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Chapter 5: Cauchy’s Theorem



Section 5.1: Cauchy’s Theorem



Recall that a cycle γ =
∑n

j=1 γj is a finite union of closed curves γ1, . . . , γn.

Theorem 5.1, Cauchy’s Theorem: Suppose γ is a cycle contained in a

region Ω and suppose ∫
γ

dζ

ζ − a
= 0 (5.2)

for all a /∈ Ω. If f is analytic on Ω then∫
γ

f (ζ)dζ = 0.



Proof. By Runge’s theorem, we can find a sequence of rational function rn with

poles in C \ Ω so that rn converges to f uniformly on the compact set γ ⊂ Ω.

Each rational functions has a partial fraction expansion

r(z) =

N∑
k=1

nk∑
j=1

ck,j
(z − pk)j

+ q(z)

and integrating around a closed curve γ gives zero, except for the simple poles.

But by our assumption (5.2), these integrals also vanish.

By uniform convergence,

|
∫
γ

f (z)dz| = |
∫
γ

(f (z)− rn(z))dz| ≤ sup
γ
|f − rn|`(γ)→ 0. �



Theorem 5.2, Cauchy’s Integral Formula Suppose γ is a cycle con-

tained in a region Ω and suppose∫
γ

dζ

ζ − a
= 0

for all a /∈ Ω. If f is analytic on Ω and z ∈ C \ γ then
1

2πi

∫
γ

f (ζ)

ζ − z
dζ = f (z) · 1

2πi

∫
γ

1

ζ − z
dζ.

Proof. For each z ∈ Ω the function g(ζ) = (f (ζ)− f (z))/(ζ − z) extends to be

analytic on Ω, by Exercise 2.5.

By Cauchy’s theorem it has integral over γ equal to 0. Theorem 5.2 follows by

splitting the integral of g along γ into two pieces. �



Section 5.2: Winding number



Idea: intuitively, the winding number is the number of times a curve winds

around a point.

winding=2winding=1 winding=0winding=−2

It is the total change in arg(z − a) as z travels around γ.



Lemma 5.3 If γ is a cycle and a /∈ γ, then
1

2πi

∫
γ

1

ζ − a
dζ

is an integer.



Proof. WLOG we may suppose γ is a closed curve parameterized by a continu-

ous, piecewise differentiable function γ : [0, 1]→ C. Define

h(x) =

∫ x

0

γ′(t)

γ(t)− a
dt.

Then h′(x) exists and equals γ′(x)/(γ(x) − a), except at finitely many points

x. Then
d

dx
e−h(x)(γ(x)− a) = −h′(x)e−h(x)(γ(x)− a) + e−h(x)γ′(x)

= −γ′(x)e−h(x) + γ′(x)e−h(x) = 0,

except at finitely many points.



Since e−h(x)(γ(x)− a) is continuous, it must be constant. Thus

e−h(1)(γ(1)− a) = e−h(0)(γ(0)− a) = 1 · (γ(1)− a).

Since γ(1)− a 6= 0, e−h(1) = 1 and h(1) = 2πki, where k is an integer. Thus

1

2πi

∫
γ

dζ

ζ − a
dζ =

h(1)

2πi
= k,

an integer. �



Definition 5.4 If γ is a cycle, then the index or winding number of γ

about a (or with respect to a) is

n(γ, a) =
1

2πi

∫
γ

dζ

ζ − a
,

for a /∈ γ.



(1) n(γ, a) is an analytic function of a, for a /∈ γ, by Lemma 4.30 and Theorem

4.32. In particular it is continuous and integer-valued, and thus n(γ, a) is

constant in each component of C \ γ.

(2) n(γ, a)→ 0 as a→∞. Thus n(γ, a) = 0 in the unbounded component of

C \ γ.

(3) n(−γ, a) = −n(γ, a).

(4) n(γ1 + γ2, a) = n(γ1, a) + n(γ2, a).

