MAT 536, Spring 2024, Stony Brook University

Complex Analysis I, Christopher Bishop 2024

Chapter 10: Series and Products

Section 10.1: Mittag-Lefferler's Theorem

Suppose f is meromorphic. Near a pole b we have the Laurent expansion, $f(z)=\frac{c_{n}}{(z-b)^{n}}+\frac{c_{n-1}}{(z-b)^{n-1}}+\cdots+\frac{c_{1}}{(z-b)}+a_{0}+a_{1}(z-b)+a_{2}(z-b)^{2}+\ldots$

The sum of the first n terms

$$
S_{b}(z)=\frac{c_{n}}{(z-b)^{n}}+\frac{c_{n-1}}{(z-b)^{n-1}}+\cdots+\frac{c_{1}}{(z-b)}
$$

is called the singular part of f at b.

If f is rational, then by a partial fraction expansion

$$
f(z)=\sum_{k=1}^{m} S_{b_{k}}(z)+p(z)
$$

where p is a polynomial and $\left\{b_{k}\right\}$ are the poles of f.

If f is meromorphic in a region Ω with only finitely many poles $\left\{b_{k}\right\}$ and singular parts $S_{b_{k}}, k=1, \ldots, m$, then

$$
f(z)=\sum_{k=1}^{m} S_{b_{k}}(z)+g(z),
$$

where g is analytic in Ω.

Theorem 11.1, Mittag-Leffler's theorem: Suppose $b_{k} \in \Omega \rightarrow \partial \Omega$, with $b_{k} \neq b_{j}$ if $k \neq j$. Set

$$
S_{k}(z)=\sum_{j=1}^{n_{k}} \frac{c_{j, k}}{\left(z-b_{k}\right)^{j}}
$$

where each n_{k} is a positive integer and $c_{j, k} \in \mathbb{C}$. Then there is a function meromorphic in Ω with singular parts S_{k} at $b_{k}, k=1,2, \ldots$, and no other singular parts in Ω.

If $\Omega=\mathbb{C}$ we interpret the first hypothesis of Theorem 1.1 to be that $\left|b_{k}\right| \rightarrow \infty$.

Proof. Let

$$
K_{n}=\left\{z \in \Omega: \operatorname{dist}(z, \partial \Omega) \geq \frac{1}{n} \text { and }|z| \leq n\right\} .
$$

K_{n} is a compact subset of Ω such that each bounded component of $\mathbb{C} \backslash K_{n}$ contains a point of $\partial \Omega$ and $K_{n} \subset K_{n+1} \subset \cup K_{n}=\Omega$.

Because $b_{k} \rightarrow \partial \Omega$ each K_{n} contains only finitely many b_{k}.
By Runge's Theorem there is a rational f_{n} with poles in $\mathbb{C} \backslash \Omega$ so that

$$
\left|\left\{\sum_{b_{k} \in K_{n+1} \backslash K_{n}} S_{k}(z)\right\}-f_{n}(z)\right|<2^{-n}
$$

for all $z \in K_{n}$.

Then for each $m=1,2, \ldots$

$$
\sum_{n \geq m}\left(\left\{\sum_{b_{k} \in K_{n+1} \backslash K_{n}} S_{k}(z)\right\}-f_{n}(z)\right)
$$

converges uniformly on K_{m} to an analytic function on K_{m} by the Weierstrass M-test and Weierstrass's Theorem IV.3.10. Set

$$
\begin{equation*}
f(z)=\sum_{b_{k} \in K_{1}} S_{k}(z)+\sum_{n=1}^{\infty}\left(\left\{\sum_{b_{k} \in K_{n+1} \backslash K_{n}} S_{k}(z)\right\}-f_{n}(z)\right) . \tag{11.1}
\end{equation*}
$$

Then f is a well-defined analytic function on $\Omega \backslash\left\{b_{k}\right\}$ and $f-S_{k}$ has a removable singularity at b_{k} for each $k=1,2, \ldots$.

