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Chapter 12: Conformal Maps to Jordan Regions



Section 12.2: Janiszewski’s Lemma



A polygonal curve in C∗ is a curve consisting of finitely many line segments

or half-lines.



Suppose U is an open subset of the extended plane C∗. If a ∈ U , set

Ua = {z ∈ U : there exists a polygonal curve γ ⊂ U from a to z}.

The set Ua has the following properties:

(1) If z ∈ Ua then there is a simple polygonal curve from a to z.

(2) Ua ∩ Ub = ∅ or Ua = Ub.

(3) The set Ua is open.

(4) The set U \ Ua is open in U .



(5) There are at most countably many distinct sets Ua.

(6) If E ⊂ U is connected then E is contained in one Ua.

(7) Each component Ua of U has boundary ∂Ua contained in C∗ \ U .

(8) If F is a homeomorphism of C∗ then Ua is a component of U if and only if

F (Ua) is a component of F (U).

The sets Ua are called the components of U .



Definition12.4: A closed set E ⊂ C∗ separates points a, b /∈ E if a and b

belong to distinct components of C∗ \ E.

Lemma 12.5, Janiszewski: Suppose K1 and K2 are compact subsets of C
such that K1∩K2 is connected and 0 /∈ K1∪K2. If K1 does not separate 0

and∞ and if K2 does not separate 0 and∞ then K1∪K2 does not separate

0 and ∞.

Janiszewski’s lemma follows from the next two lemmas.



Lemma 12.6: If a compact set E separates 0 and∞ then we cannot define

log z to be analytic in a neighborhood of E.

In other words, there is no function g which is analytic in a neighborhood of E

satisfying eg(z) = z, if E separates 0 and ∞



We recall some facts from Chapter 5.

A closed curve γ ⊂ Ω is homologous to 0 in Ω if n(γ, a) = 0 for all a /∈ Ω.

A region Ω ⊂ C∗ is called simply-connected if C∗ \ Ω is connected in C∗.

Theorem 5.7: A region Ω ⊂ C is simply-connected if and only if every

cycle in Ω is homologous to 0 in Ω. If Ω is not simply-connected then

we can find a simple closed polygonal curve contained in Ω which is not

homologous to 0.



Lemma 12.6: If a compact set E separates 0 and∞ then we cannot define

log z to be analytic in a neighborhood of E.

Proof of Lemma 12.6. Suppose g is analytic in an open set W ⊃ E and eg(z) =

z. Then 0,∞ ∈ C∗ \W ⊂ C∗ \ E.

Since 0 and∞ belong to distinct components of C∗ \E, by Theorem 5.7 we can

find a polygonal curve σ ⊂ W so that n(σ, 0) = 1.

But by the chain rule, g′(z) = 1/z, so that 2πi =
∫
σ 1/z dz =

∫
σ g
′(z)dz = 0 by

the fundamental theorem of calculus. This contradiction proves the lemma. �



Lemma 12.7: Suppose K1 and K2 are compact sets such that K1 ∩K2 is

connected and 0,∞ /∈ K1 ∪ K2. If K1 does not separate 0 and ∞ and if

K2 does not separate 0 and ∞ then we can define log z to be analytic in a

neighborhood of K1 ∪K2.



Lemma 12.7: Suppose K1 and K2 are compact sets such that K1 ∩K2 is

connected and 0,∞ /∈ K1 ∪ K2. If K1 does not separate 0 and ∞ and if

K2 does not separate 0 and ∞ then we can define log z to be analytic in a

neighborhood of K1 ∪K2.

Proof. By hypothesis, we can find simple polygonal curves σ1 and σ2 connecting

0 to ∞ with σj ∩Kj = ∅, j = 1, 2. Then

(σ1 ∪ σ2) ∩ (K1 ∩K2) = ∅.

If E is connected and contained in an open set U , then E is contained in a single

component of U .

Therefore, the connected set K1 ∩ K2 is contained in one component U of

C∗ \ (σ1 ∪ σ2).



Since C∗ \ σj is simply-connected, j = 1, 2, we can find functions fj analytic on

C∗ \ σj so that efj(z) = z on C∗ \ σj. Then ef1−f2 = 1 on C∗ \ (σ1 ∪ σ2).

