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Chapter 15: The Uniformization Theorem



Section 15.2: Green’s Function



Suppose W is a Riemann suface and p ∈ W .

The Green’s function on W with pole at p0 is a positive function G(z, p0) that

is harmonic on W \ {p}, has a logarithmic pole at p0 and tends to zero at ∞.

For example, log 1
|z| is the Green’s function for D with pole at 0.

Some Riemann surfaces have a Green’s function; some do not.

Very important distinction. Many different characterizations of two cases.



A Riemann surface has a Green’s function iff several other conditions hold.

(1) Brownian motion is recurrent.

(2) Geodesic flow on the unit tangent bundle of W is ergodic.

(3) Poincare series of covering group Γ diverges.

(4) Γ has the Mostow rigidity property (cojugating circle homeomorphisms are

Möbius or singular).

(5) Γ has the Bowen’s property.

(6) Almost every geodesic ray is recurrent. Equivalently, the set of escaping

geodesic rays from a point p ∈ W has zero (visual) measure.





Let Fp0 be the collection of subharmonic functions v on W \ p0 satisfying

v = 0 on W \K, for some compact K ⊂ W with K 6= W, and (15.1a)

lim sup
p→p0

(
v(p) + log |z(p)|

)
<∞. (15.1b)

Note that v ∈ Fp0 is not assumed to be subharmonic at p0, and indeed it can

tend to +∞ as p→ p0. Set

gW (p, p0) = sup{v(p) : v ∈ Fp0}. (15.2)



The collection Fp0 is a Perron family on W \ {p0}, so one of the following two

cases holds by Harnack’s theorem:

Case 1: gW (p, p0) is harmonic in W \ {p0}, or

Case 2: gW (p, p0) = +∞ for all p ∈ W \ {p0}.

In the first case, gW (p, p0) is called Green’s function on W with pole (or

logarithmic singularity) at p0.

In 2nd case, Green’s function with pole at p0 does not exist on W .



Lemma 15.4: Suppose p0 ∈ W and suppose z : U → D is a coordinate

function such that z(p0) = 0. If gW (p, p0) exists, then

gW (p, p0) > 0 for p ∈ W \ {p0}, (15.3)

gW (p, p0) + log |z(p)| extends to be harmonic in U. (15.4)



Proof. The function

v0(p) =

{
− log |z(p)| for p ∈ U
0 for p ∈ W \ U

is in Fp0. Hence gW (p, p0) ≥ 0 and gW (p, p0) > 0 if p ∈ U .

By the maximum principle applied to −g in W \ {p0}, GW > 0.



If v ∈ Fp0 then by Lindelöf’s maximum principle

sup
U\{p0}

(
v + log |z|

)
= sup

∂U
v ≤ sup

∂U
gW <∞.

Taking the supremum over v ∈ Fp0, we obtain

gW + log |z| ≤ sup
∂U

gW <∞

in U \ {p0}. We also have that for p ∈ U \ {p0}¡
gW + log |z| ≥ v0 + log |z| = 0. (15.5)

Thus gW + log |z| is bounded and harmonic in U \ {p0}.

Using the Poisson integral formula on zα(U) we can find a bounded harmonic

function on U which agrees with gW + log |z| on ∂U . By Lindelöf’s maximum

principle, gW + log |z| extends to be harmonic in U . �



Green’s function for disk:

The Green’s function for the unit disk D is given by

gD(z, a) = log

∣∣∣∣1− azz − a

∣∣∣∣.
Proof: If g(z) = log |1−az||z−a| then by Lindelöf’s maximum principle, each candidate

subharmonic function v in the Perron family Fa is bounded by g.

Moreover max(g − ε, 0) ∈ Fa, when ε > 0. Letting ε → 0, we conclude

g = gD(z, a).

Note gD(z, w) = gdisk(w, z). This is true in general.



Green’s function for simpy connected domain:

If Ω ⊂ C is simply connected and f : Ω→ D is conformal with f (w) = 0 then

GΩ(z, w) = − log |f (z)|.

