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Chapter 10: Series and Products



Section 10.1: Mittag-Lefferler’s Theorem



Suppose f is meromorphic. Near a pole b we have the Laurent expansion,

f (z) =
cn

(z − b)n
+

cn−1
(z − b)n−1

+ · · ·+ c1
(z − b)

+a0 +a1(z− b) +a2(z− b)2 + . . . .

The sum of the first n terms

Sb(z) =
cn

(z − b)n
+

cn−1
(z − b)n−1

+ · · · + c1
(z − b)

is called the singular part of f at b.

If f is rational, then by a partial fraction expansion

f (z) =

m∑
k=1

Sbk(z) + p(z),

where p is a polynomial and {bk} are the poles of f .



If f is meromorphic in a region Ω with only finitely many poles {bk} and singular

parts Sbk, k = 1, . . . ,m, then

f (z) =

m∑
k=1

Sbk(z) + g(z),

where g is analytic in Ω.



Theorem 11.1, Mittag-Leffler’s theorem: Suppose bk ∈ Ω→ ∂Ω, with

bk 6= bj if k 6= j. Set

Sk(z) =

nk∑
j=1

cj,k
(z − bk)j

where each nk is a positive integer and cj,k ∈ C. Then there is a function

meromorphic in Ω with singular parts Sk at bk, k = 1, 2, . . . , and no other

singular parts in Ω.

If Ω = C we interpret the first hypothesis of Theorem 1.1 to be that |bk| → ∞.



Proof. Let

Kn = {z ∈ Ω : dist(z, ∂Ω) ≥ 1

n
and |z| ≤ n}.

Kn is a compact subset of Ω such that each bounded component of C \ Kn

contains a point of ∂Ω and Kn ⊂ Kn+1 ⊂ ∪Kn = Ω.

Because bk → ∂Ω each Kn contains only finitely many bk.

By Runge’s Theorem there is a rational fn with poles in C \ Ω so that∣∣∣∣ { ∑
bk∈Kn+1\Kn

Sk(z)
}
−fn(z)

∣∣∣∣ < 2−n

for all z ∈ Kn.



Then for each m = 1, 2, . . .∑
n≥m

( { ∑
bk∈Kn+1\Kn

Sk(z)
}
−fn(z)

)
converges uniformly on Km to an analytic function on Km by the Weierstrass

M -test and Weierstrass’s Theorem IV.3.10. Set

f (z) =
∑
bk∈K1

Sk(z) +

∞∑
n=1

( { ∑
bk∈Kn+1\Kn

Sk(z)
}
−fn(z)

)
. (11.1)

Then f is a well-defined analytic function on Ω\{bk} and f−Sk has a removable

singularity at bk for each k = 1, 2, . . . . �



Example 11.5, Weierstrass P function:

Suppose w1, w2 ∈ C \ {0} with w1/w2 not real. In other words w1 and w2

are not on the same line through the origin. There is no non-constant entire

function f satisfying f (z + w1) = f (z + w2) = f (z) for all z, by Liouville’s

theorem.

But there are meromorphic functions with this property. The Weierstrass P
function is defined by

P(z) =
1

z2
+

∑
(m,n)6=(0,0)

(
1

(z −mw1 − nw2)2
− 1

(mw1 + nw2)2

)
(11.8)

where the sum is taken over all pairs of integers except (0, 0).



To prove convergence of this sum, we first observe that there is a δ > 0 so that

|mw1 + nw2| ≥ δ unless m = n = 0, for if |mjw1 + njw2| → 0, then∣∣w1

w2
+
nj
mj

∣∣→ 0,

contradicting the assumption that w1/w2 is not real.

Thus {ζm,n = mw1 + nw2 : m,n ∈ Z}, where Z denotes the integers, forms a

lattice of points in C with no two points closer than δ.



If we place a disk of radius δ/2 centered at each point of the lattice, then the

disks are disjoint.

The area of the annulus k ≤ |ζ| ≤ k + 1 is (2k + 1)π so there are at most Ck

lattice points in this annulus, for some constant C depending on δ.



For |z| < R, we split the sum in (11.8) into a finite sum of terms with |ζm,n| ≤
2R and the sum of terms with |ζm,n| > 2R.

