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Chapter 5: Cauchy’s Theorem



Section 5.1: Cauchy’s Theorem



Recall that a cycle v = Z?:1 7, 1s a finite union of closed curves v, ..., yn.

Theorem 5.1, Cauchy’s Theorem: Suppose v is a cycle contained in a

dg
=0 5.2
= (5.2)
for all a & ). If f is analytic on §) then

L F()d¢ = 0.

region {1 and suppose




Proof. By Runge’s theorem, we can find a sequence of rational function r, with

poles in C \ €2 so that r, converges to f uniformly on the compact set v C €.

Each rational functions has a partial fraction expansion

B3 o+ a(e)

k=1 j7=1
and integrating around a closed curve ~y gives zero, except for the simple poles.

But by our assumption (5.2), these integrals also vanish.

By uniform convergence,

|/ dz|—\/ ) —ra(2))dz| <sup|f —rull(y) = 0. O

~



Theorem 5.2, Cauchy’s Integral Formula Suppose v is a cycle con-

tained 1 a region ) and suppose

[

for all a & Q. If f is analytic on Q and z € C\ v then
L[, 1 1
2wiL§—zd<_f<Z)'%Lg—de'

Proof. For each z € Q) the function g(¢) = (f(¢) — f(2))/(¢ — z) extends to be
analytic on {2, by Exercise 2.5.

By Cauchy’s theorem it has integral over v equal to 0. Theorem 5.2 follows by
splitting the integral of g along v into two pieces. []



Section 5.2: Winding number



Idea: intuitively, the winding number is the number of times a curve winds

YOO @

winding=1  winding=2 winding=—2 winding=0

around a point.

It is the total change in arg(z — a) as z travels around .



Lemma 5.3 If v is a cycle and a & v, then
1 1
Y
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1S an integer.



Proof. WLOG we may suppose -y is a closed curve parameterized by a continu-
ous, piecewise differentiable function v : [0, 1] — C. Define

hz) = /0 ' . (’Z;@_) ~dt.

Then A'(x) exists and equals 7/(x)/(v(z) — a), except at finitely many points
x. Then

d
——e"((2) —a) = —H(2)e”"(y(x) — a) + e (2)
xr
= —/(2)e” ") 4 4/ (z)e ") = 0,

except at finitely many points.



Since e ") (~(x) — a) is continuous, it must be constant. Thus
MO((1) — a) = €O (5(0) —a) = 1- (4(1) — a).

Since ¥(1) —a # 0, eV =1 and h(1) = 27wki, where k is an integer. Thus
1 d h(1
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an mteger.



Definition 5.4 If v is a cycle, then the index or winding number of ~

about a (or with respect to a) is

(RRed =

for a & ~.



(1) n(7y, a) is an analytic function of a, for a ¢ ~, by Lemma 4.30 and Theorem
4.32. In particular it is continuous and integer-valued, and thus n(v, a) is

constant in each component of C \ .

(2) n(v,a) — 0 as a — oo. Thus n(v,a) = 0 in the unbounded component of
C\~.

(3> N(—’% CL) — _n(f% CL).
(4) n(n + 12, a) = nln, a) + n(y, a).
(5) If v(t) = e for 0 < t < 27, where k is an integer, then

1 dz 1 [ ket
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dt = k.




Definition 5.5 Closed curves v, and 7, are homologous in a region {2 if

n(vy — v9,a) = 0 for all a ¢ €2 and in this case we write

71~ V2.

e Homology is an equivalence relation on the curves in €2 (Exercise 2). A closed
curve v C € is said to be homologous to 0 in Q if n(vy,a) = 0 for all a ¢ €.

In this case we write v ~ 0.

e If v is homotopic to zero, then it is homologous to zero, but not conversely.



e Cauchy’s theorem says that if v ~ 0 in 2 and if f is analytic in () then

A f2)dz =0,

Thus if 44 is homologous to 7, in €2, then

; f(2)dz = /Wf(z)dz.

e The most common application of Cauchy’s integral formula is when v C 2

with v ~ 0 and n(vy, z) = 1. Then for f analytic on (2,

1) =5 [ Holuc




If €2 is a bounded region in C bounded by finitely many piecewise differen-
tiable curves, then we can parameterize 0€) so that as you trace each boundary

component, the region () lies on the left.

