MAT 536, Spring 2024, Stony Brook University

Complex Analysis I, Christopher Bishop 2024

Chapter 9: Calculus of Residues

Section 9.1: Contour Integration and Residues

Cauchy's theorem says that if f is analytic in a region Ω and if γ is a closed curve in Ω which is homologous to 0 , then $\int_{\gamma} f(z) d z=0$.

What happens if f has an isolated singularity at $a \in \Omega$?

Expanding f in its Laurent series about a, we have

$$
f(z)=\sum_{n=-\infty}^{\infty} b_{n}(z-a)^{n}=\frac{b_{-1}}{z-a}+\frac{d}{d z}\left[\sum_{n=-\infty, n \neq-1}^{\infty} \frac{b_{n}}{(n+1)}(z-a)^{n+1}\right] .
$$

Thus

$$
\begin{equation*}
\int_{\partial \Delta} f(z) d z=b_{-1} \int_{\partial \Delta} \frac{d z}{z-a}=2 \pi i b_{-1} \tag{9.1}
\end{equation*}
$$

provided $\partial \Delta$ is oriented in the positive or counterclockwise direction.

Definition: If f is analytic in $\{0<|z-a|<\delta\}$ for some $\delta>0$, then the residue of f at a, written $\operatorname{Res}_{a} f$, is the coefficient of $(z-a)^{-1}$ in the Laurent expansion of f about $z=a$.

Theorem 9.2, Residue theorem: Suppose f is analytic in Ω except for isolated singularities at a_{1}, \ldots, a_{n}. If γ is a cycle in Ω with $\gamma \sim 0$ and $a_{j} \notin \gamma, j=1, \ldots, n$, then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k} \mathrm{n}\left(\gamma, a_{k}\right) \operatorname{Res}_{a_{k}} f .
$$

Usually the residue theorem is applied to curves γ such that $\mathrm{n}\left(\gamma, a_{k}\right)=0$ or 1 , so that the sum on the right is $2 \pi i$ times the sum of the residues of f at points enclosed by γ.

If f has infinitely many singularities clustering only on $\partial \Omega$ then we can shrink Ω slightly so that it contains only finitely many a_{j} and still have $\gamma \sim 0$.

Proof. Let Δ_{k} be a disk centered at $a_{k}, k=1,2, \ldots, n$, such that $\bar{\Delta}_{m} \cap \bar{\Delta}_{k}=\emptyset$ if $m \neq k$.

Orient $\partial \Delta_{k}$ in the counterclockwise direction. Then in the region $\Omega \backslash\left\{a_{1}, \ldots, a_{n}\right\}$,

$$
\gamma-\sum_{k} \mathrm{n}\left(\gamma, a_{k}\right) \partial \Delta_{k} \sim 0
$$

By Cauchy's theorem

$$
\int_{\gamma} f(z) d z-\sum_{k=1}^{n} \mathrm{n}\left(\gamma, a_{k}\right) \int_{\partial \Delta_{k}} f(z) d z=0 .
$$

Then Theorem 9.2 follows from (9.1).

Section 9.2: Some examples

Example 9.3: $f(z)=\frac{e^{3 z}}{(z-2)(z-4)}$
This has a simple pole at $z=2$ and hence

$$
\operatorname{Res}_{2} f=\lim _{z \rightarrow 2}(z-2) f(z)=\frac{e^{6}}{-2}
$$

The residue at $z=4$ can be calculated similarly.

Example 9.4: $g(z)=\frac{e^{3 z}}{(z-2)^{2}}$.
Expand $e^{3 z}$ in a series expansion about $z=2$:

$$
g(z)=\frac{e^{6} e^{3(z-2)}}{(z-2)^{2}}=\frac{e^{6}}{(z-2)^{2}} \sum_{n=0}^{\infty} \frac{3^{n}}{n!}(z-2)^{n}=\frac{e^{6}}{(z-2)^{2}}+\frac{3 e^{6}}{z-2}+\ldots,
$$

so that

$$
\operatorname{Res}_{2} g=3 e^{6}
$$

In this case $\lim _{z \rightarrow 2}(z-2)^{2} g(z)$ is not the coefficient of $(z-2)^{-1}$ and $\lim _{z \rightarrow 2}(z-2) g(z)$ is infinite.

