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Chapter 10: Series and Products



Section 10.1: Mittag-Lefferler’'s Theorem



Suppose f is meromorphic. Near a pole b we have the Laurent expansion,

f(z) = = b)”+(z _g)n_1+---+<z — b>+a0+a1(2—b)+a2(2—b)

The sum of the first n terms

S B P AT Py T R

is called the singular part of f at b.

If f is rational, then by a partial fraction expansion
f(z) =) Syl2) +p(2),
k=1

where p is a polynomial and {b;} are the poles of f.

+....



If f is meromorphic in a region €2 with only finitely many poles {b;} and singular

parts Sy, k =1,...,m, then

f(2) =) Sy(2)+g(2),

where ¢ is analytic in ).



Theorem 11.1, Mittag-Leftler’s theorem: Suppose b, € ) — 051, with
bi. #b; if K # j. Set

50 =2 2

j=1
where each ny. is a positive integer and c;;, € C. Then there is a function
meromorphic in ) with singular parts Sy at by, k =1,2,..., and no other

singular parts in ).

If O = C we interpret the first hypothesis of Theorem 1.1 to be that |b;| — o0.



Proof. Let

K, =4z € Q:dist(z,00) > — and |z|] < n}.

1
n
K, is a compact subset of €2 such that each bounded component of C \ K,
contains a point of 92 and K,, C K, 1 C UK,, = ().

Because b, — 0f) each K, contains only finitely many by.

By Runge’s Theorem there is a rational f,, with poles in C \ €2 so that

' { Z Si(z) }—fu(z)] < 27"
bkeKn+1\Kn
for all z € K,,.



Then foreachm=1,2, ...

S({ X se)-nie)

n2m b€ Kp+1\Kn

converges uniformly on K, to an analytic function on K, by the Weierstrass
M-test and Weierstrass’'s Theorem I1V.3.10. Set

- sE+({ X se@b-ae). o

br.e K1 n=1 bkEKn—i—l\Kn

Then f is a well-defined analytic function on Q\ {b;} and f— S has a removable
singularity at b, for each k =1,2,.... [



Example 11.5, Weierstrass P function:

Suppose wy,wy € C\ {0} with wy/wy not real. In other words w; and ws
are not on the same line through the origin. There is no non-constant entire
function f satisfying f(z +wq) = f(z + wy) = f(z) for all z, by Liouville’s

theorem.

But there are meromorphic functions with this property. The Weierstrass P

function is defined by
1 1 1
= — — 11.8
P) 2 * ( ;0 ) ((z — mw; —nws)?  (mwy + nw2)2> (11.8)

where the sum is taken over all pairs of integers except (0, 0).




To prove convergence of this sum, we first observe that there is a 0 > 0 so that
|mw; + nws| > 6 unless m = n = 0, for if |m;w; + njwy| — 0, then

w1 n;
|— + —|= 0,
(100 my

contradicting the assumption that w;/ws is not real.

Thus {(n.n = mwy +nws : myn € Z}, where Z denotes the integers, forms a

lattice of points in C with no two points closer than 9.



If we place a disk of radius 6 /2 centered at each point of the lattice, then the

disks are disjoint.

The area of the annulus & < |(| < k + 1is (2k + 1)m so there are at most Ck

lattice points in this annulus, for some constant C' depending on 9.



For |z| < R, we split the sum in (11.8) into a finite sum of terms with |(;,.| <
2R and the sum of terms with |(;,,,| > 2R.

Note that if |2] < R and |(| > 2R, then
L 1] 2027 <R<2|§\+R)<10R
(z=Q? & |C=—=O cPIc/2Pr — Il

We conclude that for K > R and |z| < R

> = D> o

_ 2 2 — 5 5
|[Cm.n|>2K <Z CmJL) m,n k=2K k<|(mn|<k+1 <Z Cm’n) m,n

10K
Z Ck— < 0.
k=2K

1 1

By Weierstrass’s theorem, the Weierstrass P function is meromorphic in C with

singular part S(z) = 1/(z — mw; — nws)? at mw; + nws, and no other poles.



Next we show that P(z + wi) = P(z). By Weierstrass’s theorem

, ) y
P(z) = i Z EEYaw

By the same estimate, this series converges absolutely so that we can rearrange
the terms, obtaining P'(z + wy) = P’(z), and hence P(z + wy) — P(z) is a

constant.

The series for P is even, so P(z + wy) = P(z) when z = —w; /2, and thus
P(z+wy) =P(z) for all 2.

A similar argument shows that P(z 4+ ws) = P(z2).



Section 11.2: Weierstrass Products



A few facts from calculus: Proposition 11.6: Suppose p; € C\ {0}.

Then H?:lpj converges to a non-zero complexr number P as n — oo if and

only if
D_loep,
j=1

converges to a complex number S where logp; s defined so that —m <

arg p; < w. Moreover, if convergence holds then P = e’ and imp; = 1.



