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Chapter 14: Riemann surfaces



Section 14.1: Analytic Continuation and Monodromy



Definition 14.1: Suppose {fj}n1 are analytic on Uj, and fj = fj+1 on Uj ∩
Uj+1, j = 0, . . . , n− 1.

Then fn is called a direct analytic continuation of f0 to Un.



Definition 14.2: If γ : [0, 1] → C is a curve and if f0 is analytic in a

neighborhood of γ(0), then an analytic continuation of f0 along γ is a

finite sequence f1, . . . , fn of functions where 0 = t0 < t1 < ... < tn+1 = 1 is a

partition of [0, 1] and fj is defined and analytic in a neighborhood of γ([tj, tj+1]),

j = 0, . . . , n such that fj = fj+1 in a neighborhood of γ(tj+1), j = 0, . . . , n−1.
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Do different paths give the same function? Sometimes.



Sometimes no: If we compute
∫

dz
z we get a local branch of log z in any disk

not containing 0.

If we take log 1 = 0 and continue counterclockwise around T we get 2πi when

we return to 1, not 0. If analytically continue clockwise around T we get −2πi.

In this case we get different values depending on path.



If f1, . . . , fn is an analytic continuation of f0 for the partition 0 = t0 < t1 · · · <
tn+1 = 1, then we can refine the partition by choosing s with tj < s < tj+1 and

using the function fj on γ([tj, s]) and on γ([s, tj+1]).

So if g1, . . . , gm is another analytic continuation along γ of f0, then we can

choose a common refinement so that the two sequences of analytic functions are

defined on the same partition 0 = u0 < u1 < · · · < uk+1 = 1.

But f1 = f0 = g1 in a neighborhood of γ(u1), so by the uniqueness theorem

f1 = g1 on an neighborhood of γ([u1, u2]), and by induction gj = fj on a

neighborhood of γ([uj, uj+1]).

In this sense, analytic continuation along a curve is unique.



U

U U

U

1

2
3

n

Close paths give the same analytic continuation.



Suppose f1, f2, . . . , fn is an analytic continuation of f0 along γ with partition

0 = t0 < · · · < tn+1 = 1.

We can choose ε > 0 so that if σ is another curve such that |σ(t) − γ(t)| < ε,

for all 0 ≤ t ≤ 1, then f1, f2, . . . , fn is an analytic continuation of f0 along σ.

Indeed if ε > 0 is sufficiently small then fj is defined and analytic in a neighbor-

hood of σ([tj, tj+1]) and fj = fj+1 in a neighborhood of σ(tj+1), j = 0, . . . , n.



Suppose γ0 and γ1 are curves in a region Ω that begin at b and end at c.

We say γ0 is homotopic in Ω to γ1 if there exists a collection of curves

γs : [0, 1] → Ω, 0 < s < 1, so that γs(t), as a function of (t, s), is uniformly

continuous on the closed unit square [0, 1]× [0, 1], with γs(0) = b and γs(1) = c,

0 ≤ s ≤ 1. If γ0 is homotopic to γ1, we write γ0 ≈ γ1.

The function H(t, s) ≡ γs(t) is called a homotopy in Ω from γ0 to γ1.

Reflexive: γ1 ≈ γ0 using γ1−s.

Transitive: if γ1 ≈ γ2 and γ2 ≈ γ3 then γ1 ≈ γ3.



Homology 6= Homotopy

This curve is homologous to zero, but not homotopic to zero

Homology is “Abelianization” of homotopy group (quotient by commutator subgroup)



Lemma 14.3: If γ : [0, 1] → Ω is a curve in a region Ω then there is an

ε > 0, depending on the region Ω and the curve γ, such that if σ : [0, 1]→ Ω

is a curve with |γ(t) − σ(t)| < ε for all t ∈ [0, 1] and σ(0) = γ(0) and

σ(1) = γ(1), then σ ≈ γ and γ − σ ∼ 0.

Recall: ≈ is homotopy and ∼ is homologous.



Proof. Choose disks Bj ⊂ Ω and a partition 0 = t0 < t1 · · · < tn < tn+1 = 1

so that γj = γ([tj, tj+1]) ⊂ Bj. If ε > 0 is sufficiently small then σj =

σ([tj, tj+1]) ⊂ Bj, for each j. Then

γs(t) = (1− s)γ(t) + sσ(t)

is a homotopy in Ω from γ to σ.

