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Chapter 4: Integration and Approximation



Section 4.1: Integration on curves

(All definitions, no theorems)



Everyone knows what a curve is, until he has studied enough mathematics

to become confused through the countless number of possible exceptions.

Felix Christian Klein

https://mathshistory.st-andrews.ac.uk/Biographies/Klein/


Defn 4.1: A curve is a continuous mapping of an interval I ⊂ R into C.

The trace is the image of the curve. It is a set, whereas the curve is a function.

The trace of a curve can have positive area, or even have interior (Peano curve).



Definition 4.2:

(1) A curve γ is called an arc if it is one-to-one.

(2) A curve γ : [a, b]→ C is called closed if γ(a) = γ(b).

(3) A closed curve γ : [a, b] → C is called simple if γ restricted to [a, b) is

one-to-one.



Definition 4.3: A curve γ(t) = x(t) + iy(t) is called piecewise continu-

ously differentiable if

γ′(t) = x′(t) + iy′(t)

exists and is continuous except for finitely many t and x′ and y′ have one-sided

limits at the exceptional points.

Examples: any polygon, any smooth curve, any smooth image of a polygon.



If γ is piecewise continuously differentiable then

γ(t2)− γ(t1) = (x(t2)− x(t1)) + i(y(t2)− y(t1)) =

∫ t2

t1

x′(t)dt + i

∫ t2

t1

y′(t)dt

Note that γ(t2)− γ(t1) corresponds to the vector from γ(t1) to γ(t2), so that

γ′(t1) = lim
t2→t1

γ(t2)− γ(t1)

t2 − t1
is tangent to the curve γ at t1, provided γ′(t1) exists.



Definition 4.4: A curve ψ : [c, d] → C is called a reparameterization

of a curve γ : [a, b] → C if there exists a one-to-one, onto, increasing function

α : [a, b]→ [c, d] such that ψ(α(t)) = γ(t).

Definition 4.6: If γ : [a, b] → C is a curve, then −γ : [−b,−a] → C is the

curve defined by

−γ(t) = γ(−t).



Definition 4.5: If γ : [a, b] → C is a piecewise continuously differentiable

curve and if f is a continuous complex-valued function defined on (the image

of) γ then ∫
γ

f (z)dz ≡
∫ b

a

f (γ(t))γ′(t)dt.

If f is continuous on a piecewise continuously differentiable curve γ, then∫
−γ
f (z)dz = −

∫
γ

f (z)dz.



Suppose γ : [a, b] → C is a piecewise continuously differentiable curve and

suppose a = t0 < t1 < t2 < · · · < tn = b. Set γ(tj) = zj. Then

n−1∑
j=0

f (zj)(zj+1 − zj) =

n−1∑
j=0

f (γ(tj))[γ(tj+1)− γ(tj)]

≈
n−1∑
j=0

f (γ(tj))γ
′(tj)[tj+1 − tj].

(0.1)

The left side looks like a Riemann sum for
∫
γ f (z)dz with independent variable

z and the last sum is a Riemann sum, using the independent variable t, for∫ b

a

f (γ(t))γ′(t)dt.

The left side converges to
∫
γ f (z)dz as the mesh µ({tj}) = maxj(tj+1− tj) of

this partition tends to 0.



S2

bS12

S1

Using cancelation on overlapping arcs (in opposite directions), we often reduce

a complex integral to a sum of simpler ones.



For the purposes of computing integrals it is useful to extend the notion of a

curve to allow finite unions of curves.

If γ1, . . . , γn are curves defined on [0, 1], then we can define γ : [0, n) → C by

γ(t) = γj(t− j + 1) for j − 1 ≤ t < j, j = 1, . . . , n.

If f is continuous on (the image of) each γj, and if each γj is piecewise contin-

uously differentiable then∫
γ

f (z)dz =

n∑
j=1

∫
γj

f (z)dz.



For this reason we define
∑

j γj ≡ γ. The associative and commutative laws

hold for sums (unions) of curves in this sense.