In other words iv/(t), where it exists, is an “inner normal”, rotated counter-

clockwise by 7 /2 from the tangential direction /(¢).



In Exercise 5.4 you are asked to show that n(992,a) = 1 for all a € Q and
n(0,a) = 0 for all @ ¢ Q. We call this the positive orientation of 9.

Thus for all such regions, 92 ~ 0 in any region containing 2.

So by Cauchy’s theorem, if ) is a bounded region, bounded by finitely many

piecewise differentiable curves and if f is analytic on Q. then

fo= [ SELE (5.4)

qC— z2mi’




Definition 5.6: A region 2 C C* is called simply-connected if C* \ (2 is

connected in C*.

Equivalently a region € is simply-connected if S* \ 7(Q) is connected, where

is stereographic projection and m(00) is defined to be the “North pole” (0,0, 1)

in §2.



Simply-connected essentially means “no holes”. For example, the unit disk D
is simply-connected. The vertical strip {z : 0 < Rez < 1} is simply-connected.
The punctured plane C \ {0} is not simply-connected.

The set C \ D together with oo is simply-connected, but C \ D is not simply-

connected.



Theorem 5.7: A region () C C is simply-connected if and only if every
cycle wn ) is homologous to 0 in ). If ) is not simply-connected then

we can find a stmple closed polygonal curve contained in €) which s not

homologous to 0.



Proof. Suppose (2 is simply-connected and suppose 7 is a cycle contained in ()
and suppose a ¢ €. Because ()¢ = C* \ Q) is connected, it must be contained in
one component of the complement of v in C*. Because co € €2°, a must be in

the unbounded component of C \ ~, and n(vy,a) = 0.

Conversely, suppose that C*\ 2 = AU B where A and B are non-empty closed
sets in C* with AN B = (0. Without loss of generality oo € B. Since A is
closed, a neighborhood of oo does not intersect A and hence A is bounded.
Pick ay € A. We'll construct a curve vy C €2 such that n(yg, ag) # 0, proving
Theorem 2.5.



The construction is the same construction used to prove Runge’s theorem.
Let d = dist(A, B) =inf{la —b| :a € A,b € B} > 0.

Pave the plane with squares of side d/2 such that ag is the center of one of the
squares. Orient the boundary of each square in the positive, or counter-clockwise
direction Shade each square S; with S; N A # 0.

Let 79 denote the cycle obtained from UOS; after performing all possible can-
cellations. Then vy C €2 because vy does not intersect either A or B, and
n(vo, ag) = 1. Because ~ is a finite union of closed simple polygonal curves, at

least one of these curves is not homologous to 0. ]




Corollary 5.8 Suppose f is analytic on a simply-connected region €2. Then
(1) f7 f(2)dz =0 for all closed curves v C ).
(2) There exists a function F analytic on Q) such that F' = f.

(3) If also f(z) # 0 for all z € S then there exists a function g analytic on
Q) such that f = €Y.



Proof. The first statement follows from Cauchy’s theorem and Theorem 5.7.

For the 2nd part, follow the proof of Morera’s (Theorem 4.19).

Fix zg € Q and define F'(z) = faz f(¢)d¢ where o, is any curve contained in )
connecting zg to z. This definition does not depend on the choice of o, because

the integral along any closed curve is zero.

If D C Qis a disk, then for 2 € D we can write F'(z) as an integral from z
to the center of D plus an integral along a horizontal then vertical line segment
from the center of D to z. As in the proof of Morera’s Theorem, F' is analytic
and F’ = f on D and hence on all of €.



to prove the third statement, note f’/f is analytic on €2, so there is a function

g analytic on €2 such that ¢’ = f'/f (previous argument).

To compare f and e9, set

hzézfeg.

