MAT 536, Spring 2024, Stony Brook University

Complex Analysis I, Christopher Bishop 2024

Chapter 5: Cauchy's Theorem

Section 5.1: Cauchy's Theorem

Recall that a cycle $\gamma=\sum_{j=1}^{n} \gamma_{j}$ is a finite union of closed curves $\gamma_{1}, \ldots, \gamma_{n}$.

Theorem 5.1, Cauchy's Theorem: Suppose γ is a cycle contained in a region Ω and suppose

$$
\begin{equation*}
\int_{\gamma} \frac{d \zeta}{\zeta-a}=0 \tag{5.2}
\end{equation*}
$$

for all $a \notin \Omega$. If f is analytic on Ω then

$$
\int_{\gamma} f(\zeta) d \zeta=0 .
$$

Proof. By Runge's theorem, we can find a sequence of rational function r_{n} with poles in $\mathbb{C} \backslash \Omega$ so that r_{n} converges to f uniformly on the compact set $\gamma \subset \Omega$.

Each rational functions has a partial fraction expansion

$$
r(z)=\sum_{k=1}^{N} \sum_{j=1}^{n_{k}} \frac{c_{k, j}}{\left(z-p_{k}\right)^{j}}+q(z)
$$

and integrating around a closed curve γ gives zero, except for the simple poles. But by our assumption (5.2), these integrals also vanish.

By uniform convergence,

$$
\left|\int_{\gamma} f(z) d z\right|=\left|\int_{\gamma}\left(f(z)-r_{n}(z)\right) d z\right| \leq \sup _{\gamma}\left|f-r_{n}\right| \ell(\gamma) \rightarrow 0
$$

Theorem 5.2, Cauchy's Integral Formula Suppose γ is a cycle contained in a region Ω and suppose

$$
\int_{\gamma} \frac{d \zeta}{\zeta-a}=0
$$

for all $a \notin \Omega$. If f is analytic on Ω and $z \in \mathbb{C} \backslash \gamma$ then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=f(z) \cdot \frac{1}{2 \pi i} \int_{\gamma} \frac{1}{\zeta-z} d \zeta .
$$

Proof. For each $z \in \Omega$ the function $g(\zeta)=(f(\zeta)-f(z)) /(\zeta-z)$ extends to be analytic on Ω, by Exercise 2.5.

By Cauchy's theorem it has integral over γ equal to 0 . Theorem 5.2 follows by splitting the integral of g along γ into two pieces.

Section 5.2: Winding number

Idea: intuitively, the winding number is the number of times a curve winds around a point.

It is the total change in $\arg (z-a)$ as z travels around γ.

Lemma 5.3 If γ is a cycle and $a \notin \gamma$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{\zeta-a} d \zeta
$$

is an integer.

Proof. WLOG we may suppose γ is a closed curve parameterized by a continuous, piecewise differentiable function $\gamma:[0,1] \rightarrow \mathbb{C}$. Define

$$
h(x)=\int_{0}^{x} \frac{\gamma^{\prime}(t)}{\gamma(t)-a} d t
$$

Then $h^{\prime}(x)$ exists and equals $\gamma^{\prime}(x) /(\gamma(x)-a)$, except at finitely many points x. Then

$$
\begin{aligned}
\frac{d}{d x} e^{-h(x)}(\gamma(x)-a) & =-h^{\prime}(x) e^{-h(x)}(\gamma(x)-a)+e^{-h(x)} \gamma^{\prime}(x) \\
& =-\gamma^{\prime}(x) e^{-h(x)}+\gamma^{\prime}(x) e^{-h(x)}=0
\end{aligned}
$$

except at finitely many points.

Since $e^{-h(x)}(\gamma(x)-a)$ is continuous, it must be constant. Thus

$$
e^{-h(1)}(\gamma(1)-a)=e^{-h(0)}(\gamma(0)-a)=1 \cdot(\gamma(1)-a)
$$

Since $\gamma(1)-a \neq 0, e^{-h(1)}=1$ and $h(1)=2 \pi k i$, where k is an integer. Thus

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a} d \zeta=\frac{h(1)}{2 \pi i}=k
$$

an integer.

