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Chapter 9: Calculus of Residues



Section 9.1: Contour Integration and Residues



Cauchy’s theorem says that if f is analytic in a region Ω and if γ is a closed

curve in Ω which is homologous to 0, then
∫
γ f (z)dz = 0.

What happens if f has an isolated singularity at a ∈ Ω?



Expanding f in its Laurent series about a, we have

f (z) =

∞∑
n=−∞

bn(z − a)n =
b−1

z − a
+
d

dz

 ∞∑
n=−∞,n6=−1

bn
(n + 1)

(z − a)n+1

 .
Thus ∫

∂∆

f (z)dz = b−1

∫
∂∆

dz

z − a
= 2πib−1, (9.1)

provided ∂∆ is oriented in the positive or counterclockwise direction.



Definition: If f is analytic in {0 < |z − a| < δ} for some δ > 0, then the

residue of f at a, written Resaf , is the coefficient of (z−a)−1 in the Laurent

expansion of f about z = a.

Theorem 9.2, Residue theorem: Suppose f is analytic in Ω except for

isolated singularities at a1, . . . , an. If γ is a cycle in Ω with γ ∼ 0 and

aj /∈ γ, j = 1, . . . , n, then∫
γ

f (z)dz = 2πi
∑
k

n(γ, ak)Resakf.



Usually the residue theorem is applied to curves γ such that n(γ, ak) = 0 or 1,

so that the sum on the right is 2πi times the sum of the residues of f at points

enclosed by γ.

If f has infinitely many singularities clustering only on ∂Ω then we can shrink

Ω slightly so that it contains only finitely many aj and still have γ ∼ 0.



Proof. Let ∆k be a disk centered at ak, k = 1, 2, . . . , n, such that ∆m∩∆k = ∅
if m 6= k.

Orient ∂∆k in the counterclockwise direction. Then in the region Ω\{a1, . . . , an},
γ −

∑
k

n(γ, ak)∂∆k ∼ 0

By Cauchy’s theorem∫
γ

f (z)dz −
n∑
k=1

n(γ, ak)

∫
∂∆k

f (z)dz = 0.

Then Theorem 9.2 follows from (9.1). �



Section 9.2: Some examples



Example 9.3: f (z) =
e3z

(z − 2)(z − 4)

This has a simple pole at z = 2 and hence

Res2f = lim
z→2

(z − 2)f (z) =
e6

−2
.

The residue at z = 4 can be calculated similarly.



Example 9.4: g(z) =
e3z

(z − 2)2
.

Expand e3z in a series expansion about z = 2:

g(z) =
e6e3(z−2)

(z − 2)2
=

e6

(z − 2)2

∞∑
n=0

3n

n!
(z − 2)n =

e6

(z − 2)2
+

3e6

z − 2
+ . . . ,

so that

Res2g = 3e6.



In this case limz→2(z − 2)2g(z) is not the coefficient of (z − 2)−1 and

limz→2(z − 2)g(z) is infinite.

More generally, if G(z) is analytic at z = a then iiiiii

Resa
G(z)

(z − a)n
=
G(n−1)(a)

(n− 1)!
.



Example 9.5: Suppose we have a simple pole, and the pole is not already

written as a factor of the denominator.

h(z) = eaz/(z4 + 1).

Then h has simple poles at the fourth roots of −1. If ω4 = −1, then

Resωh = lim
z→ω

(z − ω)eaz

z4 + 1
=

eaω

limz→ω
z4+1
z−ω

.

Note that the denominator is the limit of difference quotients for the derivative

of z4 + 1 at z = ω and hence

Resω
eaz

z4 + 1
=
eaω

4ω3
= −ωe

aω

4
.



Example 9.6: Another method using series is illustrated by the example

k(z) =
π cot πz

z2

To compute the residue of k at z = 0, note that cotπz has a simple pole at

z = 0 and hence k has a pole of order 3, so that

π cot πz

z2
=
b−3

z3
+
b−2

z2
+
b−1

z
+ b0 + . . . .