Note that if |z| < R and |ζ| > 2R, then∣∣∣∣ 1

(z − ζ)2
− 1

ζ2

∣∣∣∣= ∣∣∣∣ 2zζ − z2

ζ2(z − ζ)2

∣∣∣∣≤ R(2|ζ| + R)

|ζ|2|ζ/2|2
≤ 10R

|ζ|3
.

We conclude that for K ≥ R and |z| < R∑
|ζm,n|>2K

∣∣∣∣ 1

(z − ζm,n)2
− 1

ζ2m,n

∣∣∣∣ =

∞∑
k=2K

∑
k<|ζm,n|≤k+1

∣∣∣∣ 1

(z − ζm,n)2
− 1

ζ2m,n

∣∣∣∣
≤

∞∑
k=2K

Ck
10K

k3
<∞.

By Weierstrass’s theorem, the Weierstrass P function is meromorphic in C with

singular part S(z) = 1/(z −mw1 − nw2)
2 at mw1 + nw2 and no other poles.



Next we show that P(z + w1) = P(z). By Weierstrass’s theorem

P ′(z) = − 2

z3
−
∑
ζm,n6=0

2

(z − ζm,n)3
.

By the same estimate, this series converges absolutely so that we can rearrange

the terms, obtaining P ′(z + w1) = P ′(z), and hence P(z + w1) − P(z) is a

constant.

The series for P is even, so P(z + w1) = P(z) when z = −w1/2, and thus

P(z + w1) = P(z) for all z.

A similar argument shows that P(z + w2) = P(z).



Section 11.2: Weierstrass Products



A few facts from calculus: Proposition 11.6: Suppose pj ∈ C \ {0}.
Then

∏n
j=1 pj converges to a non-zero complex number P as n→∞ if and

only if
∞∑
j=1

log pj

converges to a complex number S where log pj is defined so that −π <

arg pj ≤ π. Moreover, if convergence holds then P = eS and lim pj = 1.



Definition 11.7: If pj are non-zero complex numbers then we say
∏∞

j=1 pj

converges absolutely if
∑
| log pj| converges.



Lemma 11.8: If pj are nonzero complex numbers then
∏∞

j=1 pj converges

absolutely if and only if
∞∑
j=1

|pj − 1|

converges.



Definition 11.9: Suppose {fj} are analytic on a region Ω. We say that∏∞
j=1 fj(z) converges on Ω if

lim
n→∞

n∏
j=0

fj(z)

converges uniformly on compact subsets of Ω to a function f which is not iden-

tically equal to 0.



Theorem 11.10, Weierstrass: Suppose Ω is a bounded region. If {bj} ⊂
Ω with bj → ∂Ω, and if nj are positive integers, then there exists an analytic

function f on Ω such that f has a zero of order exactly nj at bj, j = 1, 2, . . . ,

and no other zeros in Ω.



Proof. Let

Kn = {z ∈ Ω : |z − w| ≥ 1

n
for all w ∈ ∂Ω}.

Then as in the proof of Corollary IV.3.9, Kn is a compact subset of C such that

each component of C \Kn contains a point of ∂Ω and Kn ⊂ Kn+1.

Choose aj ∈ ∂Ω so that

dist(bj, ∂Ω) = |bj − aj|.
If bj /∈ Kn then the line segment from bj to aj does not intersect Kn. Thus we

can define log((z − bj)/(z − aj)) so as to be analytic in C \Kn.

Each Kn contains at most finitely many bk because bk → ∂Ω.



By Runge’s Theorem we can find a rational rn with poles in C \ Ω so that∣∣∣∣{ ∑
bk∈Kn+1\Kn

nk log

(
z − bk
z − ak

)}
−rn(z)

∣∣∣∣< 2−n, (2.1)

for all z ∈ Kn. Then∑
n≥m

( { ∑
bk∈Kn+1\Kn

nk log

(
z − bk
z − ak

)}
−rn(z)

)
converges uniformly on Km to an analytic function on Km. Set

f (z) =
∏
bk∈K1

(
z − bk
z − ak

)nk ∞∏
n=1

( ∏
bk∈Kn+1\Kn

(
z − bk
z − ak

)nk)
e−rn(z).