Thus on each component of C∗ \ (σ1 ∪ σ2), f1− f2 is a constant 2πki for some

integer k. We may then add a constant to f2 so that f1 = f2 on U .



Because K1 \U and K2 \U are disjoint compact sets, we can find open sets Vj

so that

Kj \ U ⊂ Vj ⊂ Vj ⊂ C∗ \ σj,
for j = 1, 2 and V1 ∩ V2 = ∅. Set

f (z) =

{
f1(z) for z ∈ V1 ∪ U
f2(z) for z ∈ V2 ∪ U

Then f is analytic on V1 ∪ V2 ∪ U , an open neighborhood of K1 ∪ K2, and

ef(z) = z. �

Janiszewski’s lemma follows immediaely.



Corollary 12.3: If J is a Jordan arc in C∗ then C∗ \ J is open and

connected.



Corollary 12.3: If J is a Jordan arc in C∗ then C∗ \ J is open and

connected.

Proof. Since LFTs are homeomorphisms of C∗, it suffices to show that if 0,∞ /∈
J then J does not separate 0 and ∞.

Write J = ∪n1Jk where Jk are subarcs of J such that Jk ∩ Jk−1 is a single point.

We may choose each Jk so small that for each k, there is a half line from 0 to

∞ contained in C∗ \ Jk and hence no Jk separate 0 and ∞.

But J1∩J2 a single point, and hence connected, so that by Janiszewski’s lemma

the arc J1 ∪ J2 does not separate 0 and ∞.

The intersection of this arc with J3 again is a single point, and hence J1∪J2∪J3
does not separate 0 and ∞ by Janiszewski’s lemma. By induction J does not

separate 0 and ∞. �



Section 12.3: Jordan Curve Theorem



Theorem 12.9, Jordan Curve Theorem: If J ⊂ C∗ is a (closed) Jordan

curve then C∗ \ J has exactly two components, each of which is simply-

connected. Moreover, J is the boundary of each component.

The proof is divided into four lemmas.



Lemma 12.10: If J is a (closed) Jordan curve, and if U is a component of

C∗ \ J then ∂U = J .

Proof. Suppose ζ ∈ J and z0 ∈ U . Because J is the homeomorphic image of the

unit circle, given n <∞ we can find Jordan arcs Jn, J
′
n ⊂ J with Jn ∪ J ′n = J ,

ζ ∈ Jn, ζ 6∈ J ′n and Jn ⊂ Dn, where Dn = {z : |z − ζ| < 1/n}.

By Corollary 12.8 (arcs don’t separate plane) J ′n does not separate ζ and z0. So

there is a polygonal curve σn from z0 to ζ such that σn ∩ J ′n = ∅.



Let zn be the first intersection of σn with ∂Dn. The subarc αn ⊂ σn from z0 to

zn does not intersect J ′n and does not intersect Jn ⊂ Dn, and hence does not

intersect J .

Since αn is connected, we have αn ⊂ U , and hence zn ∈ U . But limn zn = ζ /∈
U , so ζ ∈ ∂U . This shows that J ⊂ ∂U .

If ζ ∈ ∂U , then ζ does not belong to any component of C∗ \ J since the

components are open. Thus ζ ∈ J , and we’ve shown J = ∂U. �



Take ζ0 ∈ C∗ \ J . Then there is a straight line segment [ζ0, ζ1] with ζ1 ∈ J and

[ζ0, ζ1) ∩ J = ∅.

Morever we can choose another line segment [ζ0, ζ2] with ζ2 ∈ J and [ζ0, ζ2)∩J =

∅ and [ζ0, ζ1]∩ [ζ0, ζ2] = {ζ0}. For otherwise J would be contained in a half line

from ζ1 to ∞ which is impossible.



Write J = J1 ∪ J2 where Jj are Jordan arcs with J1 ∩ J2 = {ζ1, ζ2}. Switching

ζ1 and ζ2 if necessary,

σ = J1 ∪ [ζ1, ζ0] ∪ [ζ0, ζ2]

is a (closed) Jordan curve. In other words, σ is the modification of J found by

replacing J2 with the union of two intervals.



Lemma 12.11: The set C∗ \ σ has exactly two components.

