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Chapter 15: The Uniformization Theorem



Section 15.2: Green’s Function



Suppose W is a Riemann suface and p € W.

The Green’s function on W with pole at py is a positive function G(z, py) that

is harmonic on W\ {p}, has a logarithmic pole at py and tends to zero at oco.
For example, log \_i| is the Green’s function for D with pole at 0.
Some Riemann surfaces have a Green’s function; some do not.

Very important distinction. Many different characterizations of two cases.



A Riemann surface has a Green’s function iff several other conditions hold.
(1) Brownian motion is recurrent.
(2) Geodesic flow on the unit tangent bundle of W is ergodic.
(3) Poincare series of covering group I' diverges.

(4) T" has the Mostow rigidity property (cojugating circle homeomorphisms are

Mobius or singular).
(5) I has the Bowen’s property.

(6) Almost every geodesic ray is recurrent. Equivalently, the set of escaping

geodesic rays from a point p € W has zero (visual) measure.






Let F,, be the collection of subharmonic functions v on W'\ py satistying

v=0on W\ K, for some compact K C W with K # W, and  (15.1a)

lim sup (v(p) + log |z(p)|) < . (15.1b)

P—Po

Note that v € F), is not assumed to be subharmonic at pg, and indeed it can

tend to +o0 as p — pg. Set
gw (P, po) = sup{v(p) : v € Fp}. (15.2)



The collection F,, is a Perron family on W' \ {py}, so one of the following two

cases holds by Harnack’s theorem:
Case 1: g (p, po) is harmonic in W \ {po}, or
Case 2: gy (p,pg) = +oo for allp € W\ {po}.

In the first case, gw(p, po) is called Green’s function on W with pole (or
logarithmic singularity) at py.

In 2nd case, Green’s function with pole at py does not exist on W.



Lemma 15.4: Suppose py € W and suppose z : U — D is a coordinate
function such that z(py) = 0. If gw(p, po) exists, then

gw(p,po) > 0 for p € W\ {po}, (15.3)

agw (p, po) + log |z(p)| extends to be harmonic in U. (15.4)



Proof. The function

) —log|z(p)| forpeU
vo(p) =
0 forpe W\ U

is in F,,. Hence gy (p,po) > 0 and gy (p,po) > 0ifp € U.

By the maximum principle applied to —g in W \ {po}, Gw > 0.



It v € F, then by Lindelof’s maximum principle

sup (’U + log |z\) = supv < sup gy < Q.

U\{po} ou ou

Taking the supremum over v € F,,, we obtain

gw +log|z] <supgw < ¢
ou

in U\ {py}. We also have that for p € U \ {po}
gw +log|z| = v +log 2] = 0.

Thus g + log |z| is bounded and harmonic in U \ {po}.

(15.5)

Using the Poisson integral formula on z,(U) we can find a bounded harmonic

function on U which agrees with gy + log |z| on OU. By Lindelof’s maximum

principle, gy + log|z| extends to be harmonic in U.

]



Green’s function for disk:

The Green'’s function for the unit disk D is given by

l —az
gp(z,a) = log :
Z—a
Proof: 1f g(z) = log % then by Lindelof’s maximum principle, each candidate

subharmonic function v in the Perron family J, is bounded by g.

Moreover max(g — €,0) € F,, when € > 0. Letting ¢ — 0, we conclude
9= gD(Z7 CL).

Note gp(z,w) = ggisk(w, z). This is true in general.



Green’s function for simpy connected domain:

If 2 C C is simply connected and f : €2 — I is conformal with f(w) = 0 then

Go(z,w) = —log|f(2)].

Thus f = exp(—G — iG).



Theorem 15. 5: Suppose Wy is a Riemann surface and suppose Uy is a

coordinate disk whose closure 1s compact in Wy. Set W = W, \70 Then
gw (p, po) exists for all p,py € W with p # py.

Proof. Fix pg € W and let U C W be a coordinate disk (containing pg) with

compact closure and with coordinate function z : U — D and z(pg) = 0.