More generally, if $G(z)$ is analytic at $z=a$ then iiiiii

$$
\operatorname{Res}_{a} \frac{G(z)}{(z-a)^{n}}=\frac{G^{(n-1)}(a)}{(n-1)!}
$$

Example 9.5: Suppose we have a simple pole, and the pole is not already written as a factor of the denominator.

$$
h(z)=e^{a z} /\left(z^{4}+1\right)
$$

Then h has simple poles at the fourth roots of -1 . If $\omega^{4}=-1$, then

$$
\operatorname{Res}_{\omega} h=\lim _{z \rightarrow \omega} \frac{(z-\omega) e^{a z}}{z^{4}+1}=\frac{e^{a \omega}}{\lim _{z \rightarrow \omega} \frac{z^{4}+1}{z-\omega}}
$$

Note that the denominator is the limit of difference quotients for the derivative of $z^{4}+1$ at $z=\omega$ and hence

$$
\operatorname{Res}_{\omega} \frac{e^{a z}}{z^{4}+1}=\frac{e^{a \omega}}{4 \omega^{3}}=-\frac{\omega e^{a \omega}}{4}
$$

Example 9.6: Another method using series is illustrated by the example

$$
k(z)=\frac{\pi \cot \pi z}{z^{2}}
$$

To compute the residue of k at $z=0$, note that $\cot \pi z$ has a simple pole at $z=0$ and hence k has a pole of order 3 , so that

$$
\frac{\pi \cot \pi z}{z^{2}}=\frac{b_{-3}}{z^{3}}+\frac{b_{-2}}{z^{2}}+\frac{b_{-1}}{z}+b_{0}+\ldots
$$

Then

$$
\pi \cos \pi z=\left(\frac{\sin \pi z}{z}\right)\left(b_{-3}+b_{-2} z+b_{-1} z^{2}+b_{0} z^{3}+\ldots\right.
$$

Inserting the series expansions for cos and sin we obtain

$$
\pi\left(1-\frac{\pi^{2}}{2} z^{2}+\ldots\right)=\left(\pi-\frac{\pi^{3}}{6} z^{2}+\ldots\right)\left(b_{-3}+b_{-2} z+b_{-1} z^{2}+\ldots\right.
$$

Equating coefficients

$$
\pi=\pi b_{-3}-\frac{\pi^{3}}{2}=-\frac{\pi^{3}}{6} b_{-3}+\pi b_{-1}
$$

and $\operatorname{Res}_{0} k=b_{-1}=-\frac{\pi^{2}}{3}$.

Example 9.7: If γ is the circle centered at 0 with radius 3 , then

$$
\int_{\gamma} \frac{e^{3 z}}{(z-2)(z-4)} d z=-2 \pi i \frac{e^{6}}{2}
$$

by the residue theorem and Example 9.3.

Example 9.8: $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}$.
Construct a contour γ consisting of the interval $[-R, R]$ followed by the semicircle C_{R} in \mathbb{H} of radius R, with $R>1$.

By the residue theorem with $f(z)=1 /\left(z^{4}+1\right)$,

$$
\begin{equation*}
\int_{-R}^{R} f(z) d z+\int_{C_{R}} f(z) d z=2 \pi i\left(\operatorname{Res}_{z_{1}} f+\operatorname{Res}_{z_{2}} f\right) \tag{9.2}
\end{equation*}
$$

where z_{1} and z_{2} are the roots of $z^{4}+1=0$ in the upper half-plane \mathbb{H}.

Note that

$$
\left|\int_{C_{R}} f(z) d z\right| \leq \int_{0}^{2 \pi} \frac{R d \theta}{R^{4}-1} \rightarrow 0
$$

as $R \rightarrow \infty$. Since the integral $\int_{\mathbb{R}}\left(x^{4}+1\right)^{-1} d x$ is convergent, it equals

$$
\lim _{R \rightarrow \infty} \int_{-R}^{R}\left(x^{4}+1\right)^{-1} d x
$$

so that by (9.2), and Example 9.5

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=-\frac{2 \pi i}{4}\left(z_{1}+z_{2}\right)=\frac{\pi}{\sqrt{2}}
$$

The technique above can be used to compute the integral of any rational function with no poles on \mathbb{R} if the degree of the denominator is at least 2 plus the degree of the numerator.