(5) If γ(t) = eikt, for 0 ≤ t ≤ 2π, where k is an integer, then

n(γ, 0) =
1

2πi

∫
γ

dz

z
=

1

2πi

∫ 2π

0

ikeikt

eikt
dt = k.



Definition 5.5 Closed curves γ1 and γ2 are homologous in a region Ω if

n(γ1 − γ2, a) = 0 for all a /∈ Ω and in this case we write

γ1 ∼ γ2.

• Homology is an equivalence relation on the curves in Ω (Exercise 2). A closed

curve γ ⊂ Ω is said to be homologous to 0 in Ω if n(γ, a) = 0 for all a /∈ Ω.

In this case we write γ ∼ 0.

• If γ is homotopic to zero, then it is homologous to zero, but not conversely.



• Cauchy’s theorem says that if γ ∼ 0 in Ω and if f is analytic in Ω then∫
γ

f (z)dz = 0,

Thus if γ1 is homologous to γ2 in Ω, then∫
γ1

f (z)dz =

∫
γ2

f (z)dz.

• The most common application of Cauchy’s integral formula is when γ ⊂ Ω

with γ ∼ 0 and n(γ, z) = 1. Then for f analytic on Ω,

f (z) =
1

2πi

∫
γ

f (ζ)

ζ − z
dζ.



If Ω is a bounded region in C bounded by finitely many piecewise differen-

tiable curves, then we can parameterize ∂Ω so that as you trace each boundary

component, the region Ω lies on the left.

In other words iγ′(t), where it exists, is an “inner normal”, rotated counter-

clockwise by π/2 from the tangential direction γ′(t).



In Exercise 5.4 you are asked to show that n(∂Ω, a) = 1 for all a ∈ Ω and

n(∂Ω, a) = 0 for all a /∈ Ω. We call this the positive orientation of ∂Ω.

Thus for all such regions, ∂Ω ∼ 0 in any region containing Ω.

So by Cauchy’s theorem, if Ω is a bounded region, bounded by finitely many

piecewise differentiable curves and if f is analytic on Ω, then

f (z) =

∫
∂Ω

f (ζ)

ζ − z
dζ

2πi
, (5.4)



Definition 5.6: A region Ω ⊂ C∗ is called simply-connected if C∗ \ Ω is

connected in C∗.

Equivalently a region Ω is simply-connected if S2 \ π(Ω) is connected, where π

is stereographic projection and π(∞) is defined to be the “North pole” (0, 0, 1)

in S2.



Simply-connected essentially means “no holes”. For example, the unit disk D
is simply-connected. The vertical strip {z : 0 < Rez < 1} is simply-connected.

The punctured plane C \ {0} is not simply-connected.

The set C \ D together with ∞ is simply-connected, but C \ D is not simply-

connected.



Theorem 5.7: A region Ω ⊂ C is simply-connected if and only if every

cycle in Ω is homologous to 0 in Ω. If Ω is not simply-connected then

we can find a simple closed polygonal curve contained in Ω which is not

homologous to 0.



Proof. Suppose Ω is simply-connected and suppose γ is a cycle contained in Ω

and suppose a /∈ Ω. Because Ωc = C∗ \Ω is connected, it must be contained in

one component of the complement of γ in C∗. Because ∞ ∈ Ωc, a must be in

the unbounded component of C \ γ, and n(γ, a) = 0.

Conversely, suppose that C∗ \Ω = A∪B where A and B are non-empty closed

sets in C∗ with A ∩ B = ∅. Without loss of generality ∞ ∈ B. Since A is

closed, a neighborhood of ∞ does not intersect A and hence A is bounded.

Pick a0 ∈ A. We’ll construct a curve γ0 ⊂ Ω such that n(γ0, a0) 6= 0, proving

Theorem 2.5.



The construction is the same construction used to prove Runge’s theorem.

Let d = dist(A,B) = inf{|a− b| : a ∈ A, b ∈ B} > 0.

Pave the plane with squares of side d/2 such that a0 is the center of one of the

squares. Orient the boundary of each square in the positive, or counter-clockwise

direction Shade each square Sj with Sj ∩ A 6= ∅.