To prove that gy exists, we show that the family ), is bounded above.



Fix r, with 0 <r <1, and set rU ={p € W : |2(p)| < r}. [f v € F,, then by

Lindelof’s maximum principle, for all p € U we have

v(p) + log |z(p)| < gggg(v@ +log|2(q)|) = max v(q).

Thus

| < : 15.6
pl’él(%}({] v(p) + logr < ;2%3(}”(27) (15.6)



Let F denote the collection of functions u which are subharmonic on W \ rU
with « = 0 on Wy \ K for some compact set K C W, which can depend on u,
and such that

limsupu(p) <1 and limsupu(p) <0

p—C pP—rQ

for ( € orU and « € 90U,



Applying the maximum principle on the interior of K \ (Uy U rU) we obtain
u<T1onW\ rU. Because F is a Perron family,

w(p) = sup{u(p) 1 u € F}

is harmonic in W \ rU.

We can construct a local barrier at each point of OU, U OrU for the region

W \ rU by transporting the problem to a region in ID via a coordinate map.

Thus by exactly the same argument used for the Dirichlet problem, the harmonic

function w extends to be continuous at each point of QU and each point of 9(rU)
so that w(p) = 0 for p € AUy and w(p) =1 for p € A(rU).



In particular, this implies w is not constant. Moreover 0 < w < 1 because
0 € F and each candidate u € F is bounded by 1.

Since w is not constant, the maximum principle implies 0 < w(p) < 1 for

peW\rU.

w is called the harmonic measure of O(rU) in the region W \ rU.



For v € F,, by the maximum principle we have that

o(p) < (maxv)w<p>

oru
for p € W \ rU by the maximum principle applied to v — (maxg,; v)w. So

< < 1 — 15.
o < (o Jmgset) < (o Ja -0 05

for some 0 > 0.
Adding inequalities (15.6) and (15.7) yields

1

o maxv < log —
orU r

for all v € F, with ¢ is independent of v.

This implies that Case 2 does not hold and hence Green’s function exists. [



Theorem 15.6: Suppose W is a Riemann surface for which gy with pole at
po € W exists. Let W* be the simply-connected universal covering surface of
W, let m: W* — W be the universal covering map and suppose T(p§) = Po-
Then gw+ with pole at p; exists and satisfies

gw(x(@), 7)) = > gwp’, ). (15.8)

¢*:m(q*)=m(pp)

Thus we can recover Green’s function on a Riemann surface from Green’s func-

tion on the universal cover by summing over deck transformations.



Proof. Suppose ¢, . . . , q,, are distinct points in W* with 7(q}) = po = 7(py).

Suppose v;j € .Fq;f, the Perron family for the construction of gy+(-, ¢7). Sov; =0
off K7, a compact subset of W* and

lim sup (v;(p*) + log |z o w(p*)| < o0,

* *
p _>qj'

where z is a coordinate chart on W with z(pg) = 0.



Recall g (p, po) + log |z(p)| extends to be finite and continuous at py, and so
lim_ gw (m(p*), po) + log |z(m(p™))|

p _>q]'

exists and is finite because 7(q}) = po. Thus

(i vj (P*>) —gw(m(p"), po)

is bounded in a neighborhood of each ¢}, for j = 1,...,n, and < 0 off K* =
U; K%, by (15.3).



By Lindel6f’s maximum principle on the interior of K* \ {q¢f,...,q’}, it is

bounded above by 0. Taking the supremum over all such v; we conclude that

gw+(p”, q;) exists and

(i gw+(p", q;)) — gw(m(p*), po) < 0.

Taking the supremum over all such finite sums we have

Sp= > gw-0".q") < gwlm), po).

q*:m(q*)=po



Moreover, as a supremum of finite sums of positive harmonic functions, S(p*)

is harmonic on W*\ 7~ !(py) by Harnack’s principle. By (15.4)

S(p*) + log |z(7(p®))] (2.9)

extends to be harmonic in a neighborhood of each ¢* € 7 1(py).