Definition 5.4 If γ is a cycle, then the index or winding number of γ about a (or with respect to a) is

$$
n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-a}
$$

for $a \notin \gamma$.
(1) $n(\gamma, a)$ is an analytic function of a, for $a \notin \gamma$, by Lemma 4.30 and Theorem 4.32. In particular it is continuous and integer-valued, and thus $n(\gamma, a)$ is constant in each component of $\mathbb{C} \backslash \gamma$.
(2) $n(\gamma, a) \rightarrow 0$ as $a \rightarrow \infty$. Thus $n(\gamma, a)=0$ in the unbounded component of $\mathbb{C} \backslash \gamma$.
(3) $n(-\gamma, a)=-n(\gamma, a)$.
(4) $n\left(\gamma_{1}+\gamma_{2}, a\right)=n\left(\gamma_{1}, a\right)+n\left(\gamma_{2}, a\right)$.
(5) If $\gamma(t)=e^{i k t}$, for $0 \leq t \leq 2 \pi$, where k is an integer, then

$$
n(\gamma, 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{i k e^{i k t}}{e^{i k t}} d t=k
$$

Definition 5.5 Closed curves γ_{1} and γ_{2} are homologous in a region Ω if $n\left(\gamma_{1}-\gamma_{2}, a\right)=0$ for all $a \notin \Omega$ and in this case we write

$$
\gamma_{1} \sim \gamma_{2} .
$$

- Homology is an equivalence relation on the curves in Ω (Exercise 2). A closed curve $\gamma \subset \Omega$ is said to be homologous to 0 in Ω if $n(\gamma, a)=0$ for all $a \notin \Omega$. In this case we write $\gamma \sim 0$.
- If γ is homotopic to zero, then it is homologous to zero, but not conversely.
- Cauchy's theorem says that if $\gamma \sim 0$ in Ω and if f is analytic in Ω then

$$
\int_{\gamma} f(z) d z=0
$$

Thus if γ_{1} is homologous to γ_{2} in Ω, then

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

- The most common application of Cauchy's integral formula is when $\gamma \subset \Omega$ with $\gamma \sim 0$ and $n(\gamma, z)=1$. Then for f analytic on Ω,

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta .
$$

If Ω is a bounded region in \mathbb{C} bounded by finitely many piecewise differentiable curves, then we can parameterize $\partial \Omega$ so that as you trace each boundary component, the region Ω lies on the left.

In other words $i \gamma^{\prime}(t)$, where it exists, is an "inner normal", rotated counterclockwise by $\pi / 2$ from the tangential direction $\gamma^{\prime}(t)$.

In Exercise 5.4 you are asked to show that $n(\partial \Omega, a)=1$ for all $a \in \Omega$ and $n(\partial \Omega, a)=0$ for all $a \notin \bar{\Omega}$. We call this the positive orientation of $\partial \Omega$. Thus for all such regions, $\partial \Omega \sim 0$ in any region containing $\bar{\Omega}$.

So by Cauchy's theorem, if Ω is a bounded region, bounded by finitely many piecewise differentiable curves and if f is analytic on $\bar{\Omega}$, then

$$
\begin{equation*}
f(z)=\int_{\partial \Omega} \frac{f(\zeta)}{\zeta-z} \frac{d \zeta}{2 \pi i} \tag{5.4}
\end{equation*}
$$

Definition 5.6: A region $\Omega \subset \mathbb{C}^{*}$ is called simply-connected if $\mathbb{C}^{*} \backslash \Omega$ is connected in \mathbb{C}^{*}.

Equivalently a region Ω is simply-connected if $\mathbb{S}^{2} \backslash \pi(\Omega)$ is connected, where π is stereographic projection and $\pi(\infty)$ is defined to be the "North pole" $(0,0,1)$ in \mathbb{S}^{2}.

Simply-connected essentially means "no holes". For example, the unit disk \mathbb{D} is simply-connected. The vertical strip $\{z: 0<\operatorname{Rez}<1\}$ is simply-connected. The punctured plane $\mathbb{C} \backslash\{0\}$ is not simply-connected.

The set $\mathbb{C} \backslash \overline{\mathbb{D}}$ together with ∞ is simply-connected, but $\mathbb{C} \backslash \overline{\mathbb{D}}$ is not simplyconnected.