Then

h = fle 9 — fge 9= fe9— fle9=0.
This implies A is a constant. Adding a constant to g, we may suppose ed(#0) =
f(20), so that h =1 and f = €Y. []



Definition 5.9: If g is analytic in a region {2 and if f = €9 then g is called a
logarithm of f in 2 and written g(z) = log f(z). The function g is uniquely

determined by its value at one point zy € €.

If g is a logarithm of f, so is g + 2.

Some sources treat log as a “multi-valued” function, taking countable many

different values at once.



Section 5.3: Removable Singularities



Corollary 5.10, Riemann’s Removable Singularity Theorem: Sup-

pose [ is analytic in Q ={2:0 < |z —a| <} and suppose

lim(z —a)f(z) =0.

zZ—a

Then f extends to be analytic in {z : |z —a| < J}.

In particular, this happens if f is bounded in a neighborhood of a.

This is the way the theorem is often stated.



Proof. Fix z € ) and choose € and r so that 0 < € < |z —a| < r < . Let
C. and C, denote the circles of radius € and r centered at a, oriented in the

counter-clockwise direction.

The cycle C). — C. is homologous to 0 in €2, so that by Cauchy’s integral formula

f(Z)zi./ f@dg—i f<C>d§.

21 Jo C — 2 21 Jo C — 2

Note that .
< 2TeE.
e O g =




But if ¢ € C, then |f({)le = |f({)]|¢ —a] — 0 as € — 0 and hence

e =5 | &) ¢ (5.6)

—2—7'("1/ CTC_Z

By Lemma 4.30, the right side of (5.6) is analytic for z € D(a,r). Thus if we
define f(a) as the value of the right side of (5.6) when z = a, then this extension

is analytic at a and we have extended f to be analytic in D(a,r). []



Definition: we say that a compact set £ has one-dimensional Hausdorff
measure equal to 0 if for every € > 0 there are finitely many disks D; with

radius r; so that

Ecu;D,

ZTJ'<€.

J

and



Corollary 5.11, Painlevé: Suppose EE C C s a compact set with one-
dimensional Hausdorff measure 0. If f is bounded and analytic on U \ E,

where U 1s open and 2 C U, then f extends to be analytic on U.



Proof. As in the proof of Runge’s theorem and Theorem 15.7, we can find a cycle
v C U \ E which is the boundary of a finite union of closed squares {S;} so
that n(y,a) =0or 1forall a ¢ yand n(y,b) = 1forallb € US;\v D E, and
n(y,b) = 0 for b ¢ US; and hence for all b € C\ U.

Cover E by finitely many disks D; of radius r; so that > r; < e.

We may assume each D; intersects £ so that for small €, each D; is contained

in US; \ 7.



Let V = {z : n(y,2) = 1}, let 0 = 9(UD,), and let Q = V \ UD;. Then

v 4 o = 0f), which we parametrize so that 0{) has positive orientation.

Then as in (5.4), v+ 0 ~ 0 in U \ UDy, so that by Cauchy’s theorem

_ 1 [ Q)
f(z)_QﬁiLC—z QWZ/C—ZCZC for z € V\ UD;.

Fix z € V \ UD,. Then the second integral tends to 0 as ¢ — 0 because
l(o) < £(UD;) < 2me and because f is bounded, exactly as in the proof of

Riemann’s theorem. Thus .
(194
y z

27t )., C —
provides an analytic extension of f to £, by Lemma 4.30. [




For almost a century, it was an open problem to characterize removable sets for
bounded analytic functions, i.e., if f is bounded and analytic on C \ E then f

is bounded and analytic on C (hence constant by Liouville’s theorem).



This was finally accomplished by the Xavier Tolsa. He showed that is £ non-
removable for bounded holomorphic functions it and only if it supports a positive
measure f so that (1)

u(D(a,r)) < Mr
(for some M < oo and all z € R? and r > 0 ) and (2) E has finite Menger

curvature in the sense that

cz(u)Z///62<$,y,Z>du(w>du(@/)du(Z) < 00,

where ¢(x,y, z) is the reciprocal of the radius of the unique circle passing thor-
ough (z,y, 2).

See Analytic capacity, rectifiability, and the Cauchy integral by Xavier Tolsa.