Thus f = exp(−G− iG̃).



Theorem 15. 5: Suppose W0 is a Riemann surface and suppose U0 is a

coordinate disk whose closure is compact in W0. Set W = W0 \ U0. Then

gW (p, p0) exists for all p, p0 ∈ W with p 6= p0.

Proof. Fix p0 ∈ W and let U ⊂ W be a coordinate disk (containing p0) with

compact closure and with coordinate function z : U → D and z(p0) = 0.

To prove that gW exists, we show that the family Fp0 is bounded above.



Fix r, with 0 < r < 1, and set rU = {p ∈ W : |z(p)| < r}. If v ∈ Fp0 then by

Lindelöf’s maximum principle, for all p ∈ U we have

v(p) + log |z(p)| ≤ max
q∈∂U

(
v(q) + log |z(q)|

)
= max

q∈∂U
v(q).

Thus

max
p∈∂rU

v(p) + log r ≤ max
p∈∂U

v(p). (15.6)



Let F denote the collection of functions u which are subharmonic on W \ rU
with u = 0 on W0 \K for some compact set K ⊂ W0, which can depend on u,

and such that

lim sup
p→ζ

u(p) ≤ 1 and lim sup
p→α

u(p) ≤ 0

for ζ ∈ ∂rU and α ∈ ∂U0.



Applying the maximum principle on the interior of K \ (U0 ∪ rU) we obtain

u ≤ 1 on W \ rU . Because F is a Perron family,

ω(p) = sup{u(p) : u ∈ F}
is harmonic in W \ rU .

We can construct a local barrier at each point of ∂U0 ∪ ∂rU for the region

W \ rU by transporting the problem to a region in D via a coordinate map.

Thus by exactly the same argument used for the Dirichlet problem, the harmonic

function ω extends to be continuous at each point of ∂U0 and each point of ∂(rU)

so that ω(p) = 0 for p ∈ ∂U0 and ω(p) = 1 for p ∈ ∂(rU).



In particular, this implies ω is not constant. Moreover 0 ≤ ω ≤ 1 because

0 ∈ F and each candidate u ∈ F is bounded by 1.

Since ω is not constant, the maximum principle implies 0 < ω(p) < 1 for

p ∈ W \ rU .

ω is called the harmonic measure of ∂(rU) in the region W \ rU .



For v ∈ Fp0, by the maximum principle we have that

v(p) ≤
(

max
∂rU

v

)
ω(p)

for p ∈ W \ rU by the maximum principle applied to v − (max∂rU v)w. So

max
∂U

v ≤
(

max
∂rU

v

)
max
p∈∂U

ω(p) ≤
(

max
∂rU

v

)
(1− δ) (15.7)

for some δ > 0.

Adding inequalities (15.6) and (15.7) yields

δmax
∂rU

v ≤ log
1

r

for all v ∈ F , with δ is independent of v.

This implies that Case 2 does not hold and hence Green’s function exists. �



Theorem 15.6: Suppose W is a Riemann surface for which gW with pole at

p0 ∈ W exists. Let W ∗ be the simply-connected universal covering surface of

W , let π : W ∗ → W be the universal covering map and suppose π(p∗0) = p0.

Then gW ∗ with pole at p∗0 exists and satisfies

gW (π(p∗), π(p∗0)) =
∑

q∗:π(q∗)=π(p∗0)

gW ∗(p
∗, q∗). (15.8)

Thus we can recover Green’s function on a Riemann surface from Green’s func-

tion on the universal cover by summing over deck transformations.



Proof. Suppose q∗1, . . . , q
∗
n are distinct points in W ∗ with π(q∗j ) = p0 = π(p∗0).

Suppose vj ∈ Fq∗j , the Perron family for the construction of gW ∗(·, q∗j ). So vj = 0

off K∗j , a compact subset of W ∗ and

lim sup
p∗→q∗j

(
vj(p

∗) + log |z ◦ π(p∗)| <∞,

where z is a coordinate chart on W with z(p0) = 0.