Let γ0 denote the cycle obtained from ∪∂Sj after performing all possible can-

cellations. Then γ0 ⊂ Ω because γ0 does not intersect either A or B, and

n(γ0, a0) = 1. Because γ is a finite union of closed simple polygonal curves, at

least one of these curves is not homologous to 0. �

γ
0

A Ω

B



Corollary 5.8 Suppose f is analytic on a simply-connected region Ω. Then

(1)
∫
γ f (z)dz = 0 for all closed curves γ ⊂ Ω.

(2) There exists a function F analytic on Ω such that F ′ = f .

(3) If also f (z) 6= 0 for all z ∈ Ω then there exists a function g analytic on

Ω such that f = eg.



Proof. The first statement follows from Cauchy’s theorem and Theorem 5.7.

For the 2nd part, follow the proof of Morera’s (Theorem 4.19).

Fix z0 ∈ Ω and define F (z) =
∫
σz
f (ζ)dζ where σz is any curve contained in Ω

connecting z0 to z. This definition does not depend on the choice of σz because

the integral along any closed curve is zero.

If D ⊂ Ω is a disk, then for z ∈ D we can write F (z) as an integral from z0

to the center of D plus an integral along a horizontal then vertical line segment

from the center of D to z. As in the proof of Morera’s Theorem, F is analytic

and F ′ = f on D and hence on all of Ω.



to prove the third statement, note f ′/f is analytic on Ω, so there is a function

g analytic on Ω such that g′ = f ′/f (previous argument).

To compare f and eg, set

h =
f

eg
= fe−g.

Then

h′ = f ′e−g − fg′e−g = f ′e−g − f ′e−g = 0.

This implies h is a constant. Adding a constant to g, we may suppose eg(z0) =

f (z0), so that h ≡ 1 and f = eg. �



Definition 5.9: If g is analytic in a region Ω and if f = eg then g is called a

logarithm of f in Ω and written g(z) = log f (z). The function g is uniquely

determined by its value at one point z0 ∈ Ω.

If g is a logarithm of f , so is g + 2πi.

Some sources treat log as a “multi-valued” function, taking countable many

different values at once.



Section 5.3: Removable Singularities



Corollary 5.10, Riemann’s Removable Singularity Theorem: Sup-

pose f is analytic in Ω = {z : 0 < |z − a| < δ} and suppose

lim
z→a

(z − a)f (z) = 0.

Then f extends to be analytic in {z : |z − a| < δ}.

In particular, this happens if f is bounded in a neighborhood of a.

This is the way the theorem is often stated.



Proof. Fix z ∈ Ω and choose ε and r so that 0 < ε < |z − a| < r < δ. Let

Cε and Cr denote the circles of radius ε and r centered at a, oriented in the

counter-clockwise direction.

The cycle Cr−Cε is homologous to 0 in Ω, so that by Cauchy’s integral formula

f (z) =
1

2πi

∫
Cr

f (ζ)

ζ − z
dζ − 1

2πi

∫
Cε

f (ζ)

ζ − z
dζ.

Note that ∣∣∣∣∫
Cε

f (ζ)

ζ − z
dζ

∣∣∣∣≤ max
ζ∈Cε
|f (ζ)| 1

|z − a| − ε
2πε.



But if ζ ∈ Cε then |f (ζ)|ε = |f (ζ)||ζ − a| → 0 as ε→ 0 and hence

f (z) =
1

2πi

∫
Cr

f (ζ)

ζ − z
dζ. (5.6)

By Lemma 4.30, the right side of (5.6) is analytic for z ∈ D(a, r). Thus if we

define f (a) as the value of the right side of (5.6) when z = a, then this extension

is analytic at a and we have extended f to be analytic in D(a, r). �



Definition: we say that a compact set E has one-dimensional Hausdorff

measure equal to 0 if for every ε > 0 there are finitely many disks Dj with

radius rj so that

E ⊂ ∪jDj

and ∑
j

rj < ε.



