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Chapter 2: Analytic functions



Section 2.1: Polynomials



Translation: z → z + c.

Rotation: z → λz, |λ| = 1.

Dilation: z → λz, λ > 0.

(Complex) linear map: z → az + b, combination of above.

Linear maps = orientation preserving Euclidean similarities

The map (x, y)→ (2x, y) is “real linear” but not “complex linear”.



Power functions: z → zn or reiθ → rneinθ.

The power map z → z2



Power functions: z → zn or reiθ → rneinθ.

The power map z → z1/2

However, this map is not defined on whole plane!



Polynomials:

p(z) = a0 + a1z + a2z
2 + . . . anz

n.

Rational functions: r = p/q where p, q are polynomials.

Rational functions for a field.



Lemma: If p is a polynomial, z0 ∈ C and θ ∈ [0, 2π), then there is a sequence

{wn} → z0 so that arg(p(wn)− p(z))→ θ.

This follows if p(D(z0, ε)) always contains a disk around p(z0).

We will prove this stronger property later.



Proof. Suppose z0 ∈ C. Write z = (z − z0) + z0, so

p(z) =

n∑
k=0

ak((z − z0) + z0))
n =

n∑
k=0

bk(z − z0)n,

where the coefficients now depend on z0.

Then b0 = p(z0), so

p(z)− p(z0) =

n∑
k=1

bk(z − z0)n,



Let m ≥ 1 be smallest k so bk is non-zero. If |z − z0| is small enough,

p(z)− p(z0) = (z − z0)m[bm + bm+1(z − z0) + . . . bn(z − z0)n−k]
= (z − z0)m[bk + o(1)]

|[p(z)− p(z0)]− bm(z − z0)m| ≤ ε|bn(z − z0)m|
If we choose wn so that arg bn(wn − z0)m = θ, then

| arg(p(wn)− p(z0))− θ| < ε.

Taking ε = 1/n proves the lemma. �
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As z moves in circle around z0, b0 + bm · (z− z0)m moves in circle around p(z0).

The point p(z) must follow, always staying on same “side” of b0. Both paths

“go around” the same number of times.

As radius shrinks to zero, so does image of circle. Images must fill in a disk

around b0. How to prove this?
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Marshall calls this picture “walking the dog”.

(The leash doesn’t get tangled around the lamp post.)



Section 2.2: The Fundamental Theorem of Algebra and Partial Fractions



Fundamental Theorem of Algebra

Theorem 2.1: Every non-constant polynomial has a zero.



Fundamental Theorem of Algebra

Proof. Suppose p(z) = anz
n+an−1z

n−1 + · · ·+a1z+a0, n ≥ 1, is a polynomial

which has no zeros and for which an 6= 0. We claim that |p(z)| must have a

non-zero minimum value on C.

This will follow if |p(z)| ↗ ∞ as |z| ↗ ∞.



Write

p(z) = zn
(
an +

an−1
z

+ · · · + a0
zn

)
.

Because an 6= 0, and because 1/zk → 0, and |zn| → ∞ as |z| → ∞, we

conclude that |p(z)| → ∞ as |z| → ∞.

So if M = infC |p(z)| and if |p(wj)| → M , then there is an R < ∞ so that

|wj| ≤ R, for all j. Because {z : |z| ≤ R} is compact and because |p| is

continuous, there exists z0 so that |p(z0)| = M .

This proves the claim that a minimum exists.



Moreover, M 6= 0 since p has no zeros. Now by the previous lemma, p(C)

contains a closed path about p(z0) which must intersect the radial segment

[0, p(z0)] and thus there is a point in p(C) strictly closer to the origin.

This is a contradiction, and proves that |p| can’t take a non-zero minimum.

Thus the minimum is zero. �

p(z  )0
0



Corollary 2.2: If p is a polynomial of degree n ≥ 1, then there are complex

numbers z1, . . . , zn and a complex constant c so that

p(z) = c

n∏
k=1

(z − zk).

Proof. First note that

zk − bk = (z − b)(bk−1 + zbk−2 + · · · + zk−2b + zk−1).

So if p(z) =
∑n

k=0 akz
k and p(b) = 0, then

q(z) ≡ p(z)

z − b
=
p(z)− p(b)

z − b
=

n∑
k=1

ak(

k−1∑
j=0

bk−1−jzj).

The coefficient of zn−1 is an so q is a polynomial of degree n− 1.