Recall gW (p, p0) + log |z(p)| extends to be finite and continuous at p0, and so

lim
p∗→q∗j

gW (π(p∗), p0) + log |z(π(p∗))|

exists and is finite because π(q∗j ) = p0. Thus( n∑
j=1

vj(p
∗)

)
−gW (π(p∗), p0)

is bounded in a neighborhood of each q∗j , for j = 1, . . . , n, and ≤ 0 off K∗ =

∪jK∗j , by (15.3).



By Lindelöf’s maximum principle on the interior of K∗ \ {q∗1, . . . , q∗n}, it is

bounded above by 0. Taking the supremum over all such vj we conclude that

gW ∗(p
∗, q∗j ) exists and( n∑

j=1

gW ∗(p
∗, q∗j )

)
− gW (π(p∗), p0) ≤ 0.

Taking the supremum over all such finite sums we have

S(p∗) ≡
∑

q∗:π(q∗)=p0

gW ∗(p
∗, q∗) ≤ gW (π(p∗), p0).



Moreover, as a supremum of finite sums of positive harmonic functions, S(p∗)

is harmonic on W ∗ \ π−1(p0) by Harnack’s principle. By (15.4)

S(p∗) + log |z(π(p∗))| (2.9)

extends to be harmonic in a neighborhood of each q∗ ∈ π−1(p0).



Now take v ∈ Fp0, the Perron family used to construct gW (p, p0). Let U ∗ be a

coordinate disk containing p∗0, so that z ◦ π is a coordinate map of U ∗ onto D,

vanishing at p∗0.

Then by (15.9) and Lindelöf’s maximum principle

v(π(p∗))− S(p∗) ≤ 0

for p∗ ∈ U ∗.

Taking the supremum over all such v we obtain

gW (π(p∗), p0) ≤ S(p∗)

and thus (15.8) holds on U ∗ \ p∗0 and therefore on W ∗. �



Corollary 15.7: Suppose W is a Riemann surface for which Green’s func-

tion gW with pole at p exists, for some p ∈ W , and suppose W ∗ = D. Then

gW with pole at q exists for all q ∈ W and

gW (p, q) = gW (q, p). (15.10)

We will remove the hypothesis that W ∗ = D in Section 3. See Corollary 3.2.

This symmetry is amazing and very useful.



Proof. As noted earlier gD(a, b) = − log |(a− b)/(1− ba)|.

If τ is an LFT of the disk onto the disk, then by an elementary computation

gD(a, τ (b)) = gD(τ−1(a), b) for all a, b ∈ D with a 6= τ (b).

Let G denote the group of deck transformations, a group of LFTs τ mapping

D onto D and satisfying π ◦ τ = π. Moreover if π(q∗) = π(p∗) then there is a

τ ∈ G such that τ (p∗) = q∗, by Lemma 14.14.



Suppose g(p, p0) exists for some p0 ∈ W and all p 6= p0.

Choose p∗0 ∈ D so that π(p∗0) = p0.

By Theorem 15.6 for p∗ /∈ π−1(p0)

gW (π(p∗), π(p∗0)) =
∑
τ∈G

− log

∣∣∣∣ p∗ − τ (p∗0)

1− τ (p∗0)p∗

∣∣∣∣ (15.11)

=
∑
τ∈G

− log

∣∣∣∣ τ−1(p∗)− p∗0
1− τ−1(p∗)p∗0

∣∣∣∣. (15.12)



Fix p∗ ∈ D \ π−1(p0). Each term in the sum

S(q∗) =
∑
τ∈G

− log

∣∣∣∣ τ−1(p∗)− q∗

1− τ−1(p∗)q∗

∣∣∣∣
is a positive harmonic function of q∗ ∈ D \ τ−1(p∗).

Since the sum of these positive harmonic functions converges when q∗ = p∗0, the

function S is harmonic in D \ {τ−1(p∗) : τ ∈ G}, by Harnack’s theorem.



