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Let So, $1, • • • be a simple (nearest neighbor) symmetric random walk on Z a and HB(x, y) = P{S. 
visits B for the first time at y I so = x}. I f  d = 2 we show that for any connected set B of diameter 
r, and any y ~ B, one has 

lim sup Hs(x, y) <~ C(2)r -1/2. 
ixl-,oo 

I f  d/> 3 one has for any connected set B of cardinality n, 

lim sup HB(x, y)<- C( d)n -1+2/d. 
rxl-.oo 

These estimates can be used to give bounds on the maximal growth rate of diffusion limited 
aggregation, a fashionable growth model for various physical phenomena. 

AMS 1980 Subject Classifications: Primary 60J15, 60K35. 

random walk * hitting probabilities * diffusion limited aggregation * harmonic measure 

1. Introduction and statement of results 

Witten and Sander (1981) described a stochastic growth model which they called 
"diffusion limited aggregation" (DLA for short). Simulations show that it mimicks 
several physical phenomena well. As examples of such phenomena Meakin (1986) 
mentions "dendritic growth, fluid-fluid displacement, colloidal aggregation and 
dielectric breakdown". The model is quite fashionable, as one can see from the 
many articles devoted to DLA in Stanley and Ostrowski (1986), as well as the many 
talks on this model at the 1986 Statistical Physics meeting in Boston (Proceedings 
forthcoming). The aggregates or clusters formed in this model tend to be rather 
thin, with large empty regions and long arms. Fig. 1 from Witten and Sander (1981) 
shows one simulation. 

It is believed that aggregates of a very large number of particles, n, consist almost 
entirely of 2d arms along the positive and negative coordinate axes. The length of 
these arms should be of greater order than n Ud, since the aggregates are much 
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Fig. 1 (reproduced from Witten and Sander). Random aggregate of 3600 particles on Z 2. 

thinner than solid balls. In fact, if  r, is the radius of the aggregate (see (1.5) for 

the precise definition) then simulations indicate that 

l im log r___2, exists and is approximately equal to ((0.85)d) -1 
,-~oo log n 

(see Table 1 in Meakin (1986)). In Kesten (1986) we showed how a certain estimate 
for hitting probabilities of  a simple random walk on 7/a implies r, = O( r /2 /3 )  for 
d = 2 and r, = O ( r / 2 / d )  for d I> 3. It is the purpose of this paper to prove the required 

estimates for the hitting probabilities. 
Several variants of the DLA model have been considered. We deal only with the 

original, and simplest model. A 1 consists of the origin. An is a connected set of n 
vertices on Z d. A,+~ is formed by adding to A, a site Y,+I in the boundary of A..  

The boundary of a set A of vertices is defined as 

0A := {y ~ Z a : y is adjacent to some site in A, but y ~ A}. 

The site y ,+l ,  to be added to A,,  is chosen according to a chance mechanism, which 

can intuitively be described as follows. A particle is released at oo and performs a 
simple symmetric random walk on 7 d. y,+~ is the position where the random walk 

first hits OA,. A more formal description of the distribution of Y,+I (or rather, the 
conditional distribution of y,+~, given An) runs as follows. Let So, $ 1 , . . .  be a 
simple (nearest neighbor) symmetric random walk on Z a, starting at So. Denote by 
Px the conditional distribution of {Sn},~0, given that So =x ,  and by Ex expectation 

with respect to Px. For any set B define its hitting time as 

I" = z (B )  := inf{n i> 0: S. ~ B}. 
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The distribution of the hitting position S~ is described by 

Ha(x, y):= Px{r(B) < ~ and S ~ m =  y}. 

For d = 2, and finite nonempty B, ~ '(B)< oo w.p.1, 

/.ta(y) := lim Ha(x, y) exists, 
Ixl~oo 

and 

(1.1) 

(cf. Spitzer (1976, Theorem 14.1)). For d = 2  the conditional distribution of Yn+l, 

given An, is taken to be 

P{yn+~=ylan}=l~oAn(y), y eoan .  

(The limit Ixl-  oo in (1.1) corresponds to "releasing the particle at oo".) For d I> 3, 
limlxl_,oo Ha(x, y) ~ O, since the random walk is transient (cf. Spitzer (1976, Proposi- 
tion 25.3)). We must now condition on z ( B ) <  oo to obtain a nontrivial limit. For 

d I> 3 we define 

where 

Ha(x,y)  
/za (y) = lim 

Ixl-~ Lz~a Ha(x, z) 

= l i m  PxIS,(m=yl1"(B)<oo}, yeB.  (1 .3 )  
Ixl--.oo 

Again this limit exists and satisfies (1.2). In fact, Spitzer (1976, Proposition 26.2 
and Definition 25.1), identifies the limit in (1.3) as 

ea(y) 

Z.~aea(z)' 

ea(y) : = Py{Sn~ B, n >~ 1} 

is the escape probability of B from y. 
We can now state the required bound for the hitting probabilities. 

