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UPPER BOUNDS FOR THE G R O W T H  RATE OF DLA 

H a r r y  K E S T E N  1 

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA 

We show that the maximal length of the arms in DLA can grow at most at a ra te  n 2/(d+l), 
where n denotes the volume or mass of the aggregate, and d is the dimension. (A logarithmic 
correction factor is needed if d = 3). We also give a lower bound for the number of sites in a 
sphere which are eventually occupied by the aggregate. 

1. Statement of  results 

W e  cons ide r  the  s t a n d a r d  D L A  m o d e l  of  W i t t e n  and  S a n d e r  [1]. A 1 consists  

o f  the  o r ign  of  Z d. A t  t ime  n, the  agg rega t e  A n is a c o n n e c t e d  set  in 7 d, 

consis t ing  of  n si tes and  con ta in ing  the  or igin .  An+ ~ = A n U {Yn} with  the  new 

po in t  Yn a po in t  o f  0 A  n, whe re  0An,  the  b o u n d a r y  of  A , ,  consis ts  o f  the  si tes of  

y d  which a re  a d j a c e n t  to A n bu t  not  in A n. Yn is chosen  accord ing  to  the  

h a r m o n i c  m e a s u r e  on  OAn, i . e . ,  y~ has  the  d i s t r ibu t ion  of  the  first h i t t ing  p lace  

of  0 A  n by  a s imple  r a n d o m  walk  " s t a r t ing  at  ~ "  and  c o n d i t i o n e d  to hit  d A  n at 

some  t ime  (see K e s t e n  [2] for  m o r e  detai ls) .  We  def ine  the  rad ius  of  A n as 

r (n) :  = m a x { l x l : x  ~ A , }  

(Ix I is the  E u c l i d e a n  n o r m  of  x) .  We  show the  fo l lowing u p p e r  b o u n d  for  r(n). 

Theorem 1. T h e r e  exist  cons tan t s  C(d) such tha t  with p r o b a b i l i t y  1 

r(n)<~ C(d) n 2/(a+l) even tua l ly  if d~>2  but  d # 3 ,  (a) 

r(n) ~ C(3)  (n log n) ~/2 even tua l ly  if d = 3 .  (2) 

I t  is useful  to express  this resul t  s o m e w h a t  d i f ferent ly .  Le t  

T(r) = n u m b e r  of  cells  in the  agg rega t e  

at the  first t ime  its r ad ius  r eaches  r .  
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Then (1) is equivalent to 

T(r) ~ C* r (d+l)/2 eventually (3) 

for some constant C* > 0. If there exists a fractal dimension d such that 

lim log T(r) _ d ,  
r--,= log r 

then (3) (and hence also (1)) imply 

d ~  > l ( d +  1). (4) 

As another measure of the density of A one may consider 

N(r): = number of cells in the ball {x:lxl-<r} which are occupied 

by the aggregate A eventually.  

It is reasonable to conjecture that there exists an exponent g such that 

lim log N(r) _ 4.  
r--,= log r 

Clearly 

N(r)>tT(r)  and g / > d  (5) 

(provided the exponents d and g exist). As far as we know no clear distinction 
has been made between d and ~ in the literature so far. 

Theorem 2. There exist constants C(d) such that w.p. 1 

N(r) >i C(d)r  d-1 for infinitely many r .  

Corollary. If Y exists, then g/> d - 1. 

Remarks. (i) For d = 2, (1) was proved already by Kesten [2, 3], while for 
d/> 3, (1) and (2) improve refs. [2, 3]. Lawler [4] will contain a proof of 
r(n) <- C(3) nl/2(log n)  1/4 eventually for d = 3. This slightly improves (2). Here 
we only consider (1), or rather (3), for d />4.  Only a slight modification of our 
argument is needed to prove (2). 
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(ii) A number of non-rigorous arguments have been given to bound d or ~. 
Ball and Witten [5] argued that d/> d - 1, and various non-rigorous arguments 
have been used [6-8] to arrive at d =  (d2+  1)/(d + 1). Hentschel [9] claims 
d = (d 2 + 4d + 8) / (d  - 2) for large d. The lower bound (d + 1)/2 for d appears 
also in the paper of Family [10] (see his eq. (8) with r /=  1). 

