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Chapter 7: Harmonic Functions



Section 7.1: The Mean-Value Property and the Maximum Principle



Definition 7.1: A continuous real-valued function u is harmonic on a region

Ω ⊂ C if for each z ∈ Ω there is an rz > 0 (depending possibly on z) such that

u(z) =
1

2π

∫ 2π

0

u(z + reit)dt (7.1)

for all r < rz.

Equation (7.1) is called the mean-value property.



Definition 7.2: A continuous function u with values in [−∞,+∞) is sub-

harmonic on a region Ω if for each z ∈ Ω there is an rz > 0 (depending

possibly on z) such that

u(z) ≤ 1

2π

∫ 2π

0

u(z + reit)dt (1.2)

for all r < rz.



In some texts, the continuity assumption is replaced by upper semi-continuity.

Definition: a real-valued function f is lower semi-continuous if f−1((y,∞)) =

{x : f (x) > y} is open for every a ∈ R. Equivalently, if

lim inf
x→y

f (x) ≥ y.

We allow a subharmonic function to take the value −∞ but not +∞.



• If u and −u are subharmonic then u is harmonic.

• If u1 and u2 are harmonic then A1u1 + A2u2 is harmonic, for A1, A2 ∈ R.

• If u is subharmonic then Au is subharmonic provided A > 0.

• If u1 and u2 are subharmonic then u(z) = max(u1(z), u2(z)) is subharmonic.

• Uniform limits of harmonic functions are harmonic.

• Real and imaginary parts of an analytic function are harmonic.

• If f is analytic on Ω, then log |f | is harmonic on Ω ∩ {|f | > 0} and log |f | is

subharmonic on all of Ω. This is a VERY useful fact!



Theorem 7.3, Maximum Principle Suppose u is subharmonic on a

region Ω. If there exists z0 ∈ Ω such that

u(z0) = sup
z∈Ω

u(z) (7.3),

then u is constant.

The proof is almost identical to the proof for analytic functions.



Proof. Suppose (7.3) holds and set E = {z ∈ Ω : u(z) = u(z0)}. Since u is

continuous, E is closed in Ω. By (7.3), the set E is non-empty. We need only

show E is open, since Ω is connected.

If z1 ∈ E, then by the mean value property

1

2π

∫ 2π

0

[u(z1)− u(z1 + reit)]dt ≤ 0, (7.4)

for r < rz1. But the integrand is continuous and ≥ 0 and hence identically 0

for all t and all r < rz1. This proves E is open and hence equal to Ω. �



Corollary 7.4: If u is a non-constant subharmonic function in a bounded

region Ω and if u is continuous on Ω then

max
z∈Ω

u(z)

occurs on ∂Ω but not in Ω.

Equivalently,

lim sup
z→∂Ω

u(z) = sup
Ω
u(z).

If Ω is unbounded, then ∞ must also be viewed as part of ∂Ω. The function

u(z) = Rez is harmonic on Ω = {z : Rez > 0} and satisfies u = 0 on ∂Ω ∩ C
but u is not bounded by 0.



Theorem 7.5: If g is real-valued and continuous on ∂D, set

u(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
g(eit)dt,

for z ∈ D. Then u is harmonic in D and

lim
z→ζ

u(z) = g(ζ), (7.5)

for all ζ ∈ ∂D.

This is usually called the Poisson extension of g from T to D.

We only need g ∈ L1(T) for extension to exist; can then show radial limit equals

g almost everywhere. (Consequence of Hardy-Littlewood Maximal Theorem.)

Extension still works if g is replaced by a finite measure µ. Then radial limits

equal absolutely continuous part of dµ = gdθ + dν.



Proof. The function

G(z) =
1

2π

∫ 2π

0

eit + z

eit − z
g(eit)dt

is analytic on D as can be seen by expanding the kernel

eit + z

eit − z
=

1 + e−itz

1− e−itz
= 1 + 2

∞∑
1

e−intzn (7.6)

and interchanging the order of summation and integration. The identity

1− |z|2

|eit − z|2
= Re

(
eit + z

eit − z

)
(7.7)

shows that u = ReG and hence u is harmonic. This proves harmonic extension

exists; harder part is to show boundary values equal g.