T h e o r e m .  Let B be a connected set o f  vertices in Z a which contains the origin. Let IBI 

denote its cardinality and let 

r(B):=max{lxl: x e  B} (1.5) 

be its "radius". Then there exists constants C ( d ) < ~ ,  depending on d only, such that, 

for all y ~ B, 

I~B(y)<~C(2)[r(B)] -1/2 i f d = 2 ,  (1.6) 

p,~(y)<~ C(d)[Inl] <2-a)/a i fd  >I 3. (1.7) 

(1.4) 

E brB(Y) = 1 (1.2) 
y~B 
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Corollary. In the DLA model there exist constants C*( d) < oo such that w.p. 1 

lim sup n-2/3r(A,) <~ C*(2) ifd = 2, (1.8) 
n ---> o o  

lim sup n-2/dr(A,) <- C*(d) ifd I> 3. (1.9) 
/,J ---~ OO 

To prove (1.6) we more or less have to find B and y which maximize /zB(y), 

when r(B) is held fixed. Known results for Brownian motion (or harmonic measures) 

suggest that one maximizes ~z~(y) when B is a straight line segment of length 2r(B)  

and y is one of its endpoints. As it is, we can only show that for any y and B, ~n(y)  

is at most a constant times the value obtained for B a straight line segment and y 

one of its endpoints. The proof, which imitates classical estimations for harmonic 

measure, uses somewhat involved estimates for escape probabilities (by time reversal 

these are equivalent to estimates for hitting probabilities). Fortunately the proof  of 

(1.7) is much easier. Since Spitzer (1976) has shown that/~B(Y) is bounded by the 

inverse of the capacity of B, (1.7) reduces to a simple estimate of this capacity. 

2. The two-dimensional  case 

We begin with the proof  of (1.6). Its proof  is based on the fact that there exist 

for any y ~ B  vertices Uo=y, u~ , . . . ,  Uk=Z in B such that Uo, . . . ,  Uk is a path on 
Z d (i.e., ui÷~ is adjacent to u+, 0<~ i ~  < k - 1 )  starting at y, and ending at some z ~ B 

with Iz-yl >1 r(B)/2. Indeed, if u ~ B is such that ]u] = r(B), then ly-01 I> r(B)/2 
or lY - u[ I> r(B)/2. In the former case we take z = 0 and connect y to 0 by a path 

in B; such a path exists since B is connected. In the latter case, take z = u and 

connect y to u. If  P is the set {u0, u t , . . . ,  Uk}, then p c  B, and trivially Hs(x ,y)  < - 
Hp(x, y), x~  B, and therefore / z s (y )~  </z~,(y). The main estimate is to show that 

I~p(y) is maximized (up to a constant factor) when the path P is along a straight 

line (see Lemma 9). More specifically, let 

C=([ l r (B) /2J ,  0]×  {0}) n Z 2 

be a line segment along the negative x-axis of length [r(B)/2J. (Here [aJ = greatest 

integer<~ a.) We shall then prove (1.6) by carrying out the following two steps. 

(i) iZc((-k,O))<-C~[(k+l)r(B)] -~/2, O<-k<~r(B)/4, 
(ii) /~s(y)<~l~p(y)<~ C2[r(B)] -t/2 

for suitable constants C~, C2, independent of  y and B. The analogue of  the first 

step for Brownian motion is easy, since the harmonic measure for an interval can 
be explicitly calculated. In fact the map z--> w = a(z + z-~), a > 0, maps the exterior 

of  the unit disc conformally to the plane slit along the real axis from - 2 a  to 2a. 
The analogue of (ii) for Brownian motion is almost immediate from Beurling's 
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circular projection theorem (cf. Ahlfors (1973, Theorem 3.6)). Unfortunately, we 
have been unable to use the Brownian motion results directly for our proof. Instead 
they merely form a guideline for proofs to be done separately for random walks. 
Step (i) is largely computational, while the proof of (ii) closely mimicks the proof 
of Beurling's theorem as given in Ahlfors. 

Proof of  (i). We need some known facts about the potential kernel of two 
dimensional random walk, which we collect as a lemma. 

L e m m a  1. The series 

co 

a(x)= • [Po{Sn=O}-Po{S.=x}]  
n = O  

converges for each x ~ 7_ 2, and the function a(.  ) has the following properties (where 
a ^ b = min{a, b}): 

a(x)>-O foral lx ,  a(O) = O, 
(2.1) 

a((0, +1 )=  a ( ( + l ,  0 ) )=  1, 

Ex{a(Sl)}-  a(x)  = 8(x, 0), (2.2) 

so a(S,^,~v) - v) is a nonnegative martingale, for any v ~ Z e (~'(v) = r({v})), 

I 1 I a ( x )  - ~ l o g l x l -  Co = O(Ixl-2), 

a s  Ixl  ~ oo for a suitable Co. 

(2.3) 

Proof. The convergence of a(x) and (2.1), (2.2) are in Spitzer (1976, Propositions 
12.1, 11.7, 13.3, and p. 148), while (2.3) is in St/Shr (1950, part III). (A less precise 
form of (2.3) is in Spitzer (1976, Proposition 12.3); we will not need the full force 

of (2.3).) [] 

In the sequel Ci will denote a strictly positive finite constant whose value is 
unimportant for our purposes; its value does not have to be the same at different 
appearances. ~(s)  will be the "circle" of radius s and center at 0. This means 

~(s) = {x ~ Za: Ix[ > s, but x is the endpoint of an edge 
whose other endpoint, x', satisfies Ix'l ~< s}. 