This latter condition is needed for the absolute convergence of the integral.

Example 9.9: $\int_{0}^{2 \pi} \frac{1}{3+\sin \theta} d \theta$. Set $z=e^{i \theta}$. Then $d z=i e^{i \theta} d \theta=i z d \theta$.

$$
\int_{0}^{2 \pi} \frac{1}{3+\sin \theta} d \theta=\int_{|z|=1} \frac{1}{\left(3+\frac{1}{2 i}(z-1 / z)\right)} \frac{d z}{i z}=\int_{|z|=1} \frac{2 d z}{z^{2}+6 i z-1} .
$$

The roots of $z^{2}+6 i z-1$ occur at $z_{1}, z_{2}=i(-3 \pm \sqrt{8})$.
Only $i(-3+\sqrt{8})$ lies inside $|z|=1$.
By the residue theorem and computing residues as in Examples 9.3 or 9.5,

$$
\int_{0}^{2 \pi} \frac{1}{3+\sin \theta} d \theta=2 \pi i \operatorname{Res}_{i(-3+\sqrt{8})} \frac{2}{z^{2}+6 i z-1}=\frac{2 \pi}{\sqrt{8}}
$$

The technique in Example 9.9 can be used to compute

$$
\int_{0}^{2 \pi} R(\cos \theta, \sin \theta) d \theta
$$

where $R(\cos \theta, \sin \theta)$ is a rational function of $\sin \theta$ and $\cos \theta$, with no poles on the unit circle.

An integral on the circle as in Example 9.9, can be converted to an integral on the line using the Cayley transform $z=(i-w) /(i+w)$ of the upper half plane onto the disk.

It is interesting to note that you obtain the substitution $x=\tan \frac{\theta}{2}$ which you might have learned in calculus.

Example 9.10: $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x$.
A first guess might be to write $\cos z=\left(e^{i z}+e^{-i z}\right) / 2$, but if $y=\operatorname{Im} z$ then $|\cos z| \sim e^{|y|} / 2$ for large $|z|$.

This won't allow us to find a closed contour where the part off the real line makes only a small contribution to the integral.

Instead, we use $e^{i z} /\left(z^{2}+1\right)$ then take real parts of the resulting integral.

Using the same half-disk contour as in Example 9.8, we have the estimate

$$
\left|\int_{C_{R}} \frac{e^{i z}}{z^{2}+1} d z\right| \leq \int_{C_{R}} \frac{e^{-y}}{R^{2}-1}|d z| \leq \frac{\pi R}{R^{2}-1} \rightarrow 0
$$

as $R \rightarrow \infty$, where $y=\operatorname{Im} z>0$. By the method in Example 9.5,

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x=2 \pi i \sum_{\operatorname{Im} a>0} \operatorname{Res}_{a} \frac{e^{i z}}{z^{2}+1}=2 \pi i \frac{e^{i \cdot i}}{2 i}=\frac{\pi}{e} .
$$

In this particular case, we did not have to take real parts. The integral itself is real because $\sin x /\left(x^{2}+1\right)$ is odd.

Section 9.3: Fourier and Mellin Transforms

The technique in Example 9.10 can be used to compute

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) e^{i \lambda x} d x \text { for } \lambda>0 \tag{3.1}
\end{equation*}
$$

provided f is meromorphic in the closed upper half-plane $\mathbb{H} \cup \mathbb{R}$ with no poles on \mathbb{R} and $|f(z)| \leq K /|z|^{1+\epsilon}$ for some $\epsilon>0$ and all large $|z|$ with $\operatorname{Im} z>0$.