Now take v € F,, the Perron family used to construct gy (p,po). Let U* be a
coordinate disk containing p, so that z o 7 is a coordinate map of U* onto D),

vanishing at py.

Then by (15.9) and Lindelof’s maximum principle
v(m(p”)) —S(p*) <0
for p* € U*.

Taking the supremum over all such v we obtain

gw(m(p*),po) < S(p7)
and thus (15.8) holds on U* \ pj; and therefore on W*, O]



Corollary 15.7: Suppose W 1s a Riemann surface for which Green’s func-
tion gw with pole at p exists, for some p € W, and suppose W* =1. Then
gw with pole at q exists for all ¢ € W and

gw(p,q) = gw (4, p). (15.10)

We will remove the hypothesis that W* = 1D in Section 3. See Corollary 3.2.

This symmetry is amazing and very useful.



Proof. As noted earlier gp(a,b) = —log |(a — b)/(1 — ba)|.

If 7is an LET of the disk onto the disk, then by an elementary computation
gn(a, 7(b)) = gn(t7Y(a),b) for all a,b € D with a # 7(b).

Let G denote the group of deck transformations, a group of LE'T's 7 mapping
D onto D and satisfying m o 7 = 7. Moreover if 7(¢*) = 7(p*) then there is a
7 € G such that 7(p*) = ¢*, by Lemma 14.14.



Suppose g(p, po) exists for some py € W and all p # py.

Choose pj; € D so that 7(py) = po.

By Theorem 15.6 for px ¢ W_l(po)

gw(n(p), 7(py) = > —log|~ —7(Po)

(15.11)

|. (15.12)



Fix p* € D\ 7 (pg). Each term in the sum

S(g") =) —log

TeG

() — ¢
L= 717Hp")g*
).

is a positive harmonic function of ¢* € D\ 77 1(p*

Since the sum of these positive harmonic functions converges when ¢* = pj, the

function S is harmonic in D \ {7~ !(p*) : 7 € G}, by Harnack’s theorem.



If v € F,, the Perron family for gy (q, p) where p = m(p*), then by Lindelof’s

maximum principle v < S onx L.

Taking the supremum over all v € F, we conclude that gy (q,p) exists and
gw(q,p) < Somi(q), for all ¢ # p. Thus

gw (m(po), 7(p")) < S(po) = gw(m(p), 7(po))-
Reversing the roles of pf and p* proves (15.10) for ¢ = py and all p # py.

Because Green’s function gy with pole at p then exists for every p € W, (15.10)
must hold for all p and gq. ]



Section 15.3: Simply Connected Riemann Surfaces



Theorem 15.8, Uniformization, Case 1: If W is a simply-connected

Riemann surface then the following are equivalent:

gw(p,po) exists for some py € W (15.13)
gw (p, po) ewists for all py € W, (15.14)
There is a one-to-one analytic map ¢ of W onto D. (15.15)

Moreover if gy exists, then

gw(p1, po) = gw (Do, P1), (15.16)
and gw(p, po) = —log |o(p)|, where p(py) = 0.



Paul Koebe

Proved uniformization theorem in 1907.


https://mathshistory.st-andrews.ac.uk/Biographies/Koebe/

Koebe was considered a conceited and disagreeable man with
a reputation for picking up the ideas of younger people and,
because he was so quick, being able to finalise and publish them first

He was, nevertheless, an outstanding mathematician. — Constance Reid



Proof. First suppose (15.15) holds.

Then there is a one-to-one analytic map ¢ of W onto D and let py € W. By
composing ¢ with an LFT, we can assume that ¢(pg) = 0.

It v e Fp, then v = 0 off a compact set K, so by Lindelof’s maximum principle

applied on the interior of K \ {py} we have on W
v+ log [p| <0,

Taking the supremum over all such v shows that gy (p, py) < co and therefore
(15.14) holds. Clearly (15.14) implies (15.13).



Now suppose (15.13) holds.