In particular, 

s<lxl<~s+l f o r a l l x ~  ~(s).  (2.4) 
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Lemma 2. Let r = r(B) and D a collection of  vertices of  Z 2 contained in the disc 

{u: lul<  r}. Set 

A = A ( D ) = m i n { n  ~> 1" S, eD} .  (2.5) 

Then there exists a constant Ca, independent of  r, D such that 

1 
Iz o (y ) <~ C31im sup ~ Py { r( CC ( R ) ) < A } 

R - ~ o o  

• max [Pv{S. visits D before returning to ~(R)}] -~ 
v~(R) 

ze~(2r) 

1 
• lim sup -~ P~{'r(C~(R)) < h } 

R--*oo 

max [Pv{S. visits D before returning to ~(R)}] -1, y e D. (2.6) 
ve~C(R) 

Proof. We use time reversal and symmetry, i.e., the fact that the probability of the 
random walk taking successively the steps xl ,  x 2 , . . . ,  x, is the same as the probability 

of taking successively the steps - x , ,  - x , - 1 , . . . , - X l .  This implies for any set D 

(compare Spitzer (1976, Proposition 10.2)), 

Px{S,, =y, Sj~ D for 0<~j <~ n - 1 } =  Py{S,, =x,  Sj~ D for 0 <j<~ n}. 

In particular, for y e D, x ~ D, 

co 

HD(X,Y) = ~ Py{Sn=x, S j ~ - D f o r O < j  <-n} 
n = 0  

= Ey{number of visits to x during the time interval [0, ;t )}. 

Since we already know that the limit in (1.1) exists we can write (I ~l = cardinality 

of c~) 

1 
I~D(y) = lim ~, HD(X, y) 

C3 
<~ lira sup m ~ Ey{number of visits to x during [0, A)} 

1 
= C3 lim sup ~Ey{number  of visits to C~(R) during [0, A )}. (2.7) 

R--~oo 

(2.6) is now obvious if  we take into account that any path from D to CO(R) must 
first hit c~(2r), and then CO(R) before A. Once it reaches C~(R), in w say, then the 
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conditional expectation of the number of visits to C~(R) before A is 
oO 

~. Pw{S. returns at least k times to C~(R) before A} 
k=0 

<~ ~ [ s u p  Pv{S. returns at least once to C~(R) before A}] k, 
k=0 L v~ CO(R) 

which is just the last factor in the fight hand side of (2.6). [] 

We now estimate the three factors in the fight hand side of (2.6) in a sequence 
of lemmas. 

Lemma 3. Let D c {u: lu[ <~ r} contain the origin. Then for R > 2 r+  1 sufficiently large 
one has uniformly in v ~ C~(R) and in D 

Pv{ S. visits D before returning to C~(R)}/> C4[ R log R] -1. (2.8) 

Proof. Let v~ C~(R) and w a vertex of Z 2 such that Iwl R-1, Iv-w[ <4. Then 
the left hand side of (2.8) is at least 

Pv{S4 = w, Sj ~ Cg(R) for 1 <~j <~ 4}. Pw{S. visits D before Cg(R)}. (2.9) 

The first factor in (2.9) is at least 4 -6, since we can go in one step from v to some 
v' with [v'[ ~< R (by definition of Cg(R)), and from there to w in at most 5 steps, 
staying in the disc of radius R. To give a lower bound for the second factor in (2.9) 
we use the martingale Y, := a(S,^~(o)) (cf. (2.2)). Starting at w we have for ty = r (D)  ^ 

a(w)= Ew{a(S~); 7(C~(R)) < ¢(D)}+ E~{a(S~); ¢ ( D ) <  ~,(C¢(R))} 

/> P~{~-(C~(R)) < r(D)}Ew{a(S~)lr (c~(R)) < ¢(D)}. (2.10) 

Now, by (2.3), 

1 a(w)=- log Iwl+ Co÷ O(Iw1-2) 

1 1 
<~ D log R ~- Co + O(R-2). 

2"rr 2~R 

Similarly, since on {¢(C¢(R))< ~'(D)} S~, e C¢(R), we have by (2.4) 

Ew{a(S~,)l ~'(C¢(R)) < r (D)} ~2-~ log R ÷ C o ÷  O ( R - 2 ) .  

Substitution of these estimates into (2.10) yields 

Pw{~'(D) < ¢(c¢(g))} = 1 - Pw{~'(cg(g)) < r(D)} 

1 

R log R 

and (2.8) now follows from (2.9). [] 

( 1) 
+ O  R log 2 ' 

The next lemma does no longer apply to a general. D but only to the specific 

set C. 
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Lemma 4. For R > 2 r +  1 sufficiently large we have, uniformly in z ~ ~(2r) ,  

(log R )P~{'r( C~( R ) ) < A ( C)} <~ C5. 