This problem motivated a great deal of analysis and geometric measure theory

over the last 50 years.


http://www.mat.uab.es/~xtolsa/icm3.pdf

Section H.4: Laurent Series



Definition: An annulus is the region between two concentric circles

If f is analytic on the annulus A = {2z : r < |z — a| < R} then by Runge’s

theorem, we can approximate f by a rational function with poles only at a.



Theorem 5.12: Laurent series Suppose f is analytic on A ={z : r <

|z —a|l < R}. Then there is a unique sequence {a,} C C so that

©.@)

f(z) =) an(z—a)",
where the series converges uniformly and absolutely on compact subsets of
A. Moreover : G
n=— dc¢, 5.8
= 2w Jo, € = apr 58

where Cy 1s the circle centered at a with radius s, r < s < R, oriented

counter-clockwise.



Proof. WLOG, a = 0. Set
o) =5 [ I

_2—7'('2 CSC—Z
where Oy = {se' : 0 <t < 27},

By Lemma 4.30 f; is analytic off Cs. If r < |2] < 81 < s9 < R then C,, —C}, ~
0 with respect to A and n(Cs, — Cy,, 2) = 0. By Cauchy’s integral formula,
fs,(2) — fs(2) = 0. This says that f(z) does not depend on s, so long as
r<|z| <s<R.



Expanding C%z in a power series expansion about 0, and interchanging the order
of summation and integration, as we have done before, we conclude that f, has

a POWeT serles expansion
0.0

fs(z) = Zanz”, 2| < s,

n=0

where a,, satisfies (5.8).

Likewise fi(z) does not depend on s so long as r < s < |z| < R.



Expanding C%z in a power series expansion about co, i.e. in powers of 1/z, and
interchanging the order of summation and integration we conclude that f, has

a POWeT serles expansion

valid in |z| > s, where a_,, satisfies (5.8).

[fr <s <|z| < sy <R, then Cy,—Cy, ~ 0in A, so that by Cauchy’s integral
formula

O NS S SE RN E R )
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One consequence is that an analytic function f on A can be written as f = f1+ fo

where fi is analytic in |z| < R and f; is analytic in |z| > r.

Laurent series are useful for analyzing the behavior of an analytic function near

an isolated singularity.

Definition: We say that f has an isolated singularity at b if f is analytic
in 0 < |z —b| < e€for some e > 0 and f(b) is not defined.



(1) If @, = 0 for n < 0 then f extends to be analytic at b with f(b) = ay. In

this case we say that f has a removable singularity at b.

(2) If a, = 0 for n < ng with ny > 0 and a,, # 0, then we can write

f(2)=(2=0)")  anein(z = b)" = any(z = b)" + apeer(z — b)) 4 .
n=0
In this case b is called a zero of order ny.

(3) If a,, =0 for n < —ngy with ng > 0 and a_,, # 0 then we can write

F(z) = (z — b)™"0 ; a_pyin(z —b)" = ; _‘723”0 t7 __?fﬁl TR

In this case b is called a pole of order ny, and |f(z)| — oo as z — b.




In each of the above cases there is a unique integer k so that

lim(z — b)* f(2)

2—b
exists and is non-zero, and

(2= b)"f(2)

extends to be analytic and non-zero in a neighborhood of b.

(4) If a,, # 0 for infinitely many negative n, then b is called an essential

singularity.



If f is analytic in {2z : |z] > R}, then f(1/2) has an isolated singularity at 0,

and we say that f has an isolated singularity at oc.

We classify this singularity at co as a zero, pole or essential singularity if f(1/2)

has a zero, pole or (respectively) essential singularity at 0.

A non-polynomial entire function has an essential singularity at oo.

These are called transcendental entire functions. Iterating such functions gives

rise to transcendtal dynamics, a sub-field of holomorphic dynamics.

Sullivan’s theorem says polynomials can’t have wandering domains, but tran-

scendental functions can.



Definition 5.13: A zero or pole is called simple if the order is 1.

Definition 5.14: If f is analytic in a region ) except for isolated poles in {2
then we say that f is meromorphic in 2. A meromorphic function in C is

sometimes just called meromorphic.