If g ≡ 1, then G ≡ 1, since
∫
e−intdt = 0 if n 6= 0. Thus for all z ∈ D

1

2π

∫ 2π

0

1− |z|2

|eit − z|2
dt = 1. (7.8)



To prove (7.5) fix t0 and ε > 0 then choose δ > 0 so that |g(eit)− g(eit0)| < ε

if t ∈ Iδ = {t : |t− t0| < δ}. Then using (7.8)

|u(z)− g(eit0)| =
∣∣∣ 1

2π

∫ 2π

0

1− |z|2

|eit − z|2
(g(eit)− g(eit0))dt

∣∣∣
≤ ε

2π

∫
Iδ

1− |z|2

|eit − z|2
dt + M(z)

∫
∂D\Iδ

|g(eit)− g(eit0)|dt
2π
.

where M(z) = sup{t:|t−t0|≥δ}
1−|z|2
|eit−z|2 .

The first term is at most ε by (7.8). Moreover M(z) → 0 as z → eit0 because

|eit− z| is bounded below for |t− t0| ≥ δ. Thus u(z)→ g(eit0) as z → eit0. �



• The proof of Theorem 7.5 shows that we need only assume that g is integrable

on ∂D and continuous at ζ for (1.5) to hold.

• The kernel

Pz(t) =
1

2π

1− |z|2

|eit − z|2
is called the

Poisson kernel and u is the Poisson integral of g.

The Poisson kernel for the upper half plane H is given by

PH
w (s) =

1

π

v

(u− s)2 + v2
=

1

π
Im

(
1

s− w

)
,

where w = u + iv, v > 0, and s ∈ R.



If Ω is a domain and f ∈ C(∂Ω) suppose u is the harmonic function on Ω with

boundary values f . If we fix z ∈ Ω then the map

f → u(z)

is a linear map from C(∂Ω) to R and

|u(z)| ≤ sup
∂Ω
|f (x)|.

In the language of functional analysis, this is a bounded linear functional on the

Banach space C(∂Ω). By the Riesz representation theorem (MAT 533) there is

a measure µz on ∂Ω so that

u(z) =

∫
∂Ω

fdµz.

This is the Possion kernel in the case when Ω = D.

Also know as the “harmonic measure” on ∂Ω w.r.t. z.



Corollary 7.6, Harmonic extensions are unique: If u is harmonic on

D and continuous on |z| ≤ 1, then for z ∈ D

u(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
u(eit)dt. (7.9)

Proof. Let U(z) denote the right side of (7.9). Then by Schwarz’s theorem u−U
is harmonic on D, continuous on D and equal to 0 on ∂D. By the maximum

principle applied to u− U and U − u, we conclude u = U . �



Corollary 7.7: If u is harmonic on |z| < 1 and continuous on |z| ≤ 1,

then

f (z) =
1

2π

∫ 2π

0

eit + z

eit − z
u(eit)dt

is the unique analytic function on D with Re(f) = u and Im(f(0)) = 0.

The function

(eit + z)/(eit − z)

is called the Herglotz kernel and the integral is the Herglotz integral.



Proof. By the first part of the proof of Theorem 7.5, f is analytic. The real part

of f is then equal to u by (7.7) and Corollary 7.6.

If g is another analytic function with Re(g) = u, then f − g is purely imaginary

and hence not an open mapping. Thus f − g is constant. Finally note that

f (0) =
∫
u(eit)dt is real, so that if g(0) is real then g = f . �



Corollary: If u is harmonic on a disk and if f is analytic then u ◦ f is

harmonic.

Proof. harmonicity is local and on a disk u = Re(g) for some analytic function

g, by Corollary 7.7. Hence u ◦ f = Re(g ◦ f) harmonic. �

• Reverse is not true: if u = Re(z) = x and f = z2 then f ◦ u = x2 is not

harmonic.

• The function u = log |z| is harmonic on Ω = {z : 0 < |z| < ∞} and is the

real part of an analytic function on each disk that does not contain 0, but it

is not the real part of an analytic function on all of Ω because arg(z(z)) is not

continuous on Ω.



Corollary 7.8, Jump Theorem: Suppose f is an integrable function

such that f : T→ C. Let

F (z) =

∫
|ζ|=1

f (ζ)

ζ − z
dζ

2πi
.

Then F is analytic on C \ T and for |ζ| = 1,

lim
z→ζ

[
F (z)− F

(
1

z

)]
= f (ζ)

at all points of continuity ζ of f .