Proof .  This time we consider the martingale 

v ~ C  

We start at z~  c¢(2r). Again with ~= r ( C ) ^  r(CC(R))<~ r(0) we have 

E a ( z - v ) = P ~ { r ( ~ ( R ) ) < r ( C ) } ~  E ~ { a ( S ~ - v ) [ r ( ~ ( R ) ) < r ( C ) }  
v c C  v 

+ ( 1  - Pz{r(~(R)) < ~'(C)}) Y~ Ez{a(S~-v)[r(C) < r(CC(R))}. 
t~ 

(2.11) 

By (2.3) we have ([CI = cardinality of C) 

1 
a(z-v)=-=-lfl log(r+ 1)+o(Ifl) (2.12) 

v~ c 2~r 

uniformly for z e  ~(2r) .  Also, on { r ( ~ ( R ) ) <  ~'(C)} we have S~, ~ CO(R) and hence 

a( S -v)=- lfl log R +O(ICI). 
I) 

(2.13) 

Finally, on {z(C) < z(qg(R))} we must have S~ = ( -k ,  0) for some 0 ~  < k<~ I C [ -  1 <~ 
r/2. If S~ = ( - k ,  0), then, uniformly in 0<~ k < ]CI, 

~. a (S ,~ -v )=  ~, a ( ( j - k , O ) )  
v~ C O<~j<[C] 

E 
o~<j<[cI 

j # k  

{ 2-~ loglj - k[ + Co + O(Ij - k[-2) } 

1 
ICl loglCl+O(ICI).  (2.14) 

2"rr 

Since IcI--½r and z (C)  = A(C) for So = z~  C, the lemma follows by substitution of 
(2.12)-(2.14) in (2.11). [] 

Combining Lemmas 2-4 we find 

l xc(y)<-C6Py{r(~(2r) )<h(C)} ,  y ~ C ,  (2.15) 

and we proceed to estimate the right hand side of (2.15) by means of the imbedded 
random walk on the x-axis. This imbedded random walk is defined as follows. Set 
O" O -~- 0 ,  

O'k+l = inf{n >trk : Sn belongs to the x-axis}, 

and 

Tk = x-coordinate of $~k, Yk = Tk÷l -- Tk. 
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If So lies on the x-axis, then the random variables { Irk, k >- 0} are i.i.d. The common 
distribution is calculated in Spitzer (1976, pp. 155-156). For So = (j, 0), Y1 = 7"1-j 
takes the values + 1 and -1 ,  each with probabili ty ¼ (if the first step at S is horizontal), 
and with probability ½ Yl = Ta - j  is a random variable with the characteristic function 
~o(0) of Spitzer (1976, formula (15.7)) (if the first step of S is vertical). Therefore 

Eo,  o) eiOY1 = (½ cos 0)+½{2-cos  0 - [ ( 1 - c o s  0 ) ( 3 - c o s  0)]1/2}, (2.16) 

1-Eo,o)ei°Y,.--lloI, 0-->0, (2.17) 

and the Yk are symmetric (when So = (j, 0)). 
It is an easy matter (e.g. by the invariance principle) to show that uniformly in 

z e c~(2r) (r = r(B)) 

P~{S. hits ( - ~ ,  - r ( B ) / 2 )  before C} >/C7 > 0 

(recall that c~(2r) is essentially the circle with radius 2r and center at 0, while 
C c [ - r (B) /2 ,  0] x {0}). Therefore, for y ~ C, 

Py{S. visits (-oo, - r / 2 )  before it returns to C} 

/> • Py{r(c~(2r))<A and S ,~2 r ) )=  z} 
z e  qg(2r) 

• P,{S. hits (-oo, - r / 2 )  before C} 

>>- CTPy{ ~'(c~(2r) < A (C)}. (2.18) 

If we define the hitting time of the negative half  line for T. by 

p = rain{ k I> 1: Tk <- 0}, 

then the left hand side of (2.18) can also be written as Py{TO < -r/2}.  Combining 
(2.15) with (2.18) we therefore have 

/ t c (y )  ~ < (?sPy{T o < - r / 2 } .  (2.19) 

Finally, we define the Green function for the random walk T. stopped at p as 

G(£  l) = Eo.o){number of visits by T. to I before p} 

=Eo,o) /  Y. I [ T , = I ] } .  
L O ~ < n < p  

Lemma 5. For j, l > O, 
j ^ l  

G(j, I)= Y~ v ( j - n ) v ( l - n )  (2.20) 
n = l  

for some numbers v(. ) satisfying 

v(n)>-O, 
11 

V(n)  := E v ( k ) ~ C g x / n ,  n-->oo, 
0 

V(T,^p) is a nonnegative martingale under P o.o),J > O. 

(2.21) 

(2.22) 

(2.23) 
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Proof. The representation (2.20) for some v satisfying (2.21) and (2.23) is proved 
in Spitzer (1976, Proposition 19.3, 19.5). (Note that we stop the random walk when 
it enters -oo, 0], whereas Spitzer stops it upon entrance of -oo, -1].  Therefore the 
sum in (2.20) starts at n = 1 rather than n--0  as in Spitzer. Also Spitzer's u(. ) and 
v(. ) can be taken equal by virtue of the symmetry of the Y's.) Moreover (Spitzer 
(1976, Definition 18.2)), for [z[ < 1, 

v(n)z"=exp k[Eo{zTk; Tk>O}+½Po{Tk=O}] . 
o 

Thus, by Karamata's Tauberian theorem (cf. Feller 1971, Theorem XIII.5.5)) it 
suffices for (2.22) to prove that 

lim ~ - r exp Tk r1"1 ~[Eolr ; >O}+½Po{Tk=O}]}=C,o>O. (2.24) 

However, the calculations on p. 184 of Spitzer (1976) show that the left hand side 
of (2.24) equals 