Example 11.5, Weierstrass \mathcal{P} function:

Suppose $w_{1}, w_{2} \in \mathbb{C} \backslash\{0\}$ with w_{1} / w_{2} not real. In other words w_{1} and w_{2} are not on the same line through the origin. There is no non-constant entire function f satisfying $f\left(z+w_{1}\right)=f\left(z+w_{2}\right)=f(z)$ for all z, by Liouville's theorem.

But there are meromorphic functions with this property. The Weierstrass \mathcal{P} function is defined by

$$
\begin{equation*}
\mathcal{P}(z)=\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left(\frac{1}{\left(z-m w_{1}-n w_{2}\right)^{2}}-\frac{1}{\left(m w_{1}+n w_{2}\right)^{2}}\right) \tag{11.8}
\end{equation*}
$$

where the sum is taken over all pairs of integers except $(0,0)$.

To prove convergence of this sum, we first observe that there is a $\delta>0$ so that $\left|m w_{1}+n w_{2}\right| \geq \delta$ unless $m=n=0$, for if $\left|m_{j} w_{1}+n_{j} w_{2}\right| \rightarrow 0$, then

$$
\left|\frac{w_{1}}{w_{2}}+\frac{n_{j}}{m_{j}}\right| \rightarrow 0
$$

contradicting the assumption that w_{1} / w_{2} is not real.

Thus $\left\{\zeta_{m, n}=m w_{1}+n w_{2}: m, n \in \mathbb{Z}\right\}$, where \mathbb{Z} denotes the integers, forms a lattice of points in \mathbb{C} with no two points closer than δ.

If we place a disk of radius $\delta / 2$ centered at each point of the lattice, then the disks are disjoint.

The area of the annulus $k \leq|\zeta| \leq k+1$ is $(2 k+1) \pi$ so there are at most $C k$ lattice points in this annulus, for some constant C depending on δ.

For $|z|<R$, we split the sum in (11.8) into a finite sum of terms with $\left|\zeta_{m, n}\right| \leq$ $2 R$ and the sum of terms with $\left|\zeta_{m, n}\right|>2 R$.

Note that if $|z|<R$ and $|\zeta|>2 R$, then

$$
\left|\frac{1}{(z-\zeta)^{2}}-\frac{1}{\zeta^{2}}\right|=\left|\frac{2 z \zeta-z^{2}}{\zeta^{2}(z-\zeta)^{2}}\right| \leq \frac{R(2|\zeta|+R)}{|\zeta|^{2}|\zeta / 2|^{2}} \leq \frac{10 R}{|\zeta|^{3}}
$$

We conclude that for $K \geq R$ and $|z|<R$

$$
\begin{aligned}
\sum_{\left|\zeta_{m, n}\right|>2 K}\left|\frac{1}{\left(z-\zeta_{m, n}\right)^{2}}-\frac{1}{\zeta_{m, n}^{2}}\right| & =\sum_{k=2 K}^{\infty} \sum_{k<\left|\zeta_{m, n}\right| \leq k+1}\left|\frac{1}{\left(z-\zeta_{m, n}\right)^{2}}-\frac{1}{\zeta_{m, n}^{2}}\right| \\
& \leq \sum_{k=2 K}^{\infty} C k \frac{10 K}{k^{3}}<\infty
\end{aligned}
$$

By Weierstrass's theorem, the Weierstrass \mathcal{P} function is meromorphic in \mathbb{C} with singular part $S(z)=1 /\left(z-m w_{1}-n w_{2}\right)^{2}$ at $m w_{1}+n w_{2}$ and no other poles.

Next we show that $\mathcal{P}\left(z+w_{1}\right)=\mathcal{P}(z)$. By Weierstrass's theorem

$$
\mathcal{P}^{\prime}(z)=-\frac{2}{z^{3}}-\sum_{\zeta_{m, n \neq 0}} \frac{2}{\left(z-\zeta_{m, n}\right)^{3}}
$$

By the same estimate, this series converges absolutely so that we can rearrange the terms, obtaining $\mathcal{P}^{\prime}\left(z+w_{1}\right)=\mathcal{P}^{\prime}(z)$, and hence $\mathcal{P}\left(z+w_{1}\right)-\mathcal{P}(z)$ is a constant.