We do not require the union to be connected.



Definition 4.7: A cycle γ =
∑n

j=1 γj is a finite union of closed curves

γ1, . . . , γn.

Definition 4.8: If γ : [a, b] → C is a piecewise continuously differentiable

curve and if f is a continuous complex-valued function defined on (the image

of) γ then we define ∫
γ

f (z)|dz| =
∫ b

a

f (γ(t))|γ′(t)|dt.

Definition 4.9: If γ : [a, b] → C is a piecewise continuously differentiable

curve then the length of γ is defined to be

`(γ) = |γ| =
∫
γ

|dz| =
∫ b

a

|γ′(t)|dt.



Section 4.2: Equivalence of Analytic and Holomorphic



A complex-valued function f is said to be holomorphic on an open set U if

f ′(z) = lim
w→z

f (w)− f (z)

w − z

exists for all z ∈ U and is continuous on U . A complex-valued function f is

said to be holomorphic on a set S if it is holomorphic on an open set U ⊃ S.

Some sources do not require continuity of the derivative in the definition of a

holomorphic function. It is usually not hard to verify in practice.



Weaker version of holomorphic, I:

Exercise 4.12, Goursat’s theorem: Suppose f has a complex derivative

at each point of a region Ω. Prove f is analytic in Ω.

This assigned on Problem Set 4.

Proof uses Morera’s theorem (Thm 4.19).



Weaker version of holomorphic, II:

Exercise 7.13, Weyl’s Lemma: A continuous function f is weakly ana-

lytic on a region Ω provided ∫
Ω

fϕzdA = 0

for all compactly supported continuously differentiable functions ϕ. Here dA

denotes area measure. Prove that a continuous function is weakly analytic if

and only if it is analytic.

Here we define
∂ϕ

∂z
= ϕz =

1

2
(ϕx + iϕy)



• In Chapter 2 we saw analytic functions are holomorphic.

• In particular, polynomials are holomorphic, and rational functions except

where the denominator is zero.

• Linear combinations of holomorphic functions are holomorphic.

• By the product rule, products of holomorphic functions are holomorphic.

• By the the chain rule for complex differentiation, the composition of two

holomorphic functions is holomorphic.



Corollary 4.11: If γ : [a, b] → C is a closed, piecewise continuously

differentiable curve and if f is holomorphic in a neighborhood of γ then∫
γ

f ′(z)dz = 0.

Cor: The integral of any polynomial around a closed curve is zero.



Proof. If γ : [a, b]→ C is a piecewise continuously differentiable curve and if f

is holomorphic on a neighborhood of γ then f ◦ γ is a piecewise continuously

differentiable curve and by the chain rule
d

dt
f (γ(t)) = f ′(γ(t))γ′(t),

except at finitely many points t1, . . . , tn.

By the fundamental theorem of calculus,∫
γ

f ′(z)dz =

∫ b

a

f ′(γ(t))γ′(t)dt =

∫ b

a

d

dt
f (γ(t))dt = f (γ(b))− f (γ(a)).

Because γ is closed, f (γ(b))− f (γ(a)) = 0. �



Corollary 4.12: If f (z) =
∑∞

n=0 an(z−z0)n converges in B = {z : |z−z0| <
r} and if γ ⊂ B is a closed, piecewise continuously differentiable curve then∫

γ

f (z)dz = 0.

Proof. The series expansion for f converges uniformly on γ, so the corollary

follows by interchanging the order of the integral and the sum. �

Much of this chapter and the next center around extending Corollary 2.3 to

larger sets than disks B and more general curves.



If γ is a piecewise continuously differentiable closed curve and a /∈ γ then for

n 6= 1 ∫
γ

1

(z − a)n
dz = 0.

because z−n is the derivative of z−n+1/(1− n).

Using partial fraction expansions, in order to integrate a rational function along

γ we only need to be able to compute
∫
γ(z − a)−1dz for various values of a.



If r > 0 set

Cr = {z0 + reit : 0 ≤ t ≤ 2π}.