Theorem 5.7: A region $\Omega \subset \mathbb{C}$ is simply-connected if and only if every cycle in Ω is homologous to 0 in Ω. If Ω is not simply-connected then we can find a simple closed polygonal curve contained in Ω which is not homologous to 0 .

Proof. Suppose Ω is simply-connected and suppose γ is a cycle contained in Ω and suppose $a \notin \Omega$. Because $\Omega^{c}=\mathbb{C}^{*} \backslash \Omega$ is connected, it must be contained in one component of the complement of γ in \mathbb{C}^{*}. Because $\infty \in \Omega^{c}, a$ must be in the unbounded component of $\mathbb{C} \backslash \gamma$, and $n(\gamma, a)=0$.

Conversely, suppose that $\mathbb{C}^{*} \backslash \Omega=A \cup B$ where A and B are non-empty closed sets in \mathbb{C}^{*} with $A \cap B=\emptyset$. Without loss of generality $\infty \in B$. Since A is closed, a neighborhood of ∞ does not intersect A and hence A is bounded. Pick $a_{0} \in A$. We'll construct a curve $\gamma_{0} \subset \Omega$ such that $n\left(\gamma_{0}, a_{0}\right) \neq 0$, proving Theorem 2.5.

The construction is the same construction used to prove Runge's theorem.
Let $d=\operatorname{dist}(A, B)=\inf \{|a-b|: a \in A, b \in B\}>0$.
Pave the plane with squares of side $d / 2$ such that a_{0} is the center of one of the squares. Orient the boundary of each square in the positive, or counter-clockwise direction Shade each square S_{j} with $\overline{S_{j}} \cap A \neq \emptyset$.

Let γ_{0} denote the cycle obtained from $\cup \partial S_{j}$ after performing all possible cancellations. Then $\gamma_{0} \subset \Omega$ because γ_{0} does not intersect either A or B, and $n\left(\gamma_{0}, a_{0}\right)=1$. Because γ is a finite union of closed simple polygonal curves, at least one of these curves is not homologous to 0 .

Corollary 5.8 Suppose f is analytic on a simply-connected region Ω. Then
(1) $\int_{\gamma} f(z) d z=0$ for all closed curves $\gamma \subset \Omega$.
(2) There exists a function F analytic on Ω such that $F^{\prime}=f$.
(3) If also $f(z) \neq 0$ for all $z \in \Omega$ then there exists a function g analytic on Ω such that $f=e^{g}$.

Proof. The first statement follows from Cauchy's theorem and Theorem 5.7.

For the 2nd part, follow the proof of Morera's (Theorem 4.19).
Fix $z_{0} \in \Omega$ and define $F(z)=\int_{\sigma_{z}} f(\zeta) d \zeta$ where σ_{z} is any curve contained in Ω connecting z_{0} to z. This definition does not depend on the choice of σ_{z} because the integral along any closed curve is zero.

If $D \subset \Omega$ is a disk, then for $z \in D$ we can write $F(z)$ as an integral from z_{0} to the center of D plus an integral along a horizontal then vertical line segment from the center of D to z. As in the proof of Morera's Theorem, F is analytic and $F^{\prime}=f$ on D and hence on all of Ω.
to prove the third statement, note f^{\prime} / f is analytic on Ω, so there is a function g analytic on Ω such that $g^{\prime}=f^{\prime} / f$ (previous argument).

To compare f and e^{g}, set

$$
h=\frac{f}{e^{g}}=f e^{-g} .
$$

Then

$$
h^{\prime}=f^{\prime} e^{-g}-f g^{\prime} e^{-g}=f^{\prime} e^{-g}-f^{\prime} e^{-g}=0 .
$$

This implies h is a constant. Adding a constant to g, we may suppose $e^{g\left(z_{0}\right)}=$ $f\left(z_{0}\right)$, so that $h \equiv 1$ and $f=e^{g}$.

Definition 5.9: If g is analytic in a region Ω and if $f=e^{g}$ then g is called a logarithm of f in Ω and written $g(z)=\log f(z)$. The function g is uniquely determined by its value at one point $z_{0} \in \Omega$.

If g is a logarithm of f, so is $g+2 \pi i$.