Repeating this argument n times proves the Corollary. �



Every polynomial is of the form

p(z) = C

n∏
k=1

(z − zk),

where {zk} are the roots of p.

Finding the roots can be challenging. There are formulas for degree 2, 3, 4.

For higher degrees Able showed there is no algebraic formula for the roots. See

Abel-Ruffini Theorem.

Galois theory allows us to decide which polynomials can be solved in radicals.

Degree 5 can be solved by more general methods: see Solving the quintic by

iteration by Doyle and McMullen.

https://en.wikipedia.org/wiki/Abel-Ruffini_theorem
https://people.math.harvard.edu/~ctm/papers/home/text/papers/icos/icos.pdf
https://people.math.harvard.edu/~ctm/papers/home/text/papers/icos/icos.pdf


Newton’s method can be used to approximate roots of higher degree polynomials.

See How to Find All Roots of Complex Polynomials by Newton’s Method.

zn+1 = zn −
f (zn)

f ′(zn)

Newton’s method works if the initial guess is close enough to a root, but mail

fail in general. The preceding paper shows how to choose a finite collection of

starting points so that at least one is guaranteed to find a root.

If p is a polynomial, r(z) = z = p(z)/p′(z) is a rational function, so we are just

iterating a rational function.

https://www.math.stonybrook.edu/~scott/Papers/Newton-HSS.pdf


Domains of attraction for Newtons method

Applying Newton’s method to solve z3 + 1 = 0

Colors indicate starting points attracted to each root.

There is a fractal of points not attracted to any root.



Domains of attraction for Newtons method

Applying Newton’s method to solve 2z5 + 8z4 + 2z3 + 3z + 1 = 0

MATLAB code to plot this picture

https://www.math.stonybrook.edu/~bishop/classes/math536.S24/plot_poly_newton.m


Partial fraction expansion: every rational function can be written as

r(z) = q(z) +

N∑
j=1

nj∑
k=1

ck,j
(z − zj)k

.

Proof. See textbook, Corollary 2.3. �

Partial fraction expansions are extremely important in applications and numer-

ical calculations.

For example, see The AAA algorithm for rational approximation.

https://people.maths.ox.ac.uk/trefethen/AAAfinal.pdf


Section 2.3: Power Series



Geometric Series:

Sn = 1 + z + z2 + . . . zn

zSn = z + z2 + . . . zn+1

Sn − zSn = 1− zn+1

Sn =
1− zn+1

1− z
Hence for |z| < 1,

∞∑
n=0

zn = lim
n→∞

Sn =
1

1− z
.

Left side only defined on {|z| < 1}, but has extension to C \ {1}.

Example of “analytic continuation”.



A similar calculation shows
1

z − a
=

1

z − z0 − (a− z0)
=

1

−(a− z0)(1− (z−z0a−z0
))
.

Substituting

w =
z − z0
a− z0

we get for |w| = |(z − z0)/(a− z0)| < 1,

1

z − a
=

∞∑
n=0

−1

(a− z0)n+1
(z − z0)n.

This series converges if |z − z0| < |a− z0| and diverges if |z − z0| ≥ |a− z0|.

The domain of convergence is an open disk and it is the largest disk centered at

z0 which is contained in the domain of definition of 1/(z − a).



Weierstrass M-Test

Theorem 2.4: If |an(z−z0)n| ≤Mn for |z−z0| ≤ r and if
∑
Mn <∞ then∑∞

n=0 an(z − z0)n converges uniformly and absolutely in {z : |z − z0| ≤ r}.

Proof. See textbook. �



Root Test:

Theorem 2.5; Suppose
∑
an(z − z0)n is a formal power series. Let

R = lim inf
n→∞

|an|−
1
n =

1

lim sup
n→∞

|an|
1
n

∈ [0,+∞].

Then
∑∞

n=0 an(z − z0)n

(1) converges absolutely in {z : |z − z0| < R},
(2) converges uniformly in {z : |z − z0| ≤ r} for all r < R, and

(3) diverges in {z : |z − z0| > R}.



Proof. See textbook. �

A power series always converges on a disk, possibly zero or infinite radius.