The function F is called the Cauchy integral or Cauchy transform of f .

The jump theorem says that the analytic function F jumps by f (ζ) as z crosses

the unit circle at ζ . Notice that if f is analytic on D then F = f in D and

F = 0 in |z| > 1 by Cauchy’s integral formula.



Proof. We already proved that F is analytic off ∂D. To prove the Corollary,

just manipulate the integrals:

F (z)− F
(

1

z

)
=

∫
|ζ|=1

f (ζ)

(
1

ζ − z
− 1

ζ − 1/z

)
dζ

2πi

=

∫
|ζ|=1

f (ζ)
z − 1/z

(ζ − z)(ζ − 1/z)

dζ

2πi

=

∫ 2π

0

f (eit)
1− |z|2

|eit − z|2
dt

2π
.

Applying Schwarz’s Theorem 1.5 to the real and imaginary parts of f completes

the proof. �



If g is integrable on T, set an = 1
2π

∫ 2π

0 g(eit)e−intdt. Then

∞∑
n=−∞

ane
int

is called the Fourier Series of g.



Note that |an| ≤ 1
2π

∫ 2π

0 |g(eit)|dt. By (7.6) and (7.7)

1− |z|2

|eit − z|2
= 1 +

∞∑
n=1

e−intzn +

∞∑
n=1

eint zn.

Interchanging the order of summation and integration, the harmonic “extension”

of g to D is given by

G(z) ≡ PI(g)(z) = a0 +

∞∑
n=1

anz
n +

∞∑
n=1

a−nz
n.

In other words, G is found from the Fourier series of g by replacing eit with z

and e−it with z.



The theory of Fourier series is an immense field that gave birth to harmonic

analysis, geometric measure theory, set theory,...

One of the major theorems of 20th century analysis was Lennart Carleson’s

proof that the Fourier series of a continuous function (or more generally, an L2

function) converges almost everywhere to that function. This can fail for L1

functions.

See Lennart Carleson He was awarded the Abel prize in 2006.

https://en.wikipedia.org/wiki/Lennart_Carleson


There are many articles describing how problems in Fourier series led Cantor to

develop modern set theory. Two such are:

How did Cantor Discover Set Theory and Topology? by S.M. Srivastava.

Trigonometric Series and Set Theory by A. Kechris.

https://www.ias.ac.in/article/fulltext/reso/019/11/0977-0999
http://www.math.caltech.edu/~kechris/papers/trigonometric_series_and_set_theory_article03.pdf


Section 7.2: Cauchy-Riemann and Laplace Equations



If f (z) = u(z) + iv(z) we will sometimes use the notation f (x, y) = u(x, y) +

iv(x, y) where z = x+ iy with x, y real and u(x, y) and v(x, y) are real-valued.

If f is analytic then by the definition of the complex derivative

f ′(z) = lim
h→0

f (x + h, y)− f (x, y)

h
= fx(x, y) = ux(x, y) + ivx(x, y)

= lim
k→0

f (x, y + k)− f (x, y)

ik
=

1

i
fy(x, y) = vy(x, y)− iuy(x, y)

Thus ux = vy and uy = −vx.

These are called the Cauchy-Riemann equations.



Write z = x + iy and define

fz ≡
∂f

∂z
≡ 1

2
(fx − ify)

and

fz ≡
∂f

∂z
≡ 1

2
(fx + ify) .

Then it is an easy exercise to verify the chain rule:

(f ◦ g)z = fz ◦ g gz + fz ◦ g gz
and

(f ◦ g)z = fz ◦ g gz + fz ◦ g gz.

The Cauchy-Riemann equations can be restated in this terminology as

fz = 0.

The derivative of f is just f ′ = fz.



Theorem 7.9: Suppose u and v are real-valued and continuously differen-

tiable on a region Ω. Then u and v satisfy the Cauchy-Riemann equations

if and only if f = u + iv is analytic on Ω.

Proof. Earlier we proved if f = u + iv is analytic then u and v satisfy the

Cauchy-Riemann equations.



Conversely, if u and v satisfy the Cauchy-Riemann equations, then by Taylor’s

theorem applied to the real-valued functions u and v,

f (x + h, y + k)− f (x, y) = h · ux(x, y) + k · uy(x, y)

+i(hvx(x, y) + kvy(x, y)

+ε(h, k)

where ε(h, k)/
√
|h|2 + |k|2 → 0 as |h|, |k| → 0.