Some sources treat log as a "multi-valued" function, taking countable many different values at once.

Section 5.3: Removable Singularities

Corollary 5.10, Riemann's Removable Singularity Theorem: Suppose f is analytic in $\Omega=\{z: 0<|z-a|<\delta\}$ and suppose

$$
\lim _{z \rightarrow a}(z-a) f(z)=0 .
$$

Then f extends to be analytic in $\{z:|z-a|<\delta\}$.

In particular, this happens if f is bounded in a neighborhood of a.

This is the way the theorem is often stated.

Proof. Fix $z \in \Omega$ and choose ϵ and r so that $0<\epsilon<|z-a|<r<\delta$. Let C_{ϵ} and C_{r} denote the circles of radius ϵ and r centered at a, oriented in the counter-clockwise direction.

The cycle $C_{r}-C_{\epsilon}$ is homologous to 0 in Ω, so that by Cauchy's integral formula

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{C_{\epsilon}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

Note that

$$
\left|\int_{C_{\epsilon}} \frac{f(\zeta)}{\zeta-z} d \zeta\right| \leq \max _{\zeta \in C_{\epsilon}}|f(\zeta)| \frac{1}{|z-a|-\epsilon} 2 \pi \epsilon .
$$

But if $\zeta \in C_{\epsilon}$ then $|f(\zeta)| \epsilon=|f(\zeta)||\zeta-a| \rightarrow 0$ as $\epsilon \rightarrow 0$ and hence

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{C_{r}} \frac{f(\zeta)}{\zeta-z} d \zeta . \tag{5.6}
\end{equation*}
$$

By Lemma 4.30, the right side of (5.6) is analytic for $z \in D(a, r)$. Thus if we define $f(a)$ as the value of the right side of (5.6) when $z=a$, then this extension is analytic at a and we have extended f to be analytic in $D(a, r)$.

Definition: we say that a compact set E has one-dimensional Hausdorff measure equal to 0 if for every $\epsilon>0$ there are finitely many disks D_{j} with radius r_{j} so that

$$
E \subset \cup_{j} D_{j}
$$

and

$$
\sum_{j} r_{j}<\epsilon .
$$

Corollary 5.11, Painlevé: Suppose $E \subset \mathbb{C}$ is a compact set with onedimensional Hausdorff measure 0 . If f is bounded and analytic on $U \backslash E$, where U is open and $E \subset U$, then f extends to be analytic on U.

Proof. As in the proof of Runge's theorem and Theorem 15.7, we can find a cycle $\gamma \subset U \backslash E$ which is the boundary of a finite union of closed squares $\left\{S_{j}\right\}$ so that $n(\gamma, a)=0$ or 1 for all $a \notin \gamma$ and $n(\gamma, b)=1$ for all $b \in \cup S_{j} \backslash \gamma \supset E$, and $n(\gamma, b)=0$ for $b \notin \cup S_{j}$ and hence for all $b \in \mathbb{C} \backslash U$.

Cover E by finitely many disks D_{j} of radius r_{j} so that $\sum r_{j}<\epsilon$.

We may assume each D_{j} intersects E so that for small ϵ, each D_{j} is contained in $\cup S_{j} \backslash \gamma$.

Let $V=\{z: n(\gamma, z)=1\}$, let $\sigma=\partial\left(\cup D_{j}\right)$, and let $\Omega=V \backslash \cup \overline{D_{j}}$. Then $\gamma+\sigma=\partial \Omega$, which we parametrize so that $\partial \Omega$ has positive orientation.

Then as in (5.4), $\gamma+\sigma \sim 0$ in $U \backslash \cup \overline{D_{j}}$, so that by Cauchy's theorem

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{\sigma} \frac{f(\zeta)}{\zeta-z} d \zeta, \text { for } z \in V \backslash \cup \overline{D_{j}} .
$$

Fix $z \in V \backslash \overline{U D_{j}}$. Then the second integral tends to 0 as $\epsilon \rightarrow 0$ because $\ell(\sigma) \leq \ell\left(\cup D_{j}\right)<2 \pi \epsilon$ and because f is bounded, exactly as in the proof of Riemann's theorem. Thus

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

provides an analytic extension of f to E, by Lemma 4.30.