Proposition 4.13:

1

2πi

∫
Cr

1

z − a
dz =

{
1 if |a− z0| < r

0 if |a− z0| > r.

This is one of the most important calculations in the course.



Proof. Suppose |a− z0| < r. Then C ′r(t) = ireit and

1

2πi

∫
Cr

1

z − a
dz =

1

2πi

∫ 2π

0

1

reit − (a− z0)
ireitdt

=
1

2π

∫ 2π

0

1

1− (a−z0
reit

)
dt

=
1

2π

∫ 2π

0

∞∑
n=0

(
a− z0

reit

)n
dt

=

∞∑
n=0

(a− z0)n

rn
1

2π

∫ 2π

0

e−intdt = 1.

Final integral is zero except when n = 0.

Interchanging the order of summation and integration is justified because

|(a− z0)/(reit)| < 1 implies uniform convergence of the series.



If |a− z0| > r, then write

reit

reit − (a− z0)
=

(
reit

z0 − a

)
1

1− reit

a−z0

= −
∞∑
n=1

rneint

(a− z0)n
,

so that
1

2πi

∫
Cr

1

z − a
dz =

1

2π

∫ 2π

0

reit

reit − (a− z0)
dt

= −
∞∑
n=1

rn

(a− z0)n
1

2π

∫ 2π

0

eintdt = 0.

�



Theorem 4.14: If f is holomorphic on D(z0, r) then for |z − z0| < r,

f (z) =
1

2πi

∫
Cr

f (ζ)

ζ − z
dζ.

where Cr is the circle of radius r centered at z0, parameterized in the

counter-clockwise direction.

Interior values of f are determined by the boundary values.



Proof. By parameterizing the line segment from z to ζ we see that

f (ζ)− f (z) =

∫ 1

0

f ′(z + t(ζ − z))dt.

Therefore,∫
Cr

f (ζ)− f (z)

ζ − z
dζ =

∫
Cr

∫ 1

0

f ′(z + t(ζ − z))dtdζ

=

∫ 1

0

∫
Cr

f ′(z + t(ζ − z))dζdt

= lim
ε→0

∫ 1

ε

∫
Cr

d

dζ
f (z + t(ζ − z))dζ

dt

t
= 0.

Thus
1

2πi

∫
Cr

f (ζ)

ζ − z
dζ = f (z) · 1

2πi

∫
Cr

dζ

ζ − z
= f (z),

by Proposition 4.13. �



Holomorphic = Analytic

Corollary 4.15: A complex-valued function f is holomorphic on a region

Ω if and only if f is analytic on Ω. Moreover, the series expansion for

f based at z0 ∈ Ω converges on the largest open disk centered at z0 and

contained in Ω.

We already know Analytic ⇒ Complex Differentiable = Holomorphic.



Proof. Suppose f is holomorphic on D(z0, r). If |z − z0| < r, then

f (z) =
1

2πi

∫
Cr

f (ζ)

ζ − z
dζ =

1

2πi

∫
Cr

( ∞∑
n=0

1

(ζ − z0)n+1
(z − z0)n

)
f (ζ)dζ

=

∞∑
n=0

(
1

2πi

∫
Cr

f (ζ)

(ζ − z0)n+1
dζ

)
(z − z0)n.

Interchanging the order of the summation and integral is justified by the uniform

convergence in ζ ∈ Cr of the series for z fixed.

Thus f has a convergent power series in D(x0, r) if D(z0, r) ⊂ Ω. Hence f is

analytic in Ω (Theorem 2.7). �



Definition: A function holomorphic on the whole plane is called entire.

Examples: polynomials, ez, sin(z), . . .



Corollary 4.16, Cauchy’s estimate: If f is analytic in {z : |z−z0| ≤ r}
and Cr(z0) = {z0 + reit : 0 ≤ t ≤ 2π}, then

f (n)(z0)

n!
=

1

2πi

∫
Cr(z0)

f (ζ)

(ζ − z0)n+1
dζ, (4.4)

and ∣∣∣∣f (n)(z0)

n!