The series for \mathcal{P} is even, so $\mathcal{P}\left(z+w_{1}\right)=\mathcal{P}(z)$ when $z=-w_{1} / 2$, and thus $\mathcal{P}\left(z+w_{1}\right)=\mathcal{P}(z)$ for all z.

A similar argument shows that $\mathcal{P}\left(z+w_{2}\right)=\mathcal{P}(z)$.

Section 11.2: Weierstrass Products

A few facts from calculus: Proposition 11.6: Suppose $p_{j} \in \mathbb{C} \backslash\{0\}$. Then $\prod_{j=1}^{n} p_{j}$ converges to a non-zero complex number P as $n \rightarrow \infty$ if and only if

$$
\sum_{j=1}^{\infty} \log p_{j}
$$

converges to a complex number S where $\log p_{j}$ is defined so that $-\pi<$ $\arg p_{j} \leq \pi$. Moreover, if convergence holds then $P=e^{S}$ and $\lim p_{j}=1$.

Definition 11.7: If p_{j} are non-zero complex numbers then we say $\prod_{j=1}^{\infty} p_{j}$ converges absolutely if $\sum\left|\log p_{j}\right|$ converges.

Lemma 11.8: If p_{j} are nonzero complex numbers then $\prod_{j=1}^{\infty} p_{j}$ converges absolutely if and only if

$$
\sum_{j=1}^{\infty}\left|p_{j}-1\right|
$$

converges.

Definition 11.9: Suppose $\left\{f_{j}\right\}$ are analytic on a region Ω. We say that $\prod_{j=1}^{\infty} f_{j}(z)$ converges on Ω if

$$
\lim _{n \rightarrow \infty} \prod_{j=0}^{n} f_{j}(z)
$$

converges uniformly on compact subsets of Ω to a function f which is not identically equal to 0 .

Theorem 11.10, Weierstrass: Suppose Ω is a bounded region. If $\left\{b_{j}\right\} \subset$ Ω with $b_{j} \rightarrow \partial \Omega$, and if n_{j} are positive integers, then there exists an analytic function f on Ω such that f has a zero of order exactly n_{j} at $b_{j}, j=1,2, \ldots$, and no other zeros in Ω.

Proof. Let

$$
K_{n}=\left\{z \in \Omega:|z-w| \geq \frac{1}{n} \text { for all } w \in \partial \Omega\right\}
$$

Then as in the proof of Corollary IV.3.9, K_{n} is a compact subset of \mathbb{C} such that each component of $\mathbb{C} \backslash K_{n}$ contains a point of $\partial \Omega$ and $K_{n} \subset K_{n+1}$.

Choose $a_{j} \in \partial \Omega$ so that

$$
\operatorname{dist}\left(b_{j}, \partial \Omega\right)=\left|b_{j}-a_{j}\right|
$$

If $b_{j} \notin K_{n}$ then the line segment from b_{j} to a_{j} does not intersect K_{n}. Thus we can define $\log \left(\left(z-b_{j}\right) /\left(z-a_{j}\right)\right)$ so as to be analytic in $\mathbb{C} \backslash K_{n}$.

Each K_{n} contains at most finitely many b_{k} because $b_{k} \rightarrow \partial \Omega$.

By Runge's Theorem we can find a rational r_{n} with poles in $\mathbb{C} \backslash \Omega$ so that

$$
\begin{equation*}
\left|\left\{\sum_{b_{k} \in K_{n+1} \backslash K_{n}} n_{k} \log \left(\frac{z-b_{k}}{z-a_{k}}\right)\right\}-r_{n}(z)\right|<2^{-n}, \tag{2.1}
\end{equation*}
$$

for all $z \in K_{n}$. Then

$$
\sum_{n \geq m}\left(\left\{\sum_{b_{k} \in K_{n+1} \backslash K_{n}} n_{k} \log \left(\frac{z-b_{k}}{z-a_{k}}\right)\right\}-r_{n}(z)\right)
$$

converges uniformly on K_{m} to an analytic function on K_{m}. Set

$$
f(z)=\prod_{b_{k} \in K_{1}}\left(\frac{z-b_{k}}{z-a_{k}}\right)^{n_{k}} \prod_{n=1}^{\infty}\left(\prod_{b_{k} \in K_{n+1} \backslash K_{n}}\left(\frac{z-b_{k}}{z-a_{k}}\right)^{n_{k}}\right) e^{-r_{n}(z)} .
$$

Then f is a well-defined analytic function on Ω with a zero of order n_{k} at b_{k}, $k=1,2, \ldots$, and no other zeros.