(iii) At  this stage it is unclear whether ~ >  d or g =  d. There is weak 
numerical evidence in the paper of Tolman and Meakin [11] that ~ = d. 

(iv) The proof of theorem 2 gives some information about the density 
of r's for which N(r)>~ C ( d ) r  d-l. In fact, for a suitable C > 0 ,  each interval 
[CX/-R, R] with R large enough contains an r with N(r)  >! C ( d )  r d-1. We can also 
obtain d/> ~/(g + 2 - d) from our methods. 

2. Proofs 

Throughout  we take d>~4. St, t = 0 ,  1 , . . . ,  denotes a symmetric nearest 
neighbor random walk on ~_d. px denotes the probability governing random 
walk paths starting at x. P, without a superscript, will be used for the 
probability measure governing the Markov chain A 0, A 1 . . . . .  E x and E 
denote expectation with respect to px and P, respectively. Finally, C i will be a 
strictly positive finite constant whose precise value is of no significance for us. 

Define 

Mn(x)= ~'~ G(x, y), 
y E A  n 

where G is the Green function for S n, i.e. 

o~ 

G(x ,  y)  = ~,  Px{S  t = y } .  
t=0 

It is well known (cf. Spitzer [12], prop. 26.1 or ref. [4], theorem 1.5.3) that 

C1 C 2 

1 + Ix - yla-2 <~ G(x ,  y)  <~ 1 + I x -  yld-2 • 

Also introduce the escape probabilities from B, 

e ( y , B ) = P Y { S , ~ B  for t~> l} ,  

and the capacity of B, 
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C(B) = ~ e(y, B) .  
y ~ B  

It was shown by Spitzer (ref. [12], sect. 25, 26) (see also ref. [2]) that 

P{y .  = ylA 1 m.} - e(y, aA. )  
. . . . .  C(0A.)  ' y E a A . .  

Note that the random walk S, cannot move from A.  to the complement of A . ,  
or vice versa, without passing through a point of 0A n. From this it is easy to 
see that (with A,, = A n U 0A.)  

e(y, OA.) = e(y, A . )  

Also, if x E A.  

G(x, y) e(y, A . )  = 
Y~An YEfitn 

for y E .~. , C(OA.) = C(.~,,). 

Therefore, if x C A.  

2 P x { S , = y  but S~.~'.~. for all k > t }  
t = 0  

=PX{S, leaves A.  eventually} = 1. 

E{M.+,(x) - M . ( x ) ] A , , . . . ,  A.}  = E{G(x,  y . ) lA .}  

= • G(x, y) e(y, OA.) _ E G(x, y) e(y ,A. . )  _ [C(.~n)]_l. 
yEOAn C(0A.)  y~, .  C(A.)  

Thus, on {x E Ak}, 

n - I  

Z . ( x ) :  = M . ( x )  - n / >  
k 

is a martingale. Since (ref. [12], prop. 1.3) 

0<- M.+l(x ) -  M.(x) = G(x, y.)<~ G(O, O)< ~ ,  

the increments of Z .  are bounded. Moreover, its square function 

n - I  

X.: = ~] var{Mt+ l - MtIA, . . . . .  At} 
I=k 

satisfies 
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n-1 n-1  

~< ~ E{(Mt+I - M , ) 2 [ A 1 , . . . , A t }  = ~ E{G2(x ,  ylAt} 
k k 

n-1 n-1 

<- G(O, O) E E { G ( x ,  y)lA,} = G(O,O) E [ C ( A , ) ] - ' .  
k k 

The standard exponential estimates (Neveu [13], sect. VII.2) for martingales 
now yield the following result. 

Lemma 1. There exists a constant A such that 

P{there exists some x E ~k k and an n/> k with 

M.(x) - Mk(X ) -- ~ 1  [C(-~l) ]  -1 
k 

o_1 } 
a At- 1 ~ [C( /~ t / ) ] - - I  ~ 2dk e -aa 

k 

The arguments of refs. [2, 3] are easily adapted to yield the following 
estimate. 

Lemma 2. For any r I> 1 

[ T(2r)- 1 ] 
r } e -- C4r P E [ c ( A , ) l - ' - <  -< 

Lemma 1 with a = (3/A) log k shows that eventually 

n-a  6 
E [C(£,)]  -1 -< log k + 2[M,(x)  - Mk(X)] x ~ A k 
k ~ ~ ~ 

n>~k .  