∣∣∣∣≤ supCr(z0) |f |
rn

. (4.5)

Proof. Equation (4.4) follows from Corollary 2.13, the proof of Corollary 4.15,

and the uniqueness theorem, Theorem 2.8.

Inequality (4.5) follows by inserting absolute values into the integral, using

|
∫
f | ≤

∫
|f |, and the fact that Cr has length 2πr. �



Corollary 4.17: If f is analytic and one-to-one in a region Ω then the

inverse of f is analytic on on f (Ω).

Proof. Since analytic functions are open (Cor 3.3), f has a continuous inverse.

Take z0 ∈ Ω and set w0 = f (z0). Then f (Ω) contains a disk centered at w0. If

w ∈ f (Ω) tends to w0, then z = f−1(w) tends to z0.

Since f is 1-1, Corollary 3.7 implies f ′(z0) 6= 0, so that

f−1(w)− f−1(w0)

w − w0
=

z − z0

f (z)− f (z0)
→ 1

f ′(z0)
.

This proves f−1 has a complex derivative at w0 equal to 1/f ′(f−1(w0)). This

derivative is continuous, so that f−1 is holomorphic and hence analytic. �



Theorem 4.19, Morera’s Theorem: If f is continuous in an open disk

D and if ∫
∂R

f (ζ)dζ = 0

for all closed rectangles R ⊂ D with sides parallel to the axes, then f is

analytic on D.

Alternate version: f is analytic if integrals around all triangles in D are zero.



Proof. We may suppose D = D. Define

F (z) =

∫
γz

f (ζ)dζ,

where γz connects 0 to z by a horizontal and vertical line segment:

R

σ
z

0

z+h

If |h| < 1 − |z| then γz+h = γz + σ + ∂R where σ is a curve from z to z + h

consisting of a horizontal and vertical segment.



By assumption,
∫
∂R f (ζ)dζ = 0, so that

F (z + h)− F (z) =

∫
γz+h

f (ζ)dζ −
∫
γz

f (ζ)dζ =

∫
σ

f (ζ)dζ.

By the fundamental theorem of calculus, since the identity function has deriva-

tive equal to 1,
∫
σ dζ = z + h− z = h, and so.

F (z + h)− F (z)

h
− f (z) =

1

h

∫
σ

(f (ζ)− f (z))dζ.

By (4.2), ∣∣∣∣1h
∫
σ

(f (ζ)− f (z))dζ

∣∣∣∣ ≤ √2 sup
ζ∈σ
|f (ζ)− f (z)|,

because |σ| ≤
√

2|h|. Since f is continuous, letting h → 0 proves that F is

holomorphic on D with F ′ = f . Thus f is holomorphic on D. �



Corollary: If f is holomorphic on C \ R and continuous on C, then f is

holomorphic on C.

This is an example of a “removability theorem”. If f is defined and has some

property P on Ω \ E, does it also have property P on all of Ω?

Corollary says that a line is removable for continuous, holomorphic functions.

Proof is assigned as exercise on Problem Set 4.



Understanding what kinds of sets are removable in various situations is a long

standing research problem. Is related to “rigidity” problems in dynamics.

Several connections to Stony Brook:

• See Removable sets for holomorphic functions by Malik Younsi

• Conformal removability is hard by C. Bishop.

• Non-removabilty of Sierpinski carpets by D. Ntalampekos

• David extension of circle homeomorphisms, welding, mating, and remov-

ability by Mikhail Lyubich, Sergei Merenkov, Sabyasachi Mukherjee, Dimitrios

Ntalampekos.

https://arxiv.org/pdf/1503.02582.pdf
https://www.math.stonybrook.edu/~bishop/papers/notborel.pdf
https://arxiv.org/pdf/1809.05605.pdf
https://arxiv.org/abs/2010.11256
https://arxiv.org/abs/2010.11256


Section 4.3: Approximation by Rational Functions



Integration around a square:

Proposition 4.20: If S is an open square with boundary ∂S parameterized

in the counter-clockwise direction then

1

2πi

∫
∂S

1

z − a
dz =

{
1 if a ∈ S
0 if a ∈ C \ S.