Dividing by h + ik and applying the Cauchy-Riemann equations we obtain

lim
h,k→0

f (x + h, y + k)− f (x, y)

h + ik
= ux(x, y)− iuy(x, y).

So f ′(z) exists and is continuous, and therefore f is analytic. �



Definition: If f = u+iv is analytic in a region Ω then v is called a harmonic

conjugate of u in Ω.

Because −if is analytic, −u is a harmonic conjugate of v.

The difference of two non-constant analytic functions is an open map, and. and

hence cannot be purely imaginary on an open set. Thus if v1 and v2 are harmonic

conjugates of u on a region Ω then v1 − v2 is constant.



Theorem 7.10:

(a) A function u is harmonic on a region Ω if and only if 2uz = ux − iuy
exists and is analytic on Ω.

(b) If Ω is simply-connected then u is harmonic on Ω if and only if u = Re(f)

for some f analytic on Ω.



Proof of (a):

Proof. If u is harmonic on Ω and if D is a disk contained in Ω then by Cor 7.7,

f = u + iv for some analytic function f on D. Moreover f ′ is analytic and

f ′ = ux + ivx = ux − iuy by the Cauchy-Riemann equations. This proves that

ux − iuy exists and is analytic on each B and hence on Ω.

Conversely, if g = ux− iuy exists and is analytic on Ω, then g has a power series

expansion on any disk D ⊂ D ⊂ Ω. Integrating the series term by term gives

an analytic function f with f ′ = g.

If w = Re(f) then by the Cauchy-Riemann equations, wx = ux and wy = uy,

so that u = w + c on D where c is a constant. Since w = Re(f) is harmonic, u

must also be harmonic on B and hence on all of Ω. �



Proof of (b):

Proof. If u is harmonic on a simply-connected region Ω, then by previous argu-

ment, there is an analytic function f on all of Ω such that f ′ = ux − iuy.

By the Cauchy-Riemann equations w = Re(f) and u have the same partial

derivatives on Ω and so u = Re(f + c) for some constant c. Hence u is harmonic.

�



If f is analytic then f has continuous partial derivatives of all orders. By the

Cauchy-Riemann equations applied to u = Re(f) and v = Im(f),

uxx = (vy)x = (vx)y = (−uy)y = −uyy, (2.2)

and hence uxx + uyy = 0. Similarly vxx + vyy = 0.

Definition 7.11: The Laplacian of u is the second-order derivative given by

∆u = uxx + uyy.

We say that u satisfies Laplace’s equation on a region Ω if u has continuous

second-order partial derivatives (including the mixed partials) and ∆u = 0 on

Ω.



Theorem 7.12: Suppose u is real-valued and continuous on a region Ω.

Then the following are equivalent:

(1) u is harmonic on Ω

(2) u satisfies Laplace’s equation on Ω

(3) If D is an open disk with D ⊂ D ⊂ Ω and if v is harmonic on D, then

u− v and v − u satisfy the maximum principle on D.

We will prove

(1) ⇒ (2) (already done above)

(1) ⇒ (3) (already done by maximum principle)

(3) ⇒ (1)

(2) ⇒ (1)



Proof of (3) ⇒ (1):

Proof. If (3) holds and if D ⊂ D ⊂ Ω, then let v be the Poisson integral of u|∂D
on D. Then v is harmonic on D and u− v and v − u are equal to 0 on ∂D by

Theorem 75. By (3), u = v on D. Thus u is harmonic, so (1) holds.



Proof of (2) ⇒ (1):

Set g = ux−iuy. Now ifR is a rectangle with sides parallel to the axes contained

in Ω, we claim that
∫
∂R g(ζ)dζ = 0. To see this, note that

∫
∂R

(ux − iuy)(dx + idy) =

∫
∂R

uxdx + uydy + i

∫
∂R

uxdy − uydx.

By the fundamental theorem of calculus applied to each segment in ∂R, the first

integral is zero.



Also by the fundamental theorem of calculus, integrating along horizontal lines

in R and vertical lines in R, the second integral can be rewritten as

∫
R

(uxx + uyy)dxdy,

which is also equal to 0 by (2).

By Morera’s theorem, g = ux− iuy is analytic on Ω, so u = Re(g) is harmonic.