Proof. Suppose that D0 is an open disk centered at ζ0 with J ∩D0 = ∅.
Then D0 \ ([ζ1, ζ0] ∪ [ζ0, ζ2]) consists of two connected open circular sectors.

each sector must be contained in a component of C∗ \σ and so by Lemma 12.10

(∂U = J), there can be at most two components in C∗ \ σ.



Take z1 and z2 in distinct sectors of D0\ ([ζ1, ζ0]∪ [ζ0, ζ2]). Then (σ \D0)∪∂D0

does not separate z1 and z2.

Moreover σ ∩ ((σ \D0) ∪ ∂D0) = σ \D0, which is connected.

So if σ also does not separate z1 and z2 then by Janiszewski’s lemma, E =

σ ∪ (σ \D0) ∪ ∂D0 does not separate z1 and z2.

But clearly ∂D0∪ [ζ1, ζ0]∪ [ζ0, ζ2] ⊂ E does separate. This contradiction proves

that z1 and z2 are in distinct components of C∗ \ σ, proving the lemma. �



Lemma 12.11: The set C∗ \ J has at least two components.

Proof. Take ζ ∈ J1 \ {ζ1, ζ2} and define

α = J2 ∪ [ζ2, ζ0] ∪ [ζ0, ζ1].

Let Dζ be a disk centered at ζ such that Dζ ∩ α = ∅.



By Lemma 12.10 (∂U = J) ζ ∈ ∂G1 ∩ ∂G2 where G1 and G2 are the two

components of the complement of σ.

Take w1 ∈ G1 ∩ Dζ and w2 ∈ G2 ∩ Dζ . The points w1 and w2 are separated

by σ, but not by α. Note that J ∩ α = J2 is connected so if J also does not

separate w1 and w2 then by Janiszewski’s lemma, J ∪ α does not separate w1

and w2.

But this is a contradiction since σ ⊂ J ∪ α. We conclude that J must separate

w1 and w2 and hence C∗ \ J has at least two components. �



Lemma 12.13: The set C∗ \ J has no more than two components.

Proof. Suppose H1 and H2 are the components of C∗ \ J containing w1 and w2

from the proof of Lemma 12.12. If C∗ \ J has another component H3, then by

Lemma 12.10, we can find w3 ∈ H3 ∩Dζ .

But w3 /∈ σ and hence w3 ∈ G1 or w3 ∈ G2. If w3 ∈ G1 then w1 and w3 are

not separated by σ, nor by α. But σ ∩ α = [ζ1, ζ0] ∪ [ζ0, ζ2] is connected, so

that by Janiszewski’s lemma w1 and w3 are not separated by σ ∪ α.

But this contradicts the assumption that J ⊂ σ ∪ α separates w1 and w3. A

similar contradiction is obtained if w3 ∈ G2, proving the lemma. �



Proof of the Jordan Curve Theorem:

The theorem now follows from Lemmas 12.10, 12.12 and 12.13 and the obser-

vation that the complement in C∗ of one component of C∗ \ J is equal to the

closure of the other component and hence connected. So each component is

simply-connected. �



Jordan’s orginal proof has been critized as not being sufficiently rigorous, but his

proof is defended by Tom Hales in Jordan’s proof of the Jordan curve therorem

Hales is a proponent of automated proof checkers, and he has verifified the proof

of the Jordan curve theorem on a computer. It is one of the few resuts that has

had its proof formally checked. See The Jordan curve theorem, formally and

informally by T.Hales.

Hales is also well known for his work on
the Langslands program and for his proof
of the centuries old Kepler conjecture, that
the “obvious” packing of spheres in 3-space
is the optimal one.

https://www.math.stonybrook.edu/~bishop/classes/math401.F09/HalesDefense.pdf
https://www.math.stonybrook.edu/~bishop/classes/math536.S24/Hales_AMM.pdf
https://www.math.stonybrook.edu/~bishop/classes/math536.S24/Hales_AMM.pdf
https://en.wikipedia.org/wiki/Kepler_conjecture


Section 12.4: Carathéodory’s Theorem



Definition: A Jordan region is simply-connected region in C∗ whose bound-

ary is a Jordan curve.