Proof. If a ∈ C \ S, then we can find a disk B which contains S and does not

contain a. Since f is analytic in this disk, the integral around S is zero.

S
B

a



If a ∈ S, then let C be the circumscribed circle to ∂S parameterized in the

clockwise direction.

The difference of the two closed curves is a union of four closed curves, each of

which is contained in a disk which misses a.

The integral of f over each of these is zero, so the integral over the square the

circumscribed circle are the same.

B1

S1

S2

S3

S4

a

C1

C2

C3

C4

�



Theorem 4.21: If f is analytic in a neighborhood of the closure S of an

open square S, then for z ∈ S,

f (z) =
1

2πi

∫
∂S

f (ζ)

ζ − z
dζ,

where ∂S is parameterized in the counter-clockwise direction.

Proof. The proof is the same as for Theorem 4.21 (for circles) except that Propo-

sition 4.20 is used instead of Proposition 4.13. �



Corollary 4.22 If f is analytic in a neighborhood of the closure S of an

open square S, then
1

2πi

∫
∂S

f (ζ)dζ = 0

.

Proof. Fix z ∈ S and apply Theorem 4.21 to g(ζ) = f (ζ)(ζ − z). �



Theorem 4.23, Runge’s Theorem (first version) If f is analytic on

a compact set K and if ε > 0 then there is a rational function r so that

sup
z∈K
|f (z)− r(z)| < ε.

Idea of proof: f is given by an integral, and the integral is approximated by

Riemann sums. The latter are rational functions.



Proof. Suppose f is analytic on U open, with U ⊃ K. Let

d = dist(∂U,K) = inf{|z − w| : z ∈ ∂U,w ∈ K}.

Construct a grid of closed squares of side length d/2. The union of squares

hitting K is contained in U and has a piecewise differentiable boundary Γ.

U



Γ is a finite union of boundaries of small squares {Sj}.

If z ∈ Sj then the integral of f (ζ)/(ζ − z) around ∂Sj is 2πif (z). Otherwise it

is zero. Thus

f (z) =
1

2πi

∫
Γ

f (ζ)dζ

ζ − z
.

Choose a z0 ∈ K and δ > 0 so that if {ζk} are δ-spaced on Γ then the integral

for z = z0 is approximated to within ε by the correspdoning Riemann sum∣∣∣∣∣f (z0)− 1

2πi

∑
k

f (ζk)∆ζk
ζk − z

∣∣∣∣∣ < ε.



This strict inequality also holds for points in a neighborhood of z0.

By compactness, a finite number of these neighborhoods covers K.

Taking the minimum delta, we see that∣∣∣∣f (z)− 1

2πi

∑ f (ζk)(∆ζk
ζk − z

∣∣∣∣ < ε.

for all z ∈ K if δ is small enough. �



Definition 4.24: If r is a rational function, by the fundamental theorem of

algebra we can write r(z) = p(z)/q(z) where p and q are polynomials with no

common zeros. The zeros of q are called the poles of the rational function r.



Moving the poles:

Lemma 4.25: Suppose U is open and connected, and suppose ∂ ∈ U . Then

a rational function with poles only in U can be uniformly approximated on

C \ U by a rational function with poles only at b.



Proof. Suppose a, c ∈ U and suppose |c− a| < dist(a, ∂U). We want to show

we can move a pole from c to a.

If z ∈ C \ U then |z − a| ≥ dist(a, ∂U) > |c− a|, so that

1

z − c
=

1

z − a− (c− a)
=

1

(z − a)(1− (c−az−a))
=

∞∑
n=0

(c− a)n

(z − a)n+1
, (4.8)

where the sequence of partial sums approximate 1/(z − c) uniformly on C \ U .