By (15.4), g + log |z — po| is harmonic at p, so there is an analytic function f

defined on a coordinate disk U containing py so that

Ref(p) = gw(p, po) + log |z(p)|
for p e U.

Hence the function ¢(p) = ze /) is analytic in U and satisfies |p(p)| =
e_gW(p7pO) and gp(po) — (.

On any coordinate disk U, with py ¢ Uy, gw(p, po) is the real part of an analytic

function because it is harmonic.



The difference of two analytic functions with the same real part is constant, so

© on U can be analytically continued along all curves in W beginning at py.

By the monodromy theorem there is a function ¢, analytic on W, such that

o(p)| = e~ 9w Pr) < 1,



We claim that ¢ is one-to-one.

If p(p) = @(py) = 0, then p = py because gy (p, po) is finite for p # py. Let
p1 € W, with p; # po. Then by (15.3), |p(p1)| < 1 and

o= P ©(p1)
L —p(p1)y

is analytic on W and |p| < 1.



If v e F,, then by (15.1) and Lindelof’s maximum principle, as argued above,
v+ log |¢1] < 0.

Taking the supremum over all such v, we conclude that gy (p,p1) exists and
that

gw (P, p1) + log 1] < 0. (15.7)



Taking the supremum over all such v, we conclude that gy (p,p1) exists and
that

gw (p, p1) + log 1| < 0. (3.5)

Setting p = po in (15.17) gives

gw (po, p1) < —log[1(po)| = —log |e(p1)] = gw (p1, po)-
Switching the roles of py and p; gives (15.16)



Moreover equality holds in (15.17) at p = pg so that by the maximum principle
gw(p;p1) = —log|pi(p)| for all p € W\ {p:}.

Now if o(pa2) = ¢(p1), then by the definition of 1, 1(p2) = 0. Thus gy (po, p1) =
oo and py = ps.

Therefore ¢ is one-to-one.



The image (W) C D is simply-connected, for if v C (W) is a closed curve

then ¢~ 1(y) € W is closed and therefore homotopic to a constant curve.

Applying the map ¢ to the homotopy gives a homotopy in (W) of v to a

constant curve.

If (W) # D then by the Riemann mapping theorem we can find a one-to-one
analytic map ¥ of (W) onto D with ¢(0) = 0.

The map 1oy is then a one-to-one analytic map of W onto D, with 1op(py) = 0,
proving (15.15). ]

The map (1 in the proof above is actually onto, as can be seen by applying the

“onto” argument in the proof of the Riemann mapping theorem.



Corollary 15.9: Suppose W is a Riemann surface for which Green’s func-
tion gy with pole at p exists, for some p € W. Then gy with pole at q
exists for all g € W and

gw(p,q) = gw(q, p). (15.18)

Proof. It W is a Riemann surface such that gy with pole at some p € W exists,
then g+ exists by Theorem 15.6.

But then by Theorem 15.8, W* is conformally equivalent to ID.

Applying Exercise 15.4(a) and Corollary 15.7 yields the corollary. [

Exercise 15.4(a): If ¢ is a one-to-one analytic map of a Riemann surface W
onto a Riemann surface W5 then Green’s function on Wy exists if and only if

Green’s function on Wy exists. Moreover gy, (©(p), p(po)) = gw, (P, Po)-



Before proving the uniformization theorem when there is no Green’s function,

we need a technical lemma, proving existence of the dipole Green’s function.

The dipole Green’s function has two logarithmic poles with opposite signs, e.g.,
Z—a
z—0b
on the plane. This has two opposite poles and tends to 0 at infinity:.

log

The next lemma says that a dipole Green’s function always exists.

For surfaces with Green’s function this is easy: take G(z,p) — G(z, q) for p # q.



Lemma 15.11: Suppose W s a Riemann surface and for 7 = 1,2, suppose
that z; - U; — D are coordinate functions with coordinate disks U; satisfying
U NUy =0, and zj(p;) = 0. Then there is a function G(p) = G(p, p1, p2),
harmonic in p € W\ {p1, p2} such that

G + log|21| extends to be harmonic in Uy, (15.19)
G — log|zo| extends to be harmonic in Us, (15.20)

and
sup  |G(p)| < 0. (15.21)

peW\(U1Uls)



Proof. As noted above, we may assume W has no Green’sfunction.