If v ∈ Fp, the Perron family for gW (q, p) where p = π(p∗), then by Lindelöf’s

maximum principle v ≤ S ◦ π−1.

Taking the supremum over all v ∈ Fp we conclude that gW (q, p) exists and

gW (q, p) ≤ S ◦ π−1(q), for all q 6= p. Thus

gW (π(p∗0), π(p∗)) ≤ S(p∗0) = gW (π(p∗), π(p∗0)).

Reversing the roles of p∗0 and p∗ proves (15.10) for q = p0 and all p 6= p0.

Because Green’s function gW with pole at p then exists for every p ∈ W , (15.10)

must hold for all p and q. �



Section 15.3: Simply Connected Riemann Surfaces



Theorem 15.8, Uniformization, Case 1: If W is a simply-connected

Riemann surface then the following are equivalent:

gW (p, p0) exists for some p0 ∈ W (15.13)

gW (p, p0) exists for all p0 ∈ W, (15.14)

There is a one-to-one analytic map ϕ of W onto D. (15.15)

Moreover if gW exists, then

gW (p1, p0) = gW (p0, p1), (15.16)

and gW (p, p0) = − log |ϕ(p)|, where ϕ(p0) = 0.



Paul Koebe

Proved uniformization theorem in 1907.

https://mathshistory.st-andrews.ac.uk/Biographies/Koebe/


Koebe was considered a conceited and disagreeable man with

a reputation for picking up the ideas of younger people and,

because he was so quick, being able to finalise and publish them first

He was, nevertheless, an outstanding mathematician. – Constance Reid



Proof. First suppose (15.15) holds.

Then there is a one-to-one analytic map ϕ of W onto D and let p0 ∈ W . By

composing ϕ with an LFT, we can assume that ϕ(p0) = 0.

If v ∈ Fp0 then v = 0 off a compact set K, so by Lindelöf’s maximum principle

applied on the interior of K \ {p0} we have on W

v + log |ϕ| ≤ 0,

Taking the supremum over all such v shows that gW (p, p0) < ∞ and therefore

(15.14) holds. Clearly (15.14) implies (15.13).



Now suppose (15.13) holds.

By (15.4), g + log |z − p0| is harmonic at p0, so there is an analytic function f

defined on a coordinate disk U containing p0 so that

Ref (p) = gW (p, p0) + log |z(p)|
for p ∈ U .

Hence the function ϕ(p) = ze−f(p) is analytic in U and satisfies |ϕ(p)| =

e−gW (p,p0) and ϕ(p0) = 0.

On any coordinate disk Uα with p0 /∈ Uα, gW (p, p0) is the real part of an analytic

function because it is harmonic.



The difference of two analytic functions with the same real part is constant, so

ϕ on U can be analytically continued along all curves in W beginning at p0.

By the monodromy theorem there is a function ϕ, analytic on W , such that

|ϕ(p)| = e−gW (p,p0) < 1.



We claim that ϕ is one-to-one.

If ϕ(p) = ϕ(p0) = 0, then p = p0 because gW (p, p0) is finite for p 6= p0. Let

p1 ∈ W , with p1 6= p0. Then by (15.3), |ϕ(p1)| < 1 and

ϕ1 ≡
ϕ− ϕ(p1)

1− ϕ(p1)ϕ
is analytic on W and |ϕ1| < 1.



If v ∈ Fp1, then by (15.1) and Lindelöf’s maximum principle, as argued above,

v + log |ϕ1| ≤ 0.

Taking the supremum over all such v, we conclude that gW (p, p1) exists and

that

gW (p, p1) + log |ϕ1| ≤ 0. (15.7)



Taking the supremum over all such v, we conclude that gW (p, p1) exists and

that

gW (p, p1) + log |ϕ1| ≤ 0. (3.5)

Setting p = p0 in (15.17) gives

gW (p0, p1) ≤ − log |ϕ1(p0)| = − log |ϕ(p1)| = gW (p1, p0).