Using products we can approximate (z − c)−n for n ≥ 1 on C \ U . By taking

finite linear combinations, we can uniformly approximate on C \U any rational

function with poles at c by rational functions with poles only at a.



Next, we link together small moves to make large moves.

Write c ∈ Rd if every rational function with poles only at c can be uniformly

approximated on C \ U by rational functions with poles only at d.

This relation is transitive: if c ∈ Rd and d ∈ Re then c ∈ Re. Set E = {a ∈
U : a ∈ Rb}.

By transitivity and the argument above, if a ∈ E thenE contains a disk centered

at a with radius dist(a, ∂U). Thus E is open.



We claim E is also closed.

If an ∈ E converges to a∞ ∈ U , then we can choose n so large that for all

z ∈ C \ U
|z − an| ≥ |z − a∞| − |an − a∞| ≥ dist(a∞, ∂U)− |an − a∞| > |an − a∞|.

By (4.8), a∞ ∈ Ran and by transitivity, a∞ ∈ E.

Since E is both open and closed in U and non-empty, we have E = U since U

is connected.



Finally, suppose that r is rational with poles only in U and fix b ∈ U .

Each term 1/(z−c)k in the partial fraction expansion of r can be approximated

by a rational function with poles only at b. Adding the approximations, gives

an approximation of r by a rational function with poles only at b. �



Corollary 4.26: Suppose U is connected and open and suppose {z : |z| >
R} ⊂ U for some R < ∞. Then a rational function with poles only in U

can be uniformly approximated on C \ U by a polynomial.

Proof. By Lemma 4.25 we need only prove that if |b| > R, then a rational

function with poles at b can be uniformly approximated by a polynomial on

C \ U . But

1

z − b
=

1

−b(1− z/b)
= −1

b

∞∑
n=0

(
z

b

)n
,

where the sum converges uniformly on |z| ≤ R.

Taking products, We can approximate (z − b)−n for n ≥ 1 and by taking finite

linear combinations, we can approximate any rational function with poles only

at b by a polynomial, uniformly on {z : |z| ≤ R} ⊃ C \ U . �



Theorem 4.27, Runge’s Theorem Suppose K is a compact set. Choose

one point an in each bounded component Un of C \K. If f is analytic on

K and ε > 0, then we can find a rational function r with poles only in the

set {an} such that

sup
z∈K
|f (z)− r(z)| < ε.

If C \K has no bounded components, then r can be a polynomial.



Corollary 4.28: If f is analytic on an open set Ω 6= C then there is a

sequence of rational functions rn with poles in ∂Ω so that rn converges to

f uniformly on compact subsets of Ω.

The improvement of Corollary 4.28 over Theorem 4.23 is that the poles of rn

are outside of Ω, not just outside K.

The corollary says that every analytic function is a limit of rational functions,

uniformly on compact subsets.

We shall see shortly that the set of analytic functions on a region is closed under

uniform convergence on compact sets.



Proof. Set Kn = {z ∈ Ω : dist(z, ∂Ω) ≥ 1
n and |z| ≤ n}.

Then Kn is compact, ∪Kn = Ω and each bounded component of C\Kn contains

a point of ∂Ω.

To prove the last claim, note that if U is a bounded component of C \Kn and

if z ∈ U , then |z| < n and |z − ζ| < 1/n for some ζ ∈ ∂Ω. Let L be the line

segment from z to ζ . If α ∈ L then |α− ζ| < 1/n, so that α /∈ Kn.

Thus L is a connected subset of C\Kn, so Lmust be contained in one component

of C\Kn. Because z ∈ L∩U , we must have L ⊂ U . But then ζ ∈ L∩∂Ω ⊂ U .

By Theorem 3.8 we can choose the rational functions approximating f to have

poles only in ∂Ω. �



Lemma 4.30: If G is integrable on a piecewise continuously differentiable

curve γ then

g(z) ≡
∫
γ

G(ζ)

ζ − z
dζ

is analytic in C \ γ and

g′(z) =

∫
γ

G(ζ)

(ζ − z)2
dζ.