�



Corollary 7.13: If f is continuously differentiable (with respect to x and

y) on a region Ω and if f preserves angles between curves at each point of

Ω then f is analytic in Ω and f ′ 6= 0 on Ω.



Proof. Suppose z0 ∈ Ω and θ ∈ [0, 2π]. Set γ(t) = z0 + teiθ and w(t) = f (γ(t)).

Because f preserves angles between curves at z0, the angle between w(t) and

γ(t) at t = 0, arg(w′(0)/γ′(0)), does not depend on θ.

By the chain rule

w′(t) = fzγ
′(t) + fz γ′(t) = fze

iθ + fz e
−iθ,

so that
w′(0)

γ′(0)
= fz + fz e

−2iθ,

But left side is constant in θ, so right side is too. Thus fz(z0) = 0. By Theorem

7.9, f is analytic.

If f preserve angles at z, then f ′(z) 6= 0 (otherwise angle are multiplied). �



Section 7.3: Hadamard, Lindelöf and Harnack



The maximum principle has refinements that are very important in applications.

If u is harmonic in D and not constant then for interior points z, u(z) is strictly

smaller than supT u. We want to quantity how much smaller.



Theorem 7.14, Hadamard’s Three-Circles Theorem Suppose f is

analytic in the annulus A = {z : r < |z| < R}. Let m = lim sup|z|→r |f (z)|
and M = lim sup|z|→R |f (z)|, and suppose m,M <∞. If z ∈ A, then

|f (z)| ≤Mω(z)m1−ω(z),

where ω(z) = log(|z|/r)/ log(R/r).



Proof. The function ω logM + (1 − ω) logm is harmonic on A and equal to

logM on |z| = R and equal to logm on |z| = r. Thus

u = log |f | − (ω logM + (1− ω) logm)

is subharmonic on A and lim supz→∂A u(z) ≤ 0. By the maximum principle,

u ≤ 0 in A. �



The function ω is called “harmonic measure” of the annulus.

Given a domain Ω and a set E ⊂ ∂Ω, ω(z, E,Ω) is the harmonic function on

Ω with boundary values 1 on E and 0 off E (boundary values in what sense,

needs to be explained).

Intuitively, ω(z) is the probability that a Brownian motion started at z first hits

∂Ω in the set E. It is not hard to see (heuristically, at least) that this probability

satisfies the mean value property and has correct boundary values.



Theorem, Lindelöf: Suppose Ω is a region and suppose {ζ1, . . . , ζn} is a

finite subset of ∂Ω, not equal to all of ∂Ω. If u is subharmonic on Ω with

u ≤M <∞ on Ω and if

lim sup
z∈Ω→ζ

u(z) ≤ m,

for all ζ ∈ ∂Ω \ {ζ1, . . . , ζn} then u ≤ m on Ω.

In the statement of Lindelöf’s theorem, if Ω is unbounded, then we view ∞ as

a boundary point, which may or may not be one of the exceptional points {ζj}.



Proof. First suppose that Ω is bounded and let d = diam(Ω). For ε > 0 set

uε(z) = u(z) + ε

n∑
j=1

log

∣∣∣∣z − ζjd

∣∣∣∣ . (7.13)

Then uε is subharmonic in Ω, uε ≤ u and uε → −∞ as z → ζj, for j = 1, . . . , n.

Thus lim supz→∂Ω uε(z) ≤ m, and so by the maximum principle uε ≤ m on Ω.

Fix z and let ε→ 0 in (7.13) to obtain u(z) ≤ m.

If Ω is not bounded, we may suppose that ζj 6=∞ for j = 1, . . . , n by composing

with an LFT if necessary. Given ε > 0, we can choose R so that R > maxj |ζj|
and u(z) ≤ m+ ε for z ∈ Ω∩{|z| > R}. Now apply the bounded case to u− ε
on Ω ∩ {|z| < R} to conclude that u− ε ≤ m on Ω ∩ {|z| < R} and hence on

Ω. Let ε→ 0 to conclude u ≤ m on Ω. �



The finite exceptional set can be replaced by any countable set, and by some

uncountable sets, i.e., the sets of zero logarithmic capacity.

E has zero logarithmic capacity if there is a harmonic function u off E so that

u(z)→∞ as z → E. This is only property of finite sets that proof will use.