Let Lj ⊂ Bj ∩ Bj−1 denote the line segment from γ(tj) to σ(tj), and set

L0 = {γ(0)} and Ln+1 = {γ(1)}. Then αj ≡ γj + Lj+1 − σj − Lj is a

closed curve contained in Bj ⊂ Ω and hence is homologous to 0 in Ω. Thus

γ − σ =
∑n

j=0 αj is also homologous to 0. �



Corollary 14.4: If γ0 ≈ γ1 in a region Ω then γ0 − γ1 ∼ 0 in Ω.

Proof. If γs(t) is a homotopy of γ0 to γ1 then we can cover [0, 1] with finitely

many open intervals Jk so that if r, s ∈ Jk then γr − γs ∼ 0 by Lemma 14.3.

Thus γ0 − γ1 ∼ 0 by transitivity. �



Theorem 14.5: A region Ω ⊂ C is simply-connected if and only if every

closed curve contained in Ω is homotopic to a constant curve.

Proof. If γ is homotopic to a constant curve then γ ∼ 0 by Corollary 14.4. So

if all curves in Ω are homotopic to constant curves then by Theorem 5.7, Ω is

simply-connected.

Conversely if Ω is simply-connected and if γ is a closed curve in Ω 6= C beginning

and ending at z0 and if f is a conformal map of Ω onto D with f (z0) = 0 then

f (γ) is a closed curve in D beginning and ending at 0.

But then γs(t) = f−1(sf (γ(t))) is a homotopy of γ to the constant curve z0. If

Ω = C, then we can use z − z0 instead of f . �



Theorem 14.6: Suppose γs(t), 0 ≤ s, t ≤ 1, is a homotopy from γ0 to

γ1 in a region Ω. Suppose f0 is analytic in a neighborhood of b = γ0(0) =

γ1(0) and suppose f0 can be analytically continued along each γs. Then the

analytic continuation of f0 along γ0 agrees with the analytic continuation

of f0 along γ1 in a neighborhood of c = γ0(1) = γ1(1).



Proof. The analytic continuation of f0 along each γs is unique, 0 ≤ s ≤ 1.

For each s ∈ [0, 1], the analytic continuation of f0 along γs agrees with the

analytic continuation of f0 along γu in a neighborhood Us of c if |u− s| < ε for

some ε = ε(s).

By compactness, we can cover [0, 1] with finitely many such open intervals (sj−
εj, sj + εj), for 1 ≤ j ≤ m.

Then the analytic continuations of f0 along each γs agree on ∩mj=1Usj . �



Corollary 12.7, The Monodromy Theorem Suppose Ω is simply-

connected and suppose f0 is analytic in a neighborhood of b ∈ Ω. If f0 can

be analytically continued along all curves in Ω beginning at b then there is

an analytic function f on Ω so that f = f0 in a neighborhood of b.



Proof. If c ∈ Ω and if γ0 is a curve in Ω from b to c, let fn be the analytic

continuation of f0 along γ0 to a neighborhood of c, and define f (c) = fn(c).

If γ0 and γ1 are curves in Ω beginning at b and ending at c then γ0 ≈ γ1 by

Theorem 14.5 and Exercise 14.3e.

So by Theorem 14.6 the definition of f (c) does not depend on the choice of the

curve γ0. Thus f = fn in a neighborhood of c, so that f is analytic at c. Thus

f is defined and analytic in Ω and f = f0 in a neighborhood of 0. �



The monodromy theorem can be used to give another proof that a harmonic

function u on a simply-connected region Ω is the real part of an analytic function.

If f is analytic on a ball B ⊂ Ω with Ref = u on B, then f can be continued

along all curves in Ω.

By the monodromy theorem, because Ω is simply-connected, there is an analytic

function f on all of Ω with Ref = u.



The monodromy theorem canbe used to find a global inverse of an analytic

function with f ′ never zero. Suppose f is analytic in Ω with f ′ 6= 0 on Ω.

If c ∈ Ω, then there is a function g analytic in a neighborhood of f (c) so that

g(f (z)) = z in a neighborhood of c.