Corollary 5.11, Painlevé: Suppose E ⊂ C is a compact set with one-

dimensional Hausdorff measure 0. If f is bounded and analytic on U \ E,

where U is open and E ⊂ U , then f extends to be analytic on U .



Proof. As in the proof of Runge’s theorem and Theorem l5.7, we can find a cycle

γ ⊂ U \ E which is the boundary of a finite union of closed squares {Sj} so

that n(γ, a) = 0 or 1 for all a /∈ γ and n(γ, b) = 1 for all b ∈ ∪Sj \ γ ⊃ E, and

n(γ, b) = 0 for b /∈ ∪Sj and hence for all b ∈ C \ U .

Cover E by finitely many disks Dj of radius rj so that
∑
rj < ε.

We may assume each Dj intersects E so that for small ε, each Dj is contained

in ∪Sj \ γ.



Let V = {z : n(γ, z) = 1}, let σ = ∂
(
∪Dj

)
, and let Ω = V \ ∪Dj. Then

γ + σ = ∂Ω, which we parametrize so that ∂Ω has positive orientation.

Then as in (5.4), γ + σ ∼ 0 in U \ ∪Dj, so that by Cauchy’s theorem

f (z) =
1

2πi

∫
γ

f (ζ)

ζ − z
dζ +

1

2πi

∫
σ

f (ζ)

ζ − z
dζ, for z ∈ V \ ∪Dj.

Fix z ∈ V \ ∪Dj. Then the second integral tends to 0 as ε → 0 because

`(σ) ≤ `(∪Dj) < 2πε and because f is bounded, exactly as in the proof of

Riemann’s theorem. Thus
1

2πi

∫
γ

f (ζ)

ζ − z
dζ

provides an analytic extension of f to E, by Lemma 4.30. �



For almost a century, it was an open problem to characterize removable sets for

bounded analytic functions, i.e., if f is bounded and analytic on C \ E then f

is bounded and analytic on C (hence constant by Liouville’s theorem).



This was finally accomplished by the Xavier Tolsa. He showed that is E non-

removable for bounded holomorphic functions if and only if it supports a positive

measure µ so that (1)

µ(D(x, r)) ≤Mr

(for some M < ∞ and all x ∈ R2 and r > 0 ) and (2) E has finite Menger

curvature in the sense that

c2(µ) =

∫ ∫ ∫
c2(x, y, z)dµ(x)dµ(y)dµ(z) <∞,

where c(x, y, z) is the reciprocal of the radius of the unique circle passing thor-

ough (x, y, z).

See Analytic capacity, rectifiability, and the Cauchy integral by Xavier Tolsa.

This problem motivated a great deal of analysis and geometric measure theory

over the last 50 years.

http://www.mat.uab.es/~xtolsa/icm3.pdf


Section 5.4: Laurent Series



Definition: An annulus is the region between two concentric circles

If f is analytic on the annulus A = {z : r < |z − a| < R} then by Runge’s

theorem, we can approximate f by a rational function with poles only at a.



Theorem 5.12: Laurent series Suppose f is analytic on A = {z : r <

|z − a| < R}. Then there is a unique sequence {an} ⊂ C so that

f (z) =

∞∑
n=−∞

an(z − a)n,

where the series converges uniformly and absolutely on compact subsets of

A. Moreover

an =
1

2πi

∫
Cs

f (ζ)

(ζ − a)n+1
dζ, (5.8)

where Cs is the circle centered at a with radius s, r < s < R, oriented

counter-clockwise.



Proof. WLOG, a = 0. Set

fs(z) =
1

2πi

∫
Cs

f (ζ)

ζ − z
dζ

where Cs = {seit : 0 ≤ t ≤ 2π}.

By Lemma 4.30 fs is analytic off Cs. If r < |z| < s1 < s2 < R then Cs2−Cs1 ∼
0 with respect to A and n(Cs2 − Cs1, z) = 0. By Cauchy’s integral formula,

fs2(z) − fs1(z) = 0. This says that fs(z) does not depend on s, so long as

r < |z| < s < R.



