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UPPER BOUNDS FOR THE GROWTH RATE OF DLA

Harry KESTEN'
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

We show that the maximal length of the arms in DLA can grow at most at a rate n*'“*",

where n denotes the volume or mass of the aggregate, and d is the dimension. (A logarithmic
correction factor is needed if d = 3). We also give a lower bound for the number of sites in a
sphere which are eventually occupied by the aggregate.

1. Statement of results

We consider the standard DLLA model of Witten and Sander [1]. A, consists
of the orign of Z°. At time n, the aggregate A, is a connected set in Z°
consisting of n sites and containing the origin. A,,; = A, U {y,} with the new
point y, a point of dA,, where dA,, the boundary of A, consists of the sites of
Z¢ which are adjacent to A, but not in A,. y, is chosen according to the
harmonic measure on 94, i.e., y, has the distribution of the first hitting place
of A, by a simple random walk “‘starting at «’” and conditioned to hit A, at
some time (see Kesten [2] for more details). We define the radius of A, as

r(n): = max{|x[:x EA,}
(|x| is the Euclidean norm of x). We show the following upper bound for r(n).

Theorem 1. There exist constants C(d) such that with probability 1
r(n)< C(d) n®"“*Y  eventually if d =2 but d#3, (1)
r(n)< C(3)(nlogn)'’>  eventually if d=3. ()
It is useful to express this result somewhat differently. Let

T(r) = number of cells in the aggregate
at the first time its radius reaches r .
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Then (1) is equivalent to
T(r)= C* r*Y"”  eventually 3)

for some constant C* > 0. If there exists a fractal dimension d such that

im log T(r) _ ¥
== logr

then (3) (and hence also (1)) imply
d=1(d+1). (4)

As another measure of the density of A one may consider

N(r): = number of cells in the ball {x:|x|<r} which are occupied

by the aggregate A eventually .

It is reasonable to conjecture that there exists an exponent e such that

lim 108V _
== logr
Clearly
N(r)=T(r) and é=d (5)

(provided the exponents d and ¢ exist). As far as we know no clear distinction
has been made between d and ¢ in the literature so far.

Theorem 2. There exist constants C(d) such that w.p. 1

N() = C(d)yr*™! for infinitely many r .

Corollary. If € exists, then e=d — 1.

Remarks. (i) For d =2, (1) was proved already by Kesten [2, 3], while for
d=3, (1) and (2) improve refs. [2, 3]. Lawler [4] will contain a proof of
r(n) < C(3) n""*(log n)"'* eventually for d = 3. This slightly improves (2). Here
we only consider (1), or rather (3), for d =4. Only a slight modification of our
argument is needed to prove (2).
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(il) A number of non-rigorous arguments have been given to bound d or .
Ball and Witten [5] argued that d = d — 1, and various non-rigorous arguments
have been used [6-8] to arrive at d = (d” + 1)/(d + 1). Hentschel [9] claims
d=(d” +4d +8)/(d — 2) for large d. The lower bound (d + 1)/2 for d appears
also in the paper of Family [10] (see his eq. (8) with = 1).

(iii) At this stage it is unclear whether € >d or ¢=d. There is weak
numerical evidence in the paper of Tolman and Meakin [11] that ¢ = d.

(iv) The proof of theorem 2 gives some information about the density
of r’s for which N(r)= C(d) r*~". In fact, for a suitable C >0, each interval
[CVR, R] with R large enough contains an r with N(r) = C(d) r*~". We can also
obtain d = &/(¢ + 2~ d) from our methods.

2. Proofs

Throughout we take d=4. §,, t=0, 1,..., denotes a symmetric nearest
neighbor random walk on Z%. P* denotes the probability governing random
walk paths starting at x. P, without a superscript, will be used for the
probability measure governing the Markov chain A,, A,,.... E* and E
denote expectation with respect to P* and P, respectively. Finally, C; will be a
strictly positive finite constant whose precise value is of no significance for us.

Define

M,x)= 2 G, ),

YEA,

where G is the Green function for S, i.e.

G(x, y) = Z P{S,=y}.

It is well known (cf. Spitzer [12], prop. 26.1 or ref. [4], theorem 1.5.3) that

C C,
—— =G £ —.
1+!x_y|d—2 (x, y) 1+|x__y|d—2

Also introduce the escape probabilities from B,
e(y,B)=PY{S,&ZB fort=1},

and the capacity of B,
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C(B)= 2 e(y,B).

yEB

It was shown by Spitzer (ref. [12], sect. 25, 26) (see also ref. [2]) that

,0A
e(y,0A,) yEIA

P{yn:ylAl""’An}z C(BA) b n

Note that the random walk S, cannot move from A, to the complement of A,
or vice versa, without passing through a point of dA,. From this it is easy to
see that (with A, = A, UJA))

e(y,9A,)=e(y,A,) foryeEA,, C(3A,))=C(A,).