Then

π cosπz =

(
sin πz

z

)
(b−3 + b−2z + b−1z

2 + b0z
3 + . . . .

Inserting the series expansions for cos and sin we obtain

π(1− π2

2
z2 + . . . ) = (π − π3

6
z2 + . . . )(b−3 + b−2z + b−1z

2 + . . . ,

Equating coefficients

π = πb−3 −
π3

2
= −π

3

6
b−3 + πb−1,

and Res0k = b−1 = −π2

3 .



Example 9.7: If γ is the circle centered at 0 with radius 3, then∫
γ

e3z

(z − 2)(z − 4)
dz = −2πi

e6

2
,

by the residue theorem and Example 9.3.



Example 9.8:

∫ ∞
−∞

dx

x4 + 1
.

Construct a contour γ consisting of the interval [−R,R] followed by the semi-

circle CR in H of radius R, with R > 1.

By the residue theorem with f (z) = 1/(z4 + 1),∫ R

−R
f (z)dz +

∫
CR

f (z)dz = 2πi(Resz1f + Resz2f ), (9.2)

where z1 and z2 are the roots of z4 + 1 = 0 in the upper half-plane H.



Note that ∣∣∣∣∫
CR

f (z)dz

∣∣∣∣≤ ∫ 2π

0

Rdθ

R4 − 1
→ 0

as R→∞. Since the integral
∫
R(x4 + 1)−1dx is convergent, it equals

lim
R→∞

∫ R

−R
(x4 + 1)−1dx,

so that by (9.2), and Example 9.5∫ ∞
−∞

1

x4 + 1
dx = −2πi

4
(z1 + z2) =

π√
2
.



The technique above can be used to compute the integral of any rational function

with no poles on R if the degree of the denominator is at least 2 plus the degree

of the numerator.

This latter condition is needed for the absolute convergence of the integral.



Example 9.9:

∫ 2π

0

1

3 + sin θ
dθ. Set z = eiθ. Then dz = ieiθdθ = izdθ.∫ 2π

0

1

3 + sin θ
dθ =

∫
|z|=1

1

(3 + 1
2i(z − 1/z))

dz

iz
=

∫
|z|=1

2dz

z2 + 6iz − 1
.

The roots of z2 + 6iz − 1 occur at z1, z2 = i(−3±
√

8).

Only i(−3 +
√

8) lies inside |z| = 1.

By the residue theorem and computing residues as in Examples 9.3 or 9.5,∫ 2π

0

1

3 + sin θ
dθ = 2πiResi(−3+

√
8)

2

z2 + 6iz − 1
=

2π√
8
.



The technique in Example 9.9 can be used to compute∫ 2π

0

R(cos θ, sin θ)dθ,

where R(cos θ, sin θ) is a rational function of sin θ and cos θ, with no poles on

the unit circle.

An integral on the circle as in Example 9.9, can be converted to an integral on

the line using the Cayley transform z = (i−w)/(i+w) of the upper half plane

onto the disk.

It is interesting to note that you obtain the substitution x = tan θ
2 which you

might have learned in calculus.



Example 9.10:

∫ ∞
−∞

cosx

x2 + 1
dx.

A first guess might be to write cos z = (eiz + e−iz)/2, but if y = Imz then

| cos z| ∼ e|y|/2 for large |z|.

This won’t allow us to find a closed contour where the part off the real line

makes only a small contribution to the integral.

Instead, we use eiz/(z2 + 1) then take real parts of the resulting integral.



Using the same half-disk contour as in Example 9.8, we have the estimate∣∣∣∣∫
CR

eiz

z2 + 1
dz

∣∣∣∣≤ ∫
CR

e−y

R2 − 1
|dz| ≤ πR

R2 − 1
→ 0

as R→∞, where y = Imz > 0. By the method in Example 9.5,∫ ∞
−∞

eix

x2 + 1
dx = 2πi

∑
Ima>0

Resa
eiz

z2 + 1
= 2πi

ei·i

2i
=
π

e
.

In this particular case, we did not have to take real parts. The integral itself is

real because sinx/(x2 + 1) is odd.