Proof. Write

g(z + h)− g(z)

h
−
∫
γ

G(ζ)

(ζ − z)2
dζ

=
1

h

∫
γ

G(ζ)dz

ζ − z − h
− 1

h

∫
γ

G(ζ)dz

ζ − z
−
∫
γ

G(ζ)

(ζ − z)2
dζ

=
1

h

∫
γ

G(ζ)
[h(ζ − z − h) + (ζ − z)2 − (ζ − z)(ζ − z − h)]dz

(ζ − z)2(ζ − z − h)

=

∫
γ

G(ζ)h

(ζ − z)2(ζ − (z + h))
dζ,

which → 0 as h→ 0. Thus

g′(z) =

∫
γ

G(ζ)

(ζ − z)2
dζ

exists and is continuous on C \ γ. By Corollary 2.6, g is analytic on C \ γ. �



Theorem 4.29, Weierstrass’s Theorem: Suppose {fn} is a collection

of analytic functions on a region Ω such that fn → f uniformly on compact

subsets of Ω. Then f is analytic on Ω. Moreover f ′n → f ′ uniformly on

compact subsets of Ω.



Proof. Analyticity is a local property, so to prove the first statement we may

suppose D is a disk with D ⊂ Ω. By Theorem 4.14 z ∈ D,

fn(z) =
1

2πi

∫
∂D

fn(ζ)

ζ − z
dζ.

Uniform limits of continuous functions are continuous, so f is continuous. Set

F (z) =
1

2πi

∫
∂D

f (ζ)

ζ − z
dζ.

Then since uniform convergence implies convergence of integrals

|fn(z)− F (z)| → 0, for each z ∈ D.
Thus F = f on D and by Lemma 3.11, F is analytic on D.

This proves the first part that f is analytic.



By Theorem 4.14 and Lemma 4.30

f ′n(z) =
1

2πi

∫
∂D

fn(ζ)

(ζ − z)2
dζ.

and

f ′(z) = F ′(z) =
1

2πi

∫
∂D

f (ζ)

(ζ − z)2
dζ.

Again, since fn → f uniformly on ∂D, we have that f ′n converges uniformly to

f ′ on compact subsets of D.

Thus f ′n converges uniformly to f ′ on closed disks contained in Ω.

Given a compact subset K of Ω, we can cover K by finitely many closed disks

contained in Ω and hence f ′n converges uniformly on K to f ′. �



Cor: The space H∞(U) of bounded holomorphic functions on an open set

U is a Banach algebra.

Even for U = D this is a very interesting, much studied space.

For z ∈ U , point evaluations φz : H∞(U) → C by f → f (z) are bounded,

multiplicative linear functionals.

Lennart Carelson’s famous “Corona Theorem” says that for U = D the point

evaluations are dense in the (compact) set of all multiplicative functionals.

This is known for some other planar domains, but open in general. Can fail for

Riemann surfces



Lennart Carleson, Peter Jones, Don Marshall and myself

At Brown University conference for John Wermer

https://mathshistory.st-andrews.ac.uk/Biographies/Carleson/


Lemma 4.31: Suppose Ω is a region and γ : [0, 1] → Ω is continuous.

Given ε < dist(γ, ∂Ω), we can find a finite partition 0 = t0 < t1 < · · · <
tn+1 = 1 of [0, 1] so that γ([tj−1, tj]) ⊂ Dj = D(γ(tj), ε) for some Uαj ∈ C,

j = 1, . . . , n + 1.

Proof. Every γ(t) is the center of an ε ball inside Ω, so by compactness, a finite

number cover the trace. �

Let σ be the polygonal curve joining these points.



Theorem 4.32 Suppose Ω is a region and γ : [0, 1]→ C is continuous with

γ ⊂ Ω. Let σ be the polygonal curve defined above. If f is analytic on Ω,

define ∫
γ

f (z)dz =

∫
σ

f (z)dz.

