A crescent is a domain bounded by two circular
arcs.

A cresent domain is the union of the unit disk and
finitely many crescents, as below. (Every finite
union of disks has this form.)



A crescent can be foliated by circular arcs orthog-
onal to both boundary arcs.

Following arcs in the foliation gives a map ¢ :

0 = 9D.



Theorem: : extends to a K-quasiconformal,
map F : Q — D. Moreover, F/ € L™ and K is
independent of €).

A map f is K-quasiconformal it

Sup Max|y__qy|=r |f(z) — f(y)] < K < oo.

2 i,y 17(@) — F)l

If K =1, then f is conformal.



Corollary: If () is simply connected and qua-
siconvex (i.e., interior path metric comparable to
Euclidean metric) then there is Lipschitz homeo-
morphism of €2 to a disk.

Corollary: Any quasicircle can be mapped onto
a circle by a Lipschitz map of the plane.

Corollary: [The factorization theorem| Any
conformal map f : D — () can be written as
f = g o h where h is a K-quasiconformal self-
map of D and |¢’| is bounded away from zero.

Indeed |¢'(tz)] < C|g'(z)] for any 0 < ¢ < 1



If f is conformal on the disk then f’ is never 0,
but it can tend to 0 near the boundary. Many
results limit how close it can be to 0

Hayman-Wu theorem If f : () — D is con-
formal and L is a line (or circle) then f(L) has
finite length (independent of f or Q).

Makarov’s theorem: If £ C 0D has pso-
tive length then dim(f(£)) > 1. In general, if
dim(F) = « then dim(f(E)) > p(a).

Brennan’s conjecture: If f : ) — D is
conformal then f' € LP(Q, dxdy) for all p < 4.



What is best K7 Thurston conjectured K = 2.
Epstein-Marden proved = 80. I can prove = 8.

Important result of Kari Astala says K-QC map
has deriviative in weak LP for p = 2K /(K — 1).
If K =2 then p=4.

Then any conformal map f : 2 — D can be
written f = h o g where ¢ € L* and h is 2-
QC, so f'is weak L% Thus “K = 27 implies
Brennan’s conjecture.

Best result for Brennan so far is p = 3.442 by
Bertillson. This corresponds to K = 2.4064.



Epstein-Markovic have announced counterexam-
ple to K = 2. They claim that complement of
logrithmic spiral has K ~ 2.1 > 2.

So Thurston’s K = 2 conjecture seems to be
false. Might the factorization theorem for con-
tormal maps still be true for K = 27



The hyperbolic metric in the ball is
|dz|
dol =
and in the upper halfspace is

dz
|dp| = Ll
Y

Geodesics are circle orthogonal to boundary. Also
will use in ball,

exp(—p(0,2)) = 1 —|g(0)].




Given ) C R? take union of all hemispheres with
base in () to get region in ]Ri. The “upper”
boundary is called S. It is also a boundary com-
ponent of the hyperbolic convex hull of Of2.

Give S the intrinsic hyperbolic path metric. Thurston
observed there is an isometry ¢ from S to the hy-
perbolic disk. If {2 is a crescent domain, S is a
finite union of geodesic polygons, and this ¢ agrees
with the previous one on the boundary.

Theorem: [Sullivan, Epstein-Marden| There is
a K -quasiconformal map o : {) — S which is the
identity on the boundary.

Thus ¢ o ¢ is the K-QC extension of ¢.
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Define nearest point retraction R : {2 — S by

expanding horoball tangent at z € () until it first
hits S at R(2).

In general, the retraction is not one to one.
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Several facts are easy to check.

Fact 1: dist(z, 9Q) ~ dist(R(z), R?).
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Fact 2: R is Lipschitz.
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Fact 3: pg(R(z), R(w)) <1 = po(z,w) <C.

Suppose R(z) is at height r from boundary. Con-
sider a path of length 1 on S between R(z) and
R(w). Every point has height ~ r and every
preimage in {2 is distance ~ r from 0€). Thus
preimage covered by bounded number of squares,
each diameter ~ r and distance ~ r from 0, i.e.,
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Facts 2 and 3 imply R is a rough isometry,

1
Zp(za ’LU) - B

< p(R(z), R(w)) <
Ap(z,w) + B.
Thus ¢ o R o f is rough isometry of D to it-
self. Standard results say it extends to homeo-
morphism of the boundary and there is a QC self-

map @ of D with same boundary values. Then
o =1"to1o f~1is Sullivan’s map.

O
@@

Moreover, p(R ) < C uniformly.
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Why is ¢ = ¢ o o Lipschitz? Standard estimates

show
_ dist(g(z), ID)

9'(2)] = dist(z, 0Q0)
Use Fact 1
dist(z, 0Q) ~ dist(o(z), R?)
~ exp(—pgg (0(2). 20)
2 exp(—pg(o(2), 20))
= ((_PD(Q(Z)aO))

£
=
0}
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Suppose {2 1s simply connected and invariant un-
der a Kleinian group G. If f : D — () is conformal
then G1 = f~1o G o f is Fuchsian.