Switching the roles of p0 and p1 gives (15.16)



Moreover equality holds in (15.17) at p = p0 so that by the maximum principle

gW (p, p1) = − log |ϕ1(p)| for all p ∈ W \ {p1}.

Now if ϕ(p2) = ϕ(p1), then by the definition of ϕ1, ϕ1(p2) = 0. Thus gW (p2, p1) =

∞ and p2 = p1.

Therefore ϕ is one-to-one.



The image ϕ(W ) ⊂ D is simply-connected, for if γ ⊂ ϕ(W ) is a closed curve

then ϕ−1(γ) ⊂ W is closed and therefore homotopic to a constant curve.

Applying the map ϕ to the homotopy gives a homotopy in ϕ(W ) of γ to a

constant curve.

If ϕ(W ) 6= D then by the Riemann mapping theorem we can find a one-to-one

analytic map ψ of ϕ(W ) onto D with ψ(0) = 0.

The map ψ◦ϕ is then a one-to-one analytic map ofW onto D, with ψ◦ϕ(p0) = 0,

proving (15.15). �

The map ϕ1 in the proof above is actually onto, as can be seen by applying the

“onto” argument in the proof of the Riemann mapping theorem.



Corollary 15.9: Suppose W is a Riemann surface for which Green’s func-

tion gW with pole at p exists, for some p ∈ W . Then gW with pole at q

exists for all q ∈ W and

gW (p, q) = gW (q, p). (15.18)

Proof. If W is a Riemann surface such that gW with pole at some p ∈ W exists,

then gW ∗ exists by Theorem 15.6.

But then by Theorem 15.8, W ∗ is conformally equivalent to D.

Applying Exercise 15.4(a) and Corollary 15.7 yields the corollary. �

Exercise 15.4(a): If ϕ is a one-to-one analytic map of a Riemann surface W1

onto a Riemann surface W2 then Green’s function on W1 exists if and only if

Green’s function on W2 exists. Moreover gW2(ϕ(p), ϕ(p0)) = gW1(p, p0).



Before proving the uniformization theorem when there is no Green’s function,

we need a technical lemma, proving existence of the dipole Green’s function.

The dipole Green’s function has two logarithmic poles with opposite signs, e.g.,

log

∣∣∣∣z − az − b

∣∣∣∣
on the plane. This has two opposite poles and tends to 0 at infinity.

The next lemma says that a dipole Green’s function always exists.

For surfaces with Green’s function this is easy: take G(z, p)−G(z, q) for p 6= q.



Lemma 15.11: Suppose W is a Riemann surface and for j = 1, 2, suppose

that zj : Uj → D are coordinate functions with coordinate disks Uj satisfying

U1 ∩ U2 = ∅, and zj(pj) = 0. Then there is a function G(p) ≡ G(p, p1, p2),

harmonic in p ∈ W \ {p1, p2} such that

G + log |z1| extends to be harmonic in U1, (15.19)

G− log |z2| extends to be harmonic in U2, (15.20)

and

sup
p∈W\(U1∪U2)

|G(p)| <∞. (15.21)



Proof. As noted above, we may assume W has no Green’sfunction.

The idea of the proof is to remove a small disk from W , giving a surface with

Green’s function, and therefore with a dipole Green’s function. Then let the ra-

dius of the removed disk decrease to zero, and prove the dipole Green’s functions

have a limit (this is the tricky part).

We consider the difference

g(p, p1)− g(p, p2) = [g(p, p1)− g(p2, p1)]− [g(p, p2)− g(p1, p2)] ,

and show these two terms stay bounded as the disk shrinks.



Suppose z0 is a coordinate function with coordinate chart U0 such that U0∩Uj =

∅ for j = 1, 2.

Let p0 be the point in U0 such that z0(p0) = 0.

Set tU0 = {p ∈ W : |z0(p)| < t} and set Wt = W \ tU0.



By Theorem 15.5 (omitted disk implies Green’s function exists), gWt(p, p1) exists

for all p, p1 ∈ Wt with p 6= p1.