Definition 11.7: If p; are non-zero complex numbers then we say H;‘;l Dj

converges absolutely if ) |logp,| converges.



Lemma 11.8: If p; are nonzero complex numbers then H;ilpj CONVETGES

> lpi—1
j=1

absolutely if and only if

CONVETQES.



Definition 11.9: Suppose {f;} are analytic on a region (2. We say that
[1;2, fi(z) converges on 2 if
li -
s ¥ R
§=0
converges uniformly on compact subsets of €2 to a function f which is not iden-

tically equal to 0.



Theorem 11.10, Weierstrass: Suppose () is a bounded region. If {b;} C
(2 with b; — 0€), and if n; are positive integers, then there exists an analytic
Junction f on () such that f has a zero of order exzactlyn; atb;, 7 =1,2,...,

and no other zeros in €).



Proof. Let

K,={2€Q:|z—w Z%forallwéé’@}.
Then as in the proot of Corollary IV.3.9, K, is a compact subset of C such that
each component of C \ K, contains a point of 99 and K, C K, 1.

Choose a; € 9§12 so that

dist(b;, 02) = |b; — a;|.
If b; ¢ K, then the line segment from b, to a; does not intersect K,. Thus we
can define log((z — b,)/(z — a;)) so as to be analytic in C \ K.

Each K, contains at most finitely many b, because b, — 0f).



By Runge’s Theorem we can find a rational r,, with poles in C \ € so that

Ly nklog(z:ZD —r(2)

br€Kp+1\Kn
for all z € K,,. Then

> ({2 nﬂog(j:i’;) —ra(2))

nzm bk:EKn—irl\Kn
converges uniformly on K, to an analytic function on K,,. Set

- T, (25 )

bre K1 n=1 bkeKn—i—l\Kn

<2 (2.1)

Then f is a well-defined analytic function on €2 with a zero of order n; at by,

k=1,2, ..., and no other zeros. ]



Corollary 11.13: If €2 is a region then there is a function f analytic on

Q) such that f does not extend to be analytic in any larger region.

Proof. Take a sequence {a, } C €2 — 02 such that 02 C {a,}.

By the Weierstrass product theorem we can find f analytic on €2, with f(a,) = 0
but f not identically zero.

If f extends to be analytic in a neighborhood of b € 92 then the zeros of the

extended function would not be isolated. L]



In several complex variables, a similar result is not true.

If B, = {(z,w) : |z|* + |w|*> < r*}, then any function which is analytic on
By \ Bj extends to be analytic on Bs.



Corollary 11.14: Suppose €1 is a region and a, — 0S), with a, # a,, when
n # m, and suppose {c,} are complex number. Then there exists f analytic
on €2 such that

flap,) =cp,n=1,2,....

Results like this are usually called interpolation theorems.



Proof. By the Weierstrass product theorem, we can find G analytic on {2 with

a simple zero at each a,,. Let
gy — lim 2

z=an 2 — Qp,

= G'(ay).

Since the zero of G at a,, is simple, d,, # 0. By Mittag-Leffler’s theorem we can

find /' meromorphic on 2 with singular part

§,(z) = ol

Z_an

at a,, and no other poles in C.

Then f(z) = F(2)G(2) is analytic on 2\ {a,} and
lim F(2)G(z) = lim (2 — a,)F(z)2C) = S — e

z—ap, Z—rap < — ap dn

Thus the singularity of f at each a,, is removable and f extends to be analytic
on 2 with f(a,) =c,,n=1,2,.... N



Corollary 11.15: If f is meromorphic in () then there are functions g and
h, analytic on (), such that

f =

>l

Proof. Let {a,} be the poles of f, where the list is written such that a pole of

order k occurs k times in this list.

By the Weierstrass product theorem, there is a function h analytic on {2 with

zeros {ay} and no other zeros. Then
g = fhis analytic on Q0 \ {a,} with removable singularity at each a,,.

Thus g extends to be analytic in Q and f = g/h. []



Section 11.3: Blaschke Products



Theorem 11.17, Jensen’s theorem: Suppose f is meromorphic on |z| <
R with zeros aq,...,a, and poles by, ..., b,,. Suppose also that 0 is not a

zero or a pole of f. Then

—/ log | f(Re™)|dt = log | £(0 \—I—Zlog Zlog‘b| (11.11)



Proof. Replacing f(z) by f(Rz), we may assume R = 1.

First suppose that f has no poles or zeros on |z| = 1. Write
[ =
—Aarz
f(Z) — Z_bk; g(Z),
Hj l—b_jz

where ¢ is analytic on D and has no zeros on |z| < 1. Then

B Hj‘aj‘

0 = T 1o

and log | f(e™)| = log |g(e")| = Relog g(e'), where log g(z) is analytic on DD



Note that if z = e then dz/(iz) = dt. So by Cauchy’s theorem

—/ log | f(e™)|dt = Re—/ log g(e")d

= Relog g(0) = log | f(0) |—Zlog\a]\+210g\bk\.