Then this definition of
∫
γ f (z)dz does not depend on the choice of the polyg-

onal curve σ and it agrees with our prior definition if γ is piecewise con-

tinuously differentiable.

This says that to prove something about
∫
γ f (z)dz where f is analytic on a

region Ω and γ ⊂ Ω, it is enough to prove it for all polygonal curves γ.



Proof. If γ is piecewise continuously differentiable, then the difference γ − σ

consists of a finite number of closed curves each inside a ball where f is analyic,

so the integrals are all zero.

For an arbitrary continuous γ, suppose σ is the polygonal curve associated with

a partition {tj} chosen as above. Let α be the polygonal curve associated with

a finite refinement {sk} ⊃ {tj} of the partition {tj}.

We can write σ − α =
∑
βj where each βj : [0, 1] → C is a closed polygonal

curve contained in some Dj. By Corollary 4.18
∫
α f (z)dz =

∫
σ f (z)dz.

Given any two partitions satisfying the conditions of the definition of the integral,

we can find a common refinement. Thus the definition does not depend on the

choice of the partition. �



Addititonal remarks: Runge’s theorem is still the focus of new research.

Last year my former student, Kiril Lazebink, and I proved:

Theorem: If K is compact inside an open Ω, and f is analytic on Ω, then f

can be uniformly approximated on K by rational functions that have all their

critical values inside Ω.

A critical value is p(z) where p′(z) = 0. The orbits of critical values is important

in holomorphic dynamics, so knowing the location of critical values is interesting.



Even is situations where a function can be approximated by polynomials, ratio-

nal approximation may do a much better job.

The best degree n polynomial approximation pn to f (x) = |x| on [−1, 1] satisfies

sup |f − pn| ≈
.28016949902386913 . . .

n

but the best rational approximation rn of degree n satisfies

sup |f − rn| ≤ 3 exp(−
√
n).

See Chapter 25 of Trefethen’s book Approximation Theory and Approximation

Practice.

https://my.siam.org/Store/Product/viewproduct/?ProductId=31254869
https://my.siam.org/Store/Product/viewproduct/?ProductId=31254869


Application of Runge’s theorem:

Thm: For any function f : N → C there is an entire function g so that

supN |f (z)− g(n)| < 1.



Application of Runge’s theorem:

Thm: For any function f : N → C there is an entire function g so that

supN |f (z)− g(n)| < 1.

Proof. Let p1(z) = f (1) be constant.

In general, apply Runge’s theorem to Kn = {|z| ≤ n − 1} ∪ {n} (which

does not separate the plane) to choose a polynomial pn so that |pn| < 2−n on

{|z| ≤ n− 1} and |pn(n)− f (n)−
∑

k<n pk(n)| < 2−n.

Then g =
∑∞

k=1 pk converges uniformly on compact sets to a function with the

desired properties. �



Application of Runge’s theorem:

Thm: Suppose S = [0, 1]2 is a square and f, g are any two entire functions.

Then there is a sequence of polynomials {pn} so that pn(z) → g(z) for all

z in the interior of S and pn(z)→ f (z) for all z on the boundary of S.



Application of Runge’s theorem:

Thm: Suppose S = [0, 1]2 is a square and f, g are any two entire functions.

Then there is a sequence of polynomials {pn} so that pn(z) → g(z) for all

z in the interior of S and pn(z)→ f (z) for all z on the boundary of S.



Application of Runge’s theorem:

Thm: it There is an analytic function on D = {z : |z| < 1} that does not have

a radial boundary limit anywhere on the circle.



Application of Runge’s theorem:

Thm: it There is an analytic function on D = {z : |z| < 1} that does not have

a radail boundary limit anywhere on the circle.



Application of Runge’s theorem:

Thm: it There is an entire function f so that given any other entire function

g, there is a seqeunce {nk} ∈ N so that f (z+nk)→ g(z) uniformy on compact

subsets of the plane.

Proof is assigned on Problem Set 4.