Fix r, 0 < r < 1, and set rU1 = {p ∈ W : |z1(p)| < r}.

By the maximum principle

gWt(p, p1) ≤M1(t) ≡ max
q∈∂rU1

gWt(q, p1), (15.22)

for all p ∈ Wt \ rU1, because the same bound holds for all candidates in the

Perron family defining gWt.



The growth estimate (15.6) shows that

M1(t) ≤ max
p∈∂U1

gWt(p, p1) + log
1

r
. (15.23)

By (15.22), ut(p) ≡M1(t)−gWt(p, p1) is a positive harmonic function inWt\rU1

and by (15.23) there exists q ∈ ∂U1 with ut(q) ≤ log 1
r .



Riemann surfaces are pathwise connected so let γ be a curve in W \ (U1 ∪ U2)

connecting ∂U1 to ∂U2 which does not pass through p0.

Then for t ≤ t0, K = ∂U1 ∪ U2 ∪ γ ⊂ Wt \ rU1 is compact and connected.

By Harnack’s inequality there is a constant C <∞ depending on K and r but

not on t so that for all p ∈ K and t ≤ t0

0 ≤ ut(p) ≤ C,

and

|gWt(p, p1)− gWt(p2, p1)| = |ut(p2)− ut(p)| ≤ 2C.

Likewise, if K ′ = ∂U2 ∪ U1 ∪ γ there is a constant C <∞ so that

|gWt(p, p2)− gWt(p1, p2)| ≤ C,

for all p ∈ K ′ and t ≤ t0.



By Corollary 3.2, gWt(p1, p2) = gWt(p2, p1) and so the function

Gt(p, p1, p2) ≡ gWt(p, p1)− gWt(p, p2)

= (gWt(p, p1)− gWt(p2, p1))− (gWt(p, p2)− gWt(p1, p2))

is harmonic in Wt \ {p1, p2} and satisfies

|Gt(p, p1, p2)| ≤ C,

for all p ∈ K ∩K ′ ⊃ ∂U1 ∪ ∂U2 and some finite C independent of t.



If v ∈ Fp1, the Perron family for gWt(p, p1), then v = 0 off a compact subset of

Wt and gWt > 0 so that by the maximum principle

sup
Wt\U1

[v(p)− gWt(p, p2)] ≤ max(0, sup
∂U1

[v(p)− gWt(p, p2)])

≤ max(0, sup
∂U1

[gWt(p, p1)− gWt(p, p2)]) ≤ C.



Taking the supremum over all such v yields

sup
p∈Wt\U1

Gt(p, p1, p2) ≤ C.

Similarly

inf
p∈Wt\U2

Gt(p, p1, p2) = − sup
p∈Wt\U2

−Gt(p, p1, p2) ≥ −C,

and so

|Gt(p, p1, p2)| ≤ C

for all p ∈ Wt \ {U1 ∪ U2}.



The function Gt + log |z1| extends to be harmonic in U1, so by the maximum

principle, we have that

sup
U1

|Gt + log |z1|| = sup
∂U1

|Gt + log |z1|| = sup
U
¯ 1

|Gt| ≤ C.

Similarly

sup
U2

|Gt − log |z2|| = sup
∂U2

|Gt − log |z2|| = sup
U
¯ 2

|Gt| ≤ C.



By normal families, there exists a sequence tn → 0 so that Gtn converges uni-

formly on compact subsets of W \ {p0, p1, p2} to a function G(p, p1, p2) har-

monic on W \ {p0, p1, p2} satisifying (15.19), (15.20) and (15.21). The function

G(p, p1, p2) extends to be harmonic at p0 because it is bounded in a punctured

neighborhood of p0.

Indeed, we can transfer this problem to the unit disk via the coordinate map,

then use the Poisson integral formula to create a bounded harmonic function on

the disk with the same values on ∂D.