Theorem 12.14, Carathéodory-Tohorst Theorem: If ϕ is a confor-

mal map of D onto a Jordan region Ω, then ϕ extends to be a homeomor-

phism of D onto Ω. In particular ϕ(eit) is a parametrization of ∂Ω.



Although usually called “Carathéodory’s theorem, the result actually appears

in the 1917 Bonn thesis of Marie Torhorst, a student of Carathéodory. For a

discussion of the history, see On prime ends and local connectivity by Lasse

Rempe. Torhorst did not become an academic mathematician, but eventually

became Minister of Education for the state of Thüringen in communist East

Germany following WWII.

The proof we give uses the “length-area” method, which is the begining of the

study of extremal length, a extremely important tool in complex function theory,

quasiconformal mappings, analysis on metric spaces and holomorphic dynamics.

https://arxiv.org/pdf/math/0309022.pdf


Proof. Using an LFT, we may suppose Ω is bounded. First we show ϕ has a

continuous extension at each ζ ∈ ∂D.

Let 0 < δ < 1 and set γδ = D ∩ {z : |z − ζ| = δ}.

The idea of the proof is that the image curve ϕ(γδ) cuts off a region Uδ whose

closure shrinks to the point ζ as δ → 0.

It is not hard to show that the area of Uδ decreases to 0, but we need more.

We claim that the diameter of the boundary of Uδ, and hence the diameter of

Uδ, tends to 0.



The curve ϕ(γδ) is an analytic Jordan arc with length

L(δ) =

∫
γδ

|ϕ′(z)||dz|.

By the Cauchy-Schwarz inequality

L2(δ) ≤
(∫

γδ

12|dz|
)
·
(∫

γδ

|ϕ′(z)|2|dz|
)
≤ πδ

∫
γδ

|ϕ′(z)|2|dz|,

so that for r < 1,∫ r

0

L2(δ)

δ
dδ ≤ π

∫ ∫
D∩B(ζ,r)

|ϕ′(z)|2dx dy

= π · area (ϕ(D ∩B(ζ, r)) <∞
since Ω is bounded.



Therefore there is a decreasing sequence δn → 0 such that L(δn) → 0. When

L(δn) <∞, the curve ϕ(γδn) has endpoints αn, βn, and both of these endpoints

must lie on ∂Ω, because ϕ is proper. Furthermore,

|αn − βn| ≤ L(δn)→ 0. (12.2)



Let γ be a homeomorphism of ∂D onto ∂Ω. Write αn = γ(ζn) and βn = γ(ψn).

Because γ is uniformly continuous, given ε > 0 there is a δ > 0 so that if

|ζn − ψn| < δ then for ζ in the smaller arc of ∂D between ζn and ψn, we have

|γ(ζ)− γ(ζn)| < ε.



But γ−1 is also uniformly continuous so there exists η > 0 so that if |αn−βn| < η

then |ζn − ψn| < δ.

Thus if σn is the closed subarc of ∂Ω of smallest diameter with endpoints αn

and βn, then by (12.2)

diam(σn)→ 0.



By the Jordan curve theorem, the curve σn ∪ ϕ(γδn) divides the plane into two

(connected, open) regions, and one of these regions, say Un, is bounded.

The unbounded component V of the complement of ∂Ω is connected so if z ∈
Un ∩ V then there is a polygonal arc γz from z to ∞ contained in V .

Because ϕ(D) ∩ V = ∅ and σn ⊂ ∂Ω, γz does not meet ∂Un, contradicting the

boundedness of Un. Thus Un∩V = ∅. By the Jordan curve theorem applied to

∂Ω, Un ⊂ Ω.



Since

diam(∂Un) = diam
(
σn ∪ ϕ(γδn)

)
→ 0,

we conclude that

diam(Un)→ 0. (12.3)



Set Dn = D ∩ {z : |z − ζ| < δn}. Then ϕ(Dn) and ϕ(D \Dn) are connected

sets which do not intersect ϕ(γδn). Since ϕ maps onto Ω, either ϕ(Dn) = Un or

ϕ(D \Dn) = Un.

But diam(ϕ(D \Dn)) ≥ diam(ϕ(B(0, 1/2)) > 0 and diam(Un)→ 0 by (4.3) so

that ϕ(Dn) = Un for n sufficiently large.