For almost a century, it was an open problem to characterize removable sets for bounded analytic functions, i.e., if f is bounded and analytic on $\mathbb{C} \backslash E$ then f is bounded and analytic on \mathbb{C} (hence constant by Liouville's theorem).

This was finally accomplished by the Xavier Tolsa. He showed that is E nonremovable for bounded holomorphic functions if and only if it supports a positive measure μ so that (1)

$$
\mu(D(x, r)) \leq M r
$$

(for some $M<\infty$ and all $x \in \mathbb{R}^{2}$ and $r>0$) and (2) E has finite Menger curvature in the sense that

$$
c^{2}(\mu)=\iiint c^{2}(x, y, z) d \mu(x) d \mu(y) d \mu(z)<\infty
$$

where $c(x, y, z)$ is the reciprocal of the radius of the unique circle passing thorough (x, y, z).

See Analytic capacity, rectifiability, and the Cauchy integral by Xavier Tolsa.

This problem motivated a great deal of analysis and geometric measure theory over the last 50 years.

Section 5.4: Laurent Series

Definition: An annulus is the region between two concentric circles

If f is analytic on the annulus $A=\{z: r<|z-a|<R\}$ then by Runge's theorem, we can approximate f by a rational function with poles only at a.

Theorem 5.12: Laurent series Suppose f is analytic on $A=\{z: r<$ $|z-a|<R\}$. Then there is a unique sequence $\left\{a_{n}\right\} \subset \mathbb{C}$ so that

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n},
$$

where the series converges uniformly and absolutely on compact subsets of A. Moreover

$$
\begin{equation*}
a_{n}=\frac{1}{2 \pi i} \int_{C_{s}} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta, \tag{5.8}
\end{equation*}
$$

where C_{s} is the circle centered at a with radius $s, r<s<R$, oriented counter-clockwise.

Proof. WLOG, $a=0$. Set

$$
f_{s}(z)=\frac{1}{2 \pi i} \int_{C_{s}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

where $C_{s}=\left\{s e^{i t}: 0 \leq t \leq 2 \pi\right\}$.

By Lemma $4.30 f_{s}$ is analytic off C_{s}. If $r<|z|<s_{1}<s_{2}<R$ then $C_{s_{2}}-C_{s_{1}} \sim$ 0 with respect to A and $n\left(C_{s_{2}}-C_{s_{1}}, z\right)=0$. By Cauchy's integral formula, $f_{s_{2}}(z)-f_{s_{1}}(z)=0$. This says that $f_{s}(z)$ does not depend on s, so long as $r<|z|<s<R$.

Expanding $\frac{1}{\zeta-z}$ in a power series expansion about 0, and interchanging the order of summation and integration, as we have done before, we conclude that f_{s} has a power series expansion

$$
f_{s}(z)=\sum_{n=0}^{\infty} a_{n} z^{n},|z|<s
$$

where a_{n} satisfies (5.8).

Likewise $f_{s}(z)$ does not depend on s so long as $r<s<|z|<R$.

Expanding $\frac{1}{\zeta-z}$ in a power series expansion about ∞, i.e. in powers of $1 / z$, and interchanging the order of summation and integration we conclude that f_{s} has a power series expansion

$$
f_{s}(z)=-\sum_{n=1}^{\infty} a_{-n} z^{-n},
$$

valid in $|z|>s$, where a_{-n} satisfies (5.8).

If $r<s_{1}<|z|<s_{2}<R$, then $C_{s_{2}}-C_{s_{1}} \sim 0$ in A, so that by Cauchy's integral formula

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{s_{2}}-C_{s_{1}}} \frac{f(\zeta)}{\zeta-z} d \zeta=f_{s_{2}}(z)-f_{s_{1}}(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} .
$$

One consequence is that an analytic function f on A can be written as $f=f_{1}+f_{2}$ where f_{1} is analytic in $|z|<R$ and f_{2} is analytic in $|z|>r$.

Laurent series are useful for analyzing the behavior of an analytic function near an isolated singularity.