If g can be analytically continued along all curves in f (Ω) and if f (Ω) is simply-

connected, then by the monodromy theorem there is a function G which is

analytic on f (Ω) satisfying G(f (z)) = z for z ∈ Ω.



Analytic continuation really only depended upon the continuity of the functions

and the uniqueness theorem on disks, so that the monodromy theorem holds for

much more general classes of functions.

For example, if two harmonic functions agree on a small disk in a region, then

they agree on the entire region. So if we replace “analytic” with “harmonic”

or “meromorphic” in our definition of continuation along a curve and in the

statement of the monodromy theorem, then the theorem remains true.



Section 14.2: Riemann Surfaces and Universal Covers



Definition 14.8: A Riemann surface is a connected Hausdorff space W ,

together with a collection of open subsets Uα ⊂ W and functions zα : Uα → C
such that

(1) W = ∪Uα

(2) zα is a homeomorphism of Uα onto the unit disk D, and

(3) if Uα ∩ Uβ 6= ∅ then zβ ◦ z−1α is analytic on zα(Uα ∩ Uβ).

A Riemann surface W is pathwise connected, since the set of points that can

be connected to p0 is both open and closed for each p0 ∈ W .



A function f : W → C is called analytic if for every coordinate function zα, the

function f ◦ z−1α is analytic on D. Harmonic, subharmonic, and meromorphic

functions on W are defined in a similar way.

Differentiation presents a problem, since if zα is a coordinate map, the derivative

of f ◦ z−1α will depend on the choice of zα.

However, if both f and g are analytic on a Riemann surface then f ′◦z−1α (z)/g′◦
z−1α (z) does not depend on the choice of zα by the chain rule.

This is why it is important to use diffrerential forms on surfaces, but we will not

pursue forms here.



We think of two Riemann surfaces as equivalent if there is a holomoprhic home-

omorphism between them. Also called “conformally equivalent”.

For example, any two bounded, simply connected planar domains are equivalent

by the Riemann mapping theorem.

The disk and plane are not equivalent by Liouville’s theorem: if there was an

analytic map f : R2 → D, it would have to be constant.



A Riemann surface W is called simply-connected if every closed curve in W

is homotopic to a constant curve.

The disk, plane and 2-sphere are distinct simply connected Riemann surfaces.

The uniformization theorem says that these are the only simply connected Rie-

mann surfaces, up to conformal equivalence.



Example, planar domains: every planar domain is a Riemann surface.

Indeed, every open subset of a Riemann surface is another Riemann surface.



Example 14.9, The two sphere: Use two charts S2 \ {∞} and S2 \ {0}



Example: The torus. Identify opposite sides of a parelleogram, say with

corners at 0, 1, ω, 1 + ω for each ω ∈ H.

Different choices of ω can give different Riemann surfaces, but sometimes same.

It is understood exactly which ones are distinct. Different choices of ω can give

different Riemann surfaces, but sometimes same. It is understood exactly which

ones are distinct. This is the beginning of Teichmüller theory.

There are uncountably many conformally different tori. Same for all compact

surfaces of higher genus.



Example 14.11, Riemann surface of an analytic function

If f is analytic on a region Ω ⊂ C with f ′ 6= 0 on Ω, then we can construct

a Riemann surface Ωf associated with f by declaring charts to be the images

f (B(z, r)) of disks B(z, r) on which f is one-to-one. The associated chart maps

are f−1 composed with a linear map of B(z, r) onto D.



More formally, we write Ω = ∪∞j=1Bj where f is one-to-one on each Bj. Set

U =
∐∞

j=1 f (Bj), the disjoint union of the sets f (Bj). We then identify w ∈
f (Bi) and w ∈ f (Bj) if and only if w = f (z) for some z ∈ Bi ∩ Bj. In other

words, we identify the copies of f (Bi∩Bj) in the two images f (Bi) and f (Bj).

The corresponding quotient space Ωf is a Riemann surface.

The function f can be viewed as a one-to-one map of Ω onto Ωf , and f−1

becomes a well-defined function on Ωf .



Can construct Riemann surfaces by identifying planar regions along boundary

arcs via similarities.



Identitfy countably many copies of C \ [0,∞) along (0,∞).