Different behaviors are possible on the boundary

∑∞
n=0

zn

n R = 1, diverges at z = 1, converges elsewhere on {|z| = 1}

∑∞
n=0

zn

n2
R = 1, converges absolutely everywhere on {|z| = 1}

∑∞
n=0 nz

n R = 1, diverges everywhere on {|z| = 1}

∑∞
n=0 2n

2
zn R = 0, diverges everywhere except z = 0

∑∞
n=0

zn

n! R =∞, converges everywhere in C.



∑∞
n=0

zn

n R =∞, converges everywhere in C.

Defn: a function with series converging on the whole plane is called entire.

This example converges “uniformly on compact sets”.

Defn: Suppose U is open set and {fn} is a sequence of functions on U . We

say {fn} converges uniformly on compact sets to f , if for any compact K ⊂ U ,

the restrictions to K converge uniformly to f |K.

This is very common type of convergence used in complex analysis.
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exp

Approximation of ex =
∑∞

n=0 x
n/n! by polynomials = truncations of series.

eiθ =
∑
n even

(iθ)n

n!
+
∑
n odd

(iθ)n

n!
=
∑
n even

(−1)n/2
θn

n!
+i
∑
n odd

(−1)(n−1)/2
θn

n!
= cos θ+i sin θ



Section 2.4: Analytic Functions



Definition: A function f is analytic at z0 if f has a power series expansion

valid in a neighborhood of z0.

This means that there is an r > 0 and a power series
∑
an(z − z0)

n which

converges in B = {z : |z − z0| < r} and satisfies

f (z) =

∞∑
n=0

an(z − z0)n, for all z ∈ B.

A function f is analytic on an open set Ω if f is analytic at each z0 ∈ Ω.

Analytic functions are automatically continuous since they are locally uniform

limits of polynomials.

f is analytic on (non-open) E if it analytic on a neighborhood of E.



Being analytic at z requires a power series centered at z. What if z is inside the

disk of convergence, but not the center?

Theorem 2.7: If f (z) =
∑
an(z − z0)n converges on {z : |z − z0| < r}

then f is analytic on {z : |z − z0| < r}.

In other words, we can move the center of a power series to a different point

inside the disk of convergence.
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Proof. Fix z1 with |z1 − z0| < r. By the binomial theorem

(z − z0)n = (z − z1 + z1 − z0)n =

n∑
k=0

(
n

k

)
(z1 − z0)n−k(z − z1)k.

Hence

f (z) =

∞∑
n=0

[ n∑
k=0

an

(
n

k

)
(z1 − z0)n−k(z − z1)k

]
. (4.1)

Suppose for the moment, that we can interchange the order of summation, then
∞∑
k=0

[ ∞∑
n=k

an

(
n

k

)
(z1 − z0)n−k

]
(z − z1)k

will be the power series expansion for f based at z1.



To justify this interchange of summation, it suffices to prove absolute conver-

gence of (4.1). By the root test
∞∑
n=0

|an||w − z0|n

converges if |w − z0| < r. Set

w = |z − z1| + |z1 − z0| + z0.

Then |w − z0| = |z − z1| + |z1 − z0| < r provided |z − z1| < r − |z1 − z0|.



Thus if |z − z1| < r − |z1 − z0| then

∞ >

∞∑
n=0

|an||w − z0|n

=

∞∑
n=0

|an|
(
|z − z1| + |z1 − z0|

)n
=

∞∑
n=0

[ n∑
k=0

|an|
(
n

k

)
|z1 − z0|n−k|z − z1|k

]
as desired. �



Theorem 2.8: Suppose
∞∑
n=0

an(z − z0)n =

∞∑
n=0

bn(z − z0)n,

for all z such that |z − z0| < r where r > 0. Then an = bn for all n.

In other words, if f has a power series, it is unique.



Proof. Set cn = an− bn. The hypothesis implies that
∑∞

n=0 cn(z− z0)n = 0, for

all z with |z − z0| < r. We need to show that cn = 0 for all n.

Suppose cm is the first non-zero coefficient. If 0 < |z − z0| < r then

(z − z0)−m
∞∑
n=m

cn(z − z0)n =

∞∑
k=0

cm+k(z − z0)k ≡ F (z).

The series for F converges in 0 < |z − z0| < r because we can multiply the

terms of the series on the left side by the non-zero number (z − z0)−m and not

affect convergence. By the root test, the series for F converges in a disk and

hence in {|z − z0| < r}.



Since F is continuous and cm 6= 0, there is a δ > 0 so that if |z − z0| < δ, then

|F (z)− F (z0)| = |F (z)− cm| < |cm|/2.

