued that $\bar{d} \ge d - 1$, and various non-rigorous arguments have been used [6-8] to arrive at $\overline{d} = (d^2 + 1)/(d + 1)$. Hentschel [9] claims $\overline{d} = (d^2 + 4d + 8)/(d - 2)$ for large d. The lower bound (d + 1)/2 for \overline{d} appears also in the paper of Family [10] (see his eq. (8) with $\eta = 1$).

(iii) At this stage it is unclear whether $\bar{e} > \bar{d}$ or $\bar{e} = \bar{d}$. There is weak numerical evidence in the paper of Tolman and Meakin [11] that $\bar{e} = \bar{d}$.

(iv) The proof of theorem 2 gives some information about the density of r's for which $N(r) \ge C(d) r^{d-1}$. In fact, for a suitable C > 0, each interval $[C\sqrt{R}, R]$ with R large enough contains an r with $N(r) \ge C(d) r^{d-1}$. We can also obtain $\bar{d} \ge \bar{e}/(\bar{e}+2-d)$ from our methods.

2. Proofs

Throughout we take $d \ge 4$. S_t, t = 0, 1, ..., denotes a symmetric nearest neighbor random walk on \mathbb{Z}^d . P^x denotes the probability governing random walk paths starting at x. P, without a superscript, will be used for the probability measure governing the Markov chain A_0, A_1, \ldots, E^x and E denote expectation with respect to P^x and P, respectively. Finally, C_i will be a strictly positive finite constant whose precise value is of no significance for us. Define

$$M_n(x) = \sum_{y \in A_n} G(x, y) ,$$

where G is the Green function for S_n , i.e.

$$G(x, y) = \sum_{t=0}^{\infty} P^x \{ \mathbf{S}_t = y \} .$$

It is well known (cf. Spitzer [12], prop. 26.1 or ref. [4], theorem 1.5.3) that

$$\frac{C_1}{1+|x-y|^{d-2}} \le G(x, y) \le \frac{C_2}{1+|x-y|^{d-2}}.$$

Also introduce the escape probabilities from B,

$$e(y, \mathbf{B}) = P^{y} \{ \mathbf{S}_{t} \not\in \mathbf{B} \quad \text{for } t \ge 1 \},\$$

and the capacity of B,

H. Kesten / Upper bounds for the growth rate of DLA

$$C(\mathbf{B}) = \sum_{y \in \mathbf{B}} e(y, \mathbf{B}) \, .$$

It was shown by Spitzer (ref. [12], sect. 25, 26) (see also ref. [2]) that

$$P\{y_n = y | \mathbf{A}_1, \dots, \mathbf{A}_n\} = \frac{e(y, \partial \mathbf{A}_n)}{C(\partial \mathbf{A}_n)}, \qquad y \in \partial \mathbf{A}_n.$$

Note that the random walk S_i cannot move from A_n to the complement of A_n , or vice versa, without passing through a point of ∂A_n . From this it is easy to see that (with $\overline{A}_n = A_n \cup \partial A_n$)

$$e(y, \partial A_n) = e(y, \overline{A}_n)$$
 for $y \in \overline{A}_n$, $C(\partial A_n) = C(\overline{A}_n)$.

Also, if $x \in \bar{A}_n$

$$\sum_{y \in \bar{A}_n} G(x, y) \ e(y, \bar{A}_n) = \sum_{y \in \bar{A}_n} \sum_{t=0}^{\infty} P^x \{ S_t = y \text{ but } S_k \not\in \bar{A}_n \text{ for all } k > t \}$$
$$= P^x \{ S_t \text{ leaves } \bar{A}_n \text{ eventually} \} = 1.$$

Therefore, if $x \in \overline{A}_n$

$$E\{M_{n+1}(x) - M_n(x)|\mathbf{A}_1, \dots, \mathbf{A}_n\} = E\{G(x, y_n)|\mathbf{A}_n\}$$
$$= \sum_{y \in \partial \mathbf{A}_n} G(x, y) \frac{e(y, \partial \mathbf{A}_n)}{C(\partial \mathbf{A}_n)} = \sum_{y \in \bar{\mathbf{A}}_n} G(x, y) \frac{e(y, \bar{\mathbf{A}}_n)}{C(\bar{\mathbf{A}}_n)} = [C(\bar{\mathbf{A}}_n)]^{-1}.$$