This is the surface of exp(z). Then log(z) is well defined from this surface to C.



Identitfy countably many copies of C \ [0,∞) along (0,∞).

This is the surface of exp(z). Then log(z) is well defined from this surface to C.

This is also universal cover of C \ {0}.



Identify equilateral triangles along boundaries to give Riemann surface.

Topologically this example is a 2-sphere. Uniformization therorem implies it is

conformally equivalent to round 2-sphere.

We can get other topological surfaces, but only countably many can occur using

fnitely many triangles.



Topologically this example is a 2-sphere. Uniformization therorem implies it is

conformally equivalent to round 2-sphere.



We can identify sides of a hyperbolic polygon via Möbius transformations to get

a surface.

This example gives a torus with a puncture (not a compact surface).

Fundamental polygon is not compact in unit disk.



This example gives a genus 2 compact surface.

A theorem of Poincaré give a criterion for a polygon and set of side pairing maps

to give a Riemann surface.

Angles at identitfied vertices must sum to 2π.



Defn: A smooth affine algebraic curve is

X = {(x, y) ∈ C2 : f (x, y) = 0}
where f is a polynomial such at each point p ∈ X either

∂f

∂x
(p) 6= 0 or

∂f

∂y
(p) 6= 0,

Implict function theorem covers X by charts where either x or y are the maps

to complex plane.

Examples:

Hyperelliptic curves, y2 = (x− a1) . . . (x− an).

Fermat curves, xn + yn = 1



The examples on the previous slide are special because coefficients are integers.

If we allow algebraic coefficients, only countably many compact surfaces occur.

Belyi’s Theorem (1979): say that this collection is exactly the same as

compact surfaces built from equilateral triangles.

Foundation of Grothendieck’s theory of dessins d’enfants (children’s drawings)

that links complex analysis, combinatorics and number theory.



Universal covering space:

Suppose Ω is a Riemann surface. Fix a point b ∈ Ω. Let [γ] be the equivalence

class under homotopy of a curve γ ⊂ Ω. Let Ω∗ be the collection of equivalence

classes

Ω∗ = {[γ] : γ is a curve in Ω with γ(0) = b}.

Define a projection map π : Ω∗ → Ω by π([γ∗]) = γ(1).

Ω∗ is the universal cover of Ω and π is the covering map.



We can make Ω∗ into a Riemann surface by describing coordinate maps and

charts. If c ∈ Ω, let B be a topological disk in Ω. Let γ be a curve in Ω from b

to c. For any point d ∈ B, let σd be a curve in B from c to d. Let

B∗ = {[γσd] : d ∈ B} (14.3)

be the equivalence classes of all curves γσd, for all d ∈ B. Since all curves in

B beginning at c and ending at d are homotopic, [γσd] does not depend on the

choice of σd.



By the definition of π, π([γσd]) = d so that π is a one-to-one map of B∗ onto

B. Note that if γ1 ≈ γ, then we obtain the same set of equivalence classes B∗

using γ1 instead of γ. See Exercise 14.3c.

Thus B∗ ⊂ π−1(B) is uniquely determined by the equivalence class of γ, namely

a point in B∗, and the disk B. Set zB∗ = (π − c)/r.

Then we can give a topology on Ω∗ by declaring each set B∗ to be open, for all

disks B(c, r) ⊂ Ω and all equivalence classes [γ] of curves γ ⊂ Ω from b to c.

Indeed the “disks” B∗ form a basis for this topology. Equivalently we give Ω∗

the topology required to make each zB∗ a homeomorphism.



Theorem 14.12: Suppose Ω ⊂ C is a region. Then

(1) The surface Ω∗ is a simply-connected Riemann surface with coordinate

functions zB∗ and charts B∗.

(2) If B∗1 and B∗2 are coordinate charts with π(B∗1) = π(B∗2) then either

B∗1 ∩B∗2 = ∅ or B∗1 = B∗2.

(3) If γ ⊂ Ω is a curve beginning at b and if b∗ ∈ Ω∗ with π(b∗) = b, then

there is a unique curve γ∗ ⊂ Ω∗, called a lift of γ, beginning at b∗ with

π(γ∗) = γ.