If the integral (9.3) is desired for all real λ, then for negative λ use a contour in the lower half-plane, provided f is meromorphic and $|f(z)| \leq K /|z|^{1+\epsilon}$ in $\operatorname{Im} z<0$, e.g., f is rational and the degree of the denominator is at least 2 plus the degree of the numerator.

The integral in (9.3), usually with λ replaced by $-2 \pi \lambda$, is called the Fourier transform of f, as a function of λ.

Example 9.11: $\int_{-\infty}^{\infty} \frac{x \sin \lambda x}{x^{2}+1} d x$.
This can not be done as in Example 9.10, because the integrand does not decay fast enough to prove $\int_{C_{R}}|f(z) \| d z| \rightarrow 0$, where $f(z)=z e^{i \lambda z} /\left(z^{2}+1\right)$.

Indeed it is not even clear apriori that the integral in example (e) exists.

Example 9.11: $\int_{-\infty}^{\infty} \frac{x \sin \lambda x}{x^{2}+1} d x$.
We may suppose $\lambda>0$, because sine is odd.

Let $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$ where

$$
\begin{aligned}
\gamma_{1} & =[-A, B], A, B>0 \\
\gamma_{2} & =\{B+i y: 0 \leq y \leq A+B\} \\
\gamma_{3} & =\{x+i(A+B): B \geq x \geq-A\} \\
\gamma_{4} & =\{-A+i y: A+B \geq y \geq 0\}
\end{aligned}
$$

orienting γ counter-clockwise.

Example 9.11: $\int_{-\infty}^{\infty} \frac{x \sin \lambda x}{x^{2}+1} d x$.
To prove convergence of this integral, we will let A and B tend to ∞ independently, and use the estimate

$$
\left|z /\left(z^{2}+1\right)\right| \leq|z| /\left(|z|^{2}-1\right) \leq 2 /|z|
$$

when $|z|^{2}>2$. For A and B large,

$$
\left|\int_{\gamma_{3}} \frac{z e^{i \lambda z}}{z^{2}+1} d z\right| \leq \int_{-A}^{B} \frac{2}{A+B} e^{-\lambda(A+B)} d x=\frac{2 e^{-\lambda(A+B)}}{A+B}(A+B) \rightarrow 0
$$

as $A+B \rightarrow \infty$.

Also

$$
\left|\int_{\gamma_{2}} \frac{z e^{i \lambda z}}{z^{2}+1} d z\right| \leq \int_{0}^{A+B} \frac{2}{B} e^{-\lambda y} d y \leq \frac{2}{B} \frac{\left(1-e^{-\lambda(A+B)}\right)}{\lambda} \rightarrow 0
$$

as $B \rightarrow \infty$.

Example 9.11: $\int_{-\infty}^{\infty} \frac{x \sin \lambda x}{x^{2}+1} d x$.

A similar estimate holds on γ_{4} as $A \rightarrow \infty$. By the residue theorem

$$
\begin{equation*}
\lim _{A, B \rightarrow \infty} \int_{-A}^{B} \frac{x e^{i \lambda x}}{x^{2}+1} d x=2 \pi i \operatorname{Res}_{i} \frac{z e^{i \lambda z}}{z^{2}+1}=\frac{2 \pi i \cdot i e^{-\lambda}}{2 i}=i \pi e^{-\lambda} \tag{9.4}
\end{equation*}
$$

By our estimates, the integrals over γ_{2}, γ_{3}, and γ_{4} tend to 0 as A and B tend to ∞ so that the limit on the left side of (9.4) exists and (9.4) holds.

Example 9.11 follows from (9.4) by taking the imaginary parts.

Example 9.12: $\int_{-\infty}^{\infty} \frac{\sin x}{x} d x$.
The main difference between Example 9.12 and Example 9.11 is that the function $f(z)=e^{i z} / z$ has a simple pole on \mathbb{R}.

The function $\sin x / x$ is integrable near 0 since $\sin x / x \rightarrow 1$ as $x \rightarrow 0$, but $f(x)$ is not integrable.

However the real part of $f(x)$ is odd so that

$$
\lim _{\delta \rightarrow 0} \int_{-1}^{-\delta}+\int_{\delta}^{1} \frac{e^{i x}}{x} d x
$$

exists.