Definition: We say that f has an isolated singularity at b if f is analytic in $0<|z-b|<\epsilon$ for some $\epsilon>0$ and $f(b)$ is not defined.
(1) If $a_{n}=0$ for $n<0$ then f extends to be analytic at b with $f(b)=a_{0}$. In this case we say that f has a removable singularity at b.
(2) If $a_{n}=0$ for $n<n_{0}$ with $n_{0}>0$ and $a_{n_{0}} \neq 0$, then we can write

$$
f(z)=(z-b)^{n_{0}} \sum_{n=0}^{\infty} a_{n_{0}+n}(z-b)^{n}=a_{n_{0}}(z-b)^{n_{0}}+a_{n_{0}+1}(z-b)^{n_{0}+1}+\ldots
$$

In this case b is called a zero of order n_{0}.
(3) If $a_{n}=0$ for $n<-n_{0}$ with $n_{0}>0$ and $a_{-n_{0}} \neq 0$ then we can write

$$
f(z)=(z-b)^{-n_{0}} \sum_{n=0}^{\infty} a_{-n_{0}+n}(z-b)^{n}=\frac{a_{-n_{0}}}{(z-b)^{n_{0}}}+\frac{a_{-n_{0}+1}}{(z-b)^{n_{0}-1}}+\ldots .
$$

In this case b is called a pole of order n_{0}, and $|f(z)| \rightarrow \infty$ as $z \rightarrow b$.

In each of the above cases there is a unique integer k so that

$$
\lim _{z \rightarrow b}(z-b)^{k} f(z)
$$

exists and is non-zero, and

$$
(z-b)^{k} f(z)
$$

extends to be analytic and non-zero in a neighborhood of b.
(4) If $a_{n} \neq 0$ for infinitely many negative n, then b is called an essential singularity.

If f is analytic in $\{z:|z|>R\}$, then $f(1 / z)$ has an isolated singularity at 0 , and we say that f has an isolated singularity at ∞.

We classify this singularity at ∞ as a zero, pole or essential singularity if $f(1 / z)$ has a zero, pole or (respectively) essential singularity at 0 .

A non-polynomial entire function has an essential singularity at ∞.

These are called transcendental entire functions. Iterating such functions gives rise to transcendtal dynamics, a sub-field of holomorphic dynamics.

Sullivan's theorem says polynomials can't have wandering domains, but transcendental functions can.

Definition 5.13: A zero or pole is called simple if the order is 1.

Definition 5.14: If f is analytic in a region Ω except for isolated poles in Ω then we say that f is meromorphic in Ω. A meromorphic function in \mathbb{C} is sometimes just called meromorphic.

Rational functions are the meromorphic functions on \mathbb{S}^{2}.

Theorem 5.15: If f is analytic in $U=\{z: 0<|z-b|<\delta\}$ and if b is an essential singularity for f then $f(U)$ is dense in \mathbb{C}.

In other words, every (punctured) neighborhood of an essential singularity has a dense image.

Stronger versions are true: at most one value can be omitted from $f(U)$ (Picard's theorem, Theorem 10.14).

Proof. If not, there is $A \in \mathbb{C}$ and $\epsilon>0$ so that $|f(z)-A|>\epsilon$ for all $z \in U$. Then

$$
\frac{1}{f(z)-A}
$$

is analytic and bounded by $1 / \epsilon$ on U. By Riemann's theorem, $1 /(f(z)-A)$ extends to be analytic in $U \cup\{b\}$.

Thus $f(z)-A$ is meromorphic in $U \cup\{b\}$ and hence f is meromorphic in $U \cup\{b\}$. The Laurent expansion for f then has at most finitely terms with a negative power of $z-b$, contradicting the assumption that b is an essential singularity.

Section 5.4: The Argument Principle

Theorem 5.16, Argument Principle: Suppose f is meromorphic in a region Ω with zeros $\left\{z_{j}\right\}$ and poles $\left\{p_{k}\right\}$. Suppose γ is a cycle with $\gamma \sim 0$ in Ω and suppose $\left\{z_{j}\right\} \cap \gamma=\emptyset$ and $\left\{p_{k}\right\} \cap \gamma=\emptyset$. Then

$$
\begin{equation*}
n(f(\gamma), 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} n\left(\gamma, z_{j}\right)-\sum_{k} n\left(\gamma, p_{k}\right) \tag{5.9}
\end{equation*}
$$

In the statement of the argument principle, if f has a zero of order k at z, then z occurs k times in the list $\left\{z_{j}\right\}$, and a similar statement holds for the poles.