Corollary 11.13: If Ω is a region then there is a function f analytic on Ω such that f does not extend to be analytic in any larger region.

Proof. Take a sequence $\left\{a_{n}\right\} \subset \Omega \rightarrow \partial \Omega$ such that $\partial \Omega \subset \overline{\left\{a_{n}\right\}}$.
By the Weierstrass product theorem we can find f analytic on Ω, with $f\left(a_{n}\right)=0$ but f not identically zero.

If f extends to be analytic in a neighborhood of $b \in \partial \Omega$ then the zeros of the extended function would not be isolated.

In several complex variables, a similar result is not true.
If $B_{r}=\left\{(z, w):|z|^{2}+|w|^{2}<r^{2}\right\}$, then any function which is analytic on $B_{2} \backslash B_{1}$ extends to be analytic on B_{2}.

Corollary 11.14: Suppose Ω is a region and $a_{n} \rightarrow \partial \Omega$, with $a_{n} \neq a_{m}$ when $n \neq m$, and suppose $\left\{c_{n}\right\}$ are complex number. Then there exists f analytic on Ω such that

$$
f\left(a_{n}\right)=c_{n}, n=1,2, \ldots
$$

Results like this are usually called interpolation theorems.

Proof. By the Weierstrass product theorem, we can find G analytic on Ω with a simple zero at each a_{n}. Let

$$
d_{n}=\lim _{z \rightarrow a_{n}} \frac{G(z)}{z-a_{n}}=G^{\prime}\left(a_{n}\right) .
$$

Since the zero of G at a_{n} is simple, $d_{n} \neq 0$. By Mittag-Leffler's theorem we can find F meromorphic on Ω with singular part

$$
S_{n}(z)=\frac{c_{n} / d_{n}}{z-a_{n}}
$$

at a_{n} and no other poles in \mathbb{C}.
Then $f(z)=F(z) G(z)$ is analytic on $\Omega \backslash\left\{a_{n}\right\}$ and

$$
\lim _{z \rightarrow a_{n}} F(z) G(z)=\lim _{z \rightarrow a_{n}}\left(z-a_{n}\right) F(z) \frac{G(z)}{z-a_{n}}=\frac{c_{n}}{d_{n}} d_{n}=c_{n} .
$$

Thus the singularity of f at each a_{n} is removable and f extends to be analytic on Ω with $f\left(a_{n}\right)=c_{n}, n=1,2, \ldots$.

Corollary 11.15: If f is meromorphic in Ω then there are functions g and h, analytic on Ω, such that

$$
f=\frac{g}{h} .
$$

Proof. Let $\left\{a_{n}\right\}$ be the poles of f, where the list is written such that a pole of order k occurs k times in this list.

By the Weierstrass product theorem, there is a function h analytic on Ω with zeros $\left\{a_{n}\right\}$ and no other zeros. Then
$g=f h$ is analytic on $\Omega \backslash\left\{a_{n}\right\}$ with removable singularity at each a_{n}.
Thus g extends to be analytic in Ω and $f=g / h$.

Section 11.3: Blaschke Products

Theorem 11.17, Jensen's theorem: Suppose f is meromorphic on $|z| \leq$ R with zeros a_{1}, \ldots, a_{n} and poles b_{1}, \ldots, b_{m}. Suppose also that 0 is not a zero or a pole of f. Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|f\left(R e^{i t}\right)\right| d t=\log |f(0)|+\sum \log \frac{R}{\left|a_{k}\right|}-\sum \log \frac{R}{\left|b_{j}\right|} . \tag{11.11}
\end{equation*}
$$