Thus (11.11) holds if f has no zeros or poles on |z| =
We may suppose f has no poles in |z| < R by Corollary 11.15.

Then vy; = max(—M,log | f]) is subharmonic on €, for M < oo.



If r < R then using the Poisson integral formula, find u;; harmonic on |z| < r

with uy; = vy on |z] = 7.
Then vy; — uyy is subharmonic and < 0 in |z| < r by the maximum principle.

Thusfor0 < s <r
2T

2T 2T
/ vyr(se’)dt < / upr(se)dt = 2muy(0) = / vr(re)dt.
0 0 0
Letting M — oo shows that the left side of (11.11) is non-decreasing when f
has no poles. But the right side of (11.11) is continuous in R. Because equality
holds when f has no zeros on |z| = R and the zeros of f are isolated, (11.11)
follows. L]



Corollary 11.18: Suppose f is analytic in D, f # 0, with zeros {a,}, and

suppose
Sup /W log | f(re')|dt < oo.
Then - O_:
(1 —|a,|) < .
n=0

Proof. Since f has only finitely many zeros at 0, we may divide them out and
suppose f(0) # 0.

Then by Jensen’s formula

But lim,_,; 2% = 1 so that Zlogﬁ < ooifand onlyif > (1—la,|) < co. O

rz—1



Theorem 11.19: If {a,} C D such that > (1 — |a,|) < co then

= a,| z — a,
B(Z> :H—a 1l —a,z
nzo n n

converges uniformly and absolutely on compact subsets of D, where we de-

fine the convergence factor |a,|/(—ay,) to be equal to 1 if a, = 0. The

function B is analytic on D, is bounded by 1 and has zero set exactly equal

to {ay,}.

The function in the theorem is called a Blaschke product.



Proof. WLOG a,, # 0 for all n. Then for |z| < r

|an| (Z_an)_l‘: (1 = |an|)||an|z + an < 2(1 — |an|)

—a, \1 — @,z an(1 —anz)| = (infla,|)(1—17)

By Weierstrass’'s M-test and Lemma 11.8, B converges uniformly and absolutely

on |z| <.

Note that the partial products for B are all bounded by 1 and analyticon D. [



Theorem 11.20: If f is bounded and analytic on D with zero set {a,}
(counting multiplicity) and if B is the Blaschke product with zero set {a,}
then

f(2) = B(z)e™

for some analytic function g with

Proof. WLOG, supp | f| = 1. Write

H an| 2
s —a, 1 — anz'

By Schwarz’s lemma |f(2)/Bn(z)| < 1. Choose 1, so that B # 0 on |z| = r,,.



Then f/Bpy converges uniformly to f/B on |z| = r, and by the maximum

principle the convergence is uniform on |z| < r,,.
Now let 7, — 1. Thus h = f/B is bounded by 1 on D and non-vanishing.

This implies g = log h can be defined as an analytic function on ID. By construc-

tion, supp |h| < supp |f| = 1, but also |B| < 1, so supp |h| = supp | f]. ]



It is difficult to overestimate the importance of Blaschke products in function

theory on ID.

We shall not prove this, but | B| has radial limits equal to 1 almost everywhere

on the circle.



Blaschke products are a special case of inner functions: bounded holomorphic

functions F' on D so that |F| has radial limit 1 almost everywhere on T.

A bounded analytic function on ID can be factored as F' = B - D - GG where

B = Blaschke product
S = Inner function with no zeros in D

(G = Outer function

Outer means log |G| is Poisson extension of radial limits of log |G| on T.



L*>*(T) = bounded measurable functions on unit circle.
H®(T) = subalgebra of L> whose Poisson extensions are holomorphic.

A Douglas algebra is a closed algebra of L*(T) that contains H>(T).

Chang-Marshall theorem: Any Douglas algebra A is generated by H™

and the complex conjugates of some collection of Blaschke products.
Marshall’s theorem: H® is generated by the Blaschke products.

Corollary: The unit ball of H* 1is the closed convex hull of the Blaschke

products.



Douglas-Rudin-Jones theorem: If u is measurable on T and |u| = 1

almost everywhere, then for every e > 0 are there Blaschke products By and
By so that ||lu — By/Bs||s < €.

Frostman’s theorem: Suppose f is an inner function, i.e., it is bounded
and holomorphic on the unit disk and |f| has radial boundary values 1

almost everywhere. Then

flz) —a
I —af(z)

is a Blaschke product for almost every a € D (actually, except for a set of

zero logarithmic capacity).