The idea of the proof is to remove a small disk from W, giving a surtace with
Green’s function, and therefore with a dipole Green’s function. Then let the ra-
dius of the removed disk decrease to zero, and prove the dipole Green’s functions

have a limit (this is the tricky part).

We consider the difference

9(p,p1) — 9(p,p2) = [9(p, p1) — 9(p2,P1)] — 9(p, P2) — g(P1,D2)],

and show these two terms stay bounded as the disk shrinks.



Suppose 2 is a coordinate function with coordinate chart Uy such that UyNU; =
0 for j =1,2

Let po be the point in Uy such that zg(pg) = 0.

Set tUy = {p € W : |z0(p)| < t} and set W; = W \ tUj.



By Theorem 15.5 (omitted disk implies Green’s function exists), gw,(p, p1) exists
for all p, p1 € Wy with p # p.

Fixr, 0 <r <1, andset rtU; ={p e W : |z1(p)| < r}.

By the maximum principle

gw,(p, p1) < Mq(t) = max gw,(q, p1), (15.22)
qeorly

for all p € W; \ rUy, because the same bound holds for all candidates in the
Perron family defining gy,.



The growth estimate (15.6) shows that

1
Mi(t) < max g (p,p) + log - (15.23)
pedly T
By (15.22), us(p) = My(t)—gw,(p, p1) is a positive harmonic function in Wi\rU;

and by (15.23) there exists ¢ € OU; with w(q) < log=.



Riemann surfaces are pathwise connected so let v be a curve in W\ (Uy U U,)

connecting OU; to AU, which does not pass through py.
Then for t < ty, K =0U, UU, U~y C W, \7“—U1 is compact and connected.

By Harnack’s inequality there is a constant C' < oo depending on K and r but
not on ¢ so that for all p € K and t < ¢

0 S Ut(p) S Oa
and

lgw, (D, p1) — gw, (P2, P1)| = |ue(p2) — we(p)| < 2C.

Likewise, if K" = OU, U Uy U y there is a constant C' < oo so that

|th<p7p2> o th(plprH S C;
for all p € K" and ¢t < ty.



By Corollary 3.2, gw,(p1, p2) = gw,(p2, p1) and so the function

Gi(p, p1,p2) = gw,(p, 1) — 9w, (. D2)
= (9w, (p, 1) — 9wy (P2, P1)) — (9w (P, P2) — gwi(P1, p2))

is harmonic in W; \ {p1, p2} and satisfies

‘Gt<p7plap2)| S C)
for all p € KN K' D 0U; U 00U, and some finite C' independent of ¢.



If v e F,,, the Perron family for gy,(p, p1), then v = 0 off a compact subset of
W; and gw, > 0 so that by the maximum principle

sup [v(p) — gw,(p, p2)] < max(0,sup [v(p) — gw,(p, p2)])
Wi \U; oUy

S maX<O7 S@%p [th<p7p1> — th<p7p2>]> S C.
1



Taking the supremum over all such v yields

sup  Gy(p, p1,p2) < C.
peW\U;

Similarly

inf  Gi(p,p1,p2) = — sup —Gi(p,p1,p2) > —C,
PEWNU; pEW\Us
and so
Gi(p,pr1,p2)| < C

for all p € Wi \ {Uy; U Us}.



The function Gy + log |21| extends to be harmonic in Uy, so by the maximum

principle, we have that
sup |Gt + log |21|| = sup |Gt + log |z1]| = sup |G| < C.
U1 U1 Ul
Similarly
sup |Gy — log | 2o|| = sup |Gt — log | 2s|| = sup |G| < C.
U U

Uy



By normal families, there exists a sequence ¢,, — 0 so that (G;, converges uni-
formly on compact subsets of W \ {po, p1,p2} to a function G(p, p1,ps) har-
monic on W\ {po, p1, p2} satisifying (15.19), (15.20) and (15.21). The function
G (p, p1, p2) extends to be harmonic at py because it is bounded in a punctured

neighborhood of py.