If F (z) = 0, then we obtain the contradiction | − cm| < |cm|/2.

Thus F (z) 6= 0 when |z − z0| < δ. But (z − z0)m = 0 only when z = z0, and

thus ∞∑
n=0

cn(z − z0)n = (z − z0)mF (z) 6= 0

when 0 < |z − z0| < δ, contradicting our assumption on
∑
cn(z − z0)n. �



Corollary of proof: If f is analytic at z0, then for some δ > 0, either

f (z) 6= 0 when 0 < |z− z0| < δ or f (z) = 0 for all z such that |z− z0| < δ.

Defn: If f (a) = 0, then a is called a zero of f .

Defn: A region is a connected open set.

Corollary 2.9: If f is analytic on a region Ω then either f ≡ 0 or the

zeros of f are isolated in Ω.



Zeros can accumulate on boundary, e.g.,

B(z) =

∞∏
n=1

|zn|
zn
· zn − z

1− znz
.

If
∑

(1 − |zn|) < ∞, this defines an analytic function on D = {|z| < 1} that

has zeros exactly at the points {zn}.

This is called a Blaschke product.



B not defined on {|z| = 1}, but it extends by radial limits to a measurable

function there, with |B| = 1 almost everywhere (Fatou’s theorem).

If zn = (1− 1/n2)ein, then zeros of B accumulate everywhere on T.



Corollary 2.9 can fail for real-valued C∞ functions, e.g.,

f (x) =

{
0, x ≤ 0.

exp(−1/x), x > 0.
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Section 2.5: Elementary Operations



Elementary operations preserve analytic functions:

Theorem 2.10: If f and g are analytic at z0 then so are

f + g, f − g, cf fg,

where c is a constant. If h is analytic at f (z0) then (h ◦ f )(z) ≡ h(f (z)) is

analytic at z0.

First three follow from properties of power series.

Need to check f · g and f ◦ g.



Multiplication:

Proof. Suppose f, g are both analytic on D = D(z0, r) and

f (z) =

∞∑
an(z − z0)n, g(z) =

∞∑
bn(z − z0)n,

fm(z) =

m∑
an(z − z0)n, gm(z) =

m∑
bn(z − z0)n,

Then fm → f and gm → g uniformly on compact subsets of D and

|an|, |bn| ≤ Csn

for every s > r.



Moreover,

fm(z)gm(z) =

m∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n

and

|
n∑
k=0

akbn−k| ≤
n∑
k=0

|akbn−k| ≤ C2
n∑
k=0

sn ≤ C2nsn

for all s > r. Thus
∞∑
n=0

(
n∑
k=0

akbn−k

)
(z − z0)n

has radius of convergence at least r, and converges uniformly to fg. Thus fg is

analytic. �



Composition:

Proof. Suppose f (z) =
∑
an(z − z0)

n is analytic at z0 and suppose h(z) =∑
bn(z − a0)n is analytic at a0 = f (z0).

If the series for f converges in D = D(z0, r) then for any s > r, we have

|an| ≤ Csn. This implies for
∞∑
m=1

|am||z − z0|m−1

is uniformly bounded if on any disk D(z0, t) with t < r.

Thus, if |z − z0| ≤ t,

|f (z)− a0| ≤
∞∑
m=1

|am||z − z0|m ≤ |z − z0|
∞∑
m=1

|am||z − z0|m−1 ≤M |z − z0|,



Therefore,

|
∞∑
m=0

bm

( ∞∑
n=1

an(z − z0)n
)m
| ≤

∞∑
m=0

|bm|
( ∞∑
n=1

|an||z − z0|n
)m

≤
∞∑
m=0

|bm|
(
M |z − z0|

)m
≤ ∞,

if |z − z0| is small enough (the radius of convergence of h divided by M).

This proves absolute convergence for the composed series, and thus we can rear-

range the doubly-indexed series for the composition so that it is a (convergent)

power series. �



Corollary: if f is analytic and non-zero on a disk D, so is 1/f .

Proof. 1/f is f composed with 1/z, which is analytic on f (D) ⊂ C \ {0}. �

Corollary: rational functions are analytic away from their poles.

Corollary: If U is open,let H∞(U) be the collection of bounded analytic

functions on U . Then H∞(U) is a communtative algebra.