Proof. Replacing $f(z)$ by $f(R z)$, we may assume $R=1$.
First suppose that f has no poles or zeros on $|z|=1$. Write

$$
f(z)=\frac{\prod_{k} \frac{z-a_{k}}{1-\overline{k_{k} z}}}{\prod_{j} \frac{z-b_{j}}{1-\bar{b}_{j} z}} g(z),
$$

where g is analytic on \mathbb{D} and has no zeros on $|z| \leq 1$. Then

$$
|f(0)|=\frac{\prod_{j}\left|a_{j}\right|}{\prod_{k}\left|b_{k}\right|}|g(0)|
$$

and $\log \left|f\left(e^{i t}\right)\right|=\log \left|g\left(e^{i t}\right)\right|=\operatorname{Re} \log g\left(e^{i t}\right)$, where $\log g(z)$ is analytic on \mathbb{D}.

Note that if $z=e^{i t}$ then $d z /(i z)=d t$. So by Cauchy's theorem

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|f\left(e^{i t}\right)\right| d t & =\operatorname{Re} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \log g\left(e^{i t}\right) d t \\
& =\operatorname{Re} \log g(0)=\log |f(0)|-\sum_{j} \log \left|a_{j}\right|+\sum_{k} \log \left|b_{k}\right|
\end{aligned}
$$

Thus (11.11) holds if f has no zeros or poles on $|z|=R$.
We may suppose f has no poles in $|z| \leq R$ by Corollary 11.15.

Then $v_{M}=\max (-M, \log |f|)$ is subharmonic on Ω, for $M<\infty$.

If $r \leq R$ then using the Poisson integral formula, find u_{M} harmonic on $|z|<r$ with $u_{M}=v_{M}$ on $|z|=r$.

Then $v_{M}-u_{M}$ is subharmonic and ≤ 0 in $|z|<r$ by the maximum principle.
Thus for $0<s<r$

$$
\int_{0}^{2 \pi} v_{M}\left(s e^{i t}\right) d t \leq \int_{0}^{2 \pi} u_{M}\left(s e^{i t}\right) d t=2 \pi u_{M}(0)=\int_{0}^{2 \pi} v_{M}\left(r e^{i t}\right) d t .
$$

Letting $M \rightarrow \infty$ shows that the left side of (11.11) is non-decreasing when f has no poles. But the right side of (11.11) is continuous in R. Because equality holds when f has no zeros on $|z|=R$ and the zeros of f are isolated, (11.11) follows.

Corollary 11.18: Suppose f is analytic in \mathbb{D}, $f \not \equiv 0$, with zeros $\left\{a_{n}\right\}$, and suppose

$$
\sup _{r<1} \int_{-\pi}^{\pi} \log \left|f\left(r e^{i t}\right)\right| d t<\infty .
$$

Then

$$
\sum_{n=0}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty
$$

Proof. Since f has only finitely many zeros at 0 , we may divide them out and suppose $f(0) \neq 0$.

Then by Jensen's formula

$$
\sum_{n=0}^{\infty} \log \frac{1}{\left|a_{n}\right|}<\infty
$$

But $\lim _{x \rightarrow 1} \frac{\log x}{x-1}=1$, so that $\sum \log \frac{1}{\left|a_{n}\right|}<\infty$ if and only if $\sum\left(1-\left|a_{n}\right|\right)<\infty$.

Theorem 11.19: If $\left\{a_{n}\right\} \subset \mathbb{D}$ such that $\sum\left(1-\left|a_{n}\right|\right)<\infty$ then

$$
B(z)=\prod_{n=0}^{\infty} \frac{\left|a_{n}\right|}{-a_{n}} \frac{\bar{z}-a_{n}}{1-\overline{a_{n}} z}
$$

converges uniformly and absolutely on compact subsets of \mathbb{D}, where we define the convergence factor $\left|a_{n}\right| /\left(-a_{n}\right)$ to be equal to 1 if $a_{n}=0$. The function B is analytic on \mathbb{D}, is bounded by 1 and has zero set exactly equal to $\left\{a_{n}\right\}$.

The function in the theorem is called a Blaschke product.

