MAT 544, Stony Brook University, Fall 2014

Problem Set on Chapter 0
Due, Thursday, Sept 4
(1) Construct a closed, uncountable subset of $[0,1]$ that contains no rational numbers.
(2) If $E \subset \mathbb{R}$ is closed, let $E^{\prime} \subset E$ be the set of its limit points (non-isolated points). Is there a set E so that $E, E^{\prime}, E^{\prime \prime}, \ldots$ are all distinct and non-empty?
(3) Construct a continuous function $f:[0,1] \rightarrow[0,1]$ that takes every value uncountable often.
(4) Does the set of continuous functions $f:[0,1] \rightarrow[0,1]$ have the same, smaller or greater cardinality than $[0,1]$?
(5) Give an example of a subset $E \subset[0,1]$ that is a countable union of closed sets, but is not a countable intersection of open sets.