Then f is a well-defined analytic function on Ω with a zero of order nk at bk,

k = 1, 2, . . . , and no other zeros. �



Corollary 11.13: If Ω is a region then there is a function f analytic on

Ω such that f does not extend to be analytic in any larger region.

Proof. Take a sequence {an} ⊂ Ω→ ∂Ω such that ∂Ω ⊂ {an}.

By the Weierstrass product theorem we can find f analytic on Ω, with f (an) = 0

but f not identically zero.

If f extends to be analytic in a neighborhood of b ∈ ∂Ω then the zeros of the

extended function would not be isolated. �



In several complex variables, a similar result is not true.

If Br = {(z, w) : |z|2 + |w|2 < r2}, then any function which is analytic on

B2 \B1 extends to be analytic on B2.



Corollary 11.14: Suppose Ω is a region and an → ∂Ω, with an 6= am when

n 6= m, and suppose {cn} are complex number. Then there exists f analytic

on Ω such that

f (an) = cn, n = 1, 2, . . . .

Results like this are usually called interpolation theorems.



Proof. By the Weierstrass product theorem, we can find G analytic on Ω with

a simple zero at each an. Let

dn = lim
z→an

G(z)

z − an
= G′(an).

Since the zero of G at an is simple, dn 6= 0. By Mittag-Leffler’s theorem we can

find F meromorphic on Ω with singular part

Sn(z) =
cn/dn
z − an

at an and no other poles in C.

Then f (z) = F (z)G(z) is analytic on Ω \ {an} and

lim
z→an

F (z)G(z) = lim
z→an

(z − an)F (z)
G(z)

z − an
=
cn
dn
dn = cn.

Thus the singularity of f at each an is removable and f extends to be analytic

on Ω with f (an) = cn, n = 1, 2, . . . . �



Corollary 11.15: If f is meromorphic in Ω then there are functions g and

h, analytic on Ω, such that

f =
g

h
.

Proof. Let {an} be the poles of f , where the list is written such that a pole of

order k occurs k times in this list.

By the Weierstrass product theorem, there is a function h analytic on Ω with

zeros {an} and no other zeros. Then

g = fh is analytic on Ω \ {an} with removable singularity at each an.

Thus g extends to be analytic in Ω and f = g/h. �



Section 11.3: Blaschke Products



Theorem 11.17, Jensen’s theorem: Suppose f is meromorphic on |z| ≤
R with zeros a1, . . . , an and poles b1, . . . , bm. Suppose also that 0 is not a

zero or a pole of f . Then

1

2π

∫ π

−π
log |f (Reit)|dt = log |f (0)| +

∑
log

R

|ak|
−
∑

log
R

|bj|
. (11.11)



Proof. Replacing f (z) by f (Rz), we may assume R = 1.

First suppose that f has no poles or zeros on |z| = 1. Write

f (z) =

∏
k
z−ak
1−akz∏

j
z−bj
1−bjz

g(z),

where g is analytic on D and has no zeros on |z| ≤ 1. Then

|f (0)| =
∏

j |aj|∏
k |bk|
|g(0)|

and log |f (eit)| = log |g(eit)| = Re log g(eit), where log g(z) is analytic on D.



Note that if z = eit then dz/(iz) = dt. So by Cauchy’s theorem

1

2π

∫ π

−π
log |f (eit)|dt = Re

1

2π

∫ π

−π
log g(eit)dt

= Re log g(0) = log |f (0)| −
∑
j

log |aj| +
∑
k

log |bk|.

Thus (11.11) holds if f has no zeros or poles on |z| = R.

We may suppose f has no poles in |z| ≤ R by Corollary 11.15.

Then vM = max(−M, log |f |) is subharmonic on Ω, for M <∞.



If r ≤ R then using the Poisson integral formula, find uM harmonic on |z| < r

with uM = vM on |z| = r.

Then vM − uM is subharmonic and ≤ 0 in |z| < r by the maximum principle.

Thus for 0 < s < r∫ 2π

0

vM(seit)dt ≤
∫ 2π

0

uM(seit)dt = 2πuM(0) =

∫ 2π

0

vM(reit)dt.