Combined with lemma 2 and the observation T ( r ) ~  Csr a, log T ( r ) ~  d log 
r + C6, this yields our fundamental estimate. 

Proposition 3. W.p. 1 one has for all sufficiently large r and all x E At(r) 

r(2r) - l 
r r 6d 6 

- -  ~< log r - 

16d 8d A A C6 ~ T(r) 
6 

[C(At)] - 1 -  ~ log T(r) 

<- 2 { M T ( 2 r  ) - -  MT(r)  } = 2 2., G(x, Y) 
Y~AT(2r)\AT(r) 

1 N' <_ C7 
~'~ 1 + Ix - yl a-2 " (6) 

Y~AT(2r)\AT(r) 
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The remaining arguments are purely deterministic. We merely have to 
investigate how small IA~2~)',Ar~r)l can be and still satisfy (6) for all x E AT~r). 
(IBI denotes the cardinality of B.) Let 

B(x, r) = (x:lxl ~ r ) ,  C(x, r) = B(x, 2r)\B(x, r) 

be the ball of radius r with center at x, and the shell between B(x, 2r) and 
B(x, r), respectively. Then, for suitable C 8 and C 9 (cf. ref. [2], p. 181) 

C7 Z 1 2 r 
y~.B(x, C8x/7) 1 + Ix - yld 2 ~ C9Csr <~ 32----d " 

Consequently (6) yields 

r C,o X E 1 
Icsx/7<~Zk<<r YEAT(2r)nC(x, 2 k) 1 + IX - yld-2 

C~o ~ 2-*(a-Z)lA~(2~ ) n C(x, 2')1. 
I c8~/~2k~r 

(7) 

We claim that (7) implies for a suitable CI~ > 0 (independent of x and r) that 
there exists a k(x) with 

½ Csx/T ~< 2 k~x) ~< r 

and 

]AT(2r ) O C(x, 2*~x))l/> Cllr(d-l)/22 k(~) . (8) 

Indeed, if (8) fails for some x, then the right-hand side of (7) for this x is at 
most 2(Cs/2)-(d-3)/2CloCll r, which cannot be for small Cll. 

Proof  o f  theorem 1. Choose a number of more or less disjoint (see (9) below) 
balls B(x, 2 *(x)) with x E At(r) as follows. Let (v 0, v t . . . . .  v,)  be a path in 
AT~r), whose initial point v 0 is the origin and whose endpoint v~ satisfies 
Iv~l=r. Choose B0=B(0,2k(°)+~). Once B 0 . . . . .  B l have been chosen 

of the form B(vj,, 2k~%)+1), 0 ~ < i ~  < l, with J0 < J l " ' "  < J/, we take 

Jt+l = max{j  > Jt : B(vj, 2 *¢vj)+L) intersects Bi} . 

Thus, by definition 

BI+1 fq Bt ¢ ~ ,  but Bm A B / = ~  for m > l + l .  (9) 
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In particular, no vertex v can be in more than two of the balls B r Thus, if 
B 0 . . . . .  B~, with vj. = v~ are all the balls selected in this way until we are 
forced to stop, then we have 

Ar(2r) 1 ~ mT(2r ) NB, ~>~1 ~o Ar(2r) N C(vh, 2 k(%)) T(2r) = I> 2 o 

>i 1C11r(a-1)/2 ~ 2 k(%) (by (8)). (10) 
0 

On the other hand, 

o--I [ Oh o~-I ( 2k(vh+')+l 2k(vh)+l) r=lv. <~o %+' - <~ Z + ~ < 4 Z 2  k(%) . (11) 
0 0 

(10) and (11) yield (3) with r replaced by 2r. 

Proof of theorem 2. This is much easier. Indeed, assume 

1 2k(e_l) 2k N(2  k+ ' )  ~< ~ for  all E [ ½ C8N/~ , r ] .  (12) 

Then  the r ight-hand side o f  (7), with x the origin, is at most  

1 2k . 
Clo Z ~ < r  

2k<_r 

Thus, (12) must fail for all sufficiently large r. 
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