Definition 9.13: Suppose f is continuous on $\gamma \backslash\{a\}$, and suppose γ^{\prime} is continuous at $\gamma^{-1}(a)$. Then the Cauchy Principal Value of the integral of f along γ is defined by

$$
P V \int_{\gamma} f(z) d z=\lim _{\delta \rightarrow 0} \int_{\gamma \cap\{|z-a| \geq \delta\}} f(z) d z,
$$

provided the limit exists.
Note that we have deleted points in a ball centered at a.
For example

$$
P V \int_{-1}^{1} \frac{\cos x}{x} d x=0
$$

because the integrand is odd, but the integral itself does not exist.

Proposition 9.14: Suppose f is meromorphic in $\{\operatorname{Im} z \geq 0\}$, such that

$$
|f(z)| \leq \frac{K}{|z|} \quad \text { forIm } z \geq 0 \text { and }|z|>R
$$

Suppose also that all poles of f on \mathbb{R} are simple. If $\lambda>0$ then

$$
P V \int_{-\infty}^{\infty} f(x) e^{i \lambda x} d x=2 \pi i \sum_{\operatorname{Im} a>0} \operatorname{Res}_{a} e^{i \lambda z} f(z)+2 \pi i \sum_{\operatorname{Im} a=0} \frac{1}{2} \operatorname{Res}_{a} e^{i \lambda z} f(z)
$$

Proposition 9.14: Suppose f is meromorphic in $\{\operatorname{Im} z \geq 0\}$, such that

$$
|f(z)| \leq \frac{K}{|z|} \quad \text { for } \operatorname{Im} z \geq 0 \text { and }|z|>R
$$

Suppose also that all poles of f on \mathbb{R} are simple. If $\lambda>0$ then

$$
\begin{equation*}
P V \int_{-\infty}^{\infty} f(x) e^{i \lambda x} d x=2 \pi i \sum_{\operatorname{Im} a>0} \operatorname{Res}_{a} e^{i \lambda z} f(z)+2 \pi i \sum_{\operatorname{Im} a=0} \frac{1}{2} \operatorname{Res}_{a} e^{i \lambda z} f(z) \tag{9.5}
\end{equation*}
$$

Part of the conclusion of Proposition 9.14 is that the integral exists even though the rate of decay at ∞ is possibly slower than our assumptions in (9.3).

If $\lambda<0$, then a similar result holds using the lower half plane.
The integral may not exist if $\lambda=0$ as the example $f(z)=1 / z$ shows.
One way to remember the conclusion of Proposition 3.2 is to think of the real line as cutting the pole at each a_{j} in half. The integra 2 contributes half of the residue of f at a_{j}.

Proof. Note that f has at most finitely many poles $\operatorname{in}\{\operatorname{Im} z \geq 0\}$, so that both sums in Proposition 91.4 are finite.

Construct a contour similar to the rectangle Example 9.11, but avoiding the poles on \mathbb{R} using small semicircles C_{j} of radius $\delta>0$ centered at each pole $a_{j} \in \mathbb{R}$.

The integral of $f(z) e^{i \lambda z}$ along the top and sides of the contour tend to 0 as $A, B \rightarrow \infty$ as in Example 9.11.

The semi-circle C_{j} centered at a_{j} can be parameterized by $z=a_{j}+\delta e^{i \theta}$, $\pi>\theta>0$ so that if

$$
f(z) e^{i \lambda z}=\frac{b_{j}}{z-a_{j}}+g_{j}(z)
$$

where g_{j} is analytic in an neighborhood of a_{j}, then

$$
\int_{C_{j}} f(z) e^{i \lambda z} d z=\int_{\pi}^{0} \frac{b_{j}}{\delta e^{i \theta}} \delta i e^{i \theta} d \theta+\int_{C_{j}} g(z) d z .
$$

Because g_{j} is continuous at a_{j} and the length of C_{j} is $\pi \delta$, we have

$$
\lim _{\delta \rightarrow 0} \int_{C_{j}} f(z) e^{i \lambda z} d z=-i \pi b_{j}
$$

By the residue theorem

$$
P V \int_{\mathbb{R}} f(z) e^{i \lambda z} d z-i \pi \sum_{j} b_{j}=2 \pi i \sum_{\operatorname{Im} a>0} \operatorname{Res}_{a} f(z) e^{i \lambda z}
$$

and (9.5) holds.