Letting M → ∞ shows that the left side of (11.11) is non-decreasing when f

has no poles. But the right side of (11.11) is continuous in R. Because equality

holds when f has no zeros on |z| = R and the zeros of f are isolated, (11.11)

follows. �



Corollary 11.18: Suppose f is analytic in D, f 6≡ 0, with zeros {an}, and

suppose

sup
r<1

∫ π

−π
log |f (reit)|dt <∞.

Then ∞∑
n=0

(1− |an|) <∞.

Proof. Since f has only finitely many zeros at 0, we may divide them out and

suppose f (0) 6= 0.

Then by Jensen’s formula
∞∑
n=0

log
1

|an|
<∞.

But limx→1
log x
x−1 = 1, so that

∑
log 1

|an| <∞ if and only if
∑

(1−|an|) <∞. �



Theorem 11.19: If {an} ⊂ D such that
∑

(1− |an|) <∞ then

B(z) =

∞∏
n=0

|an|
−an

z − an
1− anz

converges uniformly and absolutely on compact subsets of D, where we de-

fine the convergence factor |an|/(−an) to be equal to 1 if an = 0. The

function B is analytic on D, is bounded by 1 and has zero set exactly equal

to {an}.

The function in the theorem is called a Blaschke product.



Proof. WLOG an 6= 0 for all n. Then for |z| ≤ r

∣∣∣∣ |an|−an
(
z − an
1− anz

)
−1

∣∣∣∣= (1− |an|)||an|z + an|
|an(1− anz)|

≤ 2(1− |an|)
(inf |an|)(1− r)

.

By Weierstrass’s M-test and Lemma 11.8, B converges uniformly and absolutely

on |z| ≤ r.

Note that the partial products for B are all bounded by 1 and analytic on D. �



Theorem 11.20: If f is bounded and analytic on D with zero set {an}
(counting multiplicity) and if B is the Blaschke product with zero set {an}
then

f (z) = B(z)eg(z)

for some analytic function g with

Proof. WLOG, supD |f | = 1. Write

BN(z) =

N∏
n=1

|an|
−an

z − an
1− anz

.

By Schwarz’s lemma |f (z)/BN(z)| ≤ 1. Choose rn so that B 6= 0 on |z| = rn.



Then f/BN converges uniformly to f/B on |z| = rn and by the maximum

principle the convergence is uniform on |z| ≤ rn.

Now let rn → 1. Thus h = f/B is bounded by 1 on D and non-vanishing.

This implies g = log h can be defined as an analytic function on D. By construc-

tion, supD |h| ≤ supD |f | = 1, but also |B| ≤ 1, so supD |h| = supD |f |. �



It is difficult to overestimate the importance of Blaschke products in function

theory on D.

We shall not prove this, but |B| has radial limits equal to 1 almost everywhere

on the circle.



Blaschke products are a special case of inner functions: bounded holomorphic

functions F on D so that |F | has radial limit 1 almost everywhere on T.

A bounded analytic function on D can be factored as F = B ·D ·G where

B = Blaschke product

S = Inner function with no zeros in D
G = Outer function

Outer means log |G| is Poisson extension of radial limits of log |G| on T.



L∞(T) = bounded measurable functions on unit circle.

H∞(T) = subalgebra of L∞ whose Poisson extensions are holomorphic.

A Douglas algebra is a closed algebra of L∞(T) that contains H∞(T).

Chang-Marshall theorem: Any Douglas algebra A is generated by H∞

and the complex conjugates of some collection of Blaschke products.

Marshall’s theorem: H∞ is generated by the Blaschke products.

Corollary: The unit ball of H∞ is the closed convex hull of the Blaschke

products.



Douglas-Rudin-Jones theorem: If u is measurable on T and |u| = 1

almost everywhere, then for every ε > 0 are there Blaschke products B1 and

B2 so that ‖u−B1/B2‖∞ < ε.

Frostman’s theorem: Suppose f is an inner function, i.e., it is bounded

and holomorphic on the unit disk and |f | has radial boundary values 1

almost everywhere. Then
f (z)− a
1− af (z)

is a Blaschke product for almost every a ∈ D (actually, except for a set of

zero logarithmic capacity).