Section 9.3: Fourier and Mellin Transforms



The technique in Example 9.10 can be used to compute

∫ ∞
−∞

f (x)eiλxdx for λ > 0 (3.1)

provided f is meromorphic in the closed upper half-plane H ∪ R with no poles

on R and |f (z)| ≤ K/|z|1+ε for some ε > 0 and all large |z| with Imz > 0.

If the integral (9.3) is desired for all real λ, then for negative λ use a contour

in the lower half-plane, provided f is meromorphic and |f (z)| ≤ K/|z|1+ε in

Imz < 0, e.g., f is rational and the degree of the denominator is at least 2 plus

the degree of the numerator.

The integral in (9.3), usually with λ replaced by −2πλ, is called the Fourier

transform of f , as a function of λ.



Example 9.11:

∫ ∞
−∞

x sinλx

x2 + 1
dx.

This can not be done as in Example 9.10, because the integrand does not decay

fast enough to prove
∫
CR
|f (z)||dz| → 0, where f (z) = zeiλz/(z2 + 1).

Indeed it is not even clear apriori that the integral in example (e) exists.



Example 9.11:

∫ ∞
−∞

x sinλx

x2 + 1
dx.

We may suppose λ > 0, because sine is odd.

Let γ = γ1 + γ2 + γ3 + γ4 where

γ1 = [−A,B], A,B > 0,

γ2 = {B + iy : 0 ≤ y ≤ A + B},
γ3 = {x + i(A + B) : B ≥ x ≥ −A},
γ4 = {−A + iy : A + B ≥ y ≥ 0},

orienting γ counter-clockwise.



Example 9.11:

∫ ∞
−∞

x sinλx

x2 + 1
dx.

To prove convergence of this integral, we will let A and B tend to ∞ indepen-

dently, and use the estimate

|z/(z2 + 1)| ≤ |z|/(|z|2 − 1) ≤ 2/|z|
when |z|2 > 2. For A and B large,

∣∣∣∣∫
γ3

zeiλz

z2 + 1
dz

∣∣∣∣≤ ∫ B

−A

2

A + B
e−λ(A+B)dx =

2e−λ(A+B)

A + B
(A + B)→ 0,

as A + B →∞.



Also

∣∣∣∣∫
γ2

zeiλz

z2 + 1
dz

∣∣∣∣≤ ∫ A+B

0

2

B
e−λydy ≤ 2

B

(1− e−λ(A+B))

λ
→ 0,

as B →∞.



Example 9.11:

∫ ∞
−∞

x sinλx

x2 + 1
dx.

A similar estimate holds on γ4 as A→∞. By the residue theorem

lim
A,B→∞

∫ B

−A

xeiλx

x2 + 1
dx = 2πi Resi

zeiλz

z2 + 1
=

2πi · ie−λ

2i
= iπe−λ. (9.4)

By our estimates, the integrals over γ2, γ3, and γ4 tend to 0 as A and B tend

to ∞ so that the limit on the left side of (9.4) exists and (9.4) holds.

Example 9.11 follows from (9.4) by taking the imaginary parts.



Example 9.12:

∫ ∞
−∞

sinx

x
dx.

The main difference between Example 9.12 and Example 9.11 is that the function

f (z) = eiz/z has a simple pole on R.

The function sinx/x is integrable near 0 since sinx/x→ 1 as x→ 0, but f (x)

is not integrable.

However the real part of f (x) is odd so that

lim
δ→0

∫ −δ
−1

+

∫ 1

δ

eix

x
dx

exists.



Definition 9.13: Suppose f is continuous on γ \ {a}, and suppose γ′ is

continuous at γ−1(a). Then the Cauchy Principal Value of the integral of

f along γ is defined by

PV

∫
γ

f (z)dz = lim
δ→0

∫
γ∩{|z−a|≥δ}

f (z)dz,

provided the limit exists.

Note that we have deleted points in a ball centered at a.

For example

PV

∫ 1

−1

cosx

x
dx = 0,

because the integrand is odd, but the integral itself does not exist.