For the present example $\int(\sin x) / x d x$,

$$
\begin{equation*}
P V \int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x=\pi i \tag{3.4}
\end{equation*}
$$

so that by taking imaginary parts

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x} d x=\pi .
$$

Note that $\sin x / x \rightarrow 1$ as $x \rightarrow 0$ so that $\int \sin x / x d x$ exists as an ordinary (improper) Riemann integral, if we set $\sin x / x=1$ at $x=0$.

For this reason we can drop the PV in front of the integral.

Example 9.15: $\int_{0}^{\infty} \frac{x^{\alpha}}{x^{2}+1} d x$, where $0<\alpha<1$.
An integral of the form

$$
\int_{0}^{\infty} f(x) x^{\beta-1} d x
$$

is called a Mellin transform.

By the change of variables $x=e^{y}$, the Mellin transform of f is the Fourier transform of $f\left(e^{y}\right)$ when β is purely imaginary.

Example 9.15: $\int_{0}^{\infty} \frac{x^{\alpha}}{x^{2}+1} d x$, where $0<\alpha<1$.
Define $z^{\alpha}=e^{\alpha \log z}$ in $\mathbb{C} \backslash[0,+\infty)$ where $0<\arg z<2 \pi$ and set $f(z)=$ $1 /\left(z^{2}+1\right)$.

Consider the "keyhole" contour γ consisting of a portion of a large circle C_{R} of radius R and a portion of a small circle C_{δ} of radius δ, both circles centered at 0 , along with two line segments between C_{δ} and C_{R} at heights $\pm \epsilon$, oriented counterclockwise.

By the residue theorem, for R large and δ small,

$$
\begin{aligned}
\int_{\gamma} z^{\alpha} f(z) d z & =2 \pi i\left(\operatorname{Res}_{i} z^{\alpha} f(z)+\operatorname{Res}_{-i} z^{\alpha} f(z)\right) \\
& =2 \pi i\left(\frac{e^{\alpha \log i}}{2 i}+\frac{e^{\alpha \log (-i)}}{-2 i}\right)=\pi\left(e^{i \frac{\pi \alpha}{2}}-e^{i \frac{3 \pi \alpha}{2}}\right)
\end{aligned}
$$

We will first let $\epsilon \rightarrow 0$, then $R \rightarrow \infty$ and $\delta \rightarrow 0$.

Even though the integrals along the horizontal lines are in opposite directions, they do not cancel as $\epsilon \rightarrow 0$.

For $\epsilon>0$

$$
\lim _{\epsilon \rightarrow 0}(x+i \epsilon)^{\alpha} f(x+i \epsilon)=e^{\alpha \log |x|} f(x)
$$

and

$$
\lim _{\epsilon \rightarrow 0}(x-i \epsilon)^{\alpha} f(x-i \epsilon)=e^{\alpha(\log |x|+2 \pi i)} f(x)
$$

because of our definition of $\log z$.

Thus the integral over the horizontal line segments tends to

$$
\begin{equation*}
\int_{\delta}^{R}\left(1-e^{2 \pi i \alpha}\right) x^{\alpha} f(x) d x \tag{9.8}
\end{equation*}
$$

For R large

$$
\begin{equation*}
\left|\int_{C_{R}} z^{\alpha} f(z) d z\right| \leq \int_{0}^{2 \pi} \frac{R^{\alpha}}{R^{2}-1} R d \theta \rightarrow 0 \tag{9.9}
\end{equation*}
$$

as $R \rightarrow \infty($ since $\alpha<1)$.