Proof. WLOG $a_{n} \neq 0$ for all n. Then for $|z| \leq r$

$$
\left|\frac{\left|a_{n}\right|}{-a_{n}}\left(\frac{z-a_{n}}{1-\overline{a_{n}} z}\right)-1\right|=\frac{\left(1-\left|a_{n}\right|\right)| | a_{n}\left|z+a_{n}\right|}{\left|a_{n}\left(1-\overline{a_{n}} z\right)\right|} \leq \frac{2\left(1-\left|a_{n}\right|\right)}{\left(\inf \left|a_{n}\right|\right)(1-r)}
$$

By Weierstrass's M-test and Lemma 11.8, B converges uniformly and absolutely on $|z| \leq r$.

Note that the partial products for B are all bounded by 1 and analytic on \mathbb{D}.

Theorem 11.20: If f is bounded and analytic on \mathbb{D} with zero set $\left\{a_{n}\right\}$ (counting multiplicity) and if B is the Blaschke product with zero set $\left\{a_{n}\right\}$ then

$$
f(z)=B(z) e^{g(z)}
$$

for some analytic function g with

Proof. WLOG, $\sup _{\mathbb{D}}|f|=1$. Write

$$
B_{N}(z)=\prod_{n=1}^{N} \frac{\left|a_{n}\right|}{-a_{n}} \frac{z-a_{n}}{1-\overline{a_{n}} z}
$$

By Schwarz's lemma $\left|f(z) / B_{N}(z)\right| \leq 1$. Choose r_{n} so that $B \neq 0$ on $|z|=r_{n}$.

Then f / B_{N} converges uniformly to f / B on $|z|=r_{n}$ and by the maximum principle the convergence is uniform on $|z| \leq r_{n}$.

Now let $r_{n} \rightarrow 1$. Thus $h=f / B$ is bounded by 1 on \mathbb{D} and non-vanishing.
This implies $g=\log h$ can be defined as an analytic function on \mathbb{D}. By construction, $\sup _{\mathbb{D}}|h| \leq \sup _{\mathbb{D}}|f|=1$, but also $|B| \leq 1$, so $\sup _{\mathbb{D}}|h|=\sup _{\mathbb{D}}|f|$.

It is difficult to overestimate the importance of Blaschke products in function theory on \mathbb{D}.

We shall not prove this, but $|B|$ has radial limits equal to 1 almost everywhere on the circle.

Blaschke products are a special case of inner functions: bounded holomorphic functions F on \mathbb{D} so that $|F|$ has radial limit 1 almost everywhere on \mathbb{T}.

A bounded analytic function on \mathbb{D} can be factored as $F=B \cdot D \cdot G$ where
$B=$ Blaschke product
$S=$ Inner function with no zeros in \mathbb{D}
$G=$ Outer function
Outer means $\log |G|$ is Poisson extension of radial limits of $\log |G|$ on \mathbb{T}.
$L^{\infty}(\mathbb{T})=$ bounded measurable functions on unit circle.
$H^{\infty}(\mathbb{T})=$ subalgebra of L^{∞} whose Poisson extensions are holomorphic.

A Douglas algebra is a closed algebra of $L^{\infty}(\mathbb{T})$ that contains $H^{\infty}(\mathbb{T})$.

Chang-Marshall theorem: Any Douglas algebra A is generated by H^{∞} and the complex conjugates of some collection of Blaschke products.

Marshall's theorem: H^{∞} is generated by the Blaschke products.

Corollary: The unit ball of H^{∞} is the closed convex hull of the Blaschke products.

Douglas-Rudin-Jones theorem: If u is measurable on \mathbb{T} and $|u|=1$ almost everywhere, then for every $\epsilon>0$ are there Blaschke products B_{1} and B_{2} so that $\left\|u-B_{1} / B_{2}\right\|_{\infty}<\epsilon$.

Frostman's theorem: Suppose f is an inner function, i.e., it is bounded and holomorphic on the unit disk and $|f|$ has radial boundary values 1 almost everywhere. Then

$$
\frac{f(z)-a}{1-\bar{a} f(z)}
$$

is a Blaschke product for almost every $a \in \mathbb{D}$ (actually, except for a set of zero logarithmic capacity).