Proposition 9.14: Suppose f is meromorphic in {Imz ≥ 0}, such that

|f (z)| ≤ K

|z|
forImz ≥ 0 and|z| > R.

Suppose also that all poles of f on R are simple. If λ > 0 then

PV

∫ ∞
−∞

f (x)eiλxdx = 2πi
∑

Ima>0

Resae
iλzf (z)+2πi

∑
Ima=0

1

2
Resae

iλzf (z). (9.5)



Proposition 9.14: Suppose f is meromorphic in {Imz ≥ 0}, such that

|f (z)| ≤ K

|z|
forImz ≥ 0 and|z| > R.

Suppose also that all poles of f on R are simple. If λ > 0 then

PV

∫ ∞
−∞

f (x)eiλxdx = 2πi
∑

Ima>0

Resae
iλzf (z)+2πi

∑
Ima=0

1

2
Resae

iλzf (z). (9.5)

Part of the conclusion of Proposition 9.14 is that the integral exists even though

the rate of decay at ∞ is possibly slower than our assumptions in (9.3).

If λ < 0, then a similar result holds using the lower half plane.

The integral may not exist if λ = 0 as the example f (z) = 1/z shows.

One way to remember the conclusion of Proposition 3.2 is to think of the real

line as cutting the pole at each aj in half. The integra2 contributes half of the

residue of f at aj.



Proof. Note that f has at most finitely many poles in {Imz ≥ 0}, so that both

sums in Proposition 91.4 are finite.

Construct a contour similar to the rectangle Example 9.11, but avoiding the

poles on R using small semicircles Cj of radius δ > 0 centered at each pole

aj ∈ R.

The integral of f (z)eiλz along the top and sides of the contour tend to 0 as

A,B →∞ as in Example 9.11.



The semi-circle Cj centered at aj can be parameterized by z = aj + δeiθ,

π > θ > 0 so that if

f (z)eiλz =
bj

z − aj
+ gj(z)

where gj is analytic in an neighborhood of aj, then

∫
Cj

f (z)eiλzdz =

∫ 0

π

bj
δeiθ

δieiθdθ +

∫
Cj

g(z)dz.



Because gj is continuous at aj and the length of Cj is πδ, we have

lim
δ→0

∫
Cj

f (z)eiλzdz = −iπbj.

By the residue theorem

PV

∫
R
f (z)eiλzdz − iπ

∑
j

bj = 2πi
∑

Ima>0

Resaf (z)eiλz

and (9.5) holds. �



For the present example
∫

(sinx)/xdx,

PV

∫ ∞
−∞

eix

x
dx = πi, (3.4)

so that by taking imaginary parts∫ ∞
−∞

sinx

x
dx = π.

Note that sinx/x → 1 as x → 0 so that
∫

sinx/xdx exists as an ordinary

(improper) Riemann integral, if we set sinx/x = 1 at x = 0.

For this reason we can drop the PV in front of the integral.



Example 9.15:

∫ ∞
0

xα

x2 + 1
dx, where 0 < α < 1.

An integral of the form ∫ ∞
0

f (x)xβ−1dx

is called a Mellin transform.

By the change of variables x = ey, the Mellin transform of f is the Fourier

transform of f (ey) when β is purely imaginary.



Example 9.15:

∫ ∞
0

xα

x2 + 1
dx, where 0 < α < 1.

Define zα = eα log z in C \ [0,+∞) where 0 < arg z < 2π and set f (z) =

1/(z2 + 1).

Consider the “keyhole” contour γ consisting of a portion of a large circle CR of

radius R and a portion of a small circle Cδ of radius δ, both circles centered

at 0, along with two line segments between Cδ and CR at heights ±ε, oriented

counterclockwise.



By the residue theorem, for R large and δ small,∫
γ

zαf (z)dz = 2πi(Resiz
αf (z) + Res−iz

αf (z))

= 2πi

(
eα log i

2i
+
eα log (−i)

−2i

)
= π(ei

πα
2 − ei

3πα
2 )



We will first let ε→ 0, then R→∞ and δ → 0.