Expanding 1
ζ−z in a power series expansion about 0, and interchanging the order

of summation and integration, as we have done before, we conclude that fs has

a power series expansion

fs(z) =

∞∑
n=0

anz
n, |z| < s,

where an satisfies (5.8).

Likewise fs(z) does not depend on s so long as r < s < |z| < R.



Expanding 1
ζ−z in a power series expansion about∞, i.e. in powers of 1/z, and

interchanging the order of summation and integration we conclude that fs has

a power series expansion

fs(z) = −
∞∑
n=1

a−nz
−n,

valid in |z| > s, where a−n satisfies (5.8).

If r < s1 < |z| < s2 < R, then Cs2−Cs1 ∼ 0 in A, so that by Cauchy’s integral

formula

f (z) =
1

2πi

∫
Cs2−Cs1

f (ζ)

ζ − z
dζ = fs2(z)− fs1(z) =

∞∑
n=−∞

anz
n.

�



One consequence is that an analytic function f onA can be written as f = f1+f2

where f1 is analytic in |z| < R and f2 is analytic in |z| > r.

Laurent series are useful for analyzing the behavior of an analytic function near

an isolated singularity.

Definition: We say that f has an isolated singularity at b if f is analytic

in 0 < |z − b| < ε for some ε > 0 and f (b) is not defined.



(1) If an = 0 for n < 0 then f extends to be analytic at b with f (b) = a0. In

this case we say that f has a removable singularity at b.

(2) If an = 0 for n < n0 with n0 > 0 and an0 6= 0, then we can write

f (z) = (z − b)n0

∞∑
n=0

an0+n(z − b)n = an0(z − b)
n0 + an0+1(z − b)n0+1 + . . . .

In this case b is called a zero of order n0.

(3) If an = 0 for n < −n0 with n0 > 0 and a−n0 6= 0 then we can write

f (z) = (z − b)−n0

∞∑
n=0

a−n0+n(z − b)n =
a−n0

(z − b)n0
+

a−n0+1

(z − b)n0−1
+ . . . .

In this case b is called a pole of order n0, and |f (z)| → ∞ as z → b.



In each of the above cases there is a unique integer k so that

lim
z→b

(z − b)kf (z)

exists and is non-zero, and

(z − b)kf (z)

extends to be analytic and non-zero in a neighborhood of b.

(4) If an 6= 0 for infinitely many negative n, then b is called an essential

singularity.



If f is analytic in {z : |z| > R}, then f (1/z) has an isolated singularity at 0,

and we say that f has an isolated singularity at ∞.

We classify this singularity at∞ as a zero, pole or essential singularity if f (1/z)

has a zero, pole or (respectively) essential singularity at 0.

A non-polynomial entire function has an essential singularity at ∞.

These are called transcendental entire functions. Iterating such functions gives

rise to transcendtal dynamics, a sub-field of holomorphic dynamics.

Sullivan’s theorem says polynomials can’t have wandering domains, but tran-

scendental functions can.



Definition 5.13: A zero or pole is called simple if the order is 1.

Definition 5.14: If f is analytic in a region Ω except for isolated poles in Ω

then we say that f is meromorphic in Ω. A meromorphic function in C is

sometimes just called meromorphic.

Rational functions are the meromorphic functions on S2.



Theorem 5.15: If f is analytic in U = {z : 0 < |z − b| < δ} and if b is an

essential singularity for f then f (U) is dense in C.

In other words, every (punctured) neighborhood of an essential singularity has

a dense image.

Stronger versions are true: at most one value can be omitted from f (U) (Picard’s

theorem, Theorem 10.14).



Proof. If not, there is A ∈ C and ε > 0 so that |f (z) − A| > ε for all z ∈ U .

Then

1

f (z)− A

is analytic and bounded by 1/ε on U . By Riemann’s theorem, 1/(f (z) − A)

extends to be analytic in U ∪ {b}.