Indeed, we can transfer this problem to the unit disk via the coordinate map,
then use the Poisson integral formula to create a bounded harmonic function on
the disk with the same values on 0.

By Lindelof’s maximum principle, this is the harmonic extension. L]



Theorem 15.10, Uniformization, Case 2 Suppose W is a simply-
connected Riemann surface for which Green’s function does not exist.
If W is compact, then there is a one-to-one analytic map of W onto C*.

If W 1is not compact, there 1s a one-to-one analytic map of W onto C.



Proof. We may suppose that gy (p, p1) does not exist for all p, p; € W.

Because W is simply-connected we can apply the monodromy theorem to obtain

a meromorphic function ¢ defined on W such that
pi(p)] = e PP,

where G is the dipole Green’s function from Lemma 15.11.

Note that (1 has a simple zero at pp, a simple pole at p» and no other zeros or

poles.



Let us prove ¢ is one-to-one.

If po € W\ {p1,p2}, then 1(pg) # 0, 00. Let ¢y be the meromorphic function
on W such that
[po(p)| = e~ GlPpor2)
and consider the function
_ ailp) — (o)

Hip) wo(p)

Then H is analytic on W because its poles at py cancel and because ¢y has a

simple zero at py.



By (15.21) and the analyticity of H, |H| is bounded on W.

But if v € F,,, the Perron family used to construct gy (p, p1), then by Lindelof’s

maximum principle
H(p) — H(pi)

< 0.
2supyy | H]

v(p) + log

Because g (p, p1) does not exist, sup{v(p) : v € F,,} = 400 for every p €
W\ {p1}, and therefore

H(p) = H(p1) = —p1(po)/po(p1) # 0, 00.



Since H # 0, we conclude that ¢1(p) # @1(po), unless o(p) = 0. But if
@wo(p) = 0, then p = py. Thus 7 is one-to-one on W \ {p1, p2}.

But the only zero of (1 is p1 and the only pole of 7 is p, so that ¢; is one-to-one

on W.



We have shown that ¢ is a one-to-one analytic map from W to a simply-

connected region (W) C C*.

If C*\ o1(W) contains more than one point, then by the Riemann mapping

theorem, there is a one-to-one analytic map of ¢ (W), and hence of W, onto ID.
Since we assumed that gy does not exist, this contradicts Theorem 15.8.

Thus C* \ ¢1(W) contains at most one point, and the last two statements of

Theorem 3.3 are now obvious. L]



Theorem, 15.12, The Uniformization Theorem: Suppose W 1is a

simply-connected Riemann surface.

(1) If Green’s function exists for W, then there is a one-to-one analytic
map of W onto D.

(2) If W is compact, then there is a one-to-one analytic map of W onto
Cr.

(3) If W is not compact and if Green’s function does not exist for W, then

there is a one-to-one analytic map of W onto C.



Corollary 15.13, Rado: Every Riemann surface satisfies the second ax-

1om of countability.

Proof. The universal covering map 7 sends a countable base on the universal

covering surface W to a countable base on W. [



Section 15.4: Classification of all Riemann Surfaces



Theorem 15.14: [fU = C*, C, or D and if G 1s a properly discontinuous
group of LFTs of U onto U, then U/G is a Riemann surface. A function
f is analytic, meromorphic, harmonic, or subharmonic on U/G if and
only if there is a function h defined on U which is (respectively) analytic,
meromorphic, harmonic, or subharmonic on U satisfying h o = h for all
7€ G and h = foxw where m : U — U/G is the quotient map. Fvery

Rieman surface is conformally equivalent to U/G for some such U and G.

The only Riemann surface covered by the C* is C* (Proposition 16.2).

The only surfaces covered by C are C, C \ {0}, and tori (Proposisition 16.3).

Any other Riemann surface is covered by the disk ID.