Rational functions are the meromorphic functions on S*.



Theorem 5.15: If fisanalyticin U = {2 :0 < |z —b| <} and if b is an
essential singularity for f then f(U) is dense in C.

In other words, every (punctured) neighborhood of an essential singularity has

a dense image.

Stronger versions are true: at most one value can be omitted from f(U) (Picard’s
theorem, Theorem 10.14).



Proof. If not, there is A € C and € > 0 so that |f(z) — A| > e forall z € U.
Then

1
flz) = A
is analytic and bounded by 1/e on U. By Riemann’s theorem, 1/(f(z) — A)
extends to be analytic in U U {b}.

Thus f(z) — A is meromorphic in U U {b} and hence f is meromorphic in
U U {b}. The Laurent expansion for f then has at most finitely terms with
a negative power of z — b, contradicting the assumption that b is an essential

singularity:. ]



Section 5.4: The Argument Principle



Theorem 5.16, Argument Principle: Suppose f is meromorphic in a

region $2 with zeros {z;} and poles {py}. Suppose v is a cycle with v ~ 0
in ) and suppose {z;} Ny =10 and {pr} Ny =10. Then

w00 =g [T = Y onnz) = Sontnm. 69)
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In the statement of the argument principle, if f has a zero of order k at z, then

z occurs k times in the list {z;}, and a similar statement holds for the poles.

If v is a simple closed curve in €, with n(y,2z) = 0or =1 for all z ¢ ~, and if
v is homologous to 0 in {2, then the number of zeros “enclosed” by ~ minus the
number of poles “enclosed” by 7 is equal to the winding number of the image

curve f(v) about zero.



Proof. The first equality in (5.9) follows from the change of variables w = f(z).

Note that v ~ 0 and v C € implies that n(vy,a) = 0 if a is sufficiently close to
0S). Thus n(vy, z;) # 0 for only finitely many z; and for only finitely many p,

because there are no cluster points of {z;} or {px} in Q.
This implies that the sums in (5.9) are finite.

Set 21 =Q\{z; :n(y,2)) =0} U{pr : n(y,px) = 0}. Then v ~ 0 in €.



If b is a zero or pole of f then we can write

f(z) = (2= 0)"g()
where ¢ is analytic in a neighborhood of b and g(b) # 0. Then

f'(2) = k(z = 0)"g(2) + ( = 0)*d(2)

Fle)_ kg

and

Since g(b) # 0, ¢’/ g is analytic in a neighborhood of b and hence (f'/f)—k(z —
b)~! is analytic near b. Thus
/'(z) L L

— + 5.10
f(z) ZZ—ZJ' Zz—pk (5-10)
is analytic in €)y. By Cauchy’s theorem integrating (5.10) over v gives (5.9). [




Corollary 5.17, Rouché’s theorem: Suppose v is a closed curve in a
region 0 with v ~ 0 in Q and n(y,z) =0 or =1 for all z € Q\~. If f and

g are analytic i ) and satisfy

[f(2) +9(2)] < |f(2)] +]g(2)] (5.11)

for all z € v, then f and g have the same number of zeros enclosed by .



Proof. The function 5 is meromorphic in €2 and satisfies

f

g
on . By (5.11), f # 0 and g # 0 on =, so that the hypotheses of the argument

principle are satisfied.

‘£+1< +1 (5.12)
g

The left side of (5.12) is the distance from w = f(2)/g(z) to —1. But |w —
(—1)| = |w| + 1 if and only if w € [0, 00).



Thus the assumption (5.11) implies that 5(7) omits the half-line [0, c0) and so
0 is in the unbounded component of C \ 5(7).

Hence n(g(v), 0) = 0. By the argument principle, the number of zeros of 5
equals the number of poles and so the number of zeros of f equals the number

of zeros of g, counting multiplicity. [



Example: How many zeros does f(z) = 2° — 22° + 2 — 82 — 2 have in D?

How many zeros does it have in {|z| < 2}7



Example: How many zeros does f(z) = 2* — 4z + 5 have in D?