Since δn is decreasing, ϕ(Dn+1) ⊂ ϕ(Dn) and so
⋂
ϕ(Dn) consists of a single

point. Thus ϕ has a continuous extension to D ∪ {ζ}.



Let ϕ also denote the extension ϕ : D → Ω. If zn ∈ D converges to ζ ∈ ∂D
then we can find z′n ∈ D→ ζ so that ϕ(zn)− ϕ(z′n)→ 0.

By the continuity of ϕ at ζ , we must have ϕ(zn)→ ϕ(ζ), and conclude that ϕ

is continuous on D.

Final part of proof is to show ϕ is a homeomorphism.

Enough to show ϕ 1-1 on boundary, since any continuous, 1-1 map on a compact

set is a homeomorphism.



Because ϕ(D) = Ω, ϕ maps D onto Ω. To show ϕ is one-to-one, suppose

ϕ(ζ1) = ϕ(ζ2) but ζ1 6= ζ2.

Because ϕ is proper, ϕ(∂D) ⊂ ∂Ω and so we can assume ζj ∈ ∂D, j = 1, 2.

The Jordan curve

{
ϕ(rζ1) : 0 ≤ r ≤ 1

}
∪
{
ϕ(rζ2) : 0 ≤ r ≤ 1

}
bounds a bounded region W .



Arguing exactly as above replacing Un, Dn and D \ Dn with W and the two

components of

D \
(
{rζ1 : 0 ≤ r ≤ 1} ∪ {rζ2 : 0 ≤ r ≤ 1}

)
we conclude that W ⊂ Ω and ϕ−1(W ) must be one of these two components.

Because ϕ(∂D) ⊂ ∂Ω and ϕ is proper on ϕ−1(W ), we conclude that

ϕ(∂D ∩ ∂ϕ−1(W )) ⊂ ∂Ω ∩ ∂W = {ϕ(ζ1)}.

Thus ϕ is constant on an arc of ∂D. It follows that ϕ − ϕ(ζ1) ≡ 0, by the

Schwarz Reflection principle.

This contradiction shows ϕ must be one-to-one. �



Corollary 12.15: If h : ∂D → C is a homeomorphism then h extends to

be a homeomorphism of C onto C.

Corollary 12.16: If J ⊂ C is a closed Jordan curve then J can be oriented

so that n(J, z) = 1 for z in the bounded component of the complement of

J and n(J, z) = 0 for z in the unbounded component of the complement of

J .

Proofs are given in the textbook.



Boundary continuity of conformal maps, allows us to push forward Lebesgue

measure on T to probability measures on Jordan curves, called “harmonic mea-

sure”. Harmonic measures can be defined in other ways (Brownian motion,

Green’s functions, potential theory,...), but Jordan domains in the plane are the

easiest case, because of the connection to complex analysis and conformal maps.

If Ω is simply connected and ∂Ω is locally connected, then any conformal map

D→ Ω extends continuously to the boundary of D.

There are examples with continuous extension everywhere except one point.

There are examples where there is no continuous extension anywhere.



Fatou’s theorem says that any bounded analytic function on D has radial

limits almost everywhere on the circle.

A conformal map onto a bounded domain is an example.

Arne Beurling proved a stronger version: a conformal map has radial limits

except on a set of zero logarithmic capacity.

Zero log-capacity sets are very small: zero length, even zero Hausdorff dimension.

The middle thirds Cantor has positive log-capacity.



Arne Beurling (1908-1986)

https://mathshistory.st-andrews.ac.uk/Biographies/Beurling/


We can define conformal maps f, g to either side of a Jordan curve (the map

onto the ubounded componment will have a pole), and then h = g−1 ◦ f is a

circle homeomorphism, called a conformal welding. All smooth circle homeomo-

prhisms arise in this way, but not all homeomorphims. It is an open problem to

characterize which circle homeomorphims are conformal weldings. See Confor-

mal Welding and Koebe’s Theorem, by C. Bishop.

https://annals.math.princeton.edu/wp-content/uploads/annals-v166-n3-p01.pdf
https://annals.math.princeton.edu/wp-content/uploads/annals-v166-n3-p01.pdf