Thus f (z) − A is meromorphic in U ∪ {b} and hence f is meromorphic in

U ∪ {b}. The Laurent expansion for f then has at most finitely terms with

a negative power of z − b, contradicting the assumption that b is an essential

singularity. �



Section 5.4: The Argument Principle



Theorem 5.16, Argument Principle: Suppose f is meromorphic in a

region Ω with zeros {zj} and poles {pk}. Suppose γ is a cycle with γ ∼ 0

in Ω and suppose {zj} ∩ γ = ∅ and {pk} ∩ γ = ∅. Then

n(f (γ), 0) =
1

2πi

∫
γ

f ′(z)

f (z)
dz =

∑
j

n(γ, zj)−
∑
k

n(γ, pk). (5.9)

In the statement of the argument principle, if f has a zero of order k at z, then

z occurs k times in the list {zj}, and a similar statement holds for the poles.

If γ is a simple closed curve in Ω, with n(γ, z) = 0 or = 1 for all z /∈ γ, and if

γ is homologous to 0 in Ω, then the number of zeros “enclosed” by γ minus the

number of poles “enclosed” by γ is equal to the winding number of the image

curve f (γ) about zero.



Proof. The first equality in (5.9) follows from the change of variables w = f (z).

Note that γ ∼ 0 and γ ⊂ Ω implies that n(γ, a) = 0 if a is sufficiently close to

∂Ω. Thus n(γ, zj) 6= 0 for only finitely many zj and for only finitely many pj

because there are no cluster points of {zj} or {pk} in Ω.

This implies that the sums in (5.9) are finite.

Set Ω1 = Ω \ {zj : n(γ, zj) = 0} ∪ {pk : n(γ, pk) = 0}. Then γ ∼ 0 in Ω1.



If b is a zero or pole of f then we can write

f (z) = (z − b)kg(z)

where g is analytic in a neighborhood of b and g(b) 6= 0. Then

f ′(z) = k(z − b)k−1g(z) + (z − b)kg′(z)

and
f ′(z)

f (z)
=

k

z − b
+
g′(z)

g(z)
.

Since g(b) 6= 0, g′/g is analytic in a neighborhood of b and hence (f ′/f )−k(z−
b)−1 is analytic near b. Thus

f ′(z)

f (z)
−
∑ 1

z − zj
+
∑ 1

z − pk
(5.10)

is analytic in Ω1. By Cauchy’s theorem integrating (5.10) over γ gives (5.9). �



Corollary 5.17, Rouché’s theorem: Suppose γ is a closed curve in a

region Ω with γ ∼ 0 in Ω and n(γ, z) = 0 or = 1 for all z ∈ Ω \ γ. If f and

g are analytic in Ω and satisfy

|f (z) + g(z)| < |f (z)| + |g(z)| (5.11)

for all z ∈ γ, then f and g have the same number of zeros enclosed by γ.



Proof. The function f
g is meromorphic in Ω and satisfies∣∣∣∣fg + 1

∣∣∣∣< ∣∣∣∣fg
∣∣∣∣+1 (5.12)

on γ. By (5.11), f 6= 0 and g 6= 0 on γ, so that the hypotheses of the argument

principle are satisfied.

The left side of (5.12) is the distance from w = f (z)/g(z) to −1. But |w −
(−1)| = |w| + 1 if and only if w ∈ [0,∞).



Thus the assumption (5.11) implies that f
g (γ) omits the half-line [0,∞) and so

0 is in the unbounded component of C \ fg (γ).

Hence n(fg (γ), 0) = 0. By the argument principle, the number of zeros of f
g

equals the number of poles and so the number of zeros of f equals the number

of zeros of g, counting multiplicity. �



Example: How many zeros does f (z) = z9 − 2z6 + z2 − 8z − 2 have in D?

How many zeros does it have in {|z| < 2}?



Example: How many zeros does f (z) = z4 − 4z + 5 have in D?