Thus, on $\{x \in \bar{A}_k\}$,

$$Z_n(x) := M_n(x) - \sum_{k=1}^{n-1} [C(\bar{A}_j)]^{-1}, \quad n \ge k,$$

is a martingale. Since (ref. [12], prop. 1.3)

$$0 \le M_{n+1}(x) - M_n(x) = G(x, y_n) \le G(0, 0) < \infty,$$

the increments of Z_n are bounded. Moreover, its square function

$$\Sigma_n := \sum_{l=k}^{n-1} \operatorname{var}\{M_{l+1} - M_l | A_1, \ldots, A_l\}$$

satisfies

532

$$\Sigma_n \leq \sum_{k}^{n-1} E\{(M_{l+1} - M_l)^2 | \mathbf{A}_1, \dots, \mathbf{A}_l\} = \sum_{k}^{n-1} E\{G^2(x, y | \mathbf{A}_l\} \\ \leq G(0, 0) \sum_{k}^{n-1} E\{G(x, y) | \mathbf{A}_l\} = G(0, 0) \sum_{k}^{n-1} [C(\bar{\mathbf{A}}_l)]^{-1}.$$

The standard exponential estimates (Neveu [13], sect. VII.2) for martingales now yield the following result.

Lemma 1. There exists a constant λ such that

$$P\left\{\text{there exists some } x \in \bar{A}_k \text{ and an } n \ge k \text{ with} \\ \left| M_n(x) - M_k(x) - \sum_{k=1}^{n-1} \left[C(\bar{A}_l) \right]^{-1} \right| \ge a + \frac{1}{2} \sum_{k=1}^{n-1} \left[C(\bar{A}_l) \right]^{-1} \right\} \le 2dk \ e^{-\lambda a} .$$

The arguments of refs. [2, 3] are easily adapted to yield the following estimate.

Lemma 2. For any $r \ge 1$

$$P\left\{\sum_{l=T(r)}^{T(2r)-1} \left[C(\bar{A}_{l})\right]^{-1} \leq \frac{r}{8d}\right\} \leq C_{3} e^{-C_{4}r}.$$

Lemma 1 with $a = (3/\lambda) \log k$ shows that eventually

$$\sum_{k}^{n-1} \left[C(\bar{A}_{i}) \right]^{-1} \leq \frac{6}{\lambda} \log k + 2[M_{n}(x) - M_{k}(x)], \quad x \in A_{k}, \quad n \geq k.$$

Combined with lemma 2 and the observation $T(r) \le C_5 r^d$, log $T(r) \le d \log r + C_6$, this yields our fundamental estimate.

Proposition 3. W.p. 1 one has for all sufficiently large r and all $x \in A_{T(r)}$

$$\frac{r}{16d} \leq \frac{r}{8d} - \frac{6d}{\lambda} \log r - \frac{6}{\lambda} C_6 \leq \sum_{T(r)}^{T(2r)-1} [C(\bar{A}_l)]^{-1} - \frac{6}{\lambda} \log T(r)$$
$$\leq 2\{M_{T(2r)} - M_{T(r)}\} = 2 \sum_{y \in A_{T(2r)} \setminus A_{T(r)}} G(x, y)$$
$$\leq C_7 \sum_{y \in A_{T(2r)} \setminus A_{T(r)}} \frac{1}{1 + |x - y|^{d-2}}.$$
(6)

The remaining arguments are purely deterministic. We merely have to investigate how small $|A_{T(2r)} A_{T(r)}|$ can be and still satisfy (6) for all $x \in A_{T(r)}$. (|B| denotes the cardinality of B.) Let

$$B(x, r) = \{x : |x| \le r\}, \quad C(x, r) = B(x, 2r) \setminus B(x, r)$$

be the ball of radius r with center at x, and the shell between B(x, 2r) and B(x, r), respectively. Then, for suitable C_8 and C_9 (cf. ref. [2], p. 181)

$$C_7 \sum_{y \in B(x, C_8 \sqrt{r})} \frac{1}{1 + |x - y|^{d-2}} \leq C_9 C_8^2 r \leq \frac{r}{32d}$$

Consequently (6) yields

$$r \leq C_{10} \sum_{\frac{1}{2}C_8 \sqrt{r} \leq 2^k \leq r} \sum_{y \in A_{T(2r)} \cap C(x, 2^k)} \frac{1}{1 + |x - y|^{d-2}}$$

$$\leq C_{10} \sum_{\frac{1}{2}C_8 \sqrt{r} \leq 2^k \leq r} 2^{-k(d-2)} |A_{T(2r)} \cap C(x, 2^k)|.$$
(7)

We claim that (7) implies for a suitable $C_{11} > 0$ (independent of x and r) that there exists a k(x) with

$$\frac{1}{2}C_8\sqrt{r} \le 2^{k(x)} \le r$$

and

$$|\mathbf{A}_{T(2r)} \cap \mathbf{C}(x, 2^{k(x)})| \ge C_{11} r^{(d-1)/2} 2^{k(x)} .$$
(8)

Indeed, if (8) fails for some x, then the right-hand side of (7) for this x is at most $2(C_8/2)^{-(d-3)/2}C_{10}C_{11}r$, which cannot be for small C_{11} .