{4__~f +~r 1--r2 [a--ei°l } 
lim exp r2 log dO (2.25) 

r ] ' l  - - z r  1 + - 2 r  cos 0 1 -  gt(O) ' 

where 

alt( O) = Eo ei°YL 

(2.24) (with C~o = ~ ) ,  and hence (2.22), now follows from (2.25) and (2.17) and 
standard results about radial limits of Poisson integrals (cf. Hille (1962, Theorem 
17.5.1)). [] 

Lemma 6. U n i f o r m l y  f o r  y = ( - k ,  0 ) ,  0 < - k 6 r / 4 = r(  B ) / 4,  r > - 1, one has 

Py{ T o < -r/2} <~ C,1[ (k + 1)r] -'/2. (2.26) 

Proof. If y = (-k, 0), 0<~ k<~ r/4, then 

oo 

Py{T o <-rl2}= Py{T~ <-r/2}+ E Py{TI=J and Tp < - r / 2 }  
j = l  

oo oD 

<~Pr{YI <-r/4}+ Y. Py{Yl=j+k} • G(j,l)P(t.o){Tl <-r/2}. 
j----1 I = 1  

Under Py, Y~ has the characteristic function given in (2.16), and hence belongs to 
the domain of attraction of the Cauchy distribution. (2.17) implies 

1 
Py{Y, < - n } - - ~ n  , n~oO, (2.27) 

and also 

1 
< - r / 2 }  = e.,o){g, < - ( / + l r ) }  

21+r" 
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By virtue of Lemma 5 we therefore have 

oo j 
Py{ T. < -r /2}  <~ C,: r-' + Y, Py{ Y~ =j + k} Y~ 

j = l  n = l  
v(j - n) 

Also, by (2.22), 

J 
v(j - n) <- c . C ]  

and 

oo 1 
E v ( Z - n )  - E Z=n 1+ r m = O  

V(m)[(m+ n+ r)(m+ n+ l + r)]-' 

~, v ( l - n ) ~ r  . 

C13(n d-r)-l/2 ~ C13 r-l~2. 

Therefore the fight hand side of (2.28) is at most 

C14 r- l  + r-1/2 ~ Py{ Yl  = j  + k}j  1/2 • 
j = l  

Another summation by parts and an appeal to (2.27) now establishes (2.26). 

(2.28) 

(2.30) 

Proof. The formula for g immediately shows 

g(u, v ) =  Pu{z(v)< ¢(~(R))}" [1 - Pv{A(v) < ~'(Cg(R))}]-l, (2.31) 

Lemma 7. For R >~ 2r >>- 2 we have 

1 1 1 ( 7 3 [  R ] gR(u ,v) -~-~logR+~-~log( lu-v[v l )  <- + ( l u - v l v l )  -2 , 

uniformly in lul, Ivl<-r (where a v b =max{a,  b}). 

=E,,I E I [ S , = v ] } .  
L 0 ~  n<~ ' (~ (R) )  

(i) now is immediate from (2.19) and (2.26). We remark that by symmetry between 
left and fight (i) implies 

/Zc((-k,  0)) ~< C,[{( k + 1 ) ^ ( r (B) /2)  - k + 1 )}r( B)] - ' /2 

for 0<~ k<~ r(B)/2. (2.29) 

Proof of (ii). As pointed out the first inequality in (ii) is immediate from P c B. 
For the second inequality we follow Ahlfors (1973, pp. 43, 44). Let the Green 
function with respect to CO(R), g ( - , -  ), by defined by 

g(u, v) = gR(U, V) =/ / . ,{number of visits by S. to v before v(CC(R))} 

[] 
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where 

A(v) = inf{n i> 1: S. = v}. 

Similarly to (2.10) we consider now the martingale a(Sn^~.(v)^~.(~(R))--I)), and take 

So = u. 

a ( u - v ) =  Pu{~'(~g(R)) < z(v)} • < ~'(v)}. 

By (2.3) and Iv[ <~ r we have 

[ Eu { a(S~< ~<R)) -- V) I ~'(C~(R)) < ~ ' ( v ) } - - -  1 I C { r +  1._1_] 
l o g R - C o l  <~ " \ R  R E ] 

r + l  
< ~ C 4 ~  , R 

uniformly in [ul ~ R. It follows that 

1 r +  1"1 
P,,{~'(v)< r(C~(R))}= l -  ~ - ~ l o g R + C 0 +  0C4--~'-] 

- 1  

a ( u - v )  (2.32) 

for some 0 = O(u, v, R) ~ [ -1 ,  +1]. This also implies, for some other 0'~ [ -1 ,  +1], 

1 -  Pv{A ( v ) <  z(C~(R))} = ¼ E 
w adjacent  

to 19 

Pw { ~'(C~(R)) < z(v)} 

= [ l l o g R + C o + O ' C 4 r + l ]  -1 g (2.33) 

Here we used a ( w - v ) ' =  1 for w adjacent to v; see (2.1). (2.30) follows from 

(2.31)-(2.33) and (2.3). [] 

In the proof  of (ii) we may--wi thout  loss of generali ty--assume that y = 0 and 
that P is a path from 0 to a point z with Iz[ i> r(B)/2;  if  this is not the case originally, 
we merely have to shift P by -y .  We can pick a subset Q of P such that 

Qc {v: Ivl r(B)/2} 

and 

(2.34) 

for 1 ~ k<~ r(B)/2, Q contains exactly one point, qk say, with k -  1 < [qk[ ~ k. 