By Lindelöf’s maximum principle, this is the harmonic extension. �



Theorem 15.10, Uniformization, Case 2 Suppose W is a simply-

connected Riemann surface for which Green’s function does not exist.

If W is compact, then there is a one-to-one analytic map of W onto C∗.
If W is not compact, there is a one-to-one analytic map of W onto C.



Proof. We may suppose that gW (p, p1) does not exist for all p, p1 ∈ W .

Because W is simply-connected we can apply the monodromy theorem to obtain

a meromorphic function ϕ1 defined on W such that

|ϕ1(p)| = e−G(p,p1,p2),

where G is the dipole Green’s function from Lemma 15.11.

Note that ϕ1 has a simple zero at p1, a simple pole at p2 and no other zeros or

poles.



Let us prove ϕ1 is one-to-one.

If p0 ∈ W \ {p1, p2}, then ϕ1(p0) 6= 0,∞. Let ϕ0 be the meromorphic function

on W such that

|ϕ0(p)| = e−G(p,p0,p2)

and consider the function

H(p) =
ϕ1(p)− ϕ1(p0)

ϕ0(p)
.

Then H is analytic on W because its poles at p2 cancel and because ϕ0 has a

simple zero at p0.



By (15.21) and the analyticity of H , |H| is bounded on W .

But if v ∈ Fp1, the Perron family used to construct gW (p, p1), then by Lindelöf’s

maximum principle

v(p) + log

∣∣∣∣H(p)−H(p1)

2 supW |H|

∣∣∣∣≤ 0.

Because gW (p, p1) does not exist, sup{v(p) : v ∈ Fp1} ≡ +∞ for every p ∈
W \ {p1}, and therefore

H(p) ≡ H(p1) = −ϕ1(p0)/ϕ0(p1) 6= 0,∞.



Since H 6= 0, we conclude that ϕ1(p) 6= ϕ1(p0), unless ϕ0(p) = 0. But if

ϕ0(p) = 0, then p = p0. Thus ϕ1 is one-to-one on W \ {p1, p2}.

But the only zero of ϕ1 is p1 and the only pole of ϕ1 is p2, so that ϕ1 is one-to-one

on W .



We have shown that ϕ1 is a one-to-one analytic map from W to a simply-

connected region ϕ1(W ) ⊂ C∗.

If C∗ \ ϕ1(W ) contains more than one point, then by the Riemann mapping

theorem, there is a one-to-one analytic map of ϕ1(W ), and hence of W , onto D.

Since we assumed that gW does not exist, this contradicts Theorem 15.8.

Thus C∗ \ ϕ1(W ) contains at most one point, and the last two statements of

Theorem 3.3 are now obvious. �



Theorem, 15.12, The Uniformization Theorem: Suppose W is a

simply-connected Riemann surface.

(1) If Green’s function exists for W , then there is a one-to-one analytic

map of W onto D.

(2) If W is compact, then there is a one-to-one analytic map of W onto

C∗.
(3) If W is not compact and if Green’s function does not exist for W , then

there is a one-to-one analytic map of W onto C.



Corollary 15.13, Rado: Every Riemann surface satisfies the second ax-

iom of countability.

Proof. The universal covering map π sends a countable base on the universal

covering surface W to a countable base on W . �



Section 15.4: Classification of all Riemann Surfaces



Theorem 15.14: If U = C∗, C, or D and if G is a properly discontinuous

group of LFTs of U onto U , then U/G is a Riemann surface. A function

f is analytic, meromorphic, harmonic, or subharmonic on U/G if and

only if there is a function h defined on U which is (respectively) analytic,

meromorphic, harmonic, or subharmonic on U satisfying h ◦ τ = h for all

τ ∈ G and h = f ◦ π where π : U → U/G is the quotient map. Every

Rieman surface is conformally equivalent to U/G for some such U and G.

The only Riemann surface covered by the C∗ is C∗ (Proposition 16.2).

The only surfaces covered by C are C, C \ {0}, and tori (Proposisition 16.3).

Any other Riemann surface is covered by the disk D.