Even though the integrals along the horizontal lines are in opposite directions,

they do not cancel as ε→ 0.

For ε > 0

lim
ε→0

(x + iε)αf (x + iε) = eα log |x|f (x),

and

lim
ε→0

(x− iε)αf (x− iε) = eα(log |x|+2πi)f (x),

because of our definition of log z.



Thus the integral over the horizontal line segments tends to∫ R

δ

(1− e2πiα)xαf (x)dx. (9.8)

For R large ∣∣∣∣∫
CR

zαf (z)dz

∣∣∣∣≤ ∫ 2π

0

Rα

R2 − 1
Rdθ → 0, (9.9)

as R→∞ (since α < 1).



Similarly ∣∣∣∣∫
Cδ

zαf (z)dz

∣∣∣∣≤ ∫ 2π

0

δα

1− δ2
δdθ → 0, (3.8)

as δ → 0 (since α > −1).

By (9.7) to (9.10)∫ ∞
0

xα

x2 + 1
dx = π

ei
πα
2 − ei3πα2

1− e2πiα
=

π

2 cosαπ/2
.



This line of reasoning works for meromorphic f satisfying |f (z)| ≤ C|z|−2 for

large |z| and with at worst a simple pole at 0.

The function zα can be replaced by other functions which are not continuous

across R, such as log z.

In this case real parts of the integrals along [0,∞) will cancel, but the imaginary

parts will not.

Mellin transforms are used in applications to signal processing, image filtering,

stress analysis and other areas.



Section 9.4: Series via Residues



Example 9:16:
∞∑
n=0

1

n2 + 1

Set f (z) = 1
z2+1

and consider the meromorphic function f (z)π cot πz. Write

π cot πz = πi

(
eiπz + e−iπz

eiπz − e−iπz

)
= πi

(
e2πiz + 1

e2πiz − 1

)
. (9.11)

Multiplying (9.11) by z−n and letting z → n shows that π cot πz has a simple

pole with residue 1 at each integer n.

Because the poles are simple, f (z)π cot πz has a simple pole with residue f (n)

at z = n.



Example 9:16:
∞∑
n=0

1

n2 + 1

Consider the contour integral of f (z)π cot πz around the square SN with vertices

(N + 1
2)(±1± i), where N is a large positive integer.



The function π cot πz is uniformly bounded on SN , independent of N . Recall

π cot πz = πi

(
eiπz + e−iπz

eiπz − e−iπz

)
= πi

(
e2πiz + 1

e2πiz − 1

)
. (9.11)

The LFT (ζ + 1)/(ζ − 1) maps the region |ζ − 1| < δ onto a neighborhood of

∞ and is one-to-one, so it is bounded on |ζ − 1| > δ.

The estimate |e2πiz − 1| > 1 − e−π holds on SN (consider that e2πixz = 1 on

on Z and the horizontal and vertical segments miss this set). Hence π cot πz is

bounded on SN .



Therefore, because |f (z)| ≤ C|z|−2, we have∫
SN

f (z)π cot πzdz → 0.

By the residue theorem

0 = Resif (z)π cot πz + Res−if (z)π cot πz +

∞∑
−∞

f (n),

and hence ∞∑
n=0

1

n2 + 1
=
π

2

[
eπ + e−π

eπ − e−π

]
+

1

2
.



This technique can be used to compute
∞∑

n=−∞
f (n),

provided f is meromorphic with |f (z)| ≤ C|z|−2 for |z| large.

If some of the poles of f occur at integers, then the residue calculation at those

poles is slightly more complicated because the poles of f (z)π cot πz will not

have order 1 at these integers. See Example 9.6.

If only the weaker estimate |f (z)| ≤ C|z|−1 holds, then f has a removable

singularity at∞ and so g(z) = f (z) + f (−z) satisfies |g(z)| ≤ C|z|−2 for large

|z|. Applying the techique to g, we can find the symmetric limit

lim
N→∞

N∑
n=−N

f (n).