(2.35) 

Finally, we may assume 

( 1 , 0 ) ~ Q ,  

since we can always reflect Q in the y-axis. Since Q ~- P 

p~e(y) <~ i~o(y ) = i~o(O), 

(2.36) 
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so that it suffices to prove 

~ Q ( 0 )  ~ < C2[r (n ) ]  -1/2 

To prove (2.37) we define 

fOR(U)= P.{r(C) < z(~g(R))} 

and 

(2.37) 

and 

Lemina 8 

~ ( u ) = -  E gR(u,v)a~R(V), l u l ~ K  (2.38) 
v ~ C  

where A is the discrete Laplacian defined by 

Ato (v )=  l[to(v + (1, 0))+ to(v + ( -1 ,  0))+ to(v + (0, 1))+ to(v+(O, - 1 ) ) ] -  to(v). 

Moreover, 

toR(u)=l  i fu~C,  fOR(U)=0 i f u ~ ( R )  

awR(v)<~o forv~ C. 

Proof. The boundary conditions for for are immediate from the definition. Since 
foR(U) <~ 1 for all u, these also imply AtoR(v) ~< 0 on C. Now let So = u. Then Zo = 0 

and 

Z , :=  E [toR(Sk)-E,,{toR(Sk)[So,...,Sk-,}], n ~  1, 
l ~ k ~ n ^ z ( C ~ ( R ) )  

defines a martingale with respect to P.,. Moreover, for [Sk-ll <~ R (i.e., "inside CO(R)") 

E. { ~ ( & )  I So, • • •, & - , }  = w ~ ( & - , )  + A ~ ( & _ , ) ,  

and if in addition Sk_ 1 t~ C, then AtoR(Sk_~) = 0, by the definition of tOR. Thus 

z .  = E [ ~ ( s ~ ) -  ~ ( & _ , ) ]  
l~k<~n^~'(q~(R)) 

- E z[s~_,~c]a,o~(&_,). 
l ~ k ~ n ^  l"(Cg( R )) 

Taking expectations with respect to P, yields 

O= E.{toR(n A ~'(Cg(R))}- foR(u) 

- ~ AtoR(v)E,,{number of visits to v during [0, n A z(CC(R)) - 1]}, 
v e C  

and (2.38) follows by taking the limit n--> ~ .  [] 

~R(u)= P.(~(O) < ~(~¢(R))}. 

We first compare fOR((1 , 0 ) )  with ~R((1, 0)). This requires a representation formula 
for foR, which is the analogue of formula (3.6) of Ahlfors (1973). The latter is just 
a form of Green's theorem, and, thanks to some help of R. Durrett, our analogue 

is proved just as quickly. 
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Lemma 9. For R >I r 2 >i 4, 

OR((1, 0)) ~> toR((1, O))-Csr-1/2(log R) -~. 

Proof.  We def ine  the n e w  f u n c t i o n  

OR(u) = -  Y. gR(U, qk)AtOR((--k, 0)), 
O~k<~r/2 

where qo = 0, and qk for 1 <~ k <~ r/2 = r (B) /2  is the unique point in Q with k -  1 < 

Iqkl-< k as in (2.35). We shall show separately that 

OR ((1, 0)) t> OR((1, 0)) -- C6[ r 3/2R -1 + r-1/2](log R)-I  (2.39) 

~bR(U)~ OR(U)-C6[r3/2R-1 + r-1/2](log R) -1 forlul~< R. (2.40) 

Clearly these inequalities will imply the lemma. 
We start with (2.39). To simplify the notation let us write ek for the point (k, 0) 

on the x-axis (k e 7/). Then by the definitions of 0, to and C, and (2.38) 

OR(el)--~R(e,)=-- E 
l<~k<~r/2 

By virtue of (2.30), 

gR(el, qk)--gR(el, e-k) 

[gR(e~, qk)--gR(e,,  e-k)]AtoR(e--k). 

Since lel - e-kl = k +  1 >t lel - qkl ~> ( k - 2 )  v 1 (recall k -  1 < Iqkl ~ k and e~ # qk by 
(2.36)) we see that 

gR(el, qg)--gR(el,  e-k) >~ - C 7 [ ~ +  k-2]. (2.41) 

Furthermore, as pointed out in Lemma 8, --AtoR I> 0, so that 

OR(el)--tOR(el)>~C7 ~ [R-I-k-2]AtoR(e_k). 
l ~ k ~ r / 2  

To obtain (2.39) it therefore suffices to prove 

-AtoR(e_k)<~Csr-l/2[(kA(2-k))+l]-l/2(logR) -1. (2.42) 

This, however, is essentially proved in Lemmas 4 and 6. Indeed, by the definitions 
of A and toR we have 

--&oR(e_k)<-- max [1- -oR(z) ]=  max P,{r(CC(R))<r(C)} .  
Iz-e_kl=l [z-e_kl=l 

Of course the probability in the fight hand side equals 0 if z ~ C. On the other hand, 
if we write y for e-k, and let z be a neighbor of y such that z ~ C, then (since there 

le,_-e-,d cr r+ ]. 1 log l e l -  e-k1-2 + lel - qk1-2 iei-  3LR J 
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is a probability ~ that a random walk starting at y will move to z at the first step; 
cf. (2.5) for A) 

~P~{z(Cg(R)) < "r(C)} ~ < Py{7"(~(R))<A(C)} 

= Z Py{¢(c~(Zr)<h(C)andS,(~(z~))=v} 
v~ ~ ( 2 r )  

• P~{z(C~(R))<A(C)} (compare(2.6)) 

<~Cs(logR)-lPr{z(cg(2r)<A(C)} (by Lemma 4) 

<~ Csr -1/2 k ^ - k + 1 (log R) -1 (by (2.18), (2.19) and (2.29)). 