A consequence of Lindelöf maximum principle is the Three-Lines version of

Hadamard’s theorem, which plays an important role in complex interpolation

theory of operators.

It follows from the proof of Hadamard’s three-circles theorem and Lindelöf’s

maximum principle.

Corollary 7.16: If u is subharmonic on the strip S0 = {z = x + iy :

0 < x < 1} set m0 = lim supRez→0 u(z) and m1 = lim supRez→1 u(z). If

u ≤M <∞ on S0 then u(z) ≤ m1x + m0(1− x).



Suppose g and h are continuous functions on a compact set X and suppose dµ

is a positive measure on X . Then the function

F (z) =

∫
X

|g|pz|h|q(1−z)dµ

is analytic on S0 for p, q > 0. To prove this apply Morera’s theorem after

interchanging the order of integration.

Thus

log

∣∣∣∣∫
X

|g|pz|h|q(1−z)dµ

∣∣∣∣
is subharmonic on S0, and bounded above.



By Corollary 7.16, for 0 < x < 1,

log

∣∣∣∣∫
X

|g|pz|h|q(1−z)dµ

∣∣∣∣ ≤ x log

∫
X

|g|pdµ + (1− x) log

∫
X

|h|qdµ.

If 1/p + 1/q = 1 with p > 1 then set z = x = 1/p and exponentiate to obtain∫
X

|gh|dµ ≤
(∫

X

|g|pdµ
)1

p
(∫

X

|h|qdµ
)1

q

,

which is called Hölder’s inequality.



Riesz–Thorin interpolation theorem: Let (Ω1.Σ1, µ1) and (Ω2.Σ2, µ2)

be σ-finite measure spaces. Suppose 1 ≤ p0, q0, p1, q1 ≤ ∞, and let

T : Lp0(µ1) + Lp1(µ1)→ Lq0(µ2) + Lq1(µ2)

be a linear operator that boundedly maps Lp0(µ1) to Lq0(µ1) and Lp1(µ2) to

Lq1(µ2). For 0 < θ < 1, let pθ and qθ be define as
1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

Then T boundedly maps Lpθ(µ1) into lqθ(µ2), and satisfies the operator norm

estimate

‖T‖Lpθ→Lqθ ≤ ‖T‖1−θ
Lp0→Lq0 · ‖T‖

θ
Lp1→Lq1.

Proof can be found in several harmonic analysis texts.



Theorem 7.17, Harnack’s Inequality: Suppose u is a positive harmonic

function on D. Then for |z| = r <,

(
1− r
1 + r

)
u(0) ≤ u(z) ≤

(
1 + r

1− r

)
u(0),



Proof. We may assume u is harmonic on D by replacing u with u(sz), s < 1

and then letting s→ 1.

1− r
1 + r

=
1− r2

(1 + r)2
≤ 1− |z|2

|eit − z|2
≤ 1− r2

(1− r)2
=

1 + r

1− r
.

Then because u is positive and the mean-value property holds:

(
1− r
1 + r

)
u(0) ≤

∫ 2π

0

1− |z|2

|eit − z|2
u(eit)

dt

2π
≤
(

1 + r

1− r

)
u(0). �



Corollary 7.19 Let K be a compact subset of a region Ω. Then there

exists a constant C depending only on Ω and K such that if u is positive

and harmonic on Ω then for all z, w ∈ K
1

C
u(w) ≤ u(z) ≤ Cu(w). (3.2)



Proof. If D is a disk, let 2D be the disk with the same center as D and twice

the radius. Suppose D is a disk such that 2D ⊂ Ω. Let ϕ be a linear map of

D onto 2D, then by Harnack’s inequality applied to u ◦ ϕ we have that (7.14)

holds for z ∈ B and w equal to the center of B, with C = 3. Thus (7.14) holds

for all z, w ∈ B with C = 9.



Cover K by a finite collection of disks D = {Dj} with 2Dj ⊂ Ω. Add more

disks if necessary so that ∪Dj is connected. If Dj, Dk ∈ D with Dj ∩Dk 6= ∅
then (7.14) holds on Dj ∪Dk with C = 81.