Bowen’s theorem: If R = /G is compact
then 0€) is either circle or has Hausdorfl dimension
> 1.
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The a-content of E is
H?(E) =inf{) (r;)*: E CUD(zj,rj)}.
The Hausdorft dimension is
dim(F) = inf{a : HY(E) = 0}.
Roughly speaking a covering by e-balls must have

e~ Am(E) glements.

Mass distribution principle 4+ Frostman’s
Lemma: F has positive a-content ift £ supports
a measure such that pu(D(x,r)) < re.
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Also true for finite area (Sullivan). Astala and
Zinsmeister showed 1t was false for some infinite
area cases, 1.e.,

Theorem: [Astala-Zinsmeister| If R has a Green’s
function (i.e., is transient), then there is a sim-
ply connected 2 and Kleinian group G, so that
R = Q/G and 02 is a non-circular, rectifiable

curve.

recurrent

finite area transient

Lol

o C>
= c oo (e %
Vo4 P

Theorem: Suppose R = €)/G is recurrent. Then
either 012 is a circle or dim(9€2) > 1.
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Given a set E and a dyadic square (), we define
Br(Q) =inf sup dist(z, L),
L »eENQ
where the sup is over all lines interseting ().

e
s

/
Jones’ Traveling Salesman Theorem: The
minmum length curve containing £ has length
comparable to

diam(E) + >~ Bp(Q)*4(Q).
Q

The minimum length of a curve coming within €
of every point of F is comparable to

diam(E) + " Gp(Q(Q)
Q:4(Q)=>e
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A set is uniformly wiggly if there is a 8y > 0 so
that Bp(Q) > By for all () such that %Q NE #10.

Theorem: If E is connected and uniformly wig-
gly, then dim(F) > 1 + C’ﬁg.

Theorem: If R = ()/G is compact, then 0f) is
either a circle or is uniformly wiggly.

For z ¢ E, define

maxX,cf |7‘(:Ij)|

min, e g |7(y)|
where the infimum is over all Mobius transtorma-
tions such that 7(z) = 0.

e
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ng(z) = inf log
T




FACT 1: ng(z) is continuous in z.

FACT 2: nis invariant under Mobius transmor-
mations, Le., np(z) = 1,(p)(0(2)).

FACT 3: ng(z) = 0 for any z implies F is a
subset of a circle (or line).

Thus if £ = 0f) is invariant under a Mobius group
and §2/G is compact, then either n(z) = 0 or 7
takes a positive minimum. Thus 0f) is circle or is
uniformly wiggly.
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The critical exponent o is infimum of all s so that
> dist(g(z), A)° < oo
gelG

For all non-elementary groups § < dim(A) with
equality in many cases.

Theorem: If R = /G is recurrent then either
0f) is a circle or o > 1.

Easier version: If R = ()/G is recurrent then

> dist(g(z), A) = oo,
ged
1.e., the Poincaré series diverges at s = 1.
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A Fuchsian group is called convergence type if
> 1—19(0)] < o0
gelG

and otherwise is called divergence type.

Fact 1: Divergence type is a QC invariant (Pfluger,
1949),ie.,if G= foGo f~1 are both Fuchsian
eroups and f is QC then GG is divergence type ift
H 1s.

Fact 2: G is divergence type iff orbits are non-
tangentially dense almost everywhere on circle.

Fact 3: G is divergence type iff R = D/G is
recurrent (has no Green’s function). This is easy
by explicit formulas.
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Suppose f = g o h as in Factorization theorem.
Let Gi=f"loGofand Go =g loGog. We

are assuming (71 is divergence type. Since
dist(7(z9), A) Z dist(g ™" (v(z0)), D),

it suffices to show (9 is also divergence type. But
G is QC conjugate to G (via h) so it is diver-
gence type by Pfluger’s theorem.

(6) -9
h

—
O
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Next prove the series diverges for some s > 1.
Given w € G(zg) we define a finite collection of
orbit points C(w) so that for z € C(w),

|z — w| < 2dist(w, A), (1)
21,29 € C(w) = |21 — 29| > 2dist(z1,A), (2)

> dist(z, A) > dist(w, A)° (3)
zeC(w)




If we use iteration to define sucessive generations
of points the first two conditions imply all chosen
points are distinct and the third implies the sum
over these points diverges (since the sum over any
generation is larger than the sum over the previous
generation). (3) follows from

> dist(z, A) > 2dist(w, A) (3")
zeC(w)

dist(z, A) > edist(w, A), (37)

for some s = s(€).
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STEP 1: If A is not a circle, then every sub-
arc has infinite length. Given w consider level
lines so close to boundary that their length is
> dist(w, A). Choose points on this curve which
satisfy conditions (1), (2) and (3’). These points
need not be orbit points.

l'lll.llll.llll.lll‘l\
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STEP 2: For each z chosen in step down, choose
orbit points x, which satisfy (1), (2) and

> dist(xy, A) > Cdist(z, ).

This can be done using the almost monotone growth
part of the factorization theorem to compare to
(9, where it holds because G is divergence type
and hence orbits are non-tangentially dense.

A
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