Proof of theorem 1. Choose a number of more or less disjoint (see (9) below) balls $B(x, 2^{k(x)})$ with $x \in A_{T(r)}$ as follows. Let $(v_0, v_1, \ldots, v_{\nu})$ be a path in $A_{T(r)}$, whose initial point v_0 is the origin and whose endpoint v_{ν} satisfies $|v_{\nu}| = r$. Choose $B_0 = B(0, 2^{k(0)+1})$. Once B_0, \ldots, B_l have been chosen of the form $B(v_{j_l}, 2^{k(v_{j_l})+1}), 0 \le i \le l$, with $j_0 < j_1 \cdots < j_l$, we take

$$j_{l+1} = \max\{j > j_l : \mathbf{B}(v_j, 2^{k(v_j)+1}) \text{ intersects } \mathbf{B}_l\}$$

Thus, by definition

$$\mathbf{B}_{l+1} \cap \mathbf{B}_l \neq \emptyset$$
, but $\mathbf{B}_m \cap \mathbf{B}_l = \emptyset$ for $m > l+1$. (9)

534

In particular, no vertex v can be in more than two of the balls B_j . Thus, if B_0, \ldots, B_σ , with $v_{j_\sigma} = v_{\nu}$ are all the balls selected in this way until we are forced to stop, then we have

$$T(2r) = \left| \mathbf{A}_{T(2r)} \right| \ge \frac{1}{2} \sum_{0}^{\sigma} \left| \mathbf{A}_{T(2r)} \cap \mathbf{B}_{l} \right| \ge \frac{1}{2} \sum_{0}^{\sigma} \left| \mathbf{A}_{T(2r)} \cap \mathbf{C}(v_{j_{l}}, 2^{k(v_{j_{l}})}) \right|$$
$$\ge \frac{1}{2} C_{11} r^{(d-1)/2} \sum_{0}^{\sigma} 2^{k(v_{j_{l}})} \quad (by \ (8)).$$
(10)

On the other hand,

$$r = |v_{\nu}| \leq \sum_{0}^{\sigma-1} |v_{j_{l+1}} - v_{j_{l}}| \leq \sum_{0}^{\sigma-1} (2^{k(v_{j_{l+1}})+1} + 2^{k(v_{j_{l}})+1}) \leq 4 \sum_{0}^{\sigma} 2^{k(v_{j_{l}})}.$$
(11)

(10) and (11) yield (3) with r replaced by 2r.

Proof of theorem 2. This is much easier. Indeed, assume

$$N(2^{k+1}) \leq \frac{1}{3C_{10}} 2^{k(d-1)} \quad \text{for all } 2^k \in \left[\frac{1}{2}C_8 \sqrt{r}, r\right].$$
(12)

Then the right-hand side of (7), with x the origin, is at most

$$C_{10} \sum_{2^k \leqslant r} \frac{1}{3C_{10}} 2^k < r \, .$$

Thus, (12) must fail for all sufficiently large r.

References

- [1] T.A. Witten and L.M. Sander, Phys. Rev. Lett. 47 (1981) 1400.
- [2] H. Kesten, Stoch. Proc. and their Appl. 25 (1987) 165.
- [3] H. Kesten, J. Phys. A 20 (1987) L 29.
- [4] G. Lawler, Intersections of Random Walks (Birkhäuser, Boston), in press.
- [5] R.C. Ball and T.A. Witten, Phys. Rev. A 29 (1984) 2966.
- [6] M. Muthukumar, Phys. Rev. Lett. 50 (1983) 839.
- [7] M. Tokuyama and K. Kawasaki, Phys. Rev. Lett. A 100 (1984) 337.
- [8] K. Honda, H. Toyoki and M. Matsushita, J. Phys. Soc. Jpn. 55 (1986) 707.
- [9] H.G. Hentschel, Phys. Rev. Lett. 52 (1984) 212.
- [10] F. Family, in: Springer Proceedings in Physics, vol. 33, D.P. Landau, K.K. Mon and H.B. Schüttler, eds. (Springer, Berlin, 1988) p. 65.
- [11] S. Tolman and P. Meakin, Phys. Rev. A 40 (1989) 428.
- [12] F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, 1964).
- [13] J. Neveu, Martingales à temps discret (Masson, Paris, 1972).