Thus (2.42) and hence (2.39) hold. 

We turn to (2.40) which is based on similar estimates as (2.39) plus the maximum 
principle. It is immediate from its definition that u~gR(u, q) is harmonic, i.e., 
(AgR(',  q))(u) -- 0, on the set {u: lu] <~ R, u e q}. Therefore qJR(" ) - OR(" ) is har- 
monic on {u: lul <~ R}\Q. On C£(R) 

q,R(u)--OR(U)=O, u~C(R), 

since OR(U) and gR(u, q) vanish on ~(R).  Lastly, we claim that 

q'R(q,)--OR(qt)>~-C6[r3/ZR-~+ r-a/2](log R) -x (2.43) 

for all points qt of Q. These facts together will imply (2.40), by virtue of the well 
known maximum principle, that a harmonic function on a bounded region must 
take its maximum (and minimum) on the boundary of the region. To prove the 
remaining estimate (2.43) we observe that for each q/e Q, OR (qz) = 1 ~> tar ( e_ ~) so that 

q'R(qt) - OR(qt) t> taR(e_,) - OR(q,) 

=-- Y~ [gR(e-,, e-k)--gR(q,, qk)]AtaR(e-k). 
O~k~r /2  

Essentially as in (2.41) (we now have Iq,-q~l>-Ie_,-e_k[ - 1), 

gR(e-t, e_k)-  gR(qz, qk) 

1 log[ [qt-qklvl ] c[2r+ v ] 
2~r Lle_ , -e-~lv  i 3LR ([q' q~lv 1 ) -2+( l e - , - e -k l  1) -2 

[r ] 
i> - c 7  ~ +  ( l l -  kl ,, 1)-' . 

(2.43), and hence (2.40), now follows again from (2.42). [] 

It is now easy to complete the proof of (ii). Indeed, as we saw before it suffices 
to prove (2.37). Now the first inequality in (2.6) and Lemma 3 with D = Q yield 
for large R 

Izo(0) ~< C5 lim sup (log R)Po{z(Cg(R)) < A(Q)}. 
R--*oo 
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But, for R t> r 2, 

1 Po{7-(C~(R)) < A (Q)} = z 

and if z = el, then by Lemma 9 

Izl=l 
z ~ Q  

P~{ 7.(C~(R)) < 7-(Q)}, 

P~{7-(C£(R)< 7-(Q)} = 1 - ~R(el) ~ < Pe,{7-(C~(R)) < 7-(C)} 

+ Csr-l/2(log R) -1 (2.44) 

If z = e-1 or (0, +1) or (0, -1 )  but z ~ Q, then we can rotate the plane over 180 ° or 
90 °, taking z to el and Q to some set Q' which satisfies (2.34)-(2.36). Applying 
Lemma 9 to Q' rather than Q shows that (2.44) remains valid for z any neighbor 
of 0 which does not belong to Q. Thus 

/~0 (0) <~ C6 r-'/2 + lim sup (log R)Pe,{ r(C~(R)) < 7.( C)}. 
R--~oo 

Finally, as in (2.6) 

(log R)Pe,{7-(C~(R)) < 7-( C)} <~ Pe,{7-(c~(2r)) < 7-(C)} 

• ( logR) sup n~{7-(C~(R))<7-(C)} 
v ~  c¢ (2 r )  

CsPe,{ 7-( c~ (2 r)) < 7-(C) } 

~< 4 C5 Po{ 7-(qg(2r)) < A ( C)} 

(by Lemma 4) 

(since the first step can go from 
0 to el with probability 1). (2.45) 

The last probability is just the right hand side of (2.15) for y = 0, and the estimates 
for (2.15) (in particular Lemma 6) show that the right hand side of (2.45) is at most 
C6 r-l~2. Thus ~Q(0)<~ 2C6 r-1/2 and step (ii) is complete. 

3. The case d t> 3 

Fortunately the proof of (1.7) is much simpler than that of (1.6). We already 
know from (1.3) and (1.4) that ]1 

I~B(y)~ eB(z) = [ C ( B ) ]  -1, y e B ,  
z 

(3.1) 

where C(B) is the "capacity of B" (cf. Spitzer (1976, Definition 25.3)). Also, by 
Spitzer (1976, Proposition 25.10) (with tp(x)--- 1/A on B), if 

G(x, y) = Ex(number of visits to y) 

oo 

= ~, Px{S.=y},  
n = O  
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and A > 0 is such that 

1 
-A y~B G(x'  Y)<" I 

then 

for all x e B, (3.2) 

C(B)~AIBI.  (3.3) 

Therefore,  we only have to show that 

Y~ G(x, y) <~ C(d)IBI 2/d for all x ~ B, 
ycB 

for any  set B c Z a. This, however,  is easy since it is well known (cf. Spitzer (1976, 

pp. 308-311 and  75-81)) or Ito and McKean  (1960, pp. 121-123) that  

oo 

O ( x , y ) =  ~ e o { s ~ - - - y - x } - C ,  l y - x [  2-d 
n = 0  

as l Y -  xl--> oo. Therefore,  un i formly  in x, 

Y G(x,y)<-G Y, [ l + k ]  :-~ # 
y~B k = O  

of  vertices v = ( vl , . . . , va ) 

~<C3 E # 
k = O  

oo 

<~C4 2 [ ( l + k )  a ^ l B I ] [ l + k ]  ~-" 
k=O 

<~ CsIBI 2/d. 