The supremum norm makes it a normed algebra. We shall see later is is complete,

hence a Banach algebra.



Definition: If f is defined in a neighborhood of z then

f ′(z) = lim
w→z

f (w)− f (z)

w − z
is called the (complex) derivative of f , provided the limit exists.

• (zn)′ = nzn−1.

• f (z) = z is not differentiable,

lim
x→0

f (x)− f (0)

x
= 1, lim

y→0

f (iy)− f (0)

iy
= −1.

If f = (x, y) + iv(x, y), need ux = vy and uy = −vx (Cauchy-Riemann equa-

tions; more about this later).

• Chain rule, product rule, quotient rule all hold.



Theorem 2.12: If f (z) =
∑∞

n=0 an(z − z0)n converges in D = D(z0, r)

then f ′(z) exists for all z ∈ D and

f ′(z) =

∞∑
n=1

nan(z − z0)n−1 =

∞∑
n=0

(n + 1)an+1(z − z0)n,

for z ∈ D. Moreover the series for f ′ based at z0 has the same radius of

convergence as the series for f .



Proof. If 0 < |h| < r then

f (z0 + h)− f (z0)

h
− a1 =

∑∞
n=0 anh

n − a0
h

− a1 =

∞∑
n=2

anh
n−1 =

∞∑
n=1

an+1h
n.

By the root test, the region of convergence for the series
∑
an+1h

n is a disk

centered at 0 and hence it converges uniformly in {h : |h| ≤ r1}, if r1 < r.

In particular,
∑
an+1h

n is continuous at 0 and hence

lim
h→0

∞∑
n=1

an+1h
n = 0.

This proves that f ′(z0) exists and equals a1.



By Theorem 4.2, f has a power series expansion about each z1 with |z1−z0| < r

given by
∞∑
k=0

[ ∞∑
n=k

an

(
n

k

)
(z1 − z0)n−k

]
(z − z1)k

Therefore f ′(z1) exists and equals the coefficient of z − z1

f ′(z1) =

∞∑
n=1

an

(
n

1

)
(z1 − z0)n−1 =

∞∑
n=1

ann(z1 − z0)n−1.

By the root test and the fact that n
1
n → 1, the series for f ′ has exactly the same

radius of convergence as the series for f . �



Corollary 2.13: An analytic function f has derivatives of all orders.

Moreover if f is equal to a convergent power series on D = D(z0, r) then

the power series is given by

f (z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n,

for z ∈ D.

Corollary:
∑∞

0 nzn−1 = 1/(1− z)2.



Technical result needed later:

Corollary 2.14: If f (z) =
∑
an(z − z0)n converges in D(z0, r) then

f ′(z0) = lim
z,w→z0

f (z)− f (w)

z − w
.



Proof. Set z = z0 + h and w = z0 + k.

Then for h− k 6= 0 and ε = max(|h|, |k|) < r,

f (z0 + h)− f (z0 + k)

h− k
− a1 =

∞∑
n=2

an
hn − kn

h− k
=

∞∑
n=2

an

n−1∑
j=0

hjkn−j−1.

But since |an| ≤ Csn for some s <∞,

∞∑
n=2

|an|
n−1∑
j=0

|h|j|k|n−j−1 ≤
M∑
n=N

|an|nεn−1 ≤ C

M∑
n=2

n(sε)n−1 ≤ Csε

(1− sε)2
,

tends to zero with ε. This proves the limit exists, as desired. �



Corollary 2.15: If f (z) =
∑
an(z−z0)n converges in B = {z : |z−z0| < r}

then the power series

F (z) =

∞∑
n=0

an
n + 1

(z − z0)n+1

converges in B and satisfies

F ′(z) = f (z),

for z ∈ B.



Some open problem about polynomials:

Smale’s mean value problem: if p is a polynomial of degree ≥ 2 and

z ∈ C, prove there is a critical point w of p so that

|p(z)− p(w)| ≤ |p′(z)| · |z − w|.

See Mean value problem.

MLC: Let M be the set of c’s so that z0 = 0, zn+1 = (zn)2 + c is a bounded

sequence. IsM locally connected?

See Mandelbrot set.

See MATLAB code to draw Mandelbrot set.

https://en.wikipedia.org/wiki/Mean_value_problem
https://en.wikipedia.org/wiki/Mandelbrot_set
https://www.math.stonybrook.edu/~bishop/classes/math536.S24/mandel.m