Similarly

$$
\begin{equation*}
\left|\int_{C_{\delta}} z^{\alpha} f(z) d z\right| \leq \int_{0}^{2 \pi} \frac{\delta^{\alpha}}{1-\delta^{2}} \delta d \theta \rightarrow 0 \tag{3.8}
\end{equation*}
$$

as $\delta \rightarrow 0$ (since $\alpha>-1$).
By (9.7) to (9.10)

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{x^{2}+1} d x=\pi \frac{e^{i \frac{\pi \alpha}{2}}-e^{\frac{i \pi \alpha}{2}}}{1-e^{2 \pi i \alpha}}=\frac{\pi}{2 \cos \alpha \pi / 2} .
$$

This line of reasoning works for meromorphic f satisfying $|f(z)| \leq C|z|^{-2}$ for large $|z|$ and with at worst a simple pole at 0 .

The function z^{α} can be replaced by other functions which are not continuous across \mathbb{R}, such as $\log z$.

In this case real parts of the integrals along $[0, \infty)$ will cancel, but the imaginary parts will not.

Mellin transforms are used in applications to signal processing, image filtering, stress analysis and other areas.

Section 9.4: Series via Residues

Example 9:16: $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$
Set $f(z)=\frac{1}{z^{2}+1}$ and consider the meromorphic function $f(z) \pi \cot \pi z$. Write

$$
\begin{equation*}
\pi \cot \pi z=\pi i\left(\frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}\right)=\pi i\left(\frac{e^{2 \pi i z}+1}{e^{2 \pi i z}-1}\right) \tag{9.11}
\end{equation*}
$$

Multiplying (9.11) by $z-n$ and letting $z \rightarrow n$ shows that π cot πz has a simple pole with residue 1 at each integer n.

Because the poles are simple, $f(z) \pi \cot \pi z$ has a simple pole with residue $f(n)$ at $z=n$.

Example 9:16: $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$

Consider the contour integral of $f(z) \pi \cot \pi z$ around the square S_{N} with vertices $\left(N+\frac{1}{2}\right)(\pm 1 \pm i)$, where N is a large positive integer.

The function $\pi \cot \pi z$ is uniformly bounded on S_{N}, independent of N. Recall

$$
\begin{equation*}
\pi \cot \pi z=\pi i\left(\frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}\right)=\pi i\left(\frac{e^{2 \pi i z}+1}{e^{2 \pi i z}-1}\right) \tag{9.11}
\end{equation*}
$$

The LFT $(\zeta+1) /(\zeta-1)$ maps the region $|\zeta-1|<\delta$ onto a neighborhood of ∞ and is one-to-one, so it is bounded on $|\zeta-1|>\delta$.

The estimate $\left|e^{2 \pi i z}-1\right|>1-e^{-\pi}$ holds on S_{N} (consider that $e^{2 \pi i x z}=1$ on on \mathbb{Z} and the horizontal and vertical segments miss this set). Hence $\pi \cot \pi z$ is bounded on S_{N}.

Therefore, because $|f(z)| \leq C|z|^{-2}$, we have

$$
\int_{S_{N}} f(z) \pi \cot \pi z d z \rightarrow 0
$$

By the residue theorem

$$
0=\operatorname{Res}_{i} f(z) \pi \cot \pi z+\operatorname{Res}_{-i} f(z) \pi \cot \pi z+\sum_{-\infty}^{\infty} f(n)
$$

and hence

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}=\frac{\pi}{2}\left[\frac{e^{\pi}+e^{-\pi}}{e^{\pi}-e^{-\pi}}\right]+\frac{1}{2}
$$

This technique can be used to compute

$$
\sum_{n=-\infty}^{\infty} f(n)
$$

provided f is meromorphic with $|f(z)| \leq C|z|^{-2}$ for $|z|$ large.
If some of the poles of f occur at integers, then the residue calculation at those poles is slightly more complicated because the poles of $f(z) \pi \cot \pi z$ will not have order 1 at these integers. See Example 9.6.

If only the weaker estimate $|f(z)| \leq C|z|^{-1}$ holds, then f has a removable singularity at ∞ and so $g(z)=f(z)+f(-z)$ satisfies $|g(z)| \leq C|z|^{-2}$ for large $|z|$. Applying the techique to g, we can find the symmetric limit

$$
\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} f(n)
$$