Also, if xEA,

> Gx,y)e(y,A)= > ZP{S =y but S, &ZA, for all k> 1t}
yeA yEA t=0

=P*{S, leaves A, eventually} =1.

Therefore, if xEA,,

E{M,, (x) - M,(0)|A,,.... A} =E{G(x, y,)|A,}

- y € 9A,) ey, A,) -
= 2, Ot GGay = 2 G n ER = IR

Thus, on {x EA,},
n—1 _
Z,(x): = M,(x) - 2 [CAD™,  n=k,
k
is a martingale. Since (ref. [12], prop. 1.3)

0<M,, ()~ M,(x)=G(x,y,)< G(0,0) <,

the increments of Z, are bounded. Moreover, its square function
n—1
Si=> var{M,,, —M|A,, ..., A}

n
1=k

satisfies
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n—1

S E{G*(x, ylA}

k

n—1
3, < ; E{M,,, ~ M,)ZIAI, A=

n—1

<6(0,0) 3 E(G(x, nlA) = G0.0) 2 [CAI

The standard exponential estimates (Neveu [13], sect. VIL.2) for martingales
now yield the following result.

Lemma 1. There exists a constant A such that

P{there exists some x € A, and an n = k with
n—1 _ n—1 _
’M,,(x> -M) - 3 [CAN | =att S (CA) " f<2dke™.
k k

The arguments of refs. [2, 3] are easily adapted to yield the following
estimate.
Lemma 2. For any r =1
T(2r)—1

P2 [can'=s

<C,e .
3
12709 8d}

Lemma 1 with a = (3/A) log k shows that eventually
n—1 _ 6
> [CAD] " < Y log k+2[M,(0) - M,(], xE€A,, n=k.
k

Combined with lemma 2 and the observation T(r)< C,r’ log T(r)<d log
r+ C;, this yields our fundamental estimate.

Proposition 3. W.p. 1 one has for all sufficiently large r and all x €A,

r _r _6d < 6
— — — — —_—— A _1._ —
T6d <87 3 logr— 7 Co< T% [CADI™ = 5 log T()

= Z{MT(Zr) - MT(r)} =2 2 G(x, y)
YEATN\AT()
1

<c — 6
7 — .
YEATGNATY 1+ ,x - y'd g ( )



534 H. Kesten | Upper bounds for the growth rate of DLA

The remaining arguments are purely deterministic. We merely have to
investigate how small |A ;,,\A 1| can be and still satisfy (6) for all x E A .
(|B| denotes the cardinality of B.) Let

B(x,r)={x:|x|=<r},  C(x,r)=B(x,2r)\B(x, r)

be the ball of radius r with center at x, and the shell between B(x,2r) and
B(x, r), respectively. Then, for suitable C; and C, (cf. ref. [2], p. 181)

r

1

2
7 = S GCyr=
YEB(x, CgVF) 1+ |)C - y|

Consequently (6) yields
1
r<C, X ) T
JCVFs2k<r yEAp;,NClx, 2¥) I+ |x - Y|

=Cy 2 2_k(d_Z)lAT(zr) N C(x, 2k)| - (7)

Legvrs2bsr

We claim that (7) implies for a suitable C,, >0 (independent of x and r) that
there exists a k(x) with
1Cvr<2"W <y

and

|A 72,y N Clx, 20)| = €, r47 2240 (8)

Indeed, if (8) fails for some x, then the right-hand side of (7) for this x is at
most 2(C,/2)~“"»">C,,C,,r, which cannot be for small C,,.

Proof of theorem 1. Choose a number of more or less disjoint (see (9) below)
balls B(x,2"’) with x € A, as follows. Let (v, v,,...,v,) be a path in
A, whose initial point v, is the origin and whose endpoint v, satisfies
lv,| =r. Choose B,=B(0,2”""). Once B,,...,B, have been chosen

of the form B(v,, 2“7 ""), 0=i=<1, with j,<j, -+~ < ji, we take

,2K@0* 1y intersects B,} .

Jror=max{j>j: B(Uj
Thus, by definition

B,,,NB,#§, but B, "NB,=0¢ form>I1+1. C))
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In particular, no vertex v can be in more than two of the balls B,. Thus, if
By,...,B,, with v; =v, are all the balls selected in this way until we are

o’

forced to stop, then we have

k(ufl)

)

2a

1 1
T(2r) = ‘ AT(Zr) =35 T(2r) 5 T(2r) 2

k(v;)
@025 4

o
>|A
0
o
= %Cur 2

(by (8)). (10)

On the other hand,

o—1

sz 2(2 v ) 1 k(U) 1) 422 ,,. (11)

r= |UV Il+1

(10) and (11) yield (3) with r replaced by 2r.

Proof of theorem 2. This is much easier. Indeed, assume

N 1 -
N < 77— 25" for all 2* €[1Cev7, 7). (12)
10

Then the right-hand side of (7), with x the origin, is at most

Thus, (12) must fail for all sufficiently large r.
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