, ] 
in B with Y. ] vi - xi] = k 

1 

, ] 
of  vertices v in B with Y~ IVi--Xi[~ k [ l + k ]  1-d 

1 

Thus (3.2) holds for A = CsIBI 2/a, and (1.7) now follows from (3.1) and  (3.3). 

4. Comments on the corollary 

For  typographical  reasons we abbreviate r(An) to r(n). For d = 2 it was shown 

in Kesten  (1987) that (1.6) implies that w.p. 1 

2k+4 
r(2 k+') - r(1) ~< C (2) ~ +  2 k/2 (4.1) 

for all  2 k <~ l <~ 2 k+~ and  k sufficiently large. The only missing step for (1.8) is therefore 

the pure ly  determinist ic  result, that i f  r(l) is a sequence of  numbers  such that 

r(1) = 0, r(- ) is increasing,  r ( l+ 1) - r(l) ~ 1, (4.2) 
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and such that (4.1) holds for all k i> ko, for some ko < m, then 

lim sup n-2/3r(n) <<- C*(2) < oo. (4.3) 

We give here the simple proof of this fact. 
By (4.2), r(1) <~ l, so that after multiplication of (4.1) by It(l)] 1/2 we obtain for k/> ko 

[r(l)]l/2[r(2k+~) - r(/)] <~ (732 k, 2 k ~< 1 ~< 2 k+l, (4.4) 

with Ca = (16C(2)+  v/2). For the remainder we take k I> ko. We consider two cases. 
First assume that 

r(2 k+l) <~ 2r(2k). (4.5) 

Then by (4.4) with I = 2 k 

[r(2 k+l) - r(2k)]3/2 <~ ~[r(2k+l)]l/2[ r(2 k+l) -- r(2k)] 

<~[r(2k)]l/E[r(2k÷l)--r(2k)]<~--~c32k , (4.6) 

and, consequently, 

[ 3  ]2/3 
r(2 k+') - r(2 k) <~ ~ C 3  2 2k/3. (4.7) 

If (4.5) fails, let L be the smallest l in [2 k, 2 k+l] for which r(l) exceeds the right 
hand side of (4.7). If no such 1 exists then (4.7) still holds, since r(2 k+l) - r(2 k) <~ 
r(2k+l). Otherwise 

[3  [' ]'" -'~2 C3 2/322k/3<~r(L)<~ ~ C 3  22k/3+1. 

Together with (4.4) this gives 

r(2k+l)<~ r(L)+ C32k[r(L)]-l/2<~_ [ l +-~]r(L). 

Just as in (4.6) this now yields 

[ r(2k+l) - r( L)]3/2 <~3[ l +-~] l/E[ r( L)]l/2[ r(2k+') - r( L) ] <~ C42k 

with C4=~(1+2~/2/3)1/2C3. Thus also 

r(2 k+l ) - r(2 k ) ~< r ( L ) +  r(2 k+l ) - r(L) 

3 2/3 2k/3 C2/322k/3 ~< [ ~  C3] 2 + 1 +  

C522k/3 

with 

[ 3 C312/3÷1÷(C4)2/3 . C5 = -~  
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Thus in all cases 

r(2 k+l) - r(2 k) <~ (7522k/3, k >>- ko, 

from which (4.3) is immediate (since r is increasing). Thus (4.3) and (1.8) hold. 
Finally a brief comment to (1.9). The same kind of argument (but simpler) as 

used in Kesten (1987) to derive (4.1) from (1.6) shows directly from (1.7) that 

r(A,,) ~ 8d2C(d)n  2/d eventually, w.p. 1. (4.8) 

One merely has to observe that r(An)> 8d2C(d)n  2/d can occur only if some path 
without double points Uo=0 , . . . ,  uk, with k=smallest integer >~8d2C(d)n 2/d, is 
"filled in order" during the time interval [1, n] (see Kesten (1987) for explanation 
of the terminology). There are at most (2d) k such paths, and (1.7) applied to 
B = At u OA~ shows that for any vertex u 

P{u is added to At to form At+l [At} ~< C(d)]B[ (2/d)-1 

<~ C(d) l  (2/d)-1. 

From this it follows as in Kesten (1987) (again use the exponential bounds of 
Freeman (1973, Theorem 4b) that the probability of filling up a fixed path Uo, . . . ,  Uk 
in order during [1, n] is at most 

k Z e .  +n_2d)] k. [ l e C ( d ) ~ l ( 2 / d ) - l ] ~  [~-~ (1 

The probability of filling up any path Uo, . . . ,  Uk in order during [1, n] is therefore 
at most 

e n --2d ~ (1+  ) , 

and (4.8) follows from the Borel-Cantelli lemma. 
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