(4) A curve γ∗ ⊂ Ω∗ is closed if and only if γ = π(γ∗) is homotopic to a

constant curve in Ω.

I believe covering surfaces and the universal covering space is in the Top-Geo

core courses, so I won’t go through the proof here. See Marshall’s textbook, or

a more general disucssion in Munkre’s Topology book.



Section 14.3: Deck Transformations



Let π be a universal covering map of W ∗ onto W . Fix a point b ∈ W and write

W ∗ as the collection of equivalence classes of curves beginning at b. If σ is a

closed curve beginning and ending at b, we define a map M[σ] : W ∗ → W ∗ by

M[σ]([γ]) = [σγ].

Note that this map is one-to-one and onto and does not depend on the choice

of the curve in [σ].

If B∗ is a coordinate disk centered at [γ] then M[σ](B
∗) is a coordinate disk

centered at [σγ] with the same projection as B∗.



So the map M[σ] is a homemorphism of W ∗ onto W ∗. These maps M[σ] are

called the deck transformations.

The deck transformations form a group G under composition. If b∗ = [{b}] is

the equivalence class of the constant curve curve {b}, then Mb∗ is the identity

map in this group G.

The group G gives an equivalence relation on W ∗, where p∗ ∼ q∗ if and only if

there is a deck transformation M with M(p∗) = q∗. The quotient space W ∗/G
with the quotient topology is a Riemann surface.



The coordinate charts on W ∗/G are just the images by the quotient map of the

coordinate charts on W ∗. Lemma 3.1 says that the map π induces a one-to-one

map of W ∗/G onto W .

As a group, G is isomorphic to the group of equivalence classes under homotopy

of all closed curves in W beginning at b, which is called the fundamental

group of W at b.

For this reason, the set of deck transformations is sometimes also called the

fundamental group of W .



Lemma 14.14: If p∗, q∗ ∈ W ∗, then π(p∗) = π(q∗) if and only if there is a

deck transformation M with M(p∗) = q∗.

Proof. Recall that π([γ]) = γ(1). If p∗ = [γ], q∗ = [α] ∈ W ∗ have the same

projection γ(1) = α(1), then setting σ = αγ−1 we have that σ is a closed curve

beginning at b and σγ ≈ α so that M[σ]([γ]) = [α].

Conversely if σ ⊂ W is a closed curve beginning and ending at b then π([σγ]) =

γ(1) = π([γ]), so that M[σ]([γ]) and [γ] have the same projection. �



Definition 14.5: If W1 and W2 are Riemann surfaces and if f is a map of W1

into W2, then we say that f is analytic provided

wβ ◦ f ◦ z−1α
is analytic for each coordinate function zα on W1 and wβ on W2 wherever it is

defined.

The covering map from the universal cover to a Riemann surface is analytic.



If f is meromorphic on region W ⊂ C, then f can also be viewed as a map into

the extended plane C∗, or via stereographic projection into the Riemann sphere

S2.

Such maps f are then analytic in the sense above, so some care must be taken

when speaking of analytic functions on a Riemann surface that both the domain

and range surfaces are understood.



A holomorphic function on a Riemann surface is a analytic map to the plane.

A meromorphic function on a Riemann surface is a analytic map to the

2-sphere.

Meromorphic functions on the 2-sphere are the rational maps.

Mereomorphic functions on a surface X form a field.



For a compact surface given as zero set of P (X, Y ) where P is irreducible, this

field is quotient of R(X, Y ) by the ideal generated by P .

The Riemann-Roch theorem computes the dimension of the space of meromor-

phic functions on a surface with prescribed zeros and poles.

https://en.wikipedia.org/wiki/Riemann-Roch_theorem


Corollary 14.16: The deck transformations form a group of one-to-one

analytic maps of W ∗ onto W ∗ with the property that each p∗ ∈ W ∗ has a

neighborhood B∗ so that M(B∗) ∩ B∗ = ∅ for all deck transformation M

not equal to the identity map. The projection map π : W ∗ → W induces a

one-to-one analytic map of W ∗/G onto W .

Proof follows from proof of Theorem 14.12.

Such a group action is called properly discontinuous.

This is stronger than saying the group is discrete, i.e., the identity element is

isolated. A discrete group of LFTs on D is called a Fuchsian group.