If γ is a simple closed curve in Ω, with $n(\gamma, z)=0$ or $=1$ for all $z \notin \gamma$, and if γ is homologous to 0 in Ω, then the number of zeros "enclosed" by γ minus the number of poles "enclosed" by γ is equal to the winding number of the image curve $f(\gamma)$ about zero.

Proof. The first equality in (5.9) follows from the change of variables $w=f(z)$.

Note that $\gamma \sim 0$ and $\gamma \subset \Omega$ implies that $n(\gamma, a)=0$ if a is sufficiently close to $\partial \Omega$. Thus $n\left(\gamma, z_{j}\right) \neq 0$ for only finitely many z_{j} and for only finitely many p_{j} because there are no cluster points of $\left\{z_{j}\right\}$ or $\left\{p_{k}\right\}$ in Ω.

This implies that the sums in (5.9) are finite.

Set $\Omega_{1}=\Omega \backslash\left\{z_{j}: n\left(\gamma, z_{j}\right)=0\right\} \cup\left\{p_{k}: n\left(\gamma, p_{k}\right)=0\right\}$. Then $\gamma \sim 0$ in Ω_{1}.

If b is a zero or pole of f then we can write

$$
f(z)=(z-b)^{k} g(z)
$$

where g is analytic in a neighborhood of b and $g(b) \neq 0$. Then

$$
f^{\prime}(z)=k(z-b)^{k-1} g(z)+(z-b)^{k} g^{\prime}(z)
$$

and

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{k}{z-b}+\frac{g^{\prime}(z)}{g(z)}
$$

Since $g(b) \neq 0, g^{\prime} / g$ is analytic in a neighborhood of b and hence $\left(f^{\prime} / f\right)-k(z-$ $b)^{-1}$ is analytic near b. Thus

$$
\begin{equation*}
\frac{f^{\prime}(z)}{f(z)}-\sum \frac{1}{z-z_{j}}+\sum \frac{1}{z-p_{k}} \tag{5.10}
\end{equation*}
$$

is analytic in Ω_{1}. By Cauchy's theorem integrating (5.10) over γ gives (5.9).

Corollary 5.17, Rouché's theorem: Suppose γ is a closed curve in a region Ω with $\gamma \sim 0$ in Ω and $n(\gamma, z)=0$ or $=1$ for all $z \in \Omega \backslash \gamma$. If f and g are analytic in Ω and satisfy

$$
\begin{equation*}
|f(z)+g(z)|<|f(z)|+|g(z)| \tag{5.1}
\end{equation*}
$$

for all $z \in \gamma$, then f and g have the same number of zeros enclosed by γ.

Proof. The function $\frac{f}{g}$ is meromorphic in Ω and satisfies

$$
\begin{equation*}
\left|\frac{f}{g}+1\right|<\left|\frac{f}{g}\right|+1 \tag{5.12}
\end{equation*}
$$

on γ. By (5.11), $f \neq 0$ and $g \neq 0$ on γ, so that the hypotheses of the argument principle are satisfied.

The left side of (5.12) is the distance from $w=f(z) / g(z)$ to -1 . But $\mid w-$ $(-1)|=|w|+1$ if and only if $w \in[0, \infty)$.

Thus the assumption (5.11) implies that $\frac{f}{g}(\gamma)$ omits the half-line $[0, \infty)$ and so 0 is in the unbounded component of $\mathbb{C} \backslash \frac{f}{g}(\gamma)$.

Hence $n\left(\frac{f}{g}(\gamma), 0\right)=0$. By the argument principle, the number of zeros of $\frac{f}{g}$ equals the number of poles and so the number of zeros of f equals the number of zeros of g, counting multiplicity.

Example: How many zeros does $f(z)=z^{9}-2 z^{6}+z^{2}-8 z-2$ have in \mathbb{D} ?

How many zeros does it have in $\{|z|<2\}$?

Example: How many zeros does $f(z)=z^{4}-4 z+5$ have in \mathbb{D} ?