Because there are only finitely many disks and because their union is connected,

(7.14) holds on ∪{Dj : Dj ∈ D}, and therefore on K, with a constant C

depending only on the number of disks in D, and not on u. �



Theorem 7.20, Harnack’s Principle: Suppose {un} are harmonic on a

region Ω such that un(z) ≤ un+1(z) for all z ∈ Ω. Then either

(1) limn→∞ un(z) ≡ u(z) exists and is harmonic on Ω, or

(2) limn→∞ un(z) = +∞
where convergence is uniform on compact subsets of Ω. this means that

given K ⊂ Ω compact and M <∞ there is an n0 <∞ so that un(z) ≥ M

for all n ≥ n0 and z ∈ K.

In the second case, convergence on compact sets means that given K ⊂ Ω

compact and M < ∞, there is an n0 < ∞ so that un(z) ≥ M for all n ≥ n0

and z ∈ K.



Proof. By assumption, if n > m then un − um ≥ 0, and by the maximum

principle un − um is strictly positive or identically 0.

Fix z0 ∈ K compact. By Cor 7.19 there is a C so that for all z ∈ K,

1

C
(un(z0)− um(z0)) ≤ un(z)− um(z) ≤ C(un(z0)− um(z0)).

Thus {un(z0)} is Cauchy if and only if {un} is uniformly Cauchy on K. Thus if

the increasing sequence {un(z0)} converges, then {un} converges uniformly on

compact subsets of Ω.

Similarly if un(z0)→∞ then un(z)→∞ uniformly on compact subsets of Ω.

The limit function u is harmonic by the mean-value property. �



One important consequence of the Harnack inequality is that all harmonic mea-

sures of a domain Ω are mutually absolutely continuous, for every choice of base

point. In other words,

ω(z1, E,Ω) = 0 ⇔ ω(z2, E,Ω) = 0.



This may or may not be true base points are on different sides of a curve

Recall, two measures are mutually absolutely continuous if they have

same sets of measure zero.

Two measures are singular if they give full mass to disjoint sets.



If γ is rectifiable closed curve, the F. and M. Riesz Theorem (1916) says that

harmonic measure is mutually absolutely continuous to arclength on γ.

This is true for points on both sides of γ, so harmonic measures for both sides

are mutually absolutely continuous.

Higher dimensional versions only proven quite recently (5-10 years ago). Uses

singular integral theory and geometric measure theory.



It has been know from the 1930’s (Lavrentiev) that for some curves, harmonic

measures can be singular.

Theorem: Harmonic measures on opposite sides of γ are singular iff the set of

tangent points has zero linear measure.

My PhD thesis

https://www.math.stonybrook.edu/~bishop/papers/CJBishop-thesis.pdf


Theorem 7.18, Boundary Harnack inequality Suppose u and v are

positive harmonic functions on D which extend to be continuous and equal

to 0 on a closed arc I ⊂ T. Let Uδ = {z ∈ D : dist(z,T \ I) > δ > 0}. Then

for z ∈ Uδ
δ2

4

(
u(0)

v(0)

)
≤ u(z)

v(z)
≤ 4

δ2

(
u(0)

v(0)

)
.



Proof. Fix z ∈ Uδ with |z| < r < 1 and set δr = dist(z/r,T \ I). By the

Poisson integral formula

u(z)

1− |z/r|2
=

1

2π

∫
T

u(reit)

|eit − z/r|2
dt

≤ 1

2π

∫
T\I

u(reit)

δ2
r

dt +
1

2π

∫
I

u(reit)

|eit − z/r|2
dt

≤ u(0)

δ2
r

+
1

2π

∫
I

u(reit)

|eit − z/r|2
dt.



Similarly

v(z)

1− |z/r|2
=

1

2π

∫
T

v(reit)

|eit − z/r|2
dt

≥ 1

2π

∫
T\I

v(reit)

4
dt +

1

2π

∫
I

v(reit)

|eit − z/r|2
dt

=
v(0)

4
− 1

2π

∫
I

v(reit)

4
dt +

1

2π

∫
I

v(reit)

|eit − z/r|2
dt.



Therefore

u(z)

v(z)
=

u(0)
δ2
r

+ 1
2π

∫
I

u(reit)

|eit−z/r|2dt

v(0)
4 −

1
2π

∫
I
v(reit)

4 dt + 1
2π

∫
I

v(reit)

|eit−z/r|2dt

Letting r → 1 we obtain the right-hand inequality, since δr → dist(z,T \ I) >

δ > 0, and u(reit) and v(reit) converge uniformly to 0 on I .

The left-hand inequality is proved by reversing the roles of u